WO2020179274A1 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
WO2020179274A1
WO2020179274A1 PCT/JP2020/002439 JP2020002439W WO2020179274A1 WO 2020179274 A1 WO2020179274 A1 WO 2020179274A1 JP 2020002439 W JP2020002439 W JP 2020002439W WO 2020179274 A1 WO2020179274 A1 WO 2020179274A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing portion
resin
specific void
temperature sensor
temperature
Prior art date
Application number
PCT/JP2020/002439
Other languages
English (en)
French (fr)
Inventor
雅紀 廣中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020179274A1 publication Critical patent/WO2020179274A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Definitions

  • This disclosure relates to a temperature sensor.
  • the temperature sensor described in Patent Document 1 is arranged in a hydrogen tank of a fuel cell vehicle and detects the temperature in the hydrogen tank.
  • the filling speed of hydrogen in the hydrogen tank is controlled based on the detection result of the temperature in the hydrogen tank by the temperature sensor.
  • the temperature-sensitive element for detecting the temperature in the temperature sensor may undergo reduction deterioration and the accuracy of temperature detection by the temperature sensor may decrease. is there. Further, since shock and pressure are generated in the hydrogen tank due to the filling of hydrogen, it is necessary to protect the temperature sensing element from the shock and pressure.
  • the temperature sensitive element is separated from the atmosphere in the hydrogen tank by covering the temperature sensitive element with a glass sealing body made of glass. This prevents the temperature sensing element from being exposed to the hydrogen atmosphere in the hydrogen tank, and also prevents the above-mentioned impact and pressure from being directly applied to the temperature sensing element.
  • the hydrogen in the hydrogen tank is reduced and the inside of the hydrogen tank is depressurized. With this decompression, the hydrogen dissolved in the resin encapsulant tends to go out from the resin encapsulant.
  • the hydrogen accumulated in the void cannot be completely removed from the resin encapsulation body and vaporizes in the resin encapsulation body. Stress may be generated in the resin and cracks may occur in the resin encapsulation body. The cracking of the resin member as the hydrogen atmosphere of the resin member placed in the hydrogen atmosphere is reduced from the high pressure state is called blister fracture.
  • the cracks generated in the resin encapsulant due to the blister fracture become open cracks extending to the surface of the resin encapsulant.
  • hydrogen may be introduced to the vicinity of the temperature sensitive element through the opening crack, and the temperature sensitive element may be reduced and deteriorated.
  • the temperature detection accuracy of the temperature sensor may be reduced.
  • the present disclosure is intended to provide a temperature sensor capable of suppressing a void formed in a resin partition for separating an atmosphere in a hydrogen tank and a temperature sensitive element from causing a crack in the resin partition. is there.
  • One aspect of the present disclosure is a temperature sensor arranged in a hydrogen tank.
  • a resin partition portion made of resin for separating the atmosphere in the hydrogen tank and the temperature sensing element is provided.
  • a specific void having a diameter of 0.01 mm or more is formed in the resin partition.
  • the diameter of the specific void is d [mm] and the shortest distance from the specific void to the atmosphere is the minimum wall thickness t [mm]
  • the diameter d and the minimum wall thickness t are d ⁇ t ⁇ 1. It is in a temperature sensor that satisfies the relationship of 0.0.
  • the diameter d and the minimum wall thickness t satisfy the relationship of d ⁇ t ⁇ 1.0. When this relationship is satisfied, there are cases where the diameter d is small and cases where the minimum wall thickness t is small.
  • the amount of hydrogen dissolved in the resin partition and accumulated in the specific void can be reduced when the pressure in the hydrogen tank is high. Therefore, the hydrogen accumulated in the specific void easily escapes from the specific void to the outside of the resin partition when the pressure in the hydrogen tank is reduced, and it is possible to suppress the occurrence of cracks in the resin partition.
  • the minimum wall thickness t is small, the distance from the specific void in the resin partition to the atmosphere in the hydrogen tank can be reduced. Therefore, the hydrogen accumulated in the specific void can escape from the resin partition through a short path in the resin partition. Therefore, at the time of depressurization in the hydrogen tank, hydrogen accumulated in the specific void does not completely escape from the resin partition and stress is generated in the resin partition, which causes cracks in the resin partition. Can be suppressed.
  • the above numerical values are supported by the experimental example described later.
  • the temperature sensor capable of suppressing the specific void formed in the resin partition for separating the atmosphere in the hydrogen tank and the temperature sensitive element from causing a crack in the resin partition. Can be provided.
  • FIG. 1 is a partial cross-sectional front view of a temperature sensor according to the first embodiment
  • FIG. 2 is a cross-sectional view of the temperature-sensitive element, the pair of element electrode wires, and the sealing portion through the specific void in the first embodiment
  • FIG. 3 is an enlarged view around the specific void of FIG.
  • FIG. 4 is a cross-sectional view of a temperature-sensitive element, a pair of element electrode wires, a sealing portion, and an outer surrounding portion that pass through a specific void according to the second embodiment.
  • FIG. 5 is an enlarged view around the specific void of FIG. FIG.
  • FIG. 6 is a cross-sectional view of the temperature sensitive element, the pair of element electrode wires, the sealing portion, and the outer surrounding portion in the third embodiment through the specific voids.
  • FIG. 7 is a partial cross-sectional front view of the temperature sensor according to the fourth embodiment
  • FIG. 8 is an enlarged view of the vicinity of the specific void in FIG.
  • FIG. 9 is an enlarged cross-sectional view of the periphery of the specific void in the modified form of the fourth embodiment.
  • FIG. 10 is a graph showing the presence or absence of cracks after the test in various samples having different average lengths of glass fibers and different glass fiber contents in Experimental Example 2.
  • FIG. 11 is a cross-sectional view of the sealing portion observed with a scanning electron microscope in the sixth embodiment.
  • FIG. 11 is a cross-sectional view of the sealing portion observed with a scanning electron microscope in the sixth embodiment.
  • FIG. 12 is a diagram schematically showing FIG. 11.
  • FIG. 13 is a schematic diagram for explaining the fiber angle ⁇ in the sixth embodiment
  • FIG. 14 is a cross-sectional view showing the effect in the sixth embodiment.
  • FIG. 15 is a schematic view showing a state in which an opening crack has occurred in the comparative form.
  • the temperature sensor 1 of the present embodiment is arranged and used in a hydrogen tank.
  • the temperature sensor 1 includes a temperature sensitive element 2, a pair of element electrode wires 3, and a resin partition section 4.
  • the temperature sensitive element 2 detects the temperature in the hydrogen tank.
  • the pair of element electrode wires 3 are electrically connected to the temperature sensitive element 2.
  • the resin partition portion 4 is made of resin and separates the atmosphere in the hydrogen tank from the temperature sensitive element 2.
  • a specific void 40 having a diameter of 0.01 mm or more is formed in the resin partition portion 4.
  • the diameter d and the minimum wall thickness t are d ⁇ t ⁇ The relationship of 1.0 is satisfied.
  • the present embodiment will be described in detail.
  • the direction in which the central axis of the temperature sensor 1 extends is called the X direction.
  • the one side in the X direction, to which the temperature sensitive element 2 of the pair of element electrode wires 3 is connected, is referred to as the tip side, and the opposite side is referred to as the base side.
  • the temperature sensor 1 of the present embodiment is installed in a hydrogen tank used in, for example, a fuel cell vehicle (so-called FCV; Fuel Cell Vehicle).
  • FCV Fuel Cell Vehicle
  • the filling rate of hydrogen into the hydrogen tank is controlled based on the detection result of the temperature inside the hydrogen tank by the temperature sensor 1. Since the hydrogen tank is filled with hydrogen, an impact and a pressure are generated, and the temperature sensor 1 is designed to have a strength that can withstand this.
  • the pressure inside the hydrogen tank becomes high when hydrogen is filled.
  • the hydrogen gas in the hydrogen tank dissolves in the resin constituting the resin partition 4 of the temperature sensor 1.
  • the hydrogen in the hydrogen tank is reduced and the inside of the hydrogen tank is depressurized.
  • hydrogen dissolved in the resin of the resin partition portion 4 tries to pass through the resin to the outside of the resin partition portion 4, but part of the hydrogen dissolved in the resin can escape from the resin.
  • stress may be generated inside the resin partition portion 4.
  • cracks may occur inside the resin partition portion 4 due to the generation of this stress.
  • the temperature sensor 1 of this embodiment is devised so as to suppress the occurrence of the crack.
  • the temperature sensitive element 2 of the temperature sensor 1 is composed of, for example, a thermistor. Not limited to this, the temperature sensitive element 2 can also be configured by a thermocouple, a resistance temperature measuring resistor made of platinum or the like. As shown in FIGS. 1 and 2, the temperature sensitive element 2 is fixed in a state of being sandwiched by the tip portions of the pair of element electrode wires 3.
  • the pair of element electrode wires 3 are formed by, for example, a platinum alloy in a linear shape.
  • the pair of element electrode wires 3 are arranged side by side so as to be parallel to each other.
  • the tip of the pair of element electrode wires 3 and the temperature sensitive element 2 are sealed by a sealing portion 4a.
  • the sealing portion 4a is formed so that the temperature sensitive element 2 and the tip portions of the pair of element electrode wires 3 are embedded inside.
  • the sealing portion 4a constitutes the resin partition portion 4 described above. That is, the sealing portion 4a is made of resin and separates the temperature sensitive element 2 from the hydrogen atmosphere in the hydrogen tank.
  • the sealing portion 4a is made of a polyamide resin such as PA66 or a polyphenylene sulfide resin (that is, PPS resin). In the present embodiment, the sealing portion 4a is made of PA66.
  • the sealing portion 4a is formed by dipping or injection molding. A method of manufacturing the sealing portion 4a will be described later.
  • a spherical specific void 40 is formed inside the sealing portion 4a. Then, voids may occur in the sealing portion 4a during manufacturing of these. Further, a void may be generated between the temperature sensitive element 2 and the element electrode wire 3 due to the expansion of the sealing portion 4a as the temperature inside the hydrogen tank rises due to the filling of hydrogen into the hydrogen tank.
  • the specific void 40 has a diameter d of 0.01 mm or more. In this embodiment, the specific void 40 has a diameter d of 0.3 mm or more. As shown in FIGS. 1 and 2, the specific void 40 is arranged at a position on the sealing portion 4a on the tip side of the temperature sensitive element 2. The specific void 40 is formed near the surface of the sealing portion 4a.
  • the minimum wall thickness t is the shortest distance from the specific void 40 to the hydrogen atmosphere in the hydrogen tank.
  • the minimum wall thickness t is the shortest distance from the specific void 40 to the surface of the sealing portion 4a as the resin partition portion 4.
  • the minimum wall thickness t is preferably 2 mm or less, and the minimum wall thickness t is more preferably 1 mm or less.
  • the diameter d of the specific void 40 and the minimum wall thickness t satisfy d ⁇ t ⁇ 1.0.
  • d ⁇ t ⁇ 1.0 is satisfied for each specific void 40.
  • a terminal 11 is connected to each element electrode wire 3 protruding from the sealing portion 4a toward the base end side by welding or the like.
  • the terminal 11 is formed so as to extend from the connection portion with the element electrode wire 3 toward the base end side in the X direction.
  • the pair of terminals 11 are arranged side by side so as to be parallel to each other.
  • the terminal 11 is made of stainless steel such as SUS304 in the shape of a long plate in the X direction.
  • the base end of the terminal 11 is electrically connected to an external device. A part of the terminal 11 is embedded in the housing 12.
  • the housing 12 holds the pair of terminals 11 while exposing the tips of the pair of terminals 11. As a result, the temperature sensitive element 2 and the pair of element electrode wires 3 are held in the housing 12 via the pair of terminals 11.
  • the housing 12 is made of, for example, a resin material.
  • the housing 12 can be made of, for example, a polyamide resin such as PA66 resin containing 33 wt% of glass fiber. By forming the housing 12 with resin, it is possible to reduce the weight and the cost.
  • the housing 12 may be made of a conductor such as a metal as long as the insulation with the terminal 11 is ensured.
  • the housing 12 can be formed by insert molding in which a pair of terminals 11 are arranged in a molding die.
  • the housing 12 embeds the terminal 11 while projecting the tip of each terminal 11.
  • a cover 13 is attached to the tip of the housing 12.
  • the cover 13 is formed so as to surround the sealing portion 4a.
  • the base end portion of the cover 13 is a flange portion 131 protruding toward the outer peripheral side.
  • the cover 13 is joined to the housing 12 on the entire circumference of the surface of the flange portion 131 on the base end side.
  • the cover 13 is made of resin.
  • the cover 13 can be made of a polyamide resin such as PA66 resin containing 33 wt% of glass fibers, similarly to the housing 12.
  • the housing 12 and the cover 13 also constitute the resin partition part 4.
  • the specific void 40 is formed in at least one member constituting the resin partition 4, and d ⁇ t ⁇ 1. It only has to satisfy 0.
  • the sealing portion 4a can be formed by dipping, injection molding, or the like.
  • the diameter d of the specific void 40 and the minimum wall thickness t which is the shortest distance from the specific void 40 of the sealing portion 4a to the atmosphere in the hydrogen tank are d ⁇ t ⁇ 1.
  • the manufacturing method is devised so as to satisfy the relationship of 0.
  • the resin material forming the sealing portion 4a is heated to form a liquid-state dip liquid. Then, the temperature sensor 2 of the temperature sensor 1 and the portion of the pair of element electrode wires 3 covered with the sealing portion 4a is dipped in the dip liquid, and the dip liquid is attached to the surface of the portion.
  • the diameter of the void formed in the sealing portion 4a is high if the insertion speed for inserting the temperature sensitive element 2 and the pair of element electrode wires 3 into the dip liquid and the withdrawal speed for withdrawing from the dip liquid are high. The bigger it gets. This is because the faster the insertion speed or the withdrawal speed is, the more easily air is entrained in the dip liquid adhering to the temperature sensitive element 2 and the pair of element electrode wires 3. Therefore, the diameter of the void formed in the sealing portion 4a can be adjusted by appropriately adjusting the insertion speed and the extraction speed.
  • the minimum wall thickness t in the sealing portion 4a is determined by the external dimensions of the sealing portion 4a, the diameter of the specific void 40, and the position of the specific void 40 in the sealing portion 4a.
  • the external dimensions of the sealing portion 4a are determined by the viscosity of the dip liquid, the drawing speed when the temperature sensitive element 2 and the pair of element electrode wires 3 are pulled out from the dip liquid, and the like.
  • the external dimensions of the sealing portion 4a are determined according to the shape of the hydrogen tank (for example, the shape of the hole for inserting the temperature sensor 1 provided in the hydrogen tank), and are substantially changed.
  • the minimum wall thickness t can be adjusted mainly by the diameter of the specific void 40 and the position of the specific void 40 in the sealing portion 4a.
  • the formation position of the specific void 40 in the sealing portion 4a is determined by the viscosity of the dip liquid, the withdrawal speed when the temperature sensitive element 2 and the pair of element electrode wires 3 are withdrawn from the dip liquid, and the like. As described above, by appropriately adjusting the outer dimension of the sealing portion 4a, the diameter of the specific void 40, and the position of the specific void 40 in the sealing portion 4a, the diameter d of the specific void 40 in the sealing portion 4a and the minimum The wall thickness t can be set to a desired value.
  • a method of forming the sealing portion 4a by injection molding will be described.
  • a portion of the temperature-sensitive element 2 and the pair of element electrode wires 3 covered by the sealing portion 4a is arranged in the mold constituting the sealing portion 4a.
  • a resin material that constitutes the resin of the sealing portion 4a is heated and melted to produce a molten resin, which is injected into the mold.
  • the molten resin injected into the mold is cooled to solidify it to form the sealing portion 4a.
  • the diameter of the void formed in the sealing portion 4a can be adjusted mainly by the mold temperature and the holding pressure among the molding conditions in injection molding. That is, the lower the mold temperature and the holding pressure, the larger the void diameter. It is considered that this is because the resin flow at the time of molding is deteriorated when the mold temperature is low, and the voids remaining in the resin are less likely to be crushed when the holding pressure is low.
  • the minimum wall thickness t in the sealing portion 4a is determined by the external dimensions of the sealing portion 4a, the diameter of the specific void 40, and the position of the specific void 40 in the sealing portion 4a.
  • the external dimensions of the sealing part 4a are determined by the shape of the injection mold. As described above, the external dimensions of the sealing portion 4a are determined according to the shape of the hydrogen tank and the like, and there is a limit to substantially changing them. Therefore, the minimum wall thickness t is mainly the diameter of the void. , And the position of the void in the sealing portion 4a.
  • the void formation position in the sealing portion 4a can be adjusted by changing the mold shape and the gate position. As described above, by appropriately adjusting the outer dimension of the sealing portion 4a, the diameter of the specific void 40, and the position of the specific void 40 in the sealing portion 4a, the diameter d of the specific void 40 in the sealing portion 4a and the minimum The wall thickness t can be set to a desired value.
  • the diameter d and the minimum wall thickness t satisfy the relationship of d ⁇ t ⁇ 1.0. As a case where this relationship is satisfied, there may be a case where the diameter d is small and a case where the minimum wall thickness t is small.
  • the pressure in the hydrogen tank is in a high pressure state, the amount of hydrogen dissolved in the sealing portion 4a as the resin partition portion 4 and accumulated in the specific void 40 can be reduced. it can. Therefore, the hydrogen accumulated in the specific void 40 easily escapes from the specific void 40 to the outside of the sealing portion 4a during depressurization of the hydrogen tank, and it is possible to suppress the occurrence of cracks in the sealing portion 4a.
  • the minimum wall thickness t is small, the distance from the specific void 40 in the sealing portion 4a to the atmosphere in the hydrogen tank can be reduced. Therefore, the hydrogen accumulated in the specific void 40 can escape from the sealing portion 4a through a short path in the sealing portion 4a. Therefore, when the pressure in the hydrogen tank is reduced, the hydrogen accumulated in the specific void 40 cannot be completely removed from the sealing portion 4a, and stress is generated in the sealing portion 4a, which causes stress in the sealing portion 4a. It is possible to suppress the occurrence of cracks.
  • the above numerical values are supported by the experimental example described later.
  • the minimum wall thickness t satisfies t ⁇ 2 mm. Therefore, the distance from the specific void 40 to the atmosphere in the hydrogen tank can be surely reduced. Therefore, even if hydrogen is accumulated in the specific void 40 when the pressure inside the hydrogen tank is high, the hydrogen accumulated in the specific void 40 is stored on the surface of the sealing portion 4a when the pressure in the hydrogen tank is reduced. Easy to get out. Therefore, it is easier to suppress the occurrence of cracks starting from the specific void 40 in the sealing portion 4a. Further, in this embodiment, the minimum wall thickness t further satisfies t ⁇ 1 mm. Therefore, such an effect can be obtained more easily. Note that these numerical values are also supported by the experimental example described later.
  • the diameter d of the specific void 40 satisfies d ⁇ 0.3 mm. Therefore, the specific void 40 has a certain size, and hydrogen is likely to be accumulated in the specific void 40 when the inside of the hydrogen tank has a high pressure. Therefore, when the diameter d of the specific void 40 is increased to d ⁇ 0.3 mm, the possibility of cracks in the sealing portion 4a is further increased. Therefore, in the sealing portion 4a including the specific void 40 whose diameter d satisfies d ⁇ 0.3 mm, the inside of the sealing portion 4a is satisfied by satisfying the relationship of d ⁇ t ⁇ 1.0 as described above. The occurrence of cracks can be effectively suppressed.
  • the sealing portion 4a constitutes the resin partition portion 4, the sealing portion 4a includes the specific void 40, and the diameter d of the specific void 40 formed in the sealing portion 4a and the specific void 40
  • the minimum wall thickness t up to the atmosphere in the hydrogen tank satisfies the relationship of d ⁇ t ⁇ 1.0. Therefore, it is possible to prevent cracks from occurring in the sealing portion 4a. This prevents hydrogen in the hydrogen tank from being introduced into the surroundings of the temperature sensitive element 2 from the crack due to the occurrence of a crack in the sealing portion 4a, and the temperature sensitive element 2 being reduced and deteriorated. it can. As a result, it is possible to prevent a decrease in temperature detection accuracy of the temperature sensor 1 due to reduction deterioration of the temperature sensitive element 2.
  • the resin forming the sealing portion 4a is a polyamide resin or a polyphenylene sulfide resin. These materials are materials in which hydrogen in the hydrogen tank is difficult to dissolve even when the pressure in the hydrogen tank is high. Therefore, even when the inside of the hydrogen tank is in a high pressure state, it is easy to prevent hydrogen in the hydrogen tank from dissolving in the sealing portion 4a and accumulating in the specific void 40. Accordingly, it is possible to prevent the hydrogen accumulated in the specific void 40 from being completely released from the sealing portion 4a and generating stress in the sealing portion 4a when the pressure in the hydrogen tank is reduced. Along with this, it is possible to prevent cracks from occurring in the sealing portion 4a.
  • the temperature at which the specific void formed in the resin partition for separating the atmosphere in the hydrogen tank from the temperature sensitive element can be suppressed from causing a crack in the resin partition.
  • a sensor can be provided.
  • Example 1 is a plurality of test pieces made of a resin containing a specific void, in which the diameter d of the specific void and the minimum wall thickness t that is the shortest distance from the specific void to the surface of the test piece are variously changed. This is an example of an experiment in which the occurrence of cracks due to blister destruction was investigated.
  • the diameters d of the specific voids of the plurality of test pieces were variously changed between 1 mm, 0.7 mm, 0.5 mm, 0.3 mm, 0.1 mm, and 0.01 mm. Further, the minimum wall thickness t of the plurality of test pieces was variously changed between 0.1 mm, 0.3 mm, 0.5 mm, 1 mm, 1.5 mm and 2 mm.
  • Each sample is a test piece formed of PA66 resin in the shape of a rectangular plate having a length of 50 mm and a thickness of 3 mm on each side. Each sample was prepared by injection molding.
  • a base material for a test piece was prepared, which was a rectangular plate shape with each side having a length of 100 mm and a thickness of 10 mm. Then, the base material was formed into a test piece by cutting the base material into a rectangular plate shape having a side length of 50 mm and a thickness of 3 mm. By adjusting the cutting position at this time, test pieces having various minimum wall thicknesses t were produced.
  • each sample was exposed to 85 MPa hydrogen for one day, and then the hydrogen atmosphere was depressurized from 85 MPa to atmospheric pressure at a depressurization rate of 1 MPa/min. It was confirmed whether or not a crack had occurred.
  • the temperature of each sample before decompression was set to 85 ° C. The presence or absence of cracks in each sample was confirmed using an X-ray CT scan.
  • Table 1 shows the value of the diameter d of the specific void of each sample, the value of the minimum wall thickness t, and the value of d ⁇ t.
  • Table 2 shows the presence or absence of cracks in each sample after the test. In Table 2, the symbol “A” is shown for a crack not confirmed after the test, and the symbol “B” is shown for a crack confirmed after the test.
  • the present embodiment is an embodiment in which the basic structure is the same as that of the first embodiment, but further includes an outer surrounding portion 4b that covers the sealing portion 4a of the first embodiment.
  • the outer surrounding portion 4b is formed so that the sealing portion 4a is embedded inside.
  • the outer surrounding portion 4b constitutes the resin partition portion 4.
  • the outer surrounding portion 4b is made of a polyamide resin such as PA66 or a PPS resin like the sealing portion 4a.
  • the specific void 40 is formed in the outer surrounding portion 4b.
  • the specific void 40 is formed near the surface of the outer surrounding portion 4b.
  • the diameter d of the specific void 40 is the same as in the first embodiment.
  • the minimum wall thickness t is the shortest distance from the specific void 40 to the surface of the outer surrounding portion 4b.
  • the dimension of the minimum wall thickness t and the product d ⁇ t of the diameter d of the specific void 40 and the minimum wall thickness t are the same as those in the first embodiment.
  • an outer surrounding portion 4b is provided in addition to the sealing portion 4a.
  • the product d ⁇ t of the diameter d of the specific void 40 formed in the outer surrounding portion 4b and the minimum wall thickness t of the outer surrounding portion 4b is 1.0 or less. Therefore, it is possible to prevent the outer surrounding portion 4b from being cracked due to the blister destruction.
  • a sealing portion 4a is arranged inside the outer surrounding portion 4b, and a temperature sensitive element 2 is arranged further inside the sealing portion 4a. Therefore, it is easier to prevent hydrogen in the hydrogen tank from being introduced near the temperature sensitive element 2. In addition, it has the same effects as the first embodiment.
  • this embodiment is an embodiment in which the basic structure is the same as that of the first embodiment, but the configuration of the sealing portion 4a is changed.
  • the sealing portion 4a is made of an insulating glass material.
  • the sealing portion 4a can be made of, for example, borosilicate glass to which boron oxide is added. Others are the same as those in the second embodiment.
  • the sealing portion 4a it is easy to prevent the permeation of hydrogen into the sealing portion 4a by forming the sealing portion 4a with a glass material. Further, as shown in the second embodiment, by covering the sealing portion 4a with the outer surrounding portion 4b in which cracks are unlikely to occur, it is possible to further prevent hydrogen from being introduced into the vicinity of the temperature sensitive element 2. It has the same effect as that of the second embodiment.
  • the present embodiment has the same basic structure as that of the first embodiment, but the formation location of the specific void 40 is different.
  • the specific void 40 is formed in the fusion portion 4c of the housing 12 and the cover 13 that form the resin partition portion 4 that separates the temperature sensitive element 2 from the hydrogen atmosphere in the hydrogen tank.
  • the cover 13 and the housing 12 are joined by laser welding. That is, the cover 13 and the housing 12 are joined by melting them with a laser beam.
  • the cover 13 is joined to the housing 12 over the entire base end surface of the flange portion 131. Then, at the boundary between the cover 13 and the housing 12, a molten portion 4c formed by melting them is formed.
  • a specific void 40 is formed in the fusion zone 4c.
  • Voids may be formed in the fusion portion 4c by being entrained with air during laser welding of the housing 12 and the cover 13.
  • the specific void 40 is formed in the vicinity of the outer peripheral side end portion of the molten portion 4c.
  • the diameter d of the specific void 40 is the same as that of the first embodiment.
  • the minimum wall thickness t is the shortest distance from the specific void 40 to the surfaces of the fusion portion 4c, the housing 12, and the cover 13 around the specific void 40.
  • the dimension of the minimum wall thickness t and the product d ⁇ t of the diameter d of the specific void 40 and the minimum wall thickness t are the same as those in the first embodiment. Others are the same as in the first embodiment.
  • the product d ⁇ t of the diameter d of the specific void 40 and the minimum wall thickness t is 1.0 or less. By doing so, it is possible to prevent the molten portion 4c from being cracked due to blister fracture.
  • the joint strength between the housing 12 and the cover 13 can be secured, and the cover 13 can be prevented from falling off from the housing 12.
  • the cover 13 falls off from the housing 12 for example, the impact due to the filling of hydrogen into the hydrogen tank directly acts on the sealing portion 4a. Due to this impact, the sealing portion 4a is displaced, and along with this, stress acts on the element electrode wire 3, which may lead to disconnection. Therefore, by preventing the occurrence of cracks in the fusion portion 4c between the housing 12 and the cover 13 due to the blister destruction, it is possible to suppress the disconnection of the element electrode wire 3 due to the impact due to the filling of hydrogen in the hydrogen tank. In addition, it has the same effects as the first embodiment.
  • the fusion portion 4c is formed only in the central portion of the base end surface of the flange portion 131 excluding both ends in the radial direction of the flange portion 131.
  • the minimum wall thickness t is the shortest distance from the specific void 40 to the surfaces of the fusion portion 4c, the housing 12, and the cover 13 around the specific void 40. That is, the minimum wall thickness t means the shortest distance from the specific void 40 to the surface of the resin partition 4 such as the housing 12, the cover 13, and the molten portion 4c, which faces the hydrogen atmosphere.
  • This embodiment is an embodiment in which the composition of the sealing portion is changed from that of the first embodiment.
  • the sealing portion contains a large number of inorganic fibers in the resin.
  • the sealing portion is formed by containing an inorganic fiber such as glass fiber in a polyamide resin such as PA66 or a resin such as PPS resin.
  • the content of the inorganic fiber in the sealing portion is 10 wt% or more and 40 wt% or less. Further, in the sealing portion, the average length of many inorganic fibers is 30 ⁇ m or more and 250 ⁇ m or less. Similar to the first embodiment, the sealing portion can be formed by dipping or injection molding. Others are the same as in the first embodiment.
  • the sealing portion contains a large number of inorganic fibers in the resin. Therefore, the strength of the entire sealing portion can be improved. Therefore, even if the specific void is formed in the sealing portion, it is possible to prevent the occurrence of cracks due to blister destruction in the sealing portion.
  • the sealing portion has an inorganic fiber content of 10 wt% or more and 40 wt% or less.
  • the content of the inorganic fiber in the sealing portion is 10 wt% or more, the strength of the sealing portion can be ensured, and it is easy to suppress the occurrence of cracks in the sealing portion due to blister fracture.
  • the content of the inorganic fiber in the sealing portion is set to 40 wt% or less, it is easy to improve the productivity of the sealing portion.
  • those having an inorganic fiber content of more than 40 wt% were difficult to manufacture.
  • the average length of many inorganic fibers is 30 ⁇ m or more and 250 ⁇ m or less.
  • the strength of the sealing portion can be secured, and it is easy to suppress the occurrence of cracks due to blister destruction in the sealing portion. ..
  • the sealing portion by setting the average length of many inorganic fibers to be 250 ⁇ m or less, it is easy to improve the productivity of the sealing portion.
  • Example 2 This example is a plurality of samples made of PA66 resin containing a plurality of glass fibers and containing specific voids, in which the content of the glass fibers and the average length of the glass fibers were variously changed, and blister fracture was performed. This is an example of investigating the presence or absence of cracks caused by.
  • d ⁇ t which is the product of the diameter d of the specific void of each sample and the minimum wall thickness t, was set to 0.3.
  • Other configurations and manufacturing methods of each sample are the same as in Experimental Example 1.
  • each sample was exposed to 85 MPa hydrogen for a whole day and night, and then decompressed from 85 MPa to atmospheric pressure at a decompression rate of 1 MPa/min. I confirmed.
  • the temperature of each sample from before decompression to after decompression was set to 85°C.
  • the temperature of each sample before depressurization was set to 85° C., and the temperature drop accompanying depressurization was considered to be feasible. Can be said to be a severe condition (that is, the sample is likely to crack).
  • the presence or absence of cracks in each sample was confirmed by using an X-ray CT scan as in Experimental Example 1.
  • FIG. 10 the horizontal axis represents the average length of glass fiber of each sample, and the vertical axis represents the glass fiber content of each sample.
  • the sample with cracks after the test is plotted with the symbol “x”, and the sample with no cracks after the test is plotted with the symbol “ ⁇ ”.
  • the present embodiment is an embodiment in which the basic configuration is the same as that of the fifth embodiment, but the configuration of the sealing portion 4a is changed as shown in FIGS. 11 to 13.
  • Each inorganic fiber 42 has a long columnar shape.
  • the large number of inorganic fibers 42 contained in the resin 41 in the sealing portion 4a are arranged such that the longitudinal direction of each inorganic fiber 42 is a three-dimensional random direction. That is, the longitudinal direction of each inorganic fiber 42 is not aligned in one direction.
  • the longitudinal directions of the majority of the inorganic fibers 42 are aligned in one direction, and the longitudinal directions of the remaining few inorganic fibers 42 are oriented in a direction intersecting the one direction, each inorganic fiber 42 It cannot be said that the longitudinal direction of 42 is three-dimensionally random.
  • each inorganic fiber 42 is a three-dimensional random direction is determined by, for example, polishing a cross section of the sealing portion 4a and scanning the cross section with a scanning electron microscope ( That is, it can be grasped by observing with SEM; Scanning Electron Microscope).
  • FIG. 11 shows a cross section observed by SEM.
  • FIG. 12 is a schematic view of a cross section of the sealing portion 4a observed by the SEM.
  • the inorganic fiber 421 shown in the shape of a long rectangle has a cross section obtained by cutting the inorganic fiber 421 in parallel with the longitudinal direction of the inorganic fiber 421.
  • a circular inorganic fiber 422 has a cross section obtained by cutting the inorganic fiber 422 in the radial direction of the inorganic fiber 422.
  • the cross section of the inorganic fiber 423 appearing in an elliptical shape is a cross section obtained by cutting the inorganic fiber 423 in an oblique direction inclined with respect to the longitudinal direction of the inorganic fiber 423.
  • the inorganic fibers 42 of the sealing portion 4a three-dimensionally by, for example, an X-ray CT scan.
  • the cross-sectional layer obtained by cutting the sealing portion 4a in the direction orthogonal to the specific direction is subjected to X-ray CT imaging at several hundreds in the specific direction. Then, by stacking the cross-sectional layers at several hundred places in the specific direction, it is possible to observe the inorganic fibers 42 of the three-dimensional sealing portion 4a.
  • the resin is generally composed of relatively light elements such as carbon, hydrogen, oxygen, and nitrogen, the X-ray absorption rate is low.
  • the contrast is often not clear in the resin member.
  • an X-ray CT scan of a glass-containing resin containing glass fibers since the glass fibers are made of silicon, a relatively light element forming the resin member and the glass fibers made of silicon are formed between the glass fibers. With a clear contrast. Therefore, it is possible to observe the inorganic fiber 42 of the sealing portion 4a by X-ray CT scan.
  • FIG. 13 is a schematic view of a cross section of the sealing portion 4a observed by the SEM, and shows only the inorganic fibers 42 (see reference numeral 421 in FIG. 12) that are elongated rectangular shapes.
  • At least 20 inorganic fibers 42 are randomly selected from the long rectangular inorganic fibers 42 appearing in an arbitrary cross section as shown in FIG. 13, and the at least 20 fiber angles are selected. It can be an average of ⁇ . Randomly selecting at least 20 inorganic fibers 42 appearing in an arbitrary cross section means that the longitudinal directions are all parallel to the virtual straight line L even though there are inorganic fibers 42 having various fiber angles ⁇ in the arbitrary cross section. Alternatively, the case where the substantially parallel inorganic fibers 42 are intentionally selected is excluded.
  • the average of the fiber angles ⁇ is that both the inorganic fibers 42 having a relatively large fiber angle ⁇ and the inorganic fibers 42 having a relatively small fiber angle ⁇ It can be determined by arbitrarily selecting at least 20 inorganic fibers 42 included and averaging the fiber angles ⁇ of these.
  • the sealing portion 4a is configured such that, when an arbitrary half line starting from the specific void 40 is drawn in an arbitrary cross section passing through the specific void 40, the half line always passes through the inorganic fiber 42. As a result, even if a crack is generated in the sealing portion 4a, it is easy to prevent the crack from extending to the surface of the sealing portion 4a.
  • the sealing portion 4a can be formed by dipping, injection molding, or the like. At this time, it is necessary to devise a manufacturing method so that the longitudinal direction of each inorganic fiber 42 in the sealing portion 4a is a three-dimensionally random direction.
  • the resin material forming the resin 41 of the sealing portion 4a is heated to be in a liquid state. Then, the inorganic fiber 42 is put in the liquid resin material, and the inorganic fiber 42 is well dispersed in the resin material to form a dip liquid.
  • the longitudinal direction of each inorganic fiber 42 becomes three-dimensionally random in the resin material.
  • the portion of the temperature sensor 1 that is covered by the sealing portion 4a of the temperature sensitive element 2 and the pair of element electrode wires 3 is dipped in dip liquid, and the dip liquid is attached to the surface of the portion.
  • the dip liquid adhering to the temperature sensitive element 2 and the element electrode wire 3 after the dipping tends to drip due to gravity, and when the dip liquid drip, the direction of the inorganic fibers 42 is oriented in the direction of gravity. It's easy to do.
  • the amount of the solvent in the dip liquid is appropriately adjusted so that the viscosity of the dip liquid becomes relatively high.
  • the dip liquid covering the temperature sensitive element 2 and the element electrode wire 3 can be prevented from dripping after the dip, and the inorganic fiber 42 in the dip liquid covering the surface of the temperature sensitive element 2 and the element electrode wire 3 can be prevented. It becomes easier to maintain a highly dispersed state.
  • the speed at which the temperature sensitive element 2 and the pair of element electrode wires 3 are pulled out from the dip liquid during the dip is relatively fast.
  • the time for pulling up the temperature sensitive element 2 and the pair of element electrode wires 3 from the dip liquid can be shortened, and the dip liquid covering the temperature sensitive element 2 and the element electrode wires 3 is less likely to drip after the dip.
  • This also makes it easier to maintain a state in which the inorganic fibers 42 in the dip liquid covering the surfaces of the temperature sensitive element 2 and the element electrode wire 3 are highly dispersed.
  • the dip solution attached to the temperature sensitive element 2 and the pair of element electrode wires 3 is dried.
  • the dip liquid is solidified and the sealing portion 4a is formed.
  • a method of forming the sealing portion 4a by injection molding will be described.
  • a portion of the temperature-sensitive element 2 and the pair of element electrode wires 3 covered by the sealing portion 4a is arranged in the mold constituting the sealing portion 4a.
  • a mixed material obtained by heating and melting the resin material forming the resin 41 of the sealing portion 4a and the inorganic fiber 42 is prepared, and the mixed material is injected into the mold.
  • the mixed material injected into the mold is cooled to solidify the mixed material to form the sealing portion 4a.
  • the direction of the inorganic fibers 42 in the mixed material is easily oriented in the injection direction of the mixed material in the injection molding, and the longitudinal direction of each inorganic fiber 42 is formed three-dimensionally at random. You cannot do it.
  • the time until the mixed material is completely solidified is secured longer than usual. This can be achieved, for example, by cooling the mixed material more slowly than usual.
  • the state in which the mixed material is in a liquid state in the mold that is, the state in which it has fluidity
  • each inorganic fiber 42 flows in the mixed material with the passage of time thereafter. Then, the longitudinal direction of each inorganic fiber 42 becomes a three-dimensionally random direction.
  • the large number of inorganic fibers 42 in the sealing portion 4a are arranged such that the longitudinal direction of each inorganic fiber 42 is a three-dimensional random direction. Therefore, as shown in FIG. 14, even if a crack 51 originating from the specific void 40 occurs in the sealing portion 4a due to the depressurization of the pressure in the hydrogen tank from the high pressure state, the progress thereof is increased. Further growth of the crack 51 is suppressed by reaching the inorganic fiber 42 in the sealing portion 4a. Therefore, it is possible to suppress the generation of the opening crack 52 formed by the crack 51 extending to the surface of the sealing portion 4a.
  • FIG. 14 is a schematic view of a cross section of the sealing portion 4a, and the outer frame portion 43 shown in FIG. 14 means the surface of the sealing portion 4a.
  • FIG. 15 is a schematic view of a cross section of the sealing portion 4a, and the outer frame portion 43 shown in FIG. 14 means the surface of the sealing portion 4a.
  • the crack 51 may propagate to the surface of the sealing portion 4a and become the opening crack 52.
  • the opening crack 52 When the opening crack 52 is generated, hydrogen is introduced from the opening crack 52 to the vicinity of the temperature sensitive element 2, the temperature sensitive element 2 is reduced and deteriorates, and the temperature detection accuracy of the temperature sensor 1 may be deteriorated.
  • the longitudinal direction of each inorganic fiber 42 is three-dimensionally random, so that the cracks 51 in the sealing portion 4a due to the blister destruction. Even if the crack occurs, the growth of the crack 51 can be suppressed by the inorganic fiber 42, and the crack 51 can be suppressed from proceeding to the surface of the sealing portion 4a.
  • each of the inorganic fibers 42 is in any arbitrary cross section.
  • the average of the fiber angles ⁇ of is 10 ° or more. That is, the three-dimensional randomness of each inorganic fiber 42 in the sealing portion 4a in the longitudinal direction is high. Thereby, even if bubbles and cracks due to blister destruction occur in the sealing portion 4a, the cracks easily reach the inorganic fiber 42, the cracks reach the surface of the sealing portion 4a, and the opening cracks are formed. It is easy to suppress that. In addition, it has the same effect as that of the fifth embodiment.
  • the present disclosure has been described in accordance with an embodiment, it is understood that this disclosure is not limited to that embodiment or structure.
  • the present disclosure also includes various modifications and modifications within an equivalent range.
  • various combinations and forms, and other combinations and forms including only one element, more, or less than them are also included in the scope and scope of the present disclosure.
  • the outer surrounding portion of the third and fourth embodiments may have the same configuration as the sealing portion shown in the fifth or sixth embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Fuel Cell (AREA)

Abstract

温度センサは、水素タンク内に配されて用いられる。温度センサは、感温素子と一対の素子電極線と樹脂仕切部(4)とを備える。感温素子は、水素タンク内の温度を検出する。一対の素子電極線は、感温素子に電気的に接続されている。樹脂仕切部(4)は、樹脂製であり、水素タンク内の雰囲気と感温素子とを隔てている。樹脂仕切部(4)内には、直径が0.01mm以上の特定ボイド(40)が形成されている。特定ボイド(40)の直径をd、特定ボイド(40)から水素タンク内の雰囲気までの最短距離を最小肉厚tとしたとき、直径dと最小肉厚tとは、d×t≦1.0、の関係を満たす。

Description

温度センサ 関連出願の相互参照
 本出願は、2019年3月1日に出願された日本出願番号2019-037807号に基づくもので、ここにその記載内容を援用する。
 本開示は、温度センサに関する。
 特許文献1に記載された温度センサは、燃料電池自動車の水素タンク内に配されて水素タンク内の温度を検出する。温度センサによる水素タンク内の温度の検出結果に基づいて、水素タンクへの水素の充填速度が制御される。
 ここで、温度センサにおける、温度を検出するための感温素子が、水素タンク内の水素雰囲気に曝されると、感温素子が還元劣化し、温度センサによる温度検出の精度が低下するおそれがある。また、水素タンク内には、水素の充填による衝撃及び圧力が生じるため、感温素子をこれらの衝撃及び圧力から守る必要がある。
 そこで、特許文献1に記載された温度センサは、感温素子がガラス製のガラス封止体によって覆われることで、感温素子が水素タンク内の雰囲気から隔てられている。これにより、感温素子が水素タンク内の水素雰囲気に曝されることを防止しているとともに、感温素子に前述の衝撃及び圧力が直接的に加わることを防止している。
特開2016-035446号公報
 ここで、樹脂は気密性や耐圧性が高く、かつガラス材料に比べて安価なため、前記ガラス封止体を樹脂製とした樹脂封止体に変更することが考えられる。しかしながら、この場合、以下に説明する課題がある。
 水素タンク内への水素の充填時、水素タンク内の圧力は高くなる。水素タンク内の圧力上昇に伴い、水素タンク内に配された温度センサの樹脂封止体中に溶解する水素量が増加する。ここで、樹脂封止体内に、一定長さ以上の直径を有するボイドが形成されている場合、当該ボイド内に多くの水素が蓄積される。
 そして、燃料電池自動車の走行のために水素タンク内の水素を使用することに伴い、水素タンク内の水素が減り、水素タンク内が減圧される。この減圧に伴い、樹脂封止体中に溶解した水素は、樹脂封止体から外部に出ようとする。しかし、特にボイド内には多くの水素が蓄積されているため、ボイド内に蓄積された水素が樹脂封止体から抜け切れずに樹脂封止体内で気化し、これに伴って樹脂封止体内に応力が発生し、樹脂封止体内にき裂が生じるおそれがある。このように、水素雰囲気に配された樹脂部材の水素雰囲気が高圧状態から減圧されることに伴って、樹脂部材にき裂が生じることをブリスタ破壊と呼ぶ。
 ブリスタ破壊により樹脂封止体中に生じるき裂は、樹脂封止体の表面まで進展した開口き裂となることが考えられる。樹脂封止体に開口き裂が生じると、開口き裂を通って水素が感温素子近傍まで導入され、感温素子が還元劣化するおそれがある。感温素子が還元劣化すると、温度センサによる温度検出精度が低下し得る。
 本開示は、水素タンク内の雰囲気と感温素子とを隔てるための樹脂仕切部に形成されたボイドが樹脂仕切部におけるき裂の原因となることを抑制できる温度センサを提供しようとするものである。
 本開示の一態様は、水素タンク内に配される温度センサであって、
 温度を検出するための感温素子と、
 前記感温素子に電気的に接続された一対の素子電極線と、
 前記水素タンク内の雰囲気と前記感温素子とを隔てるための樹脂製の樹脂仕切部と、を備え、
 前記樹脂仕切部内には、直径が0.01mm以上の特定ボイドが形成されており、
 前記特定ボイドの直径をd[mm]、前記特定ボイドから前記雰囲気までの最短距離を最小肉厚t[mm]としたとき、前記直径dと前記最小肉厚tとは、d×t≦1.0、の関係を満たす、温度センサにある。
 前記態様の温度センサにおいて、前記直径dと前記最小肉厚tとは、d×t≦1.0、の関係を満たす。この関係を満たす場合としては、直径dが小さい場合と最小肉厚tが小さい場合とが考えられる。
 直径dが小さいことにより、水素タンク内の圧力が高圧状態であるときに、樹脂仕切部に溶解して特定ボイド内に蓄積される水素の量を低減することができる。それゆえ、特定ボイドに蓄積された水素は、水素タンクの減圧時に特定ボイドから樹脂仕切部の外部に抜け出しやすく、樹脂仕切部内にき裂が生じることを抑制することができる。
 また、最小肉厚tが小さいことにより、樹脂仕切部における特定ボイドから水素タンク内の雰囲気までの距離を小さくできる。それゆえ、特定ボイドに蓄積された水素は、樹脂仕切部内の短い経路を通って樹脂仕切部から抜け出すことができる。それゆえ、水素タンク内の減圧時に、特定ボイドに蓄積された水素が樹脂仕切部から抜け切れずに樹脂仕切部内に応力が発生し、これに起因して樹脂仕切部内にき裂が生じることを抑制することができる。なお、前述の数値に関しては、後述する実験例によって裏付けられる。
 以上のごとく、前記態様によれば、水素タンク内の雰囲気と感温素子とを隔てるための樹脂仕切部に形成された特定ボイドが樹脂仕切部におけるき裂の原因となることを抑制できる温度センサを提供することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、温度センサの一部断面正面図であり、 図2は、実施形態1における、感温素子、一対の素子電極線及び封止部における、特定ボイドを通る断面図であり、 図3は、図2の、特定ボイド周辺の拡大図であり、 図4は、実施形態2における、感温素子、一対の素子電極線、封止部、及び外側包囲部における、特定ボイドを通る断面図であり、 図5は、図4の、特定ボイド周辺の拡大図であり、 図6は、実施形態3における、感温素子、一対の素子電極線、封止部、及び外側包囲部における、特定ボイドを通る断面図であり、 図7は、実施形態4における、温度センサの一部断面正面図であり、 図8は、図7の、特定ボイド周辺の拡大図であり、 図9は、実施形態4の変形形態における、特定ボイド周辺の拡大断面図であり、 図10は、実験例2における、ガラスファイバーの平均長さと、ガラスファイバー含有量とがそれぞれ異なる種々の試料における、試験後のき裂の発生の有無を示すグラフであり、 図11は、実施形態6における、走査型電子顕微鏡で観察した封止部の断面図であり、 図12は、図11を模式的に表した図であり、 図13は、実施形態6における、繊維角度θを説明するための模式図であり、 図14は、実施形態6における、効果を示す断面図であり、 図15は、比較形態における、開口き裂が生じた様子を示す模式図である。
(実施形態1)
 温度センサの実施形態につき、図1~図3を用いて説明する。
 本実施形態の温度センサ1は、水素タンク内に配されて用いられる。
 図1、図2に示すごとく、温度センサ1は、感温素子2と一対の素子電極線3と樹脂仕切部4とを備える。感温素子2は、水素タンク内の温度を検出する。一対の素子電極線3は、感温素子2に電気的に接続されている。樹脂仕切部4は、樹脂製であり、水素タンク内の雰囲気と感温素子2とを隔てている。
 図1~図3に示すごとく、樹脂仕切部4内には、直径が0.01mm以上の特定ボイド40が形成されている。図3に示すごとく、特定ボイド40の直径をd、特定ボイド40から水素タンク内の雰囲気までの最短距離を最小肉厚tとしたとき、直径dと最小肉厚tとは、d×t≦1.0、の関係を満たす。
 以後、本実施形態につき詳説する。
 以後、温度センサ1の中心軸が延びる方向をX方向という。また、X方向の一方側であって、一対の素子電極線3における感温素子2が接続された側を先端側といい、その反対側を基端側という。
 本形態の温度センサ1は、例えば燃料電池自動車(いわゆるFCV;Fuel Cell Vehicle)等に用いられる水素タンク内に取り付けられる。水素タンクへの水素の充填速度は、温度センサ1による水素タンク内の温度の検出結果に基づいて制御される。水素タンク内には、水素の充填によって、衝撃及び圧力が生じるため、温度センサ1は、これに耐え得る強度を有するよう設計される。
 また、水素タンク内は、水素の充填時に高圧になる。水素タンク内が高圧状態であるとき、水素タンク中の水素ガスが温度センサ1の樹脂仕切部4を構成する樹脂に溶解する。そこから燃料電池自動車の走行のために水素タンク内の水素を使用することに伴い、水素タンク内の水素が減り、水素タンク内が減圧される。この減圧に伴い、樹脂仕切部4の樹脂中に溶解した水素は、当該樹脂内を通って樹脂仕切部4の外部に出ようとするが、樹脂中に溶解した水素の一部が樹脂から抜け出せず、樹脂仕切部4の内部に応力が発生するおそれがある。そして、この応力の発生に起因して樹脂仕切部4の内部にき裂が生じるおそれが考えられる。本形態の温度センサ1は、前記き裂の発生を抑制できるよう工夫したものである。
 温度センサ1の感温素子2は、例えばサーミスタによって構成されている。なお、これに限られず、感温素子2は、熱電対、或いは白金等からなる測温抵抗体によって構成することもできる。図1、図2に示すごとく、感温素子2は、一対の素子電極線3の先端部によって挟まれた状態で固定されている。
 一対の素子電極線3は、例えば白金合金を線状に形成してなる。一対の素子電極線3は、互いに平行となるよう並んで配されている。一対の素子電極線3の先端部及び感温素子2は、封止部4aによって封止されている。
 封止部4aは、感温素子2と一対の素子電極線3の先端部とを内部に埋設するよう形成されている。封止部4aは、前述の樹脂仕切部4を構成する。すなわち、封止部4aは、樹脂からなるとともに、感温素子2を水素タンク内の水素雰囲気から隔てている。
 封止部4aは、PA66等のポリアミド系樹脂又はポリフェニレンサルファイド樹脂(すなわちPPS樹脂)からなる。本実施形態において、封止部4aは、PA66からなる。封止部4aは、ディッピングや射出成形により成形される。封止部4aの製造方法については後述する。
 図1~図3に示すごとく、封止部4aの内部には、球状の特定ボイド40が形成されている。そして、封止部4a内には、これらの製造時にボイドが発生し得る。また、水素タンク内への水素充填に伴う水素タンク内の温度上昇に伴って封止部4aが膨張することによっても、感温素子2や素子電極線3との間にボイドが生じ得る。
 図3に示すごとく、特定ボイド40は、0.01mm以上の直径dを有する。本実施形態において、特定ボイド40は、0.3mm以上の直径dを有する。図1、図2に示すごとく、特定ボイド40は、封止部4aにおける感温素子2よりも先端側の位置に配されている。また、特定ボイド40は、封止部4aの表面近傍に形成されている。
 図3に示すごとく、最小肉厚tは、特定ボイド40から水素タンク中の水素雰囲気までの最短距離である。本実施形態において、最小肉厚tは、特定ボイド40から樹脂仕切部4としての封止部4aの表面までの最短距離である。最小肉厚tは、2mm以下が好ましく、最小肉厚tは1mm以下がさらに好ましい。
 そして、前述のごとく、特定ボイド40の直径dと最小肉厚tとは、d×t≦1.0を満たす。なお、封止部4a内に直径0.01mm以上の特定ボイド40が複数存在する場合は、それぞれの特定ボイド40に関して、d×t≦1.0が満たされている。
 図1に示すごとく、封止部4aから基端側に突出した各素子電極線3には、ターミナル11が溶接等により接続されている。ターミナル11は、素子電極線3との接続部からX方向の基端側に向かって延在するよう形成されている。一対のターミナル11は、互いに平行となるよう並んで配されている。ターミナル11は、SUS304等のステンレス鋼をX方向に長尺な板状に形成してなる。ターミナル11の基端部は、外部機器に電気的に接続される。ターミナル11の一部は、ハウジング12に埋設されている。
 ハウジング12は、一対のターミナル11の先端部を露出させつつ、一対のターミナル11を保持している。これにより、感温素子2及び一対の素子電極線3は、一対のターミナル11を介してハウジング12に保持されている。
 ハウジング12は、例えば樹脂材料によって構成されている。具体的には、ハウジング12は、例えばPA66樹脂等のポリアミド系樹脂にガラス繊維を33wt%含有した材料で構成することができる。ハウジング12を樹脂で構成することで、軽量化、低コスト化を図ることができる。なお、ハウジング12は、ターミナル11との絶縁性が確保されていれば金属等の導体で構成することも可能である。
 ハウジング12は、一対のターミナル11を成形型に配置したインサート成形によって形成することができる。ハウジング12は、各ターミナル11の先端部を突出させつつ、ターミナル11を埋設している。ハウジング12の先端部には、カバー13が組み付けられている。
 カバー13は、封止部4aを囲むよう形成されている。カバー13の基端部は、外周側に突出するフランジ部131となっている。そして、カバー13は、フランジ部131の基端側の面の全周において、ハウジング12に接合されている。
 カバー13は、樹脂製である。例えば、カバー13は、ハウジング12と同様に、PA66樹脂等のポリアミド系樹脂にガラス繊維を33wt%含有した樹脂で構成することができる。
 なお、ハウジング12及びカバー13も、樹脂仕切部4を構成している。本実施形態のように、複数の部材が樹脂仕切部4を構成している場合、樹脂仕切部4を構成する少なくとも1つの部材において、特定ボイド40が形成されており、d×t≦1.0を満たしていればよい。
 次に、封止部4aの製造方法につき説明する。
 封止部4aは、ディッピングや射出成形などによって形成することができる。このとき、封止部4aにおいて、特定ボイド40の直径dと、封止部4aの特定ボイド40から水素タンク内の雰囲気までの最短距離である最小肉厚tとが、d×t≦1.0、の関係を満たすよう製造方法が工夫される。
 まず、封止部4aをディッピングにより形成する方法につき説明する。
 封止部4aを構成する樹脂材料を加熱し、液体状態のディップ液を形成する。そして、温度センサ1の感温素子2及び一対の素子電極線3における封止部4aで覆われる部位をディップ液にディップし、前記部位の表面にディップ液を付着させる。
 ここで、封止部4aに形成されるボイドの直径は、感温素子2及び一対の素子電極線3をディップ液に挿入する挿入速度と、ディップ液から引き抜く引抜速度とのそれぞれが早ければ早いほど大きくなる。これは挿入速度や引抜速度が速いほど、感温素子2及び一対の素子電極線3に付着するディップ液の内部に空気が巻き込まれやすいからである。それゆえ、前記挿入速度と前記引抜速度とを適宜調整することにより、封止部4aに形成されるボイドの直径を調整することができる。
 次に、封止部4aにおける最小肉厚tは、封止部4aの外形寸法、特定ボイド40の直径、及び封止部4aにおける特定ボイド40の位置によって定まる。
 封止部4aの外形寸法は、ディップ液の粘性や感温素子2及び一対の素子電極線3をディップ液から引き抜くときの引抜速度等によって定まる。なお、封止部4aにおける外形寸法については、水素タンクの形状(例えば、水素タンクに設けられた、温度センサ1を挿入するための孔の形状)等に応じて定まり、実質的に変更することは制限があるため、最小肉厚tは、主に特定ボイド40の直径、及び封止部4aにおける特定ボイド40の位置により調整できる。
 封止部4aにおける特定ボイド40の形成位置は、ディップ液の粘性や感温素子2及び一対の素子電極線3をディップ液から引き抜くときの引抜速度等によって定まる。以上のように、封止部4aの外形寸法、特定ボイド40の直径、及び封止部4aにおける特定ボイド40の位置を適宜調整することにより、封止部4aにおける特定ボイド40の直径dと最小肉厚tとを所望の値にすることができる。
 次に、封止部4aを射出成形によって形成する方法につき説明する。
 封止部4aを構成する金型内に感温素子2及び一対の素子電極線3における封止部4aで覆われる部位を配置する。そして、封止部4aの樹脂を構成する樹脂材料を加熱溶融させたもの溶融樹脂を作製し、これを金型内に射出する。その後、金型内に射出された溶融樹脂を冷却することでこれを固化し、封止部4aを形成する。
 封止部4aに形成されるボイドの直径は、射出成形における成形条件のうち、主に金型温度と保持圧とによって調整することができる。すなわち、金型温度と保持圧とは、いずれも低い方がボイドの直径が大きくなる。これは、金型温度が低いと成型時の樹脂流れが悪くなるからであり、保持圧が低いと、樹脂内に残ったボイドが潰れにくくなることが理由であると考えられる。
 次に、封止部4aにおける最小肉厚tは、封止部4aの外形寸法、特定ボイド40の直径、及び封止部4aにおける特定ボイド40の位置によって定まる。
 封止部4aの外形寸法は、射出成形の成形型の形状で定まる。なお、前述のように、封止部4aにおける外形寸法については、水素タンクの形状等に応じて定まり、実質的に変更することは制限があるため、最小肉厚tは、主にボイドの直径、及び封止部4aにおけるボイドの位置により調整できる。
 封止部4aにおけるボイドの形成位置の調整は、金型形状やゲート位置を変えることにより行うことができる。以上のように、封止部4aの外形寸法、特定ボイド40の直径、及び封止部4aにおける特定ボイド40の位置を適宜調整することにより、封止部4aにおける特定ボイド40の直径dと最小肉厚tとを所望の値にすることができる。
 次に、本実施形態の作用効果につき説明する。
 本実施形態の温度センサ1において、直径dと最小肉厚tとは、d×t≦1.0、の関係を満たす。この関係を満たす場合としては、直径dが小さい場合と最小肉厚tが小さい場合とが考えられる。
 直径dが小さいことにより、水素タンク内の圧力が高圧状態であるときに、樹脂仕切部4としての封止部4aに溶解して特定ボイド40内に蓄積される水素の量を低減することができる。それゆえ、特定ボイド40に蓄積された水素は、水素タンクの減圧時に特定ボイド40から封止部4aの外部に抜け出しやすく、封止部4a内にき裂が生じることを抑制することができる。
 また、最小肉厚tが小さいことにより、封止部4aにおける特定ボイド40から水素タンク内の雰囲気までの距離を小さくできる。それゆえ、特定ボイド40に蓄積された水素は、封止部4a内の短い経路を通って封止部4aから抜け出すことができる。それゆえ、水素タンク内の減圧時に、特定ボイド40に蓄積された水素が封止部4aから抜け切れずに封止部4a内に応力が発生し、これに起因して封止部4a内にき裂が生じることを抑制することができる。なお、前述の数値に関しては、後述する実験例によって裏付けられる。
 また、最小肉厚tは、t≦2mmを満たす。それゆえ、特定ボイド40から水素タンク内の雰囲気までの距離を確実に小さくできる。それゆえ、水素タンク内が高圧であるときに特定ボイド40に水素が蓄積された場合であっても、水素タンクの減圧時には、特定ボイド40に蓄積された水素は、封止部4aの表面に抜け出しやすい。それゆえ、封止部4a内に特定ボイド40を起点としたき裂が生じることを一層抑制しやすい。また、本実施形態においては、最小肉厚tは、t≦1mmを更に満たす。それゆえ、かかる効果を一層得やすい。なお、これらの数値に関しても、後述する実験例によって裏付けられる。
 また、特定ボイド40の直径dは、d≧0.3mmを満たす。それゆえ、特定ボイド40は、ある程度の大きさをもち、水素タンク内が高圧であるとき、水素が特定ボイド40に蓄積されやすい。それゆえ、特定ボイド40の直径dが、d≧0.3mmと大きくなると、封止部4a内のき裂発生のおそれが一層高まりやすい。そこで、直径dがd≧0.3mmを満たすような特定ボイド40を備えた封止部4aにおいて、前述のようにd×t≦1.0、の関係を満たすことにより、封止部4a内のき裂発生を効果的に抑制することができる。
 また、封止部4aが樹脂仕切部4を構成しており、封止部4aが特定ボイド40を備えるとともに、封止部4a内に形成された特定ボイド40の直径dと当該特定ボイド40から水素タンク内の雰囲気までの最小肉厚tとは、d×t≦1.0、の関係を満たしている。それゆえ、封止部4aにき裂が発生することを防止することができる。これにより、封止部4aにき裂が生じたことに起因して、当該き裂から水素タンク内の水素が感温素子2の周囲に導入され、感温素子2が還元劣化することを防止できる。これにより、感温素子2の還元劣化による温度センサ1の温度検出精度の低下を防止することができる。
 また、封止部4aを構成する樹脂は、ポリアミド系樹脂、又はポリフェニレンサルファイド樹脂である。これらの材料は、水素タンク内の圧力が高圧状態となっても、水素タンク内の水素が溶解し難い材料である。それゆえ、水素タンク内が高圧状態にあるときにおいても、水素タンク中の水素が封止部4aに溶解し、特定ボイド40内に蓄積されることを抑制しやすい。これにより、水素タンク内の減圧時に、特定ボイド40に蓄積された水素が封止部4aから抜け切れずに封止部4a内に応力が発生することを防止できる。これに伴い、封止部4a内にき裂が発生することを防止できる。
 以上のごとく、本実施形態によれば、水素タンク内の雰囲気と感温素子とを隔てるための樹脂仕切部に形成された特定ボイドが樹脂仕切部におけるき裂の原因となることを抑制できる温度センサを提供することができる。
(実験例1)
 本例は、特定ボイドを含む樹脂からなる複数の試験片であって、特定ボイドの直径dと、当該特定ボイドから試験片の表面までの最短距離である最小肉厚tとを種々変更した試料につき、ブリスタ破壊によるき裂発生の有無を調査した実験例である。
 本例において、複数の試験片は、特定ボイドの直径dを、1mm、0.7mm、0.5mm、0.3mm、0.1mm、0.01mmの間で種々変更した。また、複数の試験片は、最小肉厚tを、0.1mm、0.3mm、0.5mm、1mm、1.5mm、2mmの間で種々変更した。
 各試料は、PA66樹脂を、各辺の長さが50mm、厚さが3mmとなる矩形板状に形成した試験片である。各試料は、射出成形により作製した。
 各試料を作製する際には、射出成形時における試験片を構成する材料を金型内に射出する際の金型温度と保持圧とを適宜調整することで、樹脂の内側に種々の径のボイドを形成した。
 また、各試料を作製する際には、まず、各辺の長さが100mm、厚さが10mmの矩形板状とした、試験片のベース材を作製した。そして、かかるベース材を、各辺の長さが50mm、厚さが3mmの矩形板状となるよう切削することでベース材を試験片に形成した。このときの切削位置を調整することで、種々の最小肉厚tを備える試験片を作製した。
 次に、本例の試験条件につき説明する
 本例においては、各試料を85MPa水素中に一昼夜曝露させ、その後、水素雰囲気を1MPa/minの減圧速度で85MPaから大気圧まで減圧した後、各試料にき裂が発生したか否かを確認した。減圧前の各試料の温度は85℃とし、減圧に伴う温度降下は成り行きとした。各試料のき裂の有無の確認は、X線CTスキャンを用いて確認した。
 各試料の特定ボイドの直径dの値と、最小肉厚tの値と、d×tの値とを表1に示す。そして、表2に、試験後の各試料のき裂の有無を示す。表2において、試験後にき裂が確認されなかったものに記号「A」、試験後にき裂が確認されたものに記号「B」を表した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2から、d×tの値が1を超える合計4つの試料は、いずれも評価がBとなっており、き裂が発生したことが分かる。一方、d×tの値が1.0以下となる試料は、いずれも評価がAとなっており、試料にき裂が確認されなかった。これにより、d×tが1.0以下である樹脂部材については、ブリスタ破壊によるき裂が生じにくいことが確認された。それゆえ、実施形態1で示した水素タンク内に配される温度センサにおいて、樹脂仕切部における特定ボイドの直径dと樹脂仕切部の最小肉厚tとの積d×tを1.0以下とすることにより、ブリスタ破壊によるき裂の発生を抑制できることが分かる。
 また、d×tが1.0以下であり、最小肉厚tが2mm以下である試料は、いずれも評価がAであり、ブリスタ破壊によるき裂が確認されなかった。それゆえ、d×tを1.0以下とし、最小肉厚tを2mm以下とすることにより、樹脂仕切部にブリスタ破壊によるき裂が発生することを抑制できることが分かる。
 さらに、表2から、特定ボイドの直径dと最小肉厚tとがいずれも高ければ、き裂が発生し得ることが分かる。そして、最小肉厚tを1mm以下とすることで、本例のすべての試料の評価がAとなる。そのため、d×tを1.0mm以下とし、最小肉厚tを1mm以下とすることで、樹脂仕切部にブリスタ破壊によるき裂が発生することを抑制できることが分かる。同様に、特定ボイドの直径dを0.5mm以下とすることで、本例のすべての試料の評価がAとなるため、d×tを1.0mm以下とし、特定ボイドの直径dを0.5mm以下とすることにより、樹脂仕切部にブリスタ破壊によるき裂が発生することを抑制できることが分かる。
 また、表2から、d×tが1.0以下であり、特定ボイドの直径dが0.3mm以上の試料については、いずれも評価がAであり、ブリスタ破壊によるき裂が確認されなかった。それゆえ、d×tを1.0mm以下とし、特定ボイドの直径dを0.3mm以上の樹脂仕切部は、ブリスタ破壊によるき裂が発生し難いことが分かる。
 なお、最小肉厚tが2mmを超えるものは、水素タンク内に用いられる温度センサの封止部4aの外形の大きさ等から考慮すると、製造が困難である。
(実施形態2)
 本実施形態は、図4、図5に示すごとく、基本構造を実施形態1と同様としつつ、実施形態1の封止部4aを覆う外側包囲部4bをさらに備える実施形態である。
 図4に示すごとく、外側包囲部4bは、封止部4aを内側に埋設するよう形成されている。外側包囲部4bは、樹脂仕切部4を構成する。外側包囲部4bは、封止部4aと同様、PA66等のポリアミド系樹脂又はPPS樹脂からなる.
 そして、本実施形態においては、外側包囲部4bに特定ボイド40が形成されている。特定ボイド40は、外側包囲部4bの表面付近に形成されている。特定ボイド40の直径dについては、実施形態1と同様である。また、図5に示すごとく、本実施形態において、最小肉厚tは、特定ボイド40から外側包囲部4bの表面までの最短距離である。なお、最小肉厚tの寸法、特定ボイド40の直径dと最小肉厚tとの積d×tについては、実施形態1と同様である。
 その他は、実施形態1と同様である。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 本実施形態においては、封止部4aに加え、外側包囲部4bを備える。そして、外側包囲部4bに形成された特定ボイド40の直径dと外側包囲部4bの最小肉厚tとの積d×tは、1.0以下である。それゆえ、外側包囲部4bにブリスタ破壊に起因するき裂が生じることを防止することができる。
 また、外側包囲部4bの内側には封止部4aが配されており、封止部4aの更に内側に感温素子2が配されている。それゆえ、感温素子2近傍に、水素タンク中の水素が導入されることを一層防ぎやすい。
 その他、実施形態1と同様の作用効果を有する。
(実施形態3)
 本実施形態は、図6に示すごとく、基本構造を実施形態1と同様としつつ、封止部4aの構成を変更した実施形態である。
 本実施形態において、封止部4aは、絶縁性のガラス材料からなる。具体的には、封止部4aは、例えば酸化ホウ素を添加したホウケイ酸ガラス等によって構成することが可能である。
 その他は、実施形態2と同様である。
 本実施形態においては、封止部4aをガラス材料で構成することで、封止部4a内への水素の浸透を防止しやすい。さらに、実施形態2で示したようにき裂が生じにくい外側包囲部4bで封止部4aを覆うことで、一層感温素子2近傍に水素が導入されることを防止することができる
 その他、実施形態2と同様の作用効果を有する。
(実施形態4)
 本実施形態は、図7、図8に示すごとく、実施形態1と基本構造を同様としつつ、特定ボイド40の形成箇所が異なる実施形態である。
 本実施形態において、特定ボイド40は、感温素子2を水素タンク内の水素雰囲気から隔てる樹脂仕切部4を構成するハウジング12とカバー13との溶融部4cに形成されている。
 カバー13とハウジング12とは、レーザー溶着により接合されている。すなわち、カバー13とハウジング12とは、レーザー光によりこれらを溶融させることで接合されている。本実施形態においては、カバー13は、フランジ部131の基端面の全体において、ハウジング12に接合されている。そして、カバー13とハウジング12との境界部には、これらが溶融してなる溶融部4cが形成されている。
 溶融部4cには、特定ボイド40が形成されている。溶融部4cは、ハウジング12とカバー13とのレーザー溶着時に、空気が巻き込まれることでボイドが形成され得る。
 特定ボイド40は、溶融部4cの外周側端部付近に形成されている。特定ボイド40の直径dについては、実施形態1と同様である。また、図8に示すごとく、本実施形態において、最小肉厚tは、特定ボイド40から、特定ボイド40周囲の溶融部4c、ハウジング12、及びカバー13の表面までの最短距離である。なお、最小肉厚tの寸法、特定ボイド40の直径dと最小肉厚tとの積d×tについては、実施形態1と同様である。
 その他は、実施形態1と同様である。
 本実施形態においては、ハウジング12とカバー13との溶融部4cに特定ボイド40が形成されていても、当該特定ボイド40の直径dと最小肉厚tとの積d×tを1.0以下とすることで、溶融部4cにブリスタ破壊に起因するき裂が生じることを防止することができる。
 さらに、これに伴い、ハウジング12とカバー13との接合強度を確保でき、カバー13がハウジング12から脱落することを防止することができる。カバー13がハウジング12から脱落すると、例えば水素タンク内への水素の充填による衝撃が直接的に封止部4aに作用することになる。この衝撃に押され、封止部4aが変位し、これに伴って素子電極線3に応力が作用し、断線に至るおそれがある。そこで、ハウジング12とカバー13との溶融部4cにブリスタ破壊に起因するき裂の発生を防止することで、水素タンク内への水素の充填による衝撃によって素子電極線3の断線を抑制できる。
 その他、実施形態1と同様の作用効果を有する。
 なお、本実施形態において、例えば図9に示すごとく、フランジ部131の基端面におけるフランジ部131の径方向の両端を除く中央部にのみ溶融部4cが形成されている場合も考えられる。この場合においても、最小肉厚tは、特定ボイド40から、特定ボイド40周囲の溶融部4c、ハウジング12、及びカバー13の表面までの最短距離である。すなわち、最小肉厚tは、特定ボイド40から、ハウジング12、カバー13、溶融部4c等の樹脂仕切部4における、水素雰囲気に面する表面までの最短距離を意味する。
(実施形態5)
 本実施形態は、実施形態1に対して、封止部の組成を変更した実施形態である。
 本実施形態において、封止部は、樹脂中に多数の無機繊維を含有してなる。具体的には、封止部は、PA66等のポリアミド系樹脂又はPPS樹脂等の樹脂に、ガラスファイバー等の無機繊維を含有してなる。
 封止部における無機繊維の含有量は、10wt%以上、40wt%以下である。また、封止部は、多数の無機繊維の平均長さが30μm以上、250μm以下である。実施形態1と同様、封止部は、ディッピングや射出成形により形成することができる。
 その他は、実施形態1と同様である。
 本実施形態において、封止部は、樹脂中に多数の無機繊維を含有してなる。そのため、封止部全体の強度を向上することができる。それゆえ、封止部内に特定ボイドが形成されていても、封止部にブリスタ破壊によるき裂が生じることを防止することができる。
 また、封止部は、無機繊維の含有量が10wt%以上、40wt%以下である。封止部において、無機繊維の含有量を10wt%以上とすることにより、封止部の強度を確保することができ、封止部にブリスタ破壊によるき裂が発生することを抑制しやすい。また、封止部において、無機繊維の含有量を40wt%以下とすることにより、封止部の生産性を向上させいやすい。一方、封止部において、無機繊維の含有量が40wt%を超えるものについては、製造が困難であった。これらの数値に関しては、後述する実験例によって裏付けられる。
 また、封止部は、多数の無機繊維の平均長さが30μm以上、250μm以下である。封止部において、多数の無機繊維の平均長さを30μm以上とすることにより、封止部の強度を確保することができ、封止部にブリスタ破壊によるき裂が発生することを抑制しやすい。また、封止部において、多数の無機繊維の平均長さを250μm以下とすることにより、封止部の生産性を向上させいやすい。一方、封止部において、多数の無機繊維の平均長さが250μmを超えるものについては、製造が困難であった。これらの数値に関しても、後述する実験例によって裏付けられる。
 その他、実施形態1と同様の作用効果を有する。
(実験例2)
 本例は、複数のガラスファイバーを含有するPA66樹脂からなるとともに特定ボイドを含有する複数の試料であって、互いにガラスファイバーの含有量及びガラスファイバーの平均長さを種々変更した試料につき、ブリスタ破壊によるき裂発生の有無を調査した例である。
 各試料のガラスファイバーの含有量、及びガラスファイバーの平均長さについては、図10に示した。
 また、各試料の特定ボイドの直径dと最小肉厚tとの積であるd×tは、0.3とした。各試料のその他の構成、製法については実験例1と同様である。
 試験条件については、実験例1と同様、各試料を85MPa水素中に一昼夜曝露させ、その後、1MPa/minの減圧速度で85MPaから大気圧まで減圧した後、各試料にき裂が発生したか否かを確認した。本例においては、減圧前から減圧後までの各試料の温度を85℃とした。ここで、前述のごとく、実験例1の試験条件においては、減圧前の各試料の温度を85℃とし、減圧に伴う温度降下は成り行きとしているため、本例は、実験例1の試験条件よりも厳しい(すなわち試料にき裂が生じやすい)条件といえる。各試料のき裂の有無の確認は、実験例1と同様、X線CTスキャンを用いて確認した。
 結果を図10に示す。図10において、横軸は各試料のガラスファイバーの平均の長さ、縦軸は各試料のガラスファイバー含有量である。なお、図10において、試験後き裂が発生した試料については記号「×」、試験後き裂が観察されなかった試料については記号「〇」でプロットしている。
 図10から分かるように、ガラスファイバーの含有量が10wt%未満の試料については、いずれの試料についてもき裂が確認された。一方、ガラスファイバーの含有量を10wt%以上とすることにより、き裂の発生が抑制できていることが分かる。それゆえ、特定ボイドが形成された樹脂部材において、無機繊維の含有量を10wt%以上とすることで、ブリスタ破壊によるき裂の発生を抑制しやすいことが分かる。
 また、図10から分かるように、ガラスファイバーの平均長さが30μm未満の試料については、いずれの試料についてもき裂が確認された。一方、ガラスファイバーの平均長さを30μm以上とすることにより、き裂の発生が抑制できていることが分かる。それゆえ、特定ボイドが形成された樹脂部材において、30μm以上とすることで、ブリスタ破壊によるき裂の発生を抑制しやすいことが分かる。
 なお、前述のごとく、PA66樹脂中に、40wt%を超えるガラスファイバーを含有させることは、製造上困難であった。また、ガラスファイバーの平均長さが250μmを超える試験片を作製することは困難であった。すなわち、ガラスファイバーの平均長さが250μmを超えるものを作製しようした場合、各試料の成形時にガラスファイバーが折れることにより、ガラスファイバーの平均長さを250μm以上とすることは困難であった。
(実施形態6)
 本実施形態は、実施形態5と基本構成を同様としつつ、図11~図13に示すごとく、封止部4aの構成を変更した実施形態である。
 各無機繊維42は、長尺な円柱状を呈している。本実施形態において、封止部4aにおける樹脂41中に含まれる多数の無機繊維42は、各無機繊維42の長手方向が3次元的にランダムな方向となるよう配されている。すなわち、各無機繊維42の長手方向は、一方向に揃っていない。例えば、大多数の無機繊維42の長手方向が一方向に揃っており、残りのごく少数の無機繊維42の長手方向が前記一方向に交差する方向を向いているような場合は、各無機繊維42の長手方向が3次元的にランダムな方向を向いているとはいわない。
 封止部4aにおいて、各無機繊維42の長手方向が3次元的にランダムな方向となっているか否かは、例えば封止部4aを切断した断面を研磨し、当該断面を走査型電子顕微鏡(すなわちSEM;Scanning Electron Microscope)で観察することで把握することができる。図11に、SEMで観察される断面を示す。また、図12は、SEMで観察される封止部4aの断面の模式図である。図12において、長尺四角形状に表れた無機繊維421は、当該無機繊維421を当該無機繊維421の長手方向に平行に切断した断面が表れたものである。図12において、円形に表れた無機繊維422は、当該無機繊維422を当該無機繊維422の径方向に切断した断面が表れたものである。図12において、楕円形に表れた無機繊維423の断面は、当該無機繊維423を当該無機繊維423の長手方向に対して傾斜する斜め方向に切断した断面が表れたものである。
 また、例えばX線CTスキャンにより、3次元的に封止部4aの無機繊維42を観察することが可能である。X線CTスキャンにおいては、封止部4aを特定方向に直交する方向に切断した断面層を、前記特定方向の数百カ所にてX線CT撮影する。そして、当該数百カ所の断面層を前記特定方向に積み重ねることで、3次元的な封止部4aの無機繊維42を観察することが可能である。ここで、樹脂は一般に炭素、水素、酸素、及び窒素等の比較的軽い元素で構成されるため、X線吸収率が低い。それゆえ、樹脂部材のみをX線CT撮影した画像においては、樹脂部材中にコントラストが明瞭につかない場合が多い。一方、ガラス繊維が含まれるガラス含有樹脂をX線CT撮影した場合は、ガラス繊維がケイ素から構成されるため、樹脂部材を構成する比較的軽い元素とケイ素から構成されるガラス繊維との間に明瞭なコントラストが付く。それゆえ、X線CTスキャンにより、封止部4aの無機繊維42を観察することが可能である。
 図13に示すごとく、封止部4aの任意断面において、任意の方向に延在する仮想直線Lを引いたとき、各無機繊維42と仮想直線Lとの間になす90°以下の角を繊維角度θとする。このとき、あらゆる任意断面において、多数の無機繊維42のそれぞれの繊維角度θの平均は、10°(=10(π/180)rad)以上である。前述の繊維角度θの平均が10°以上である場合、幾何学的に繊維角度θの平均の上限は80°となる。なお、図13は、SEMで観察される封止部4aの断面の模式図であって、長尺四角形状に表れた無機繊維42(図12の符号421参照)のみを表したものである。
 前述の繊維角度θの平均は、例えば図13のような任意断面に表れる長尺四角形状の無機繊維42のうち、少なくとも20個の無機繊維42をランダムに選定し、この少なくとも20個の繊維角度θの平均とすることができる。任意断面に表れる少なくとも20個の無機繊維42をランダムに選定するとは、任意断面に大小様々な繊維角度θを有する無機繊維42が存在するにもかかわらず、長手方向がいずれも仮想直線Lに平行或いは略平行な無機繊維42を故意的に選択したような場合は除かれる。すなわち、任意断面に大小様々な繊維角度θを有する無機繊維42が表れている場合、繊維角度θの平均は、繊維角度θが比較的大きい無機繊維42、及び比較的小さい無機繊維42の双方が含まれる少なくとも20個の無機繊維42を任意に選択し、これらの繊維角度θの平均により求めることができる。
 封止部4aは、特定ボイド40を通る任意断面において、特定ボイド40を起点とする任意の半直線を引いたとき、当該半直線が必ず無機繊維42を通るよう構成されていることが好ましい。これにより、封止部4a内に万一き裂が生じても、当該き裂が封止部4aの表面まで進展することを防ぎやすい。
 次に、封止部4aの製造方法につき説明する。
 封止部4aは、ディッピングや、射出成形等によって形成することができる。このとき、封止部4a内の各無機繊維42の長手方向が3次元的にランダムな方向となるよう、製法を工夫する必要がある。
 まず、封止部4aをディッピングにより形成する方法につき説明する。
 封止部4aの樹脂41を構成する樹脂材料を加熱し、液体状態とする。そして、液状の樹脂材料内に無機繊維42を入れ、樹脂材料内で無機繊維42をよく分散させることでディップ液を形成する。ここで、樹脂材料内で無機繊維42をよく分散させることで、樹脂材料内で各無機繊維42の長手方向が3次元的にランダムな方向となる。
 そして、温度センサ1の感温素子2及び一対の素子電極線3における封止部4aで覆われる部位をディップ液にディップし、前記部位の表面にディップ液を付着させる。このとき、特に何も工夫しなければ、前記ディップ後に感温素子2及び素子電極線3に付着したディップ液が重力により垂れやすく、ディップ液が垂れる際に無機繊維42の方向が重力方向に配向しやすい。
 そこで、本実施形態においては、ディップ液の溶剤量を適宜調整して、ディップ液の粘度が比較的高くなるようにしている。これにより、ディップ後に感温素子2及び素子電極線3を覆うディップ液が垂れ落ちないようにすることができ、感温素子2及び素子電極線3の表面を覆うディップ液内の無機繊維42が高分散された状態を維持しやすくなる。
 さらに、本実施形態においては、前記ディップ時に感温素子2及び一対の素子電極線3をディップ液から引き上げる際のスピードを比較的速くしている。これによって、感温素子2及び一対の素子電極線3をディップ液から引き上げる時間を短くでき、ディップ後に感温素子2及び素子電極線3を覆うディップ液が垂れ落ちにくくなる。これによっても、感温素子2及び素子電極線3の表面を覆うディップ液内の無機繊維42が高分散された状態を維持しやすくなる。
 そして、感温素子2及び一対の素子電極線3をディップ液から引き上げた後、感温素子2及び一対の素子電極線3に付着したディップ液を乾燥させる。これにより、ディップ液が固化し、封止部4aが形成される。以上により、各無機繊維42の長手方向が3次元的にランダムな方向となるよう配された封止部4aを得ることができる。
 次に、封止部4aを射出成形によって形成する方法につき説明する。
 封止部4aを構成する金型内に感温素子2及び一対の素子電極線3における封止部4aで覆われる部位を配置する。そして、封止部4aの樹脂41を構成する樹脂材料を加熱溶融させたものと無機繊維42を混ぜた混合材を作製し、これを金型内に射出する。その後、金型内に射出された混合材を冷却することでこれを固化し、封止部4aを形成する。
 このとき、特に何も工夫しなければ前記混合材中の無機繊維42の向きは、射出成形における混合材の射出方向に配向しやすく、各無機繊維42の長手方向を3次元的にランダムに形成することはできない。
 そこで、本実施形態においては、混合材を金型内に射出した後、混合材が完全に固化するまでの時間を通常よりも長く確保する。これは、例えば、混合材の冷却を通常よりも緩やかにすることで実現可能である。これにより、金型内で混合材が液状でいる状態(すなわち流動性を有する状態)を長くすることができる。それゆえ、金型内に混合材を射出した直後、混合材に含まれる無機繊維42の向きが前記射出方向に配向しても、その後時間経過に伴って各無機繊維42が混合材内で流動し、各無機繊維42の長手方向が3次元的にランダムな方向となる。この状態で混合材が固化されることで、各無機繊維42の長手方向が3次元的にランダムな方向となるよう配された封止部4aを得ることができる。
 以上に例示した方法により、各無機繊維42の長手方向が3次元的にランダムな方向を向いた封止部4aを製造することが可能である。
 その他は、実施形態5と同様である。
 次に、本実施形態の作用効果につき説明する。
 本実施形態において、封止部4aにおける多数の無機繊維42は、各無機繊維42の長手方向が3次元的にランダムな方向となるよう配されている。それゆえ、図14に示すごとく、水素タンク内の圧力が高圧状態から減圧されることによって、万一、封止部4a内に特定ボイド40を起点とするき裂51が発生したとしても、進展したき裂51は、封止部4a内の無機繊維42に到達することによってそれ以上の進展が抑制される。それゆえ、封止部4aの表面までき裂51が進展してなる開口き裂52が発生することを抑制することができる。なお、図14は、封止部4aの断面の模式図であり、図14に示した外枠部43は、封止部4aの表面を意味するものとする。
 一方、図15に示すごとく、本実施形態とは異なり、封止部4aが含有する各無機繊維42の長手方向が一方向に配向している場合について考える。なお、図14は、封止部4aの断面の模式図であり、図14に示した外枠部43は、封止部4aの表面を意味している。この場合において、水素タンク内の圧力が高圧状態から減圧されることに起因して封止部4a内に特定ボイド40を起点とするき裂51が発生したとき、進展したき裂51は無機繊維42間を通り抜けるよう進展しやすい。それゆえ、この場合、き裂51が封止部4aの表面まで進展して開口き裂52となるおそれがある。開口き裂52が生じると、開口き裂52から水素が感温素子2近傍まで導入され、感温素子2が還元劣化してしまい、温度センサ1の温度検出精度が低下するおそれがある。
 そこで、本実施形態のように、多数の無機繊維42において、各無機繊維42の長手方向を3次元的にランダムな方向とすることにより、封止部4a内にブリスタ破壊に起因するき裂51が発生しても、き裂51の進展は無機繊維42により抑えられ、き裂51が封止部4aの表面まで進むことを抑制することができる。
 また、封止部4aの任意断面において、各無機繊維42と任意の方向に延在する仮想直線Lとの間になす角を繊維角度θとしたとき、あらゆる任意断面において、無機繊維42のそれぞれの繊維角度θの平均は、10°以上である。すなわち、封止部4aにおける各無機繊維42の長手方向の3次元的なランダムさが高い。これにより、封止部4a内にブリスタ破壊に起因する気泡及びき裂が生じても、き裂が無機繊維42に到達しやすく、当該き裂が封止部4aの表面まで進んで開口き裂となることを抑制しやすい。
 その他、実施形態5と同様の作用効果を有する。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、或いはそれ以下を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に含めるものである。例えば、実施形態3、実施形態4の外側包囲部を、実施形態5又は実施形態6で示した封止部と同様な構成としてもよい。

Claims (11)

  1.  水素タンク内に配される温度センサ(1)であって、
     温度を検出するための感温素子(2)と、
     前記感温素子に電気的に接続された一対の素子電極線(3)と、
     前記水素タンク内の雰囲気と前記感温素子とを隔てるための樹脂製の樹脂仕切部(4)と、を備え、
     前記樹脂仕切部内には、直径が0.01mm以上の特定ボイド(40)が形成されており、
     前記特定ボイドの直径をd[mm]、前記特定ボイドから前記雰囲気までの最短距離を最小肉厚t[mm]としたとき、前記直径dと前記最小肉厚tとは、d×t≦1.0、の関係を満たす、温度センサ。
  2.  前記最小肉厚tは、t≦2mmを満たす、請求項1に記載の温度センサ。
  3.  前記最小肉厚tは、t≦1mmを更に満たす、請求項2に記載の温度センサ。
  4.  前記直径dは、d≧0.3mmを満たす、請求項1~3のいずれか一項に記載の温度センサ。
  5.  前記感温素子及び一対の前記素子電極線を保持するハウジング(12)と、前記ハウジングに接合されるとともに、前記感温素子を覆うカバー(13)と、をさらに備え、前記ハウジングと前記カバーとは、前記樹脂仕切部を構成しており、前記ハウジングと前記カバーとを接合することで形成された溶融部(4c)内には、前記特定ボイドが形成されており、前記溶融部内に形成された前記特定ボイドの前記直径dと当該特定ボイドから前記雰囲気までの前記最小肉厚tとは、d×t≦1.0、の関係を満たしている、請求項1~4のいずれか一項に記載の温度センサ。
  6.  前記感温素子及び一対の前記素子電極線の一部を覆うとともに前記樹脂仕切部を構成する封止部(4a)を備え、前記封止部内には、前記特定ボイドが形成されており、前記封止部内に形成された前記特定ボイドの前記直径dと当該特定ボイドから前記雰囲気までの前記最小肉厚tとは、d×t≦1.0、の関係を満たしている、請求項1~5のいずれか一項に記載の温度センサ。
  7.  前記樹脂仕切部を構成する樹脂は、ポリアミド系樹脂、又はポリフェニレンサルファイド樹脂である、請求項1~6のいずれか一項に記載の温度センサ。
  8.  前記樹脂仕切部は、樹脂(41)中に多数の無機繊維(42)を含有してなる、請求項1~7のいずれか一項に記載の温度センサ。
  9.  前記樹脂仕切部における前記無機繊維の含有量は、10wt%以上、40wt%以下である、請求項8に記載の温度センサ。
  10.  前記樹脂仕切部における前記無機繊維の平均長さは、30μm以上、250μm以下である、請求項8又は9に記載の温度センサ。
  11.  前記樹脂仕切部における多数の前記無機繊維は、前記各無機繊維の長手方向が3次元的にランダムな方向となるよう配されている、請求項8~10のいずれか一項に記載の温度センサ。
PCT/JP2020/002439 2019-03-01 2020-01-24 温度センサ WO2020179274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-037807 2019-03-01
JP2019037807A JP7070473B2 (ja) 2019-03-01 2019-03-01 温度センサ

Publications (1)

Publication Number Publication Date
WO2020179274A1 true WO2020179274A1 (ja) 2020-09-10

Family

ID=72280281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002439 WO2020179274A1 (ja) 2019-03-01 2020-01-24 温度センサ

Country Status (2)

Country Link
JP (1) JP7070473B2 (ja)
WO (1) WO2020179274A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552669A (ja) * 1991-08-26 1993-03-02 Technol Seven Co Ltd 温度センサ
JP2010151805A (ja) * 2008-11-20 2010-07-08 Tdk Corp 温度センサ
JP2010266206A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
US20120026659A1 (en) * 2010-07-30 2012-02-02 Joinset Co., Ltd. Ceramic chip assembly
JP2016092125A (ja) * 2014-10-31 2016-05-23 京セラケミカル株式会社 サーミスタセンサ注形用樹脂組成物およびサーミスタセンサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188819B (zh) 2007-04-30 2010-09-29 中兴通讯股份有限公司 Iu接口并行多媒体广播组播业务会话开始处理方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552669A (ja) * 1991-08-26 1993-03-02 Technol Seven Co Ltd 温度センサ
JP2010151805A (ja) * 2008-11-20 2010-07-08 Tdk Corp 温度センサ
JP2010266206A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp 温度検出器および温度検出器を備えた水素充填システム
US20120026659A1 (en) * 2010-07-30 2012-02-02 Joinset Co., Ltd. Ceramic chip assembly
JP2016092125A (ja) * 2014-10-31 2016-05-23 京セラケミカル株式会社 サーミスタセンサ注形用樹脂組成物およびサーミスタセンサ

Also Published As

Publication number Publication date
JP7070473B2 (ja) 2022-05-18
JP2020139918A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
US7748898B2 (en) Temperature sensor and method of producing the temperature sensor
CN110601000B (zh) 火花塞
WO2020179274A1 (ja) 温度センサ
CN102245519A (zh) 熔融玻璃搬运设备构件及玻璃制造装置
JP6888561B2 (ja) 温度センサ
US20170346270A1 (en) Protecting cap for terminal consolidation splice
WO2020179273A1 (ja) 温度センサ
US10710153B2 (en) Method for filling with metallic sodium
JP2017058366A (ja) 温度センサ
JP6292148B2 (ja) 温度センサ
JP6316763B2 (ja) ガラス溶解装置
JP2017224493A (ja) ハーメチック構造および製造方法
CN110596198B (zh) 腐蚀传感器以及腐蚀传感器的制造方法
JP7276061B2 (ja) 温度センサ
JP6091996B2 (ja) タイヤ成型用金型の製造方法
JP6822334B2 (ja) 温度センサ
WO2017047435A1 (ja) 温度センサ
WO2020085132A1 (ja) 温度センサ
JP2009162625A (ja) 検出素子封止構造およびその製造方法
JP2004045334A (ja) シース熱電対
US9101975B2 (en) Aerospace sand casting support
JPH0523075U (ja) 高炉の炉下部における測温用プローブ
JPS6240810B2 (ja)
JPS6238809B2 (ja)
JP2018014245A (ja) イオンミリング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766964

Country of ref document: EP

Kind code of ref document: A1