WO2019151165A1 - 温度センサ - Google Patents
温度センサ Download PDFInfo
- Publication number
- WO2019151165A1 WO2019151165A1 PCT/JP2019/002625 JP2019002625W WO2019151165A1 WO 2019151165 A1 WO2019151165 A1 WO 2019151165A1 JP 2019002625 W JP2019002625 W JP 2019002625W WO 2019151165 A1 WO2019151165 A1 WO 2019151165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outer tube
- sealing material
- glass sealing
- glass
- bubbles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
- G01K1/12—Protective devices, e.g. casings for preventing damage due to heat overloading
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
- G01K13/024—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K2205/00—Application of thermometers in motors, e.g. of a vehicle
- G01K2205/02—Application of thermometers in motors, e.g. of a vehicle for measuring inlet gas temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K2205/00—Application of thermometers in motors, e.g. of a vehicle
- G01K2205/04—Application of thermometers in motors, e.g. of a vehicle for measuring exhaust gas temperature
Definitions
- the present disclosure relates to a temperature sensor that measures the temperature of a measurement target gas in a measurement environment.
- a temperature sensor having a pair of thermocouple wires is used, for example, to measure the temperature of exhaust gas flowing in the exhaust pipe of a vehicle.
- the pair of thermocouple wires are fixed in the outer tube in an insulated state by an insulating material such as magnesium oxide or aluminum oxide.
- the distal end portion of the outer tube is closed with a metal material, and the proximal end portion of the outer tube is closed with a sealing material such as glass or resin. Then, by blocking the inside of the outer tube from the outside, the oxidation of the pair of thermocouple wires is suppressed and the moisture absorption of the insulating material is suppressed.
- an outer tube metal sheath
- a sealing seal impregnated layer in which a gap of an insulating powder as an insulating material is impregnated with a resin adhesive instead of a glass sealing material. The inside is sealed.
- the entire gap between the outer tube and the pair of thermocouple wires is filled with the glass sealing material.
- the glass sealing material is heated and melted, and then cooled and solidified.
- the temperature measuring tip of the temperature sensor is cooled after being heated by the measurement target gas, and heating and cooling of the temperature measuring tip of the temperature sensor are repeated.
- thermocouple wires made of a metal material and the glass sealing material made of a glass material are different.
- thermal stress thermal stress
- the outer tube and the pair of thermocouple wires expand more than the glass sealing material.
- the outer tube and the pair of thermocouple wires contract more than the glass sealing material.
- the present disclosure has been obtained in an attempt to provide a temperature sensor capable of suppressing the sealing state in the outer tube by the glass sealing material from being inhibited by the crack.
- One aspect of the present disclosure includes a pair of thermocouple wires made of different metal materials; A temperature measuring junction in which the tips of the pair of thermocouple wires are combined; An outer tube made of a metal material, containing the temperature measuring contact in the distal end portion or in the distal end cover attached to the distal end portion, and projecting the pair of thermocouple wires from the proximal end portion, An insulating material that is made of an insulating material, is disposed in the outer tube, insulates the pair of thermocouple wires from the outer tube, and fixes the pair of thermocouple wires to the outer tube; A glass sealing material that is made of a glass material and is filled in at least one of the base end portion of the outer tube and the holder attached to the base end portion of the outer tube, and seals the inside of the outer tube; With In the temperature sensor, a plurality of independent bubbles are included inside the glass sealing material.
- a plurality of independent bubbles are contained inside the glass sealing material of the temperature sensor of the one aspect.
- the glass sealing material can be protected from cracks by the plurality of independent bubbles. More specifically, when the temperature sensor is heated or cooled in use, even when a crack is generated in the glass sealing material due to thermal stress, the crack extends to penetrate the glass sealing material. This can be suppressed.
- the crack when a crack occurs in the glass sealing material, and this crack attempts to extend in the glass sealing material, the crack may reach any of a plurality of bubbles. At this time, since a plurality of bubbles are present independently in the glass sealing material, extension of cracks is hindered by the bubbles. Thereby, even if a crack arises in a glass sealing material, it can suppress that this crack extends until it penetrates a glass sealing material.
- the temperature sensor of the one aspect it is possible to suppress the sealing state in the outer tube by the glass sealing material from being inhibited by the crack.
- each component is not limited only to the content of embodiment.
- FIG. 1 is a cross-sectional view illustrating a main part of a temperature sensor according to an embodiment.
- FIG. 2 is a cross-sectional view illustrating a temperature sensor according to the embodiment.
- FIG. 3 is a cross-sectional view showing the periphery of the proximal end portion of the outer tube according to the embodiment. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3 according to the embodiment.
- FIG. 5 is a cross-sectional view illustrating a main part of another temperature sensor according to the embodiment.
- FIG. 6 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment.
- FIG. 7 is a cross-sectional view showing the periphery of the base end portion of another outer tube according to the embodiment.
- FIG. 8 is a cross-sectional view showing a main part of another temperature sensor according to the embodiment.
- FIG. 9 is a graph showing the relationship between the content ratio (% by mass) of Bi 2 O 3 or PbO in the tablet for glass sealing material and the softening point (° C.) of the glass material constituting the tablet according to the embodiment. It is.
- FIG. 10 is a perspective view showing a tablet for glass sealing material according to the embodiment.
- FIG. 11 is a graph showing the relationship between the porosity of the tablet and the size of the largest bubble in the glass sealing material according to the embodiment.
- FIG. 12 is a flowchart illustrating a manufacturing method of the sheath thermocouple constituting the temperature sensor according to the embodiment.
- FIG. 13 is an explanatory diagram showing a prepared sheath pin in the manufacturing process of the sheath thermocouple according to the embodiment.
- FIG. 14 is an explanatory diagram illustrating a state in which the insulating material at the base end portion of the sheath pin is scraped out in the manufacturing process of the sheath thermocouple according to the embodiment.
- FIG. 12 is a flowchart illustrating a manufacturing method of the sheath thermocouple constituting the temperature sensor according to the embodiment.
- FIG. 13 is an explanatory diagram showing a prepared sheath pin in the manufacturing process of the sheath thermocouple according to the embodiment.
- FIG. 14 is an explanatory diagram illustrating a state in which the insul
- FIG. 15 is an explanatory diagram showing a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires in the manufacturing process of the sheath thermocouple according to the embodiment.
- FIG. 16 is an explanatory diagram showing a manufacturing process of the sheath thermocouple according to the embodiment, in which a distal end cover is attached to the distal end portion of the outer tube and a tablet is disposed at the proximal end portion of the outer tube.
- FIG. 17 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment, in which a pair of thermocouple wires are inserted into the outer tube.
- FIG. 18 is an explanatory diagram showing a state in which a glass sealing material is filled in the proximal end portion of the outer tube in the manufacturing process of another thermocouple according to the embodiment.
- FIG. 19 is an explanatory diagram showing a state in which an outer tube is filled with an insulating material in another thermocouple manufacturing process according to the embodiment.
- FIG. 20 is an explanatory diagram illustrating another thermocouple manufacturing process according to the embodiment in a state in which a temperature measuring contact is formed at the distal ends of a pair of thermocouple wires.
- FIG. 21 is an explanatory diagram illustrating a state in which a crack has occurred in the glass sealing material according to the embodiment.
- the temperature sensor 1 of this embodiment includes a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, a tip cover 42, an insulating material 5, and a glass sealing material 6. .
- Each of the pair of thermocouple wires 2 is composed of different metal materials.
- the temperature measuring contact 3 is formed by joining the tips of a pair of thermocouple wires 2.
- the outer tube 4 is made of a metal material, and accommodates the temperature measuring contact 3 in the distal end cover 42 attached to the distal end portion 401 and causes the pair of thermocouple wires 2 to protrude from the proximal end portion 402. Yes.
- the tip cover 42 is attached to the outer periphery of the tip of the outer tube 4 and closes the tip side X1 of the outer tube 4.
- the insulating material 5 is made of an insulating material and is disposed in the outer tube 4, and insulates the pair of thermocouple wires 2 from the outer tube 4, thereby connecting the pair of thermocouple wires 2 to the outer tube. 4 is fixed.
- the glass sealing material 6 is made of a glass material, is filled in the base end portion 402 of the outer tube 4, and seals the outer tube 4. As shown in FIG. 3, a plurality of independent bubbles 61 are included in the glass sealing material 6. Note that the bubble 61 in FIG. 3 is schematically shown for easy understanding, and does not indicate the actual size of the bubble 61.
- the tip end side X ⁇ b> 1 is provided with a temperature measuring contact 3 with respect to the outer tube 4 in the axial direction X along the central axis of the outer tube 4. It means the side that was given.
- the base end side X2 refers to a side opposite to the front end side X1 in the axial direction X.
- the temperature sensor 1 is a vehicle-mounted one, and is used to measure the temperature of fluid flowing in an intake pipe or an exhaust pipe of an internal combustion engine (engine) in an automobile.
- the temperature sensor 1 of the present embodiment is disposed in the exhaust pipe 15 and is used to measure the temperature of exhaust gas as the measurement target gas G in the measurement environment that flows through the exhaust pipe 15.
- the temperature of the exhaust gas is used when the control device (electronic control unit) 8 performs combustion control of the internal combustion engine.
- the temperature of exhaust gas can be utilized, for example, in order to detect the temperature of the exhaust purification catalyst arranged in the exhaust pipe.
- the temperature sensor 1 can also be arrange
- the pair of thermocouple wires 2, the outer tube 4, and the insulating material 5 of the present embodiment are those integrally formed as a sheath pin 12.
- the main part of the temperature sensor 1 is formed as a sheath thermocouple 11 by a pair of thermocouple wires 2, a temperature measuring contact 3, an outer tube 4, an insulating material 5 and a glass sealing material 6. .
- the temperature sensor 1 includes a first housing 71 and a second housing 72 that hold the sheath thermocouple 11 on the inner peripheral side, a proximal end cover 73 attached to the second housing 72, and a base And a bush 74 held in the end cover 73.
- the first housing 71 is attached to the outer periphery of the outer tube 4, and the second housing 72 is attached to the outer periphery of the first housing 71.
- the second housing 72 is attached to an attachment hole provided in the exhaust pipe 15.
- the bush 74 holds the terminal fitting 75 connected to the pair of thermocouple wires 2.
- the outer tube 4 is also called a sheath tube or a metal sheath, and is made of a metal material such as stainless steel (SUS, NCA) or super heat resistant alloy (NCF). As shown in FIG. 12, the outer tube 4 uses a sheath pin 12 outer tube having a cylindrical shape.
- the distal end portion 401 of the outer tube 4 is closed with a metal material. As shown in FIG. 1, the distal end portion 401 of the outer tube 4 of this embodiment is closed by a distal end cover 42 attached to the outer periphery of the distal end portion 401 of the cylindrical portion 41. As shown in FIG.
- the distal end portion 401 of the outer tube 4 may be closed by a lid portion 42 ⁇ / b> A provided continuously from the distal end portion 401 of the cylindrical portion 41.
- the lid portion 42 ⁇ / b> A can be configured by a metal piece welded to the tip of the cylindrical portion 41 of the outer tube 4.
- the inner diameter of the outer tube 4 in this embodiment is in the range of ⁇ 1.0-10.0 mm. In this case, the inner diameter of the outer tube 4 is appropriate, and it becomes easy to form a plurality of independent bubbles 61 inside the glass sealing material 6.
- the compression effect means that when the heated outer tube 4 and the glass sealing material 6 are cooled, the glass transition point is a point where the stress is zero, and the linear expansion coefficient of the outer tube 4 is that of the glass sealing material 6.
- the inner diameter of the outer tube 4 is smaller than ⁇ 1.0 mm, the strength of the outer tube 4 is lowered, for example, the temperature sensor 1 is deformed due to vibration caused by the vehicle on which the temperature sensor 1 is mounted, and the thermoelectric There is a possibility that the insulation distance between the pair of strands 2 becomes small and the insulation is lowered.
- the inner diameter of the outer tube 4 can be reduced to about ⁇ 0.8 mm.
- a holder 43 for placing the tablet 60 for the glass sealing material 6 can be attached to the base end portion 402 of the outer tube 4.
- the holder 43 has a funnel shape and has an upper opening 431 having an inner diameter larger than the outer diameter of the outer tube 4.
- the holder 43 is used to fill the glass material melted by the tablet 60 into the proximal end portion 402 of the outer tube 4.
- the holder 43 can be press-fitted into the outer periphery of the base end portion 402 of the outer tube 4, and can be caulked and fixed or welded to the outer periphery of the base end portion 402 of the outer tube 4.
- the size of the tablet 60 arranged in the holder 43 can be made larger than the case where it is arranged in the proximal end portion 402 of the outer tube 4. And when the tablet 60 arrange
- the glass sealing material 6 can be filled in the holder 43 to seal the base end portion 402 of the outer tube 4.
- the inner diameter of the holder 43 can be set larger than the inner diameter of the outer tube 4.
- the glass sealing material 6 is more preferably filled up to the maximum diameter portion of the holder 43. In this case, a higher compression effect can be obtained, and the high airtightness of the outer tube 4 can be more effectively ensured.
- thermocouple wires 2 The pair of thermocouple wires 2 are made of different metal materials in order to generate a so-called Seebeck effect.
- the pair of thermocouple strands 2 in this embodiment constitutes an N type thermocouple (sheath thermocouple 11).
- the temperature sensor 1 of this embodiment can measure the temperature of the high temperature measurement target gas G of 1000 ° C. or higher.
- the + leg of the thermocouple wire 2 is made of niclosil, which is an alloy mainly composed of Ni (nickel), Cr (chromium), and Si (silicon).
- The-leg of the thermocouple wire 2 is made of nycil which is an alloy mainly composed of Ni (nickel) and Si (silicon).
- the pair of thermocouple wires 2 may constitute various types of thermocouples other than the N type.
- the pair of thermocouple wires 2 constitutes a K-type thermocouple whose + leg is made of chromel whose main component is Ni and Cr, and whose ⁇ leg is made of alumel whose main component is Ni, Al, or Si. It may be a thing.
- the pair of thermocouple wires 2 are inserted in the outer tube 4 in a state parallel to each other.
- the pair of thermocouple wires 2 are drawn from the outer tube 4 to the base end side X2, and are connected to the external control device 8 via the terminal fittings 75 and the lead wires 76 provided in the temperature sensor 1.
- the control device 8 can be a sensor control unit (SCU) connected to an engine control unit (ECU).
- the control device 8 can also be constructed in an engine control unit.
- thermocouple wires 2 As shown in FIG. 2, the temperature measuring junction 3 is also called a thermal junction, and a metal material that constitutes the + leg of the pair of thermocouple wires 2 is fused with a metal material that constitutes the-leg. It is formed.
- the temperature measuring tip 10 of the temperature sensor 1 is formed by the temperature measuring contact 3 and the tip cover 42 positioned around the temperature measuring contact 3.
- a pair of thermocouple wires 2 of the temperature sensor 1 is connected to an amplifier in the control device 8 via a terminal fitting 75, a lead wire 76, etc., thereby forming a circuit for measuring temperature.
- a reference contact located on the opposite side to the temperature measuring contact 3 in the pair of thermocouple wires 2 is formed in the control device 8. A temperature difference between the temperature measuring contact 3 and the reference contact generates an electromotive force in the pair of thermocouple wires 2.
- the temperature measuring contact 3 of this embodiment is arranged in the gas phase K in the tip cover 42 attached to the tip 401 of the outer tube 4.
- the temperature measuring contact 3 may be fixed to the tip cover 42 by a filler 51 disposed in the tip cover 42.
- the filler 51 is made of an insulating metal oxide.
- the distal end portion 201 and the temperature measuring contact 3 of the pair of thermocouple wires 2 are disposed at a position protruding from the distal end opening 411 of the cylindrical portion 41 of the outer tube 4 toward the distal end side X1.
- the insulating material 5 is composed of a powder of metal oxide such as magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ).
- MgO magnesium oxide
- Al 2 O 3 aluminum oxide
- a gap between the inner periphery of the outer tube 4 and the outer periphery of the pair of thermocouple wires 2 is filled with powder of the insulating material 5.
- a gap is formed between the powders of the insulating material 5.
- the powder of the insulating material 5 is compressed when molding to reduce the diameter of the sheath pin 12 is performed.
- the pair of thermocouple wires 2 is held in the outer tube 4 by the powder of the insulating material 5.
- the filling rate of the insulating material 5 in the outer tube 4 is 60% by volume or more.
- the filling rate of the insulating material 5 means that the gap in the outer tube 4 excluding the pair of thermocouple wires 2 is 100% by volume in the entire region where the outer tube 4 is filled with the insulating material 5. Means the volume ratio occupied by the powder of the insulating material 5.
- the filling rate of the insulating material 5 is less than 60% by volume, the melted glass sealing material 6 may permeate into the gaps between the powders of the insulating material 5 when the temperature sensor 1 is manufactured. In this case, the sealing performance by the glass sealing material 6 may be deteriorated. In this case, as will be described later, the manufacturing process of the temperature sensor 1 is changed, and after filling the outer tube 4 with the glass sealing material 6, the outer tube 4 is filled with the insulating material 5. Is required. On the other hand, as the filling rate of the insulating material 5 is increased, the insulation performance between the pair of thermocouple wires 2 and the outer tube 4 and the performance of holding the pair of thermocouple wires 2 on the outer tube 4 can be improved. It becomes possible. However, it is difficult to make the filling rate of the insulating material 5 higher than a predetermined value due to manufacturing restrictions. The filling rate of the insulating material 5 can be 90 volume% or less.
- the glass sealing material 6 is made of Bi glass containing Bi (bismuth) or Pb glass containing Pb (lead).
- Bi-based glass is mainly composed of Bi 2 O 3 (bismuth oxide) and contains other oxides.
- Other oxides include B 2 O 3 , SrO, ZnO, BaO and the like.
- Pb-based glass contains PbO (lead oxide) as a main component and contains other oxides and the like.
- Other oxides include B 2 O 3 , SrO, ZnO, SiO 2 and the like.
- the Bi content in the Bi-based glass can be 40 to 80% by mass. If the Bi content is less than 40% by mass, the melting temperature when melting a glass material such as the tablet 60 described later is increased, and the thermocouple wire 2 may be oxidized and deteriorated. On the other hand, when the Bi content exceeds 80 mass%, the melting temperature of the glass material is lowered, and the glass sealing material 6 may be melted at the use temperature of the temperature sensor 1.
- the Pb content in the Pb glass can be 50 to 80% by mass. If the Pb content is less than 50% by mass, the melting temperature when melting a glass material such as the tablet 60 described later is increased, and the thermocouple wire 2 may be oxidized and deteriorated. On the other hand, when the Pb content exceeds 80 mass%, the melting temperature of the glass material is lowered, and the glass sealing material 6 may be melted at the use temperature of the temperature sensor 1.
- FIG. 9 shows the relationship between the content ratio (% by mass) of Bi 2 O 3 or PbO in the tablet 60 for the glass sealing material 6 and the softening point (° C.) of the glass material constituting the tablet 60. It can be seen that the higher the content ratio of Bi 2 O 3 or PbO, the lower the softening point of the glass material. Further, when Bi-based glass or Pb-based glass is used, the tablet 60 can be melted by heating the tablet 60 to 400 to 700 ° C., for example.
- the glass encapsulant 6 is formed by using a glass tablet 60 formed in a solid state, and melting and solidifying the tablet 60. As shown in FIG. 10, the tablet 60 has a size that can be inserted into the inner periphery of the base end portion 402 of the outer tube 4 or the inner periphery of the holder 43.
- the tablet 60 has two insertion holes 601 through which the pair of thermocouple wires 2 can be inserted.
- Tablet 60 having a plurality (large number) of pores 62 is used.
- the tablet 60 of the present embodiment is obtained by compression (pressing) a plurality of (many) glass particles.
- a plurality of glass particles are compression-molded, a plurality of pores 62 are formed in the tablet 60 in which the glass particles are compression-molded due to the presence of voids between the glass particles.
- the pores 62 have various shapes and have various sizes.
- FIG. 16 schematically shows the pores 62 formed in the tablet 60.
- the glass sealing material 6 is formed by melting a tablet 60 having a plurality of pores 62 and intentionally leaving a plurality of (many) bubbles 61 in the melted tablet 60. It is a thing.
- FIG. 4 shows the periphery of the glass sealing material 6 in the sheath thermocouple 11 in a cross section orthogonal to the axial direction X.
- the plurality of independent bubbles 61 in the glass sealing material 6 may have various shapes such as a substantially spherical shape, a flat spherical shape, a crushed spherical shape, a long spherical shape, and an ellipsoid. However, most of the bubbles 61 become spherical due to the surface tension.
- the independent bubbles 61 are the bubbles 61 that exist independently within the glass sealing material 6.
- the bubbles 61 are also called closed pores.
- a depression due to a part of the bubbles 61 may be formed at the end of the glass sealing material 6. Further, some of the plurality of independent bubbles 61 in the glass sealing material 6 may be formed by connecting the plurality of bubbles 61. However, the bubbles 61 in the glass sealing material 6 do not penetrate from end to end of the glass sealing material 6.
- At least some of the plurality of bubbles 61 in the glass sealing material 6 have a size of 1 to 100 ⁇ m.
- the size, shape, and the like of the plurality of bubbles 61 in the glass sealing material 6 are various.
- the “size of the bubble 61” can be the maximum diameter of the bubble 61.
- the maximum diameter of the bubble 61 can be the length of the longest straight line passing through the bubble 61.
- Most of the plurality of bubbles 61 in this embodiment are in the range of 1 to 100 ⁇ m. In the total number of bubbles 61 contained in the glass sealing material 6, it is preferable that the number of bubbles 61 having a size of 1 to 100 ⁇ m is the largest.
- the bubbles 61 included in the glass sealing material 6 may include bubbles 61 smaller than 1 ⁇ m and bubbles 61 larger than 100 ⁇ m. However, the bubbles 61 smaller than 1 ⁇ m are difficult to prevent the extension of cracks generated in the glass sealing material 6. Bubbles 61 larger than 100 ⁇ m may reduce the strength of the glass sealing material 6, and may deteriorate the sealing performance of the glass sealing material 6. From the viewpoint of this sealing performance, the upper limit of the size of the bubbles 61 is more preferably 50 ⁇ m or less.
- the plurality of bubbles 61 are dispersed throughout the glass sealing material 6.
- the dispersed state of the plurality of air bubbles 61 is not limited as long as the air bubbles 61 are present in substantially the entire glass sealing material 6, and are not necessarily dispersed uniformly in the entire glass sealing material 6.
- the plurality of bubbles 61 are not defoamed (degassed) above the melted tablet 60 and remain in the melted tablet 60. Is formed by.
- pores 62 included in the tablet 60 or voids included between the powders of the insulating material 5 remain in the glass sealing material 6.
- the bubble ratio which is the ratio of the plurality of bubbles 61 in the glass sealing material 6, is 5 to 30% by volume.
- “Bubble rate” refers to the ratio of the total volume of the plurality of bubbles 61 to the volume of the entire outer shape of the glass sealing material 6.
- the bubble ratio is less than 5% by volume, the number of bubbles 61 in the glass sealing material 6 is small, and the plurality of bubbles 61 may reduce the effect of hindering the extension of cracks generated in the glass sealing material 6. is there.
- the bubble ratio is more than 30% by volume, the number of bubbles 61 in the glass sealing material 6 is large, and the strength of the glass sealing material 6 may be reduced. May degrade performance.
- the size and bubble ratio of the bubbles 61 in the glass sealing material 6 can be known by cutting an appropriate portion of the glass sealing material 6 and observing this cut surface with an SEM (scanning electron microscope).
- the size of the bubble 61 is approximated by the maximum diameter (the length of the longest straight line passing through the cross section of the bubble 61) in the cross section of the bubble 61 that appears on the cut surface of the glass sealing material 6 in order to facilitate the identification.
- the bubble ratio can be obtained as a ratio of the total area of the plurality of bubbles 61 in the entire area of the cut surface of the glass sealing material 6. Moreover, the ratio of this area can be made into the average of the value calculated
- the size of the bubbles 61 contained in the glass sealing material 6 can be adjusted by adjusting the porosity of the tablet 60 for the glass sealing material 6.
- the porosity of the tablet 60 is expressed as a ratio of the total volume of the plurality of pores 62 in the entire volume of the tablet 60. As the porosity of the tablet 60 is increased, the size of the maximum bubbles in the plurality of bubbles 61 formed in the glass sealing material 6 can be increased.
- FIG. 11 shows the relationship between the porosity (volume%) of the tablet 60 and the size ( ⁇ m) of the largest bubbles in the glass sealing material 6. If the porosity of the tablet 60 is lowered, the size of the plurality of bubbles 61 formed in the glass sealing material 6 can be reduced. However, if the porosity of the tablet 60 is less than 10% by volume, it becomes difficult to obtain the target bubbles 61 having a size of 1 to 100 ⁇ m. On the other hand, when the porosity of the tablet 60 exceeds 50 volume%, bubbles 61 having a size exceeding 100 ⁇ m are easily formed in the glass sealing material 6. Therefore, the porosity of the tablet 60 can be set within a range of 10 to 50% by volume.
- the linear expansion coefficient of the metal material composing the outer tube 4 and the linear expansion coefficient of the metal material composing the pair of thermocouple wires 2 are 10 to 15 ⁇ 10 ⁇ 6 (1 from room temperature (25 ° C.) to about 300 ° C. / K) grade.
- the linear expansion coefficient of the glass material constituting the glass sealing material 6 is about 6 to 9 ⁇ 10 ⁇ 6 (1 / K) from room temperature (25 ° C.) to about 300 ° C.
- a sheath pin 12 is prepared in which a pair of thermocouple wires 2 are held by an insulating material 5 in the outer tube 4 (step S1 in FIG. 12).
- a pair of thermocouple wires 2 protrude from both ends of the distal end side X1 and the proximal end side X2.
- step S2 in a state where the pair of thermocouple wires 2 and the outer tube 4 are maintained, the insulating material 5 at the base end portion of the sheath pin 12 is scraped out (step S2). At this time, the insulating material 5 can be scraped off by performing shot blasting or the like. Further, a space 403 after the insulating material 5 is scraped out is formed in the base end portion 402 of the outer tube 4.
- step S3 the tip portions 201 of the pair of thermocouple wires 2 protruding from the tip portions of the sheath pin 12 are faced to each other and melted using a laser or the like, and the tip portions 201 are joined to each other.
- the temperature measuring contact 3 is formed (step S3).
- the tip cover 42 is attached to the tip 401 of the outer tube 4 of the sheath pin 12, and the tip cover 42 is caulked and welded to fix it to the tip 401 of the outer tube 4. (Step S4).
- a filler 51 made of a metal oxide powder for fixing the temperature measuring contact 3 to the tip cover 42 can be disposed in the tip cover 42 (see FIG. 8). Note that steps S3 and S4 may be performed before step S2.
- the tablet 60 for forming the glass sealing material 6 is disposed in the space 403 of the base end portion 402 of the outer tube 4 (step S5).
- the base end portions 202 of the pair of thermocouple wires 2 protruding from the base end portion 402 of the outer tube 4 are inserted into the insertion holes 601 of the tablet 60.
- the base end portion 402 of the outer tube 4 and the tablet 60 are heated to a temperature at which the tablet 60 melts (step S6).
- the pores 62 included in the tablet 60 become bubbles 61 and are defoamed above the tablet 60. Further, the voids included in the insulating material 5 may become bubbles 61 and be defoamed above the tablet 60. Bubbles 61 can remain in the glass sealing material 6 by suppressing defoaming.
- the suppression of defoaming can be performed, for example, by adjusting the temperature at which the tablet 60 after melting is heated.
- Whether the bubbles 61 remain in the molten glass material or are defoamed outside the glass material depends on the relationship between the viscosity of the glass material and the buoyancy generated in the bubbles 61.
- the defoaming can be suppressed by adjusting the pressure under the environment in which the tablet 60 is heated. That is, it is considered that if the pressure in the heating environment is increased, the bubbles are less likely to be removed, and if the pressure in the heating environment is reduced to, for example, a vacuum state, the bubbles are easily removed.
- the glass sealing material 6 including a plurality of bubbles 61 is obtained. And the base end part 402 of the outer tube
- the sheath thermocouple 11 as the main part of the temperature sensor 1 is manufactured.
- thermocouple 11 can be manufactured without using the sheath pin 12 as follows. First, as shown in FIG. 17, a pair of thermocouple wires 2 are inserted into the inner periphery of the outer tube 4. Next, as shown in FIG. 18, the glass sealing material 6 is filled into the base end portion 402 of the outer tube 4 using the tablet 60. At this time, in the glass sealing material 6, a plurality of bubbles 61 are formed from the plurality of pores 62 included in the tablet 60. Next, as shown in FIG. 19, the direction of the outer tube 4 is changed so that the glass sealing material 6 is positioned on the lower side, and the insulating material 5 is filled above the glass sealing material 6 in the outer tube 4. .
- the filling rate of the insulating material 5 is about 20% by volume.
- the tip portions 201 of the pair of thermocouple wires 2 are fused to form the temperature measuring contact 3.
- the thermocouple 11 can be manufactured by attaching the tip cover 42 to the tip portion 401 of the outer tube 4.
- a plurality of independent bubbles 61 are included in the glass sealing material 6 of the temperature sensor 1 of this embodiment.
- the glass sealing material 6 can be protected from cracks by the plurality of independent bubbles 61.
- thermocouple wires 2 expands more than the glass sealing material 6. Therefore, the pair of thermocouple strands 2 tries to spread the glass sealing material 6. Thereby, thermal stress (tensile stress) is generated in the glass sealing material 6, and fine cracks may be generated in the glass sealing material 6 around the thermocouple element 2.
- thermocouple wires 2 tends to be separated from the glass sealing material 6. This also causes thermal stress in the glass sealing material 6 and may cause fine cracks in the glass sealing material 6 around the thermocouple element 2.
- the fine crack C often occurs from a portion located around the pair of thermocouple strands 2 on the surface of the base end side X ⁇ b> 2 of the glass sealing material 6.
- the crack C extends from the surface of the proximal end side X2 of the glass sealing material 6 to the distal end side X1 when the glass sealing material 6 is not devised to make the bubbles 61 exist, and the glass sealing material 6 There is a risk of extending the entire length in the axial direction X.
- the fine crack C may occur when the glass material of the melted tablet 60 is solidified at the time of manufacturing the sheath thermocouple 11.
- the fine crack C may be generated by stress (stress) when the base end portion 202 of the thermocouple element 2 is processed in a process after glass sealing at the time of manufacturing the sheath thermocouple 11.
- the crack C is the axis of the glass sealing material 6. Extending so as to penetrate in the direction X can be suppressed. That is, when the crack C is generated in the glass sealing material 6 and the crack C tries to extend through the glass sealing material 6, the crack C may reach one of the plurality of bubbles 61. At this time, since the plurality of bubbles 61 are present independently in the glass sealing material 6, extension of the crack C is hindered by the bubbles 61. Thereby, even if the crack C arises in the glass sealing material 6, it can suppress that this crack C extends until it penetrates the glass sealing material 6.
- the temperature sensor 1 of the present embodiment it is possible to suppress the sealing state in the outer tube 4 by the glass sealing material 6 from being inhibited by the crack C.
- Example 1 an example of the sheath thermocouple 11 of the temperature sensor 1 shown in the embodiment is shown, and a test for confirming the airtightness of the sheath thermocouple 11 was performed.
- the pair of thermocouple wires 2 in this example is configured by an N type sheathed thermocouple 11.
- the outer tube 4 of this example is constituted by an inner diameter: ⁇ 1.8 mm, a thickness: 0.3 mm, and a material: NCF601 (super stainless steel).
- the insulating material 5 of this example is made of MgO powder.
- the glass sealing material 6 of this example is composed of an outer diameter: ⁇ 1.5 mm, a length: 1.5 mm, a porosity: 20% by volume, and a material: Pb-based glass (PbO content ratio: 70% by mass). Yes.
- the base material of the sheath pin 12 is shot blasted, and the insulating material 5 existing within a depth range of about 5 mm from the base end of the outer tube 4. Was removed.
- the tablet 60 for the glass sealing material 6 is disposed in the space 403 where the insulating material 5 is removed at the base end portion 402 of the outer tube 4.
- the base end portion 402 of the outer tube 4 and the tablet 60 are heated to melt the tablet 60, thereby forming a glass sealing material 6 containing a plurality of bubbles 61 therein. 4 was sealed to the base end portion 402.
- the tablet 60 was continuously heated and melted for 30 minutes with the maximum temperature being 630 ° C. Then, heating was complete
- the rate of temperature increase when the tablet 60 is heated and the rate of temperature decrease when the tablet 60 is cooled be 20 ° C./min.
- a plurality of bubbles 61 having a size of 1 to 20 ⁇ m were formed in the glass sealing material 6.
- the sheath thermocouple 11 which has a pair of thermocouple strand 2, the outer tube
- Example 2 Also in this example, an example of the sheath thermocouple 11 of the temperature sensor 1 shown in the embodiment is shown, and a test for confirming the airtightness of the sheath thermocouple 11 was performed.
- a holder 43 is attached to the outer periphery of the base end portion 402 of the outer tube 4.
- the pair of thermocouple wires 2 in this example is configured by an N type sheathed thermocouple 11.
- the outer tube 4 of this example is configured by an inner diameter: ⁇ 1.8 mm, a thickness: 0.3 mm, and a material: NCF601 (Ni-based heat-resistant alloy).
- the insulating material 5 of this example is made of MgO powder.
- the inner diameter of the opening of the holder 43 of this example is formed to ⁇ 4.0 mm.
- the glass sealing material 6 of this example is constituted by an outer diameter: ⁇ 3.8 mm, a length: 1.5 mm, a porosity: 20% by volume, and a material: Pb-based glass (PbO content ratio: 70% by mass). Yes.
- the holder 43 was joined to the outer periphery of the base end portion 402 of the outer tube 4 by welding.
- the tablet 60 for the glass sealing material 6 is disposed in the holder 43, and the tablet 43 is melted by heating the holder 43, the base end portion 402 of the outer tube 4, and the tablet 60.
- the glass material of the tablet 60 melted in the holder 43 flows into the base end portion 402 of the outer tube 4 and spreads in the holder 43, and the glass sealing in which a plurality of bubbles 61 are contained inside the holder 43. Material 6 was formed.
- the tablet 60 was continuously heated and melted for 30 minutes in a state where the maximum temperature was 630 ° C. Then, heating was complete
- Example 1 the presence of minute cracks C in the glass sealing material 6 was confirmed.
- the sheath thermocouple 11 of this example was also subjected to a test for confirming hermeticity in the same manner as in Example 1. As in Example 1, it was confirmed that the airtightness in the outer tube 4 was secured by the glass sealing material 6.
- Others in this example are the same as those in the first embodiment.
- symbol shown in embodiment shows is the same as the component of Embodiment 1.
- sample no. 1 shows the case where the bubble 61 was not formed in the glass sealing material 6, or the case where there was only a bubble with a magnitude
- Sample No. 2 shows a case where a plurality of bubbles 61 of 1 to 10 ⁇ m are formed in the glass sealing material 6.
- Sample No. 3 shows the case where a plurality of bubbles 61 of 1 to 100 ⁇ m are formed in the glass sealing material 6.
- Sample No. 4 shows the case where a plurality of bubbles 61 of 1 to 1000 ⁇ m are formed in the glass sealing material 6.
- Sample No. Regarding 1 to 3 it was confirmed that the airtightness in the outer tube 4 can be sufficiently secured.
- sample No. As for No. 4 it was confirmed that it was difficult to ensure airtightness in the outer tube 4 reliably.
- Sample No. Regarding No. 4 it is considered that the size of the bubble 61 is large, the strength of the glass sealing material 6 cannot be sufficiently secured, and the airtightness cannot be secured.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
温度センサ(1)は、一対の熱電対素線(2)、一対の熱電対素線(2)の先端同士が接合された測温接点(3)、先端部(401)に設けられた先端カバー(42)内に測温接点(3)を収容する外管(4)、一対の熱電対素線(2)と外管(4)とを絶縁する絶縁材(5)、及び外管(4)の基端部(402)内に充填されて外管(4)内を封止するガラス封止材(6)を備える。ガラス封止材(6)の内部には、複数の独立した気泡(61)が含まれている。
Description
本出願は、2018年1月31日に出願された日本の特許出願番号2018-015626号に基づくものであり、その記載内容を援用する。
本開示は、測定環境下の測定対象ガスの温度を測定する温度センサに関する。
一対の熱電対素線を有する温度センサは、例えば、車両の排気管内を流れる排ガスの温度を測定するために用いられる。一対の熱電対素線は、酸化マグネシウム、酸化アルミニウム等の絶縁材によって、絶縁された状態で外管内に固定されている。また、外管の先端部は金属材料によって閉塞されており、外管の基端部はガラス、樹脂等の封止材によって閉塞されている。そして、外管内を外部から遮断することにより、一対の熱電対素線の酸化を抑制するとともに、絶縁材の吸湿を抑制している。
例えば、特許文献1の温度センサにおいては、ガラス封止材の代わりに、絶縁材としての絶縁粉末の空隙に樹脂接着剤が含浸された封孔シール含浸層を用いて、外管(金属シース)内を封止することが行われている。
ガラス封止材を用いて外管内を封止する場合には、外管内と一対の熱電対素線との隙間の全体がガラス封止材によって埋められる。このとき、ガラス封止材は、加熱されて溶融した後、冷却されて固化する。また、温度センサの使用時において、温度センサの測温先端部は、測定対象ガスによって加熱された後に冷却され、温度センサの測温先端部の加熱及び冷却が繰り返される。
温度センサの測温先端部が加熱又は冷却されるときには、金属材料から構成される外管及び一対の熱電対素線と、ガラス材料から構成されるガラス封止材との線膨張係数が異なることにより、ガラス封止材には熱ストレス(熱応力)が生じる。具体的には、温度センサの測温先端部が加熱されるときには、外管及び一対の熱電対素線がガラス封止材よりも大きく膨張する。一方、温度センサの測温先端部が冷却されるときには、外管及び一対の熱電対素線がガラス封止材よりも大きく収縮する。
これにより、特に、熱電対素線からガラス封止材に作用する熱ストレスによって、ガラス封止材に微細なクラック(亀裂)が生じるおそれがある。また、温度センサの製造時において、ガラス封止後の工程において、熱電対素線の基端部を加工する際のストレス(応力)によって、ガラス封止材にクラックが生じるおそれもある。これらのクラックは、微細な状態に留まっているときには、特に問題は生じない。しかし、微細なクラックが、ガラス封止材を貫通するように伸展すると、ガラス封止材による外管内の封止状態を保てなくなるおそれがある。
特許文献1の温度センサにおいては、外管及び一対の熱電対素線と、封孔シール含浸層との線膨張係数が異なることにより、封孔シール含浸層にクラックが生じるおそれがある。そのため、封孔シール含浸層に生じたクラックが封孔シール含浸層を貫通するように伸展したときには、封孔シール含浸層によって外管内の封止状態が保てなくなるおそれがある。
本開示は、ガラス封止材による外管内の封止状態がクラックによって阻害されることを抑制することができる温度センサを提供しようとして得られたものである。
本開示の一態様は、互いに異なる金属材料から構成された一対の熱電対素線と、
一対の前記熱電対素線の先端同士が合わさった測温接点と、
金属材料から構成され、前記測温接点を先端部内又は前記先端部に装着された先端カバー内に収容するとともに、一対の前記熱電対素線を基端部から突出させる外管と、
絶縁材料から構成され、前記外管内に配置されるとともに、一対の前記熱電対素線と前記外管とを絶縁して、一対の前記熱電対素線を前記外管に固定する絶縁材と、
ガラス材料から構成され、前記外管の前記基端部内及び前記外管の前記基端部に装着されたホルダ内の少なくとも一方に充填されるとともに、前記外管内を封止するガラス封止材と、を備え、
前記ガラス封止材の内部には、複数の独立した気泡が含まれる、温度センサにある。
一対の前記熱電対素線の先端同士が合わさった測温接点と、
金属材料から構成され、前記測温接点を先端部内又は前記先端部に装着された先端カバー内に収容するとともに、一対の前記熱電対素線を基端部から突出させる外管と、
絶縁材料から構成され、前記外管内に配置されるとともに、一対の前記熱電対素線と前記外管とを絶縁して、一対の前記熱電対素線を前記外管に固定する絶縁材と、
ガラス材料から構成され、前記外管の前記基端部内及び前記外管の前記基端部に装着されたホルダ内の少なくとも一方に充填されるとともに、前記外管内を封止するガラス封止材と、を備え、
前記ガラス封止材の内部には、複数の独立した気泡が含まれる、温度センサにある。
前記一態様の温度センサのガラス封止材の内部には、複数の独立した気泡が含まれている。この複数の独立した気泡により、ガラス封止材をクラックから保護することができる。より具体的には、温度センサが使用時において加熱又は冷却される際に、ガラス封止材に、熱ストレスによってクラックが生じたときでも、このクラックがガラス封止材を貫通するように伸展することを抑制することができる。
つまり、ガラス封止材にクラックが生じ、このクラックがガラス封止材中を伸展しようとした場合に、このクラックが複数の気泡のいずれかに到達することがある。このとき、複数の気泡がガラス封止材中に独立して存在していることにより、クラックの伸展が気泡によって妨げられることになる。これにより、ガラス封止材にクラックが生じたとしても、このクラックが、ガラス封止材を貫通するまで伸展することを抑制することができる。
それ故、前記一態様の温度センサによれば、ガラス封止材による外管内の封止状態がクラックによって阻害されることを抑制することができる。
なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。
本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
図1は、実施形態にかかる、温度センサの主要部を示す断面図である。
図2は、実施形態にかかる、温度センサを示す断面図である。
図3は、実施形態にかかる、外管の基端部の周辺を示す断面図である。
図4は、実施形態にかかる、図3のIV-IV断面図である。
図5は、実施形態にかかる、他の温度センサの主要部を示す断面図である。
図6は、実施形態にかかる、他の外管の基端部の周辺を示す断面図である。
図7は、実施形態にかかる、他の外管の基端部の周辺を示す断面図である。
図8は、実施形態にかかる、他の温度センサの主要部を示す断面図である。
図9は、実施形態にかかる、ガラス封止材用のタブレットにおけるBi2O3又はPbOの含有比率(質量%)と、タブレットを構成するガラス材料の軟化点(℃)との関係を示すグラフである。
図10は、実施形態にかかる、ガラス封止材用のタブレットを示す斜視図である。
図11は、実施形態にかかる、タブレットの気孔率と、ガラス封止材中の最大気泡の大きさとの関係を示すグラフである。
図12は、実施形態にかかる、温度センサを構成するシース熱電対の製造方法を示すフローチャートである。
図13は、実施形態にかかる、シース熱電対の製造過程であって、準備したシースピンを示す説明図である。
図14は、実施形態にかかる、シース熱電対の製造過程であって、シースピンの基端部における絶縁材を掻き出した状態を示す説明図である。
図15は、実施形態にかかる、シース熱電対の製造過程であって、一対の熱電対素線の先端部に測温接点を形成した状態を示す説明図である。
図16は、実施形態にかかる、シース熱電対の製造過程であって、外管の先端部に先端カバーを装着し、外管の基端部にタブレットを配置した状態を示す説明図である。
図17は、実施形態にかかる、他の熱電対の製造過程であって、外管内に一対の熱電対素線を挿通した状態を示す説明図である。
図18は、実施形態にかかる、他の熱電対の製造過程であって、外管の基端部内にガラス封止材を充填した状態を示す説明図である。
図19は、実施形態にかかる、他の熱電対の製造過程であって、外管内に絶縁材を充填した状態を示す説明図である。
図20は、実施形態にかかる、他の熱電対の製造過程であって、一対の熱電対素線の先端部に測温接点を形成した状態を示す説明図である。
図21は、実施形態にかかる、ガラス封止材にクラックが発生した状態を示す説明図である。
前述した温度センサにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態>
本形態の温度センサ1は、図1及び図2に示すように、一対の熱電対素線2、測温接点3、外管4、先端カバー42、絶縁材5及びガラス封止材6を備える。一対の熱電対素線2のそれぞれは、互いに異なる金属材料から構成されている。測温接点3は、一対の熱電対素線2の先端同士が接合されたものである。外管4は、金属材料から構成されており、測温接点3を先端部401に装着された先端カバー42内に収容するとともに、一対の熱電対素線2を基端部402から突出させている。先端カバー42は、外管4の先端外周部に装着されており、外管4の先端側X1を閉塞している。
<実施形態>
本形態の温度センサ1は、図1及び図2に示すように、一対の熱電対素線2、測温接点3、外管4、先端カバー42、絶縁材5及びガラス封止材6を備える。一対の熱電対素線2のそれぞれは、互いに異なる金属材料から構成されている。測温接点3は、一対の熱電対素線2の先端同士が接合されたものである。外管4は、金属材料から構成されており、測温接点3を先端部401に装着された先端カバー42内に収容するとともに、一対の熱電対素線2を基端部402から突出させている。先端カバー42は、外管4の先端外周部に装着されており、外管4の先端側X1を閉塞している。
絶縁材5は、絶縁材料から構成されており、外管4内に配置されるとともに、一対の熱電対素線2と外管4とを絶縁して、一対の熱電対素線2を外管4に固定している。ガラス封止材6は、ガラス材料から構成されており、外管4の基端部402内に充填されるとともに、外管4内を封止している。図3に示すように、ガラス封止材6の内部には、複数の独立した気泡61が含まれている。なお、図3における気泡61は、分かりやすくするために模式的に示すものであり、実際の気泡61の大きさを示すものではない。
図1及び図2に示すように、本形態の温度センサ1において、先端側X1とは、外管4の中心軸線に沿った軸方向Xにおいて、外管4に対して測温接点3が設けられた側のことをいう。基端側X2とは、軸方向Xにおける先端側X1とは反対側のことをいう。
以下に、本形態の温度センサ1について詳説する。
(温度センサ1)
図2に示すように、温度センサ1は、車載用のものであり、自動車における内燃機関(エンジン)の吸気管内又は排気管内を流れる流体の温度を測定するために使用される。本形態の温度センサ1は、排気管15に配置され、排気管15内を流れる、測定環境下の測定対象ガスGとしての排ガスの温度を測定するために用いられる。排ガスの温度は、制御装置(電子制御ユニット)8によって内燃機関の燃焼制御を行う際に利用される。また、排ガスの温度は、例えば、排気管に配置された排気浄化触媒の温度を検知するために利用することができる。また、温度センサ1は、例えば、排気管内の排ガスを吸気管へ再循環させる排気再循環経路の吸気管に配置することもできる。
(温度センサ1)
図2に示すように、温度センサ1は、車載用のものであり、自動車における内燃機関(エンジン)の吸気管内又は排気管内を流れる流体の温度を測定するために使用される。本形態の温度センサ1は、排気管15に配置され、排気管15内を流れる、測定環境下の測定対象ガスGとしての排ガスの温度を測定するために用いられる。排ガスの温度は、制御装置(電子制御ユニット)8によって内燃機関の燃焼制御を行う際に利用される。また、排ガスの温度は、例えば、排気管に配置された排気浄化触媒の温度を検知するために利用することができる。また、温度センサ1は、例えば、排気管内の排ガスを吸気管へ再循環させる排気再循環経路の吸気管に配置することもできる。
図13に示すように、本形態の一対の熱電対素線2、外管4及び絶縁材5は、シースピン12として一体的に成形されたものを利用したものである。図1に示すように、温度センサ1の主要部は、一対の熱電対素線2、測温接点3、外管4、絶縁材5及びガラス封止材6によってシース熱電対11として形成される。
図2に示すように、温度センサ1は、シース熱電対11を内周側に保持する第1ハウジング71及び第2ハウジング72と、第2ハウジング72に取り付けられた基端側カバー73と、基端側カバー73内に保持されたブッシュ74とを更に備える。第1ハウジング71は、外管4の外周に装着されており、第2ハウジング72は、第1ハウジング71の外周に装着されている。第2ハウジング72は、排気管15に設けられた取付孔に取り付けられる。また、ブッシュ74は、一対の熱電対素線2に接続された端子金具75を保持する。
(外管4)
外管4は、シース管又は金属シースとも呼ばれ、ステンレス(SUS、NCA)、超耐熱合金(NCF)等の金属材料によって構成されている。図12に示すように、外管4は、円筒形状を有するシースピン12の外管を利用したものである。外管4の先端部401は、金属材料によって閉塞されている。本形態の外管4の先端部401は、図1に示すように、円筒部41の先端部401の外周に装着された先端カバー42によって閉塞されている。外管4の先端部401は、図5に示すように、円筒部41の先端部401から連続して設けられた蓋部42Aによって閉塞されていてもよい。蓋部42Aは、外管4の円筒部41の先端に溶接された金属片によって構成することができる。
外管4は、シース管又は金属シースとも呼ばれ、ステンレス(SUS、NCA)、超耐熱合金(NCF)等の金属材料によって構成されている。図12に示すように、外管4は、円筒形状を有するシースピン12の外管を利用したものである。外管4の先端部401は、金属材料によって閉塞されている。本形態の外管4の先端部401は、図1に示すように、円筒部41の先端部401の外周に装着された先端カバー42によって閉塞されている。外管4の先端部401は、図5に示すように、円筒部41の先端部401から連続して設けられた蓋部42Aによって閉塞されていてもよい。蓋部42Aは、外管4の円筒部41の先端に溶接された金属片によって構成することができる。
本形態の外管4の内径は、φ1.0~10.0mmの範囲内にある。この場合には、外管4の内径が適切であり、ガラス封止材6の内部に、複数の独立した気泡61を形成することが容易になる。外管4の内径がφ1.0mmよりも小さくなると、外管4の基端部402からガラス封止材6へのコンプレッション効果が得られにくくなるおそれがある。コンプレッション効果とは、加熱された外管4及びガラス封止材6が冷却されるときに、ガラス転移点を応力がゼロである点として、外管4の線膨張係数がガラス封止材6の線膨張係数よりも大きいことによって、ガラス転移点以下の温度環境において外管4からガラス封止材6へ圧縮応力を作用させ、ガラス封止材6による封止性能(シール性能)が高まる効果のことをいう。外管4の内径がφ10.0mmよりも大きい場合には、シース熱電対11が大型化し、温度センサ1の応答性、搭載性等に悪影響を及ぼすおそれがある。
また、外管4の内径がφ1.0mmよりも小さくなると、外管4の強度が低くなって、例えば温度センサ1が搭載された車両による振動によって温度センサ1に変形が生じたり、また、熱電対素線2間の絶縁距離が小さくなって、絶縁低下するおそれがある。ただし、これらの問題を改善できれば、外管4の内径は、φ0.8mm程度に細くすることも可能であると考える。
図6に示すように、外管4の基端部402には、ガラス封止材6用のタブレット60を配置するためのホルダ43を装着することができる。ホルダ43は、漏斗形状を有し、外管4の外径よりも大きな内径の上方開口部431を有している。ホルダ43は、タブレット60が溶融したガラス材料を、外管4の基端部402内へ充填するために用いられる。ホルダ43は、外管4の基端部402の外周に圧入させることができ、外管4の基端部402の外周にかしめ固定又は溶接することもできる。
ホルダ43内に配置するタブレット60のサイズは、外管4の基端部402内に配置する場合よりも大きくすることができる。そして、ホルダ43内に配置されたタブレット60がガラス材料として溶融したときには、このガラス材料は、ホルダ43内から外管4の基端部402内へ流れ込むことができる。これにより、多くのガラス材料を溶融させることができ、外管4の基端部402内へ十分なガラス材料を供給することができる。そのため、ガラス封止材6によって外管4内を、より効果的に封止することができる。
また、図7に示すように、ホルダ43を用いる場合には、ガラス封止材6はホルダ43内に充填して、外管4の基端部402を封止することもできる。この場合、ホルダ43の内径は外管4の内径より大きく設定することができる。そして、ホルダ43内にガラス封止材6を充填することによって、より高いコンプレッション効果を得ることが可能となり、外管4内の高気密性を確保することができる。また、この場合には、シースピン12の基端部(シース管4の基端部402)から絶縁材5を掻き出す手間を省くことも可能である。ガラス封止材6はホルダ43の最大径部まで充填することがより好ましい。この場合、さらに高いコンプレッション効果を得ることが可能となり、外管4の高気密性をより効果的に確保することができる。
(一対の熱電対素線2)
一対の熱電対素線2は、いわゆるゼーベック効果を生じさせるために、互いに異なる金属材料によって構成されている。本形態の一対の熱電対素線2は、Nタイプの熱電対(シース熱電対11)を構成するものである。本形態の温度センサ1は、1000℃以上の高温の測定対象ガスGの温度を測定可能である。熱電対素線2の+脚は、Ni(ニッケル)、Cr(クロム)、Si(シリコン)を主成分とする合金であるナイクロシルからなる。熱電対素線2の-脚は、Ni(ニッケル)、Si(シリコン)を主成分とする合金であるナイシルからなる。
一対の熱電対素線2は、いわゆるゼーベック効果を生じさせるために、互いに異なる金属材料によって構成されている。本形態の一対の熱電対素線2は、Nタイプの熱電対(シース熱電対11)を構成するものである。本形態の温度センサ1は、1000℃以上の高温の測定対象ガスGの温度を測定可能である。熱電対素線2の+脚は、Ni(ニッケル)、Cr(クロム)、Si(シリコン)を主成分とする合金であるナイクロシルからなる。熱電対素線2の-脚は、Ni(ニッケル)、Si(シリコン)を主成分とする合金であるナイシルからなる。
なお、一対の熱電対素線2は、Nタイプ以外にも、種々のタイプの熱電対を構成するものとしてもよい。例えば、一対の熱電対素線2は、+脚がNi及びCrを主成分とするクロメルからなり、-脚がNi、Al、Siを主成分とするアルメルからなるKタイプの熱電対を構成するものとしてもよい。
図2に示すように、一対の熱電対素線2は、外管4内において互いに平行な状態で挿通されている。一対の熱電対素線2は、外管4から基端側X2に引き出されており、温度センサ1に設けられた端子金具75及びリード線76を介して、外部の制御装置8に接続される。制御装置8は、エンジン制御ユニット(ECU)に接続されたセンサ制御ユニット(SCU)とすることができる。また、制御装置8は、エンジン制御ユニットに構築することもできる。
(測温接点3)
図2に示すように、測温接点3は、熱接点とも呼ばれ、一対の熱電対素線2の+脚を構成する金属材料と、-脚を構成する金属材料とが融合して玉状に形成されたものである。測温接点3及び測温接点3の周辺に位置する先端カバー42等によって、温度センサ1の測温先端部10が形成される。温度センサ1の一対の熱電対素線2が端子金具75、リード線76等を介して制御装置8内のアンプに接続されることにより、温度を測定するための回路が形成される。一対の熱電対素線2における、測温接点3とは反対側に位置する基準接点は、制御装置8内に形成されている。測温接点3と基準接点との温度差が、一対の熱電対素線2に起電力を生じさせる。
図2に示すように、測温接点3は、熱接点とも呼ばれ、一対の熱電対素線2の+脚を構成する金属材料と、-脚を構成する金属材料とが融合して玉状に形成されたものである。測温接点3及び測温接点3の周辺に位置する先端カバー42等によって、温度センサ1の測温先端部10が形成される。温度センサ1の一対の熱電対素線2が端子金具75、リード線76等を介して制御装置8内のアンプに接続されることにより、温度を測定するための回路が形成される。一対の熱電対素線2における、測温接点3とは反対側に位置する基準接点は、制御装置8内に形成されている。測温接点3と基準接点との温度差が、一対の熱電対素線2に起電力を生じさせる。
図1に示すように、本形態の測温接点3は、外管4の先端部401に装着された先端カバー42内の気相K中に配置されている。図8に示すように、測温接点3は、先端カバー42内に配置されたフィラー51によって先端カバー42に固定されていてもよい。フィラー51は、絶縁性の金属酸化物によって構成される。一対の熱電対素線2の先端部201及び測温接点3は、外管4の円筒部41の先端開口部411から先端側X1に突出した位置に配置されている。
(絶縁材5)
図1に示すように、絶縁材5は、酸化マグネシウム(MgO)、酸化アルミニウム(Al2O3)等の金属酸化物の粉末によって構成されている。外管4の内周と一対の熱電対素線2の外周との隙間には、絶縁材5の粉末が充填されている。絶縁材5の粉末同士の間には、空隙が形成されている。絶縁材5の粉末は、シースピン12の直径を小さくする成形が行われる際に圧縮されている。そして、絶縁材5の粉末によって、一対の熱電対素線2が外管4内に保持されている。
図1に示すように、絶縁材5は、酸化マグネシウム(MgO)、酸化アルミニウム(Al2O3)等の金属酸化物の粉末によって構成されている。外管4の内周と一対の熱電対素線2の外周との隙間には、絶縁材5の粉末が充填されている。絶縁材5の粉末同士の間には、空隙が形成されている。絶縁材5の粉末は、シースピン12の直径を小さくする成形が行われる際に圧縮されている。そして、絶縁材5の粉末によって、一対の熱電対素線2が外管4内に保持されている。
外管4内の絶縁材5の充填率は、60体積%以上である。絶縁材5の充填率とは、外管4内に絶縁材5が充填された領域全体において、一対の熱電対素線2を除く外管4内の隙間を100体積%としたとき、この隙間において絶縁材5の粉末が占める体積の割合のことをいう。
絶縁材5の充填率が60体積%未満である場合には、温度センサ1の製造時において、絶縁材5の粉末同士の空隙に、溶融したガラス封止材6が浸透するおそれがある。この場合には、ガラス封止材6による封止性能が悪化するおそれがある。また、この場合には、後述するように、温度センサ1の製造工程を変更し、外管4にガラス封止材6を充填した後に、外管4内に絶縁材5を充填する等の工夫が必要になる。一方、絶縁材5の充填率は、高くするほど、一対の熱電対素線2と外管4との絶縁性能、及び外管4への一対の熱電対素線2の保持性能を高めることが可能になる。ただし、絶縁材5の充填率は、製造上の制約によって、所定値以上に高くすることは難しい。絶縁材5の充填率は、90体積%以下とすることができる。
(ガラス封止材6)
ガラス封止材6は、Bi(ビスマス)を含有するBi系ガラス、又はPb(鉛)を含有するPb系ガラスによって構成されている。Bi系ガラスは、Bi2O3(酸化ビスマス)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B2O3、SrO、ZnO、BaO等がある。Pb系ガラスは、PbO(酸化鉛)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B2O3、SrO、ZnO、SiO2等がある。
ガラス封止材6は、Bi(ビスマス)を含有するBi系ガラス、又はPb(鉛)を含有するPb系ガラスによって構成されている。Bi系ガラスは、Bi2O3(酸化ビスマス)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B2O3、SrO、ZnO、BaO等がある。Pb系ガラスは、PbO(酸化鉛)を主成分とし、他の酸化物等を含有するものである。他の酸化物には、B2O3、SrO、ZnO、SiO2等がある。
Bi系ガラスにおけるBiの含有量は、40~80質量%とすることができる。Biの含有量が40質量%未満になると、後述するタブレット60等のガラス材料を溶融させるときの溶融温度が高くなり、熱電対素線2を酸化劣化させるおそれがある。一方、Biの含有量が80質量%超過になると、ガラス材料の溶融温度が低くなり、温度センサ1の使用温度において、ガラス封止材6が溶融するおそれがある。
Pb系ガラスにおけるPbの含有量は、50~80質量%とすることができる。Pbの含有量が50質量%未満になると、後述するタブレット60等のガラス材料を溶融させるときの溶融温度が高くなり、熱電対素線2を酸化劣化させるおそれがある。一方、Pbの含有量が80質量%超過になると、ガラス材料の溶融温度が低くなり、温度センサ1の使用温度において、ガラス封止材6が溶融するおそれがある。
図9には、ガラス封止材6用のタブレット60におけるBi2O3又はPbOの含有比率(質量%)と、タブレット60を構成するガラス材料の軟化点(℃)との関係を示す。Bi2O3又はPbOの含有比率が高くなるほど、ガラス材料の軟化点が低くなることが分かる。また、Bi系ガラス又はPb系ガラスを用いる際には、タブレット60を例えば、400~700℃に加熱することにより、このタブレット60を溶融させることができる。
ガラス封止材6は、固形状に形成されたガラスのタブレット60を用い、このタブレット60を溶融させた後に固化させて形成されたものである。図10に示すように、タブレット60は、外管4の基端部402の内周又はホルダ43の内周に挿入できる大きさを有する。また、タブレット60は、一対の熱電対素線2を挿通させることができる2つの挿通穴601を有する。
タブレット60は、複数(多数)の気孔62を有するものを用いる。本形態のタブレット60は、複数(多数)のガラス粒子が圧縮(プレス)成形されたものである。複数のガラス粒子が圧縮成形されたときには、ガラス粒子同士の間の空隙の存在によって、ガラス粒子が圧縮成形されたタブレット60中には、複数の気孔62が形成される。この気孔62は、種々の形状を有しており、大きさも様々である。図16には、タブレット60に形成された気孔62を模式的に示す。
図3に示すように、ガラス封止材6は、複数の気孔62を有するタブレット60を溶融させた後、溶融したタブレット60中に複数(多数)の気泡61を意図的に残留させて形成されたものである。また、図4には、シース熱電対11におけるガラス封止材6の周辺を、軸方向Xに直交する断面で示す。ガラス封止材6における複数の独立した気泡61は、略球形状、扁平した球形状、潰れた球形状、長球形状、楕円体等の種々の形状を有していてもよい。ただし、表面張力によって、気泡61のほとんどは球形状になる。独立した気泡61とは、ガラス封止材6の内部に、単独で存在する気泡61のことをいう。この気泡61は閉気孔とも呼ばれる。
ガラス封止材6の端部には、気泡61の一部による窪みが形成されていてもよい。また、ガラス封止材6における複数の独立した気泡61の一部は、複数の気泡61が繋がって形成されたものであってもよい。ただし、ガラス封止材6における気泡61は、ガラス封止材6の端部から端部へは貫通していない。
ガラス封止材6における複数の気泡61の少なくとも一部は、1~100μmの大きさを有する。ガラス封止材6における複数の気泡61の大きさ、形状等は、様々である。「気泡61の大きさ」とは、気泡61の最大径とすることができる。気泡61の最大径は、気泡61内を通る最長の直線の長さとすることができる。本形態の複数の気泡61のほとんどは、1~100μmの大きさの範囲内にある。ガラス封止材6に含まれる気泡61の全体の数において、1~100μmの大きさを有する気泡61の数が最も多いことが好ましい。
ガラス封止材6に含まれる気泡61の中には、1μmよりも小さな気泡61、及び100μmよりも大きな気泡61が含まれていてもよい。ただし、1μmよりも小さな気泡61は、ガラス封止材6に生じたクラックの伸展を妨げることが難しくなる。100μmよりも大きな気泡61は、ガラス封止材6の強度を低下させるおそれがあり、また、ガラス封止材6による封止性能を悪化させるおそれがある。この封止性能の観点より、気泡61の大きさの上限は50μm以下であることがより好ましい。
複数の気泡61は、ガラス封止材6の全体に分散している。複数の気泡61の分散状態は、気泡61がガラス封止材6のおおよそ全体に存在していればよく、必ずしもガラス封止材6の全体に均一に分散していなくてもよい。複数の気泡61は、ガラス封止材6用のタブレット60が溶融されたときに、溶融されたタブレット60の上方へ脱泡(脱気)されずに、溶融したタブレット60中に残留した気泡61によって形成されている。複数の気泡61は、タブレット60に含まれていた気孔62、又は絶縁材5の粉末の間に含まれていた空隙が、ガラス封止材6中に残留したものである。
ガラス封止材6における複数の気泡61が占める割合である気泡率は、5~30体積%である。「気泡率」とは、ガラス封止材6の外形全体の体積における、複数の気泡61の合計体積が占める割合のことをいう。気泡率が5体積%未満である場合には、ガラス封止材6における気泡61の数が少なく、複数の気泡61によって、ガラス封止材6に生じたクラックの伸展を妨げる効果が薄れるおそれがある。気泡率が30体積%超過である場合には、ガラス封止材6における気泡61の数が多く、ガラス封止材6の強度を低下させるおそれがあり、また、ガラス封止材6による封止性能を悪化させるおそれがある。
ガラス封止材6における気泡61の大きさ及び気泡率は、ガラス封止材6の適宜箇所を切断し、この切断面をSEM(走査電子顕微鏡)に観察することによって知ることができる。気泡61の大きさは、その特定を容易にするために、ガラス封止材6の切断面に現れた気泡61の断面における最大径(気泡61の断面を通る最長の直線の長さ)によって近似することもできる。SEMによるガラス封止材6の切断面の観察は、複数の切断面について行い、気泡61の大きさは、複数の切断面において観察された気泡61の大きさに基づいて判断することができる。
気泡率は、ガラス封止材6の切断面の全面積において、複数の気泡61の合計面積が占める割合として求めることができる。また、この面積の割合は、複数の切断面について求めた値の平均とすることができる。
ガラス封止材6に含まれる気泡61の大きさは、ガラス封止材6用のタブレット60の気孔率を調整することによって調整することができる。タブレット60の気孔率は、タブレット60の全体積における、複数の気孔62の合計体積の割合として表される。タブレット60の気孔率を大きくするほど、ガラス封止材6中に形成される複数の気泡61における最大気泡の大きさを大きくすることができる。
図11には、タブレット60の気孔率(体積%)と、ガラス封止材6中の最大気泡の大きさ(μm)との関係を示す。タブレット60の気孔率を低くすれば、ガラス封止材6中に形成される複数の気泡61のサイズを小さくすることができる。ただし、タブレット60の気孔率を10体積%未満にすると、目標とする1~100μmの大きさの気泡61を得ることが難しくなる。一方、タブレット60の気孔率を50体積%超過にすると、ガラス封止材6中に100μmを超える大きさの気泡61が形成されやすくなる。従って、タブレット60の気孔率は、10~50体積%の範囲内に設定することができる。
(線膨張係数)
外管4を構成する金属材料の線膨張係数及び一対の熱電対素線2を構成する金属材料の線膨張係数は、常温(25℃)から300℃程度において10~15×10-6(1/K)程度である。ガラス封止材6を構成するガラス材料の線膨張係数は、常温(25℃)から300℃程度において6~9×10-6(1/K)程度である。そして、温度センサ1が加熱及び冷却されるときには、外管4及び一対の熱電対素線2は、ガラス封止材6に比べて大きく膨張及び収縮をする。
外管4を構成する金属材料の線膨張係数及び一対の熱電対素線2を構成する金属材料の線膨張係数は、常温(25℃)から300℃程度において10~15×10-6(1/K)程度である。ガラス封止材6を構成するガラス材料の線膨張係数は、常温(25℃)から300℃程度において6~9×10-6(1/K)程度である。そして、温度センサ1が加熱及び冷却されるときには、外管4及び一対の熱電対素線2は、ガラス封止材6に比べて大きく膨張及び収縮をする。
(製造方法)
次に、本形態の温度センサ1の主要部としてのシース熱電対11を製造する方法について、図12のフローチャートを参照して説明する。
まず、外管4内に一対の熱電対素線2が絶縁材5によって保持されたシースピン12を準備する(図12のステップS1)。図13に示すように、シースピン12においては、一対の熱電対素線2が先端側X1及び基端側X2の両端から突出している。次いで、図14に示すように、一対の熱電対素線2及び外管4が維持された状態で、シースピン12の基端部における絶縁材5を掻き出す(ステップS2)。このとき、絶縁材5は、ショットブラスト加工等を行って掻き出すことができる。また、外管4の基端部402には、絶縁材5が掻き出された後の空間403が形成される。
次に、本形態の温度センサ1の主要部としてのシース熱電対11を製造する方法について、図12のフローチャートを参照して説明する。
まず、外管4内に一対の熱電対素線2が絶縁材5によって保持されたシースピン12を準備する(図12のステップS1)。図13に示すように、シースピン12においては、一対の熱電対素線2が先端側X1及び基端側X2の両端から突出している。次いで、図14に示すように、一対の熱電対素線2及び外管4が維持された状態で、シースピン12の基端部における絶縁材5を掻き出す(ステップS2)。このとき、絶縁材5は、ショットブラスト加工等を行って掻き出すことができる。また、外管4の基端部402には、絶縁材5が掻き出された後の空間403が形成される。
次いで、図15に示すように、シースピン12の先端部から突出する、一対の熱電対素線2の先端部201同士を対面させるとともにレーザー等を用いて溶融させ、先端部201同士を接合して測温接点3を形成する(ステップS3)。次いで、図16に示すように、シースピン12の外管4の先端部401に、先端カバー42を装着し、先端カバー42を、かしめ、溶接等を行って外管4の先端部401に固定する(ステップS4)。このとき、先端カバー42内には、測温接点3を先端カバー42に固定するための、金属酸化物の粉末からなるフィラー51を配置することができる(図8参照)。なお、ステップS2を行う前に、ステップS3及びS4を行ってもよい。
次いで、図16に示すように、外管4の基端部402の空間403内に、ガラス封止材6を形成するためのタブレット60を配置する(ステップS5)。このとき、外管4の基端部402から突出する一対の熱電対素線2の基端部202を、タブレット60の挿通穴601に挿通させる。次いで、外管4の基端部402及びタブレット60を、タブレット60が溶融する温度に加熱する(ステップS6)。
タブレット60が溶融するときには、タブレット60に含まれる気孔62が気泡61となって、タブレット60の上方へ脱泡される。また、絶縁材5に含まれる空隙が気泡61となってタブレット60の上方へ脱泡されることもある。ガラス封止材6には、脱泡が行われることを抑制することによって、気泡61を残留させることができる。
脱泡の抑制は、例えば、溶融後のタブレット60を加熱する温度を調整することによって行うことができる。タブレット60の加熱温度が高くなるほど、溶融したタブレット60のガラス材料の粘度が低くなり、気泡61が上方へ脱泡されやすくなる。一方、タブレット60の加熱温度が低くなるほど、溶融したタブレット60のガラス材料の粘度が高くなり、気泡61が上方へ脱泡されにくくなる。気泡61が、溶融したガラス材料中に残るか、ガラス材料の外部に脱泡されるかは、ガラス材料の粘度と気泡61に生じる浮力との関係によって決まる。また、タブレット60の気孔率が高いほど、溶融したタブレット60中に気泡61が残留しやすくなる。
また、脱泡の抑制は、タブレット60を加熱する環境下の圧力を調整することによっても行うことができると考える。つまり、加熱環境下の圧力を高くすれば脱泡されにくくなり、加熱環境下の圧力を、例えば真空状態等に低くすれば脱泡されやすくなると考える。
そして、外管4の基端部402の加熱を終了し、溶融したタブレット60が冷やされて固化したときには、複数の気泡61を含むガラス封止材6となる。そして、外管4の基端部402がガラス封止材6によって封止され、外管4内がガラス封止材6によって外部と遮断される。こうして、温度センサ1の主要部としてのシース熱電対11が製造される。
(他の製造方法)
また、熱電対11は、次のようにシースピン12を用いずに製造することもできる。まず、図17に示すように、外管4の内周に一対の熱電対素線2を挿通する。次いで、図18に示すように、外管4の基端部402内にタブレット60を用いてガラス封止材6を充填する。このとき、ガラス封止材6においては、タブレット60に含まれる複数の気孔62から複数の気泡61が形成される。次いで、図19に示すように、ガラス封止材6が下側に位置するように外管4の向きを変え、外管4内のガラス封止材6の上方に、絶縁材5を充填する。この場合、絶縁材5の充填率は20体積%程度となる。次いで、図20に示すように、一対の熱電対素線2の先端部201同士を融合させて、測温接点3を形成する。その後は、外管4の先端部401に先端カバー42を装着して、熱電対11を製造することができる。
また、熱電対11は、次のようにシースピン12を用いずに製造することもできる。まず、図17に示すように、外管4の内周に一対の熱電対素線2を挿通する。次いで、図18に示すように、外管4の基端部402内にタブレット60を用いてガラス封止材6を充填する。このとき、ガラス封止材6においては、タブレット60に含まれる複数の気孔62から複数の気泡61が形成される。次いで、図19に示すように、ガラス封止材6が下側に位置するように外管4の向きを変え、外管4内のガラス封止材6の上方に、絶縁材5を充填する。この場合、絶縁材5の充填率は20体積%程度となる。次いで、図20に示すように、一対の熱電対素線2の先端部201同士を融合させて、測温接点3を形成する。その後は、外管4の先端部401に先端カバー42を装着して、熱電対11を製造することができる。
(作用効果)
本形態の温度センサ1のガラス封止材6の内部には、複数の独立した気泡61が含まれている。この複数の独立した気泡61により、ガラス封止材6をクラックから保護することができる。
本形態の温度センサ1のガラス封止材6の内部には、複数の独立した気泡61が含まれている。この複数の独立した気泡61により、ガラス封止材6をクラックから保護することができる。
具体的には、測定環境下の測定対象ガスGの温度が、温度センサ1の測温先端部10、外管4等の温度よりも高い場合には、測温先端部10、外管4等は、測定対象ガスGによって加熱される。このとき、一対の熱電対素線2はガラス封止材6よりも大きく膨張する。そのため、一対の熱電対素線2がガラス封止材6を押し広げようとする。これにより、ガラス封止材6に熱ストレス(引張応力)が生じ、熱電対素線2の周辺のガラス封止材6に微細なクラックが生じることがある。
また、測定対象ガスGの温度が、測温先端部10、外管4等の温度よりも低い場合には、測温先端部10、外管4等は、測定対象ガスGによって冷却される。このとき、外管4及び一対の熱電対素線2がガラス封止材6よりも大きく収縮する。そのため、一対の熱電対素線2がガラス封止材6から離れようとする。これによっても、ガラス封止材6に熱ストレスが生じ、熱電対素線2の周辺のガラス封止材6に微細なクラックが生じることがある。
図21に示すように、微細なクラックCは、ガラス封止材6の基端側X2の表面における、一対の熱電対素線2の周辺に位置する部位から発生することが多い。このクラックCは、ガラス封止材6に気泡61を存在させる工夫をしていない場合には、ガラス封止材6の基端側X2の表面から先端側X1へ伸展し、ガラス封止材6の軸方向Xの全長に伸展するおそれがある。
なお、微細なクラックCは、シース熱電対11の製造時に、溶融したタブレット60のガラス材料が固化する際に生じることもある。また、微細なクラックCは、シース熱電対11の製造時のガラス封止後の工程において、熱電対素線2の基端部202を加工する際のストレス(応力)によって生じることもある。
なお、微細なクラックCは、シース熱電対11の製造時に、溶融したタブレット60のガラス材料が固化する際に生じることもある。また、微細なクラックCは、シース熱電対11の製造時のガラス封止後の工程において、熱電対素線2の基端部202を加工する際のストレス(応力)によって生じることもある。
本形態の温度センサ1においては、ガラス封止材6に複数の気泡61が含まれることにより、ガラス封止材6にクラックCが生じたときでも、このクラックCがガラス封止材6の軸方向Xに貫通するように伸展することを抑制することができる。つまり、ガラス封止材6にクラックCが生じ、このクラックCがガラス封止材6中を伸展しようとした場合に、このクラックCが複数の気泡61のいずれかに到達することがある。このとき、複数の気泡61がガラス封止材6中に独立して存在していることにより、クラックCの伸展が気泡61によって妨げられることになる。これにより、ガラス封止材6にクラックCが生じたとしても、このクラックCが、ガラス封止材6を貫通するまで伸展することを抑制することができる。
それ故、本形態の温度センサ1によれば、ガラス封止材6による外管4内の封止状態がクラックCによって阻害されることを抑制することができる。
(実施例1)
本例においては、実施形態に示した温度センサ1のシース熱電対11の一例を示し、このシース熱電対11の気密性を確認する試験を行った。
本例の一対の熱電対素線2は、Nタイプのシース熱電対11によって構成されている。本例の外管4は、内径:φ1.8mm、厚み:0.3mm、材質:NCF601(スーパーステンレス)によって構成されている。本例の絶縁材5は、MgOの粉末によって構成されている。本例のガラス封止材6は、外径:φ1.5mm、長さ:1.5mm、気孔率:20体積%、材質:Pb系ガラス(PbOの含有比率:70質量%)によって構成されている。
本例においては、実施形態に示した温度センサ1のシース熱電対11の一例を示し、このシース熱電対11の気密性を確認する試験を行った。
本例の一対の熱電対素線2は、Nタイプのシース熱電対11によって構成されている。本例の外管4は、内径:φ1.8mm、厚み:0.3mm、材質:NCF601(スーパーステンレス)によって構成されている。本例の絶縁材5は、MgOの粉末によって構成されている。本例のガラス封止材6は、外径:φ1.5mm、長さ:1.5mm、気孔率:20体積%、材質:Pb系ガラス(PbOの含有比率:70質量%)によって構成されている。
また、本例のシース熱電対11を製造する際には、シースピン12の基端部にショットブラスト加工を行い、外管4の基端から約5mmの深さの範囲内に存在する絶縁材5を除去した。次いで、外管4の基端部402における、絶縁材5が除去された空間403に、ガラス封止材6用のタブレット60を配置する。次いで、外管4の基端部402及びタブレット60を加熱してタブレット60を溶融させ、内部に複数の気泡61が含まれるガラス封止材6を形成し、このガラス封止材6を外管4の基端部402に封着させた。
このとき、タブレット60は、最高温度が630℃になる状態で、30分間継続して加熱して溶融させた。その後、加熱を終了してタブレット60を冷却し、タブレット60が固化して、複数の気泡61を含むガラス封止材6が形成された。なお、タブレット60を加熱する際の昇温速度及びタブレット60を冷却する際の降温速度は、20℃/minとすることが推奨される。こうして、ガラス封止材6には、1~20μmの大きさの複数の気泡61が形成された。そして、温度センサ1における、一対の熱電対素線2、外管4及び絶縁材5を有するシース熱電対11を製造した。製造したシース熱電対11のガラス封止材6を確認したところ、製造時に発生した微小なクラックCの存在が確認された。
次いで、シース熱電対11の気密性を確認する試験を行った。この試験においては、製造初期における気密性、シース熱電対11を400℃の温度に連続して加熱した後の気密性、シース熱電対11の加熱及び冷却を繰り返した後の気密性を確認した。また、気密性を確認しやすくするため、外管4内の気体をヘリウム(He)によって置換した。
気密性を確認した結果、ガラス封止材6によって外管4内の気密性が確保されていることが確認された。この気密性が確保できた理由は、ガラス封止材6に複数の気泡61が含まれることにより、クラックCの伸長を抑制することができたためであると考える。
本例において、実施形態に示した符号と同一の符号が示す構成要素は、実施形態1の構成要素と同様である。
(実施例2)
本例においても、実施形態に示した温度センサ1のシース熱電対11の一例を示し、このシース熱電対11の気密性を確認する試験を行った。
本例のシース熱電対11においては、外管4の基端部402の外周にホルダ43が装着されている。本例の一対の熱電対素線2は、Nタイプのシース熱電対11によって構成されている。本例の外管4は、内径:φ1.8mm、厚み:0.3mm、材質:NCF601(Ni基耐熱合金)によって構成されている。本例の絶縁材5は、MgOの粉末によって構成されている。本例のホルダ43の開口部の内径は、φ4.0mmに形成されている。本例のガラス封止材6は、外径:φ3.8mm、長さ:1.5mm、気孔率:20体積%、材質:Pb系ガラス(PbOの含有比率:70質量%)によって構成されている。
本例においても、実施形態に示した温度センサ1のシース熱電対11の一例を示し、このシース熱電対11の気密性を確認する試験を行った。
本例のシース熱電対11においては、外管4の基端部402の外周にホルダ43が装着されている。本例の一対の熱電対素線2は、Nタイプのシース熱電対11によって構成されている。本例の外管4は、内径:φ1.8mm、厚み:0.3mm、材質:NCF601(Ni基耐熱合金)によって構成されている。本例の絶縁材5は、MgOの粉末によって構成されている。本例のホルダ43の開口部の内径は、φ4.0mmに形成されている。本例のガラス封止材6は、外径:φ3.8mm、長さ:1.5mm、気孔率:20体積%、材質:Pb系ガラス(PbOの含有比率:70質量%)によって構成されている。
本例のシース熱電対11を製造する際には、外管4の基端部402の外周に、ホルダ43を溶接によって接合した。次いで、ホルダ43内にガラス封止材6用のタブレット60を配置し、ホルダ43、外管4の基端部402及びタブレット60を加熱してタブレット60を溶融させる。このとき、ホルダ43内において溶融したタブレット60のガラス材料が、外管4の基端部402へ流れ込むとともにホルダ43内に広がり、ホルダ43内に、内部に複数の気泡61が含まれるガラス封止材6が形成された。
また、タブレット60は、最高温度が630℃になる状態で、30分間継続して加熱して溶融させた。その後、加熱を終了してタブレット60を冷却し、タブレット60が固化して、複数の気泡61を含むガラス封止材6が形成された。こうして、ガラス封止材6には、1~20μmの大きさの複数の気泡61が形成され、シース熱電対11が製造された。
本例においても、実施例1と同様に、ガラス封止材6に微小なクラックCの存在が確認された。また、本例のシース熱電対11についても、実施例1と同様に気密性を確認する試験を行った。そして、実施例1と同様に、ガラス封止材6によって外管4内の気密性が確保されていることが確認された。本例においても、その他は実施例1と同様である。また、実施形態に示した符号と同一の符号が示す構成要素は、実施形態1の構成要素と同様である。
(確認試験)
本確認試験においては、タブレット60の気孔率を適宜変更して、複数の気泡61の大きさの範囲が異なる4種類のガラス封止材6を有するシース熱電対11(サンプルNo.1~4)を準備した。そして、サンプルNo.1~4のシース熱電対11について気密性を確認する試験を行った。気密性の確認は、実施例1と同様に行った。
本確認試験においては、タブレット60の気孔率を適宜変更して、複数の気泡61の大きさの範囲が異なる4種類のガラス封止材6を有するシース熱電対11(サンプルNo.1~4)を準備した。そして、サンプルNo.1~4のシース熱電対11について気密性を確認する試験を行った。気密性の確認は、実施例1と同様に行った。
同表に示すように、サンプルNo.1は、ガラス封止材6に気泡61が形成されなかった場合、又は大きさが1μm以下の気泡しかなかった場合を示す。サンプルNo.2は、ガラス封止材6に1~10μmの複数の気泡61が形成された場合を示す。サンプルNo.3は、ガラス封止材6に1~100μmの複数の気泡61が形成された場合を示す。サンプルNo.4は、ガラス封止材6に1~1000μmの複数の気泡61が形成された場合を示す。
サンプルNo.1~3については、外管4内の気密性を十分に確保できることが確認された。一方、サンプルNo.4については、外管4内の気密性を確実に確保することが難しいことが確認された。サンプルNo.4については、気泡61の大きさが大きく、ガラス封止材6の強度を十分に確保できず、気密性を確保できなかったと考える。
本開示は、実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。
Claims (8)
- 互いに異なる金属材料から構成された一対の熱電対素線(2)と、
一対の前記熱電対素線の先端同士が合わさった測温接点(3)と、
金属材料から構成され、前記測温接点を先端部(401)内又は前記先端部に装着された先端カバー(42)内に収容するとともに、一対の前記熱電対素線を基端部(402)から突出させる外管(4)と、
絶縁材料から構成され、前記外管内に配置されるとともに、一対の前記熱電対素線と前記外管とを絶縁して、一対の前記熱電対素線を前記外管に固定する絶縁材(5)と、
ガラス材料から構成され、前記外管の前記基端部内及び前記外管の前記基端部に装着されたホルダ(43)内の少なくとも一方に充填されるとともに、前記外管内を封止するガラス封止材(6)と、を備え、
前記ガラス封止材の内部には、複数の独立した気泡(61)が含まれる、温度センサ(1)。 - 複数の前記気泡の少なくとも一部は、1~100μmの大きさを有する、請求項1に記載の温度センサ。
- 複数の前記気泡は、前記ガラス封止材の全体に分散している、請求項1又は2に記載の温度センサ。
- 前記ガラス封止材における複数の前記気泡が占める割合である気泡率は、5~30体積%である、請求項1~3のいずれか1項に記載の温度センサ。
- 前記ガラス封止材は、Biを含有するBi系ガラス、又はPbを含有するPb系ガラスから構成されている、請求項1~4のいずれか1項に記載の温度センサ。
- 前記Bi系ガラスにおけるBiの含有量は、40~80質量%であり、
前記Pb系ガラスにおけるPbの含有量は、50~80質量%である、請求項5に記載の温度センサ。 - 前記外管の内径は、φ1.5~10.0mmの範囲内にある、請求項1~6のいずれか1項に記載の温度センサ。
- 前記外管内の前記絶縁材の充填率は、60体積%以上である、請求項1~7のいずれか1項に記載の温度センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019000614.2T DE112019000614T5 (de) | 2018-01-31 | 2019-01-28 | Temperatursensor |
CN201980011096.2A CN111684247B (zh) | 2018-01-31 | 2019-01-28 | 温度传感器 |
US16/944,401 US11237064B2 (en) | 2018-01-31 | 2020-07-31 | Temperature sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018015626A JP6888561B2 (ja) | 2018-01-31 | 2018-01-31 | 温度センサ |
JP2018-015626 | 2018-01-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/944,401 Continuation US11237064B2 (en) | 2018-01-31 | 2020-07-31 | Temperature sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151165A1 true WO2019151165A1 (ja) | 2019-08-08 |
Family
ID=67478299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002625 WO2019151165A1 (ja) | 2018-01-31 | 2019-01-28 | 温度センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11237064B2 (ja) |
JP (1) | JP6888561B2 (ja) |
CN (1) | CN111684247B (ja) |
DE (1) | DE112019000614T5 (ja) |
WO (1) | WO2019151165A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11293807B2 (en) * | 2019-04-16 | 2022-04-05 | Okazaki Manufacturing Company | Sheathed thermocouple and method for manufacturing sheathed thermocouple |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102386792B1 (ko) * | 2020-03-06 | 2022-04-14 | 주식회사 대진센서제작소 | 절연성 및 보호성이 향상된 센서기구 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070258506A1 (en) * | 2006-05-02 | 2007-11-08 | Schwagerman William H | Temperature sensors and methods of manufacture thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06229837A (ja) * | 1993-02-08 | 1994-08-19 | Sumitomo Electric Ind Ltd | 被覆熱電対の製造方法および被覆熱電対用線材の製造方法 |
JP2904066B2 (ja) * | 1995-08-31 | 1999-06-14 | 松下電器産業株式会社 | 温度センサ及びその製造方法 |
JP2781538B2 (ja) | 1995-12-13 | 1998-07-30 | 株式会社岡崎製作所 | 温度センサの製造方法 |
US5743646A (en) * | 1996-07-01 | 1998-04-28 | General Motors Corporation | Temperature sensor with improved thermal barrier and gas seal between the probe and housing |
CN1170323C (zh) * | 2001-09-13 | 2004-10-06 | 陈洪德 | 单芯稀土复合套管热电偶 |
KR20070100474A (ko) * | 2006-04-07 | 2007-10-11 | 오석환 | 자기장 차폐 기능을 가지는 온도센서 |
JP5085398B2 (ja) * | 2007-04-16 | 2012-11-28 | 株式会社デンソー | 温度センサ |
JP5598469B2 (ja) * | 2009-05-08 | 2014-10-01 | 旭硝子株式会社 | 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法 |
JP5838864B2 (ja) * | 2012-03-06 | 2016-01-06 | 日本電気硝子株式会社 | 熱電対取り付け方法及び被覆熱電対 |
JP6234755B2 (ja) * | 2013-09-19 | 2017-11-22 | 日本特殊陶業株式会社 | 温度センサ |
JP6301753B2 (ja) | 2014-06-25 | 2018-03-28 | 日本特殊陶業株式会社 | 温度センサ |
JP6292148B2 (ja) * | 2014-07-31 | 2018-03-14 | 株式会社デンソー | 温度センサ |
JP2016130633A (ja) * | 2015-01-13 | 2016-07-21 | アズビル株式会社 | 温度センサ |
JP6296081B2 (ja) * | 2015-04-03 | 2018-03-20 | 株式会社デンソー | 温度センサ |
JP5976881B1 (ja) | 2015-05-21 | 2016-08-24 | 株式会社岡崎製作所 | 熱電対素線断線寿命の延長を実現する方法 |
JP2017049132A (ja) * | 2015-09-02 | 2017-03-09 | 株式会社デンソー | 温度センサ |
CN106352995A (zh) * | 2016-09-12 | 2017-01-25 | 厦门奥冶炉相科技有限公司 | 热电偶测温装置 |
-
2018
- 2018-01-31 JP JP2018015626A patent/JP6888561B2/ja active Active
-
2019
- 2019-01-28 CN CN201980011096.2A patent/CN111684247B/zh active Active
- 2019-01-28 WO PCT/JP2019/002625 patent/WO2019151165A1/ja active Application Filing
- 2019-01-28 DE DE112019000614.2T patent/DE112019000614T5/de active Pending
-
2020
- 2020-07-31 US US16/944,401 patent/US11237064B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070258506A1 (en) * | 2006-05-02 | 2007-11-08 | Schwagerman William H | Temperature sensors and methods of manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11293807B2 (en) * | 2019-04-16 | 2022-04-05 | Okazaki Manufacturing Company | Sheathed thermocouple and method for manufacturing sheathed thermocouple |
Also Published As
Publication number | Publication date |
---|---|
US11237064B2 (en) | 2022-02-01 |
CN111684247A (zh) | 2020-09-18 |
CN111684247B (zh) | 2022-06-28 |
US20200363270A1 (en) | 2020-11-19 |
DE112019000614T5 (de) | 2020-10-08 |
JP2019132724A (ja) | 2019-08-08 |
JP6888561B2 (ja) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7104685B2 (en) | Temperature sensor with quick response | |
US11454551B2 (en) | Temperature sensor and temperature measuring device | |
WO2019151165A1 (ja) | 温度センサ | |
JP4603772B2 (ja) | ガス測定フィーラ | |
JP5155246B2 (ja) | 温度センサ | |
US9702764B2 (en) | Thermocouple apparatus and method | |
JP5561292B2 (ja) | 温度センサ | |
JP5252631B2 (ja) | 温度センサおよびその製造方法 | |
WO2015141831A1 (ja) | 2層構造の充填剤と感温素子を持つ温度センサ及びその製造方法 | |
JP6650170B1 (ja) | シース熱電対 | |
JP2018036188A (ja) | 温度センサ | |
US20180252595A1 (en) | Temperature sensor | |
WO2019151167A1 (ja) | 温度センサ | |
TWI644329B (zh) | 纜線、溫度測量裝置及纜線之製造方法 | |
JP2018054160A (ja) | グロープラグ | |
WO2020179274A1 (ja) | 温度センサ | |
WO2020085132A1 (ja) | 温度センサ | |
GB2554350A (en) | Thermocouple probe for determining a temperature and method for producing the thermocouple probe | |
CN112912703B (zh) | 温度传感器 | |
JP5074534B2 (ja) | セラミックヒーター装置 | |
JP6746453B2 (ja) | グロープラグ | |
JPH11330566A (ja) | 破壊検知機能付き熱電対用保護管の構造 | |
JPS639974Y2 (ja) | ||
JPH046054B2 (ja) | ||
JP2010164578A (ja) | 温度センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748434 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19748434 Country of ref document: EP Kind code of ref document: A1 |