WO2019142511A1 - 蓄電デバイスおよび蓄電デバイスの製造方法 - Google Patents

蓄電デバイスおよび蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2019142511A1
WO2019142511A1 PCT/JP2018/044219 JP2018044219W WO2019142511A1 WO 2019142511 A1 WO2019142511 A1 WO 2019142511A1 JP 2018044219 W JP2018044219 W JP 2018044219W WO 2019142511 A1 WO2019142511 A1 WO 2019142511A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
polymer compound
layer
positive electrode
Prior art date
Application number
PCT/JP2018/044219
Other languages
English (en)
French (fr)
Inventor
真野響太郎
木村健二
福田恭丈
上田安彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880085864.4A priority Critical patent/CN111602218B/zh
Priority to JP2019565741A priority patent/JP6930608B2/ja
Publication of WO2019142511A1 publication Critical patent/WO2019142511A1/ja
Priority to US16/902,377 priority patent/US11289278B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present invention relates to a power storage device and a method of manufacturing the power storage device.
  • Patent Document 1 describes an electric double layer capacitor provided with a polarizable electrode containing a gel-like polymer compound containing an electrolytic solution.
  • Patent Document 2 describes an electrochemical capacitor provided with an electrode containing an ionic liquid and a gel-like polymer compound.
  • the viscosity of the electrolytic solution in the electrode and the viscosity of the electrolytic solution of the separator are substantially the same. Therefore, when water intrudes into the storage device, the infiltrated water disperses not only to the separator but also to the electrodes in the same manner, which may deteriorate the characteristics of the storage device.
  • the present invention solves the above-mentioned problems, and provides an electricity storage device capable of suppressing the penetration of water into an electrode when water intrudes into the inside, and a method of manufacturing such an electricity storage device.
  • the purpose is
  • the electricity storage device of the present invention is A positive electrode comprising a positive electrode current collector and a positive electrode active material layer, A negative electrode comprising a negative electrode current collector and a negative electrode active material layer, A separator layer provided between the positive electrode and the negative electrode and containing a gel electrolyte; Equipped with At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode active material, a binder, an electrolytic solution, and a first polymer compound which is not cross-linked, and the first polymer The compound is characterized by being different from the second polymer compound contained in the binder.
  • the positive electrode active material layer and the negative electrode active material layer may contain activated carbon.
  • a layer containing the polymer compound which is not cross-linked among the positive electrode active material layer and the negative electrode active material layer may contain a crosslinking initiator.
  • positive electrode active material layer and the negative electrode active material layer may be configured not to contain a crosslinking initiator.
  • a method of manufacturing a power storage device is Forming a first active material layer containing a positive electrode active material and a binder on a positive electrode current collector; Forming a second active material layer containing a negative electrode active material and a binder on the negative electrode current collector; Applying a paste containing an electrolytic solution, a crosslinking initiator, and a non-crosslinked first polymer compound on at least one of the first active material layer and the second active material layer; Forming a paste layer; Cross-linking the polymer compound contained in the paste layer to form a gel electrolyte layer; Sandwiching the gel electrolyte layer between the first active material layer and the second active material layer; Equipped with The first polymer compound is characterized by being different from the second polymer compound contained in the binder.
  • a method of manufacturing a storage device is Forming a first active material layer containing a positive electrode active material and a binder on a positive electrode current collector; Forming a second active material layer containing a negative electrode active material and a binder on the negative electrode current collector; Applying a paste containing an electrolytic solution, a crosslinking initiator, and a non-crosslinked first polymer compound on at least one of the first active material layer and the second active material layer; Forming a paste layer; Cross-linking the first polymer compound contained in the paste layer to form a gel electrolyte layer; Sandwiching the gel electrolyte layer between the first active material layer and the second active material layer; Equipped with Among the first active material layer and the second active material layer, an active material layer forming a paste layer further includes an electrolytic solution and a non-crosslinked third polymer compound, The first polymer compound is characterized by being different from the second polymer compound contained in the binder.
  • the third polymer compound may be the same material as the first polymer compound.
  • the first polymer compound may be crosslinked by irradiating ultraviolet light.
  • the positive electrode active material and the negative electrode active material may contain activated carbon.
  • the content of the first polymer compound contained in the paste may be 10% by weight or less of the paste.
  • the polymer compound is dissolved in at least one of the positive electrode active material layer and the negative electrode active material layer, and the polymer compound is crosslinked in the separator layer.
  • the viscosity of the electrolyte solution of the active material layer is higher than the viscosity of the electrolyte solution in the separator layer.
  • the rate at which water diffuses in the at least one active material layer is slower than the rate at which water diffuses in the separator layer. Water entry can be suppressed.
  • At least one of the positive electrode active material layer and the negative electrode active material layer and the separator layer can be simultaneously manufactured, and the above electricity storage is efficiently performed.
  • the device can be manufactured.
  • the method of manufacturing a storage device in another aspect of the present invention described above it is possible to manufacture a storage device in which the active material layer does not contain a crosslinking initiator. Since the crosslinking initiator contained in the active material layer is an impurity, the reliability of the electricity storage device can be improved by adopting a configuration in which the crosslinking initiator is not contained.
  • an electric double layer capacitor is mentioned as an example and explained as an example of a storage device, a storage device is not limited to an electric double layer capacitor.
  • FIG. 1 is a cross-sectional view showing a configuration of a power storage device 100 in the first embodiment.
  • the storage device 100 according to the first embodiment includes a positive electrode 10, a negative electrode 20, and a separator layer 30.
  • the positive electrode 10 includes a positive electrode current collector 11 and a positive electrode active material layer 12.
  • a positive electrode current collector 11 aluminum can be used as the positive electrode current collector 11.
  • the positive electrode active material layer 12 is formed on one main surface of the positive electrode current collector 11, and is activated carbon which is a positive electrode active material, an electrolytic solution, a first polymer compound which is not crosslinked, a binder, and crosslinking. And an initiator.
  • the binder contains a second polymer compound.
  • a second polymer compound for example, CMC (carboxymethylcellulose) can be used.
  • a crosslinking initiator a phenyl-type derivative can be used, for example.
  • the first polymer compound which is not cross-linked is a polymer compound different from the second polymer compound contained in the binder, and is dissolved in the electrolytic solution.
  • the positive electrode active material layer 12 includes, as the first polymer compound, a polymer compound which is crosslinked by irradiation of ultraviolet light or heating but exists in a non-crosslinked state, and such a polymer
  • polyethylene oxide is used as the compound.
  • the first polymer compound and the second polymer compound can be distinguished, for example, by analyzing the composition.
  • an ionic liquid such as EMI-TFSI (1-ethyl-3-methylimidazolium bisimide) can be used.
  • the negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22.
  • a negative electrode current collector 21 aluminum can be used as the negative electrode current collector 21.
  • the configuration of the negative electrode active material layer 22 is the same as the configuration of the positive electrode active material layer 12.
  • the separator layer 30 is provided to prevent a short circuit between the positive electrode 10 and the negative electrode 20, and includes a gel electrolyte. Specifically, the gel electrolyte interposed between the positive electrode 10 and the negative electrode 20 functions as the separator layer 30.
  • the gel electrolyte contains a crosslinked first polymer compound, for example, crosslinked polyethylene oxide.
  • the first polymer compound which is not cross-linked is dissolved in the electrolytic solution contained in the positive electrode 10 and the negative electrode 20.
  • the viscosity is higher than the viscosity of the electrolytic solution in the separator layer 30.
  • the rate at which water diffuses in the active material layers of the positive electrode 10 and the negative electrode 20 is slower than the rate at which water diffuses in the separator layer 30.
  • a material obtained by mixing a positive electrode active material and a binder is coated on an aluminum foil constituting the positive electrode current collector 11 to form a first active material layer 12A (see FIG. 2A).
  • a first active material layer 12A see FIG. 2A.
  • the thickness of the first active material layer 12A is, for example, 5 ⁇ m or more and 15 ⁇ m or less.
  • a paste containing an electrolytic solution, a non-crosslinked first polymer compound, and a crosslinking initiator is prepared.
  • the first polymer compound is different from the second polymer compound contained in the binder, and is described here as using polyethylene oxide.
  • the content of polyethylene oxide contained in the paste is 10% by weight or less of the paste.
  • the above-mentioned paste is applied from above the first active material layer 12A.
  • the applied paste penetrates into the first active material layer 12A.
  • the first active material layer in which the paste has penetrated is denoted by reference numeral 12B to distinguish it from the first active material layer 12A before the paste infiltrates.
  • a first paste layer 30A1 is formed on the first active material layer 12B into which the paste has penetrated (see FIG. 2B).
  • the thickness of the first paste layer 30A1 is, for example, 5 ⁇ m or more and 50 ⁇ m or less.
  • first paste layer 30A1 is irradiated with ultraviolet light to crosslink polyethylene oxide contained in the first paste layer 30A1 to form a first gel electrolyte layer 30A2 (FIG. 2 (FIG. c) see
  • the positive electrode active material layer 12 containing activated carbon, an electrolytic solution, polyethylene oxide which is not crosslinked, a binder, and a crosslinking initiator is formed.
  • the polyethylene oxide contained in the first active material layer 12B is not crosslinked for the reason described above, in practice the polyethylene oxide present on the first paste layer 30A1 side is irradiated with ultraviolet rays to be crosslinked. .
  • the first polymer compound contained in the paste is gelled by chemical crosslinking, so that control of crosslinking is easier than that of gelation by physical crosslinking. Become.
  • physically cross-linked gel such as PVdF, a paste containing the first polymer compound which is not cross-linked can not be prepared.
  • the preparation methods of the negative electrode 20 and the part located in the negative electrode side of the separator layer 30 are demonstrated.
  • the method of manufacturing the negative electrode 20 is the same as the method of manufacturing the positive electrode 10, and therefore will be briefly described below.
  • a material obtained by mixing a negative electrode active material and a binder is coated on an aluminum foil constituting the negative electrode current collector 21 to form a second active material layer 22A (see FIG. 3A).
  • a negative electrode active material it demonstrates as what uses activated carbon.
  • the paste created at the time of preparation of positive electrode 10 is applied on the 2nd active material layer 22A.
  • the paste to be applied may be one prepared in advance.
  • the applied paste penetrates into the second active material layer 22A.
  • the second active material layer into which the paste has penetrated is denoted by reference numeral 22B to distinguish it from the second active material layer 22A before the paste penetrates.
  • a second paste layer 30B1 is formed on the second active material layer 22B into which the paste has penetrated (see FIG. 3B).
  • the surface of the second paste layer 30B1 is irradiated with ultraviolet light to crosslink the polyethylene oxide contained in the second paste layer 30B1 to form a second gel electrolyte layer 30B2 (FIG. 3 (FIG. c) see
  • the activated carbon is contained in the second active material layer 22B in which the paste has penetrated, the ultraviolet light is blocked by the activated carbon and does not reach the inside of the second active material layer 22B. Therefore, the polyethylene oxide contained in the second active material layer 22B is not crosslinked, and remains in a paste state in the second active material layer 22B. Thereby, the negative electrode active material layer 22 containing activated carbon, an electrolytic solution, polyethylene oxide which is not crosslinked, a binder, and a crosslinking initiator is formed.
  • the first gel electrolyte layer 30A2 and the second gel electrolyte layer 30B2 are sandwiched between the positive electrode current collector 11 and the negative electrode current collector 21
  • the first gel electrolyte layer 30A2 and The second gel electrolyte layer 30B2 is abutted (see FIG. 4).
  • the first gel electrolyte layer 30A2 and the second gel electrolyte layer 30B2 constitute the separator layer 30 shown in FIG.
  • the positive electrode active material layer 12 and a part of the separator layer 30 (first gel electrolyte layer 30A2), and the negative electrode active material layer 22 and the separator layer are irradiated by irradiating ultraviolet light.
  • a portion of 30 (the second gel electrolyte layer 30B2) can be produced simultaneously.
  • the composition of the first polymer compound contained in the positive electrode active material layer 12 and the negative electrode active material layer 22 and the composition of the first polymer compound contained in the separator layer 30 are the same. It is. About the determination method of the presence or absence of the bridge
  • the composition of the first polymer compound contained in the positive electrode active material layer 12 and the composition of the first polymer compound contained in the separator layer 30 can be determined, for example, by Fourier transform infrared spectroscopy (FT -IR) to distinguish between the second polymer compound as a binder and the first polymer compound as a gel precursor.
  • FT -IR Fourier transform infrared spectroscopy
  • the cross-linked polymer compound is not dissolved, but the non-cross-linked polymer compound is a soluble solvent, and the electrolytic solution in the power storage device is washed away.
  • acetone can be used as a solvent in which the crosslinked polymer compound does not dissolve but the crosslinked polymer compound does not dissolve.
  • the cross section inside the electricity storage device is observed to confirm the presence or absence of the organic solid residue. That is, the cross-linked polymer compound remains as an organic solid residue, but the non-cross-linked polymer compound is not washed away by the solvent and remains. Therefore, in the case of the electricity storage device 100 in the present embodiment, the positive electrode active material layer has no organic solid residue, but the separator layer 30 has an organic solid residue.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 contain a crosslinking initiator.
  • the positive electrode 10 and a part of the separator layer 30 can be simultaneously manufactured, and at the same time, the negative electrode 20 and a part of the separator layer 30 can be simultaneously manufactured.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 do not contain a crosslinking initiator.
  • a method of manufacturing the power storage device 100 in the second embodiment will be briefly described below.
  • a material formed by mixing a positive electrode active material, a binder, an electrolytic solution, and a non-crosslinked third polymer compound is coated on an aluminum foil constituting the positive electrode current collector 11
  • the positive electrode active material layer 12 is formed (see FIG. 5A).
  • activated carbon is used as the positive electrode active material and polyethylene oxide is used as the third polymer compound.
  • a paste containing an electrolytic solution, a non-crosslinked first polymer compound, and a crosslinking initiator is prepared.
  • the first polymer compound is different from the second polymer compound contained in the binder, and is described here as using polyethylene oxide.
  • the content of polyethylene oxide contained in the paste is 10% by weight or less of the paste.
  • This paste is a gel precursor which becomes a gelled polymer compound by crosslinking polyethylene oxide.
  • a paste prepared in advance may be used without preparation.
  • the above paste is applied on the positive electrode active material layer 12.
  • the first paste layer 30A1 is formed on the positive electrode active material layer 12 (see FIG. 5B). Since the positive electrode active material layer 12 contains an electrolytic solution, the paste does not permeate the positive electrode active material layer 12.
  • the surface of the first paste layer 30A1 is irradiated with ultraviolet light to crosslink the polyethylene oxide contained in the first paste layer 30A1 to form a first gel electrolyte layer 30A2 (FIG. c) see Since the positive electrode active material layer 12 does not contain a crosslinking initiator, polyethylene oxide in the positive electrode active material layer 12 is not crosslinked.
  • the negative electrode active material layer 22 is formed on the aluminum foil constituting the negative electrode current collector 21, and the second gel electrolyte layer is formed on the negative electrode active material layer 22. Then, in a mode in which the first gel electrolyte layer and the second gel electrolyte layer are sandwiched between the positive electrode current collector 11 and the negative electrode current collector 21, the first gel electrolyte layer and the second gel Abut the electrolyte layer.
  • the first gel electrolyte layer and the second gel electrolyte layer constitute the separator layer 30 shown in FIG.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 can be configured not to contain a crosslinking initiator. Since the crosslinking initiator contained in the active material layer is an impurity, the reliability of the power storage device 100 can be improved by adopting a configuration that does not contain the crosslinking initiator.
  • the method of heating and crosslinking was used instead of irradiating the ultraviolet light. Even in the case, the crosslinking of the third polymer compound contained in the positive electrode active material layer and the negative electrode active material layer can be prevented.
  • the first polymer compound is described as being crosslinked by irradiating ultraviolet light in the manufacturing process of the electric storage device, the first polymer compound is crosslinked by heating. You may use the method of making it.
  • the first polymer compound contained in the paste as the third polymer compound contained in the positive electrode active material layer 12 and the negative electrode active material layer 22; It demonstrated as what uses the same high molecular compound.
  • the third polymer compound a polymer compound different from the first polymer compound may be used. However, by using the same polymer compound, it can be manufactured inexpensively without increasing the types of materials.
  • the storage device having the above-described configuration may be manufactured by a manufacturing method other than the manufacturing method described in the above embodiment.
  • each of the positive electrode active material layer and the negative electrode active material layer is an electrode active material, a binder, an electrolytic solution, and a polymer compound which is not cross-linked, and is contained in the binder It has been described as including the first polymer compound different from the compound.
  • one of the positive electrode active material layer and the negative electrode active material layer is an electrode active material, a binder, an electrolytic solution, and a polymer compound which is not cross-linked and which is contained in the binder.
  • the other of the positive electrode active material layer and the negative electrode active material layer contains a binder and an electrolytic solution. Also in the electricity storage device having such a configuration, when water intrudes into the inside, it is possible to suppress the intrusion of water into the electrode containing the non-crosslinked first polymer compound.
  • one of the positive electrode active material layer and the negative electrode active material layer includes the first polymer compound which is not cross-linked, the cross-linking is performed only in the one active material layer.
  • An initiator may be included.
  • each of the positive electrode active material layer and the negative electrode active material layer includes an electrode active material, a binder, an electrolytic solution, and a first polymer compound which is not cross-linked.
  • the first polymer compound in which at least one of the positive electrode active material layer and the negative electrode active material layer is not cross-linked with the electrode active material, the binder, and the electrolytic solution may be included.
  • a method of manufacturing a storage device having such a configuration is Forming a first active material layer containing a positive electrode active material and a binder on a positive electrode current collector; Forming a second active material layer containing a negative electrode active material and a binder on the negative electrode current collector; A paste containing an electrolytic solution, a crosslinking initiator, and a non-crosslinked first polymer compound is coated on at least one of the first active material layer and the second active material layer to form a paste layer.
  • another method for producing an electricity storage device wherein at least one of the positive electrode active material layer and the negative electrode active material layer includes an electrode active material, a binder, an electrolytic solution, and a polymer compound which is not cross-linked.
  • a paste containing an electrolytic solution, a crosslinking initiator, and a non-crosslinked first polymer compound is coated on at least one of the first active material layer and the second active material layer to form a paste layer.
  • the active material layer on which the paste layer is formed further includes an electrolytic solution and a third polymer compound which is not cross-linked, The first polymer compound is different from the second polymer compound contained in the binder.
  • positive electrode 11 positive electrode current collector 12: positive electrode active material layer 12A: first active material layer 12B before paste penetrates first active material layer 20: paste penetrates negative electrode 21: negative electrode collector 22: negative electrode active material layer 22A: paste penetrates The second active material layer 22 B before the second paste penetrates the second active material layer 30 Separator 30 A 1 first paste layer 30 A 2 first gel electrolyte layer 30 B 1 second paste layer 30 B 2 second gel electrolyte layer 100 electricity storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電デバイス100は、正極集電体11および正極活物質層12を備える正極10と、負極集電体21および負極活物質層22を備える負極20と、正極10と負極20との間に設けられ、ゲル電解質を含むセパレータ層30とを備える。正極活物質層12および負極活物質層22のうちの少なくとも一方は、電極活物質と、バインダと、電解液と、架橋していない第1の高分子化合物とを含む。第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なる。

Description

蓄電デバイスおよび蓄電デバイスの製造方法
 本発明は、蓄電デバイスおよび蓄電デバイスの製造方法に関する。
 正極および負極の間にセパレータを設けた構成の蓄電デバイスが知られている。
 そのような蓄電デバイスの一つとして、特許文献1には、電解液を含むゲル状高分子化合物が含まれた分極性電極を備えた電気二重層コンデンサが記載されている。また、特許文献2には、イオン液体およびゲル状高分子化合物を含む電極を備えた電気化学キャパシタが記載されている。
特開2000-182903号公報 特開2011-35205号公報
 上述した特許文献1および2に記載の蓄電デバイスでは、電極内の電解液の粘度とセパレータの電解液の粘度はほぼ同じである。したがって、蓄電デバイスの内部に水が侵入した場合、侵入した水がセパレータだけでなく、電極にも同じように分散するため、蓄電デバイスの特性が低下する可能性がある。
 本発明は、上記課題を解決するものであり、内部に水が侵入した場合に、電極への水の侵入を抑制することができる蓄電デバイス、および、そのような蓄電デバイスの製造方法を提供することを目的とする。
 本発明の蓄電デバイスは、
 正極集電体および正極活物質層を備える正極と、
 負極集電体および負極活物質層を備える負極と、
 前記正極と前記負極との間に設けられ、ゲル電解質を含むセパレータ層と、
を備え、
 前記正極活物質層および前記負極活物質層のうちの少なくとも一方は、電極活物質と、バインダと、電解液と、架橋していない第1の高分子化合物とを含み、前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする。
 前記正極活物質層および前記負極活物質層は、活性炭を含んでいてもよい。
 上記蓄電デバイスにおいて、前記正極活物質層および前記負極活物質層のうち、前記架橋していない高分子化合物を含む層には、架橋開始剤が含まれていてもよい。
 また、前記正極活物質層および前記負極活物質層には、架橋開始剤が含まれていない構成としてもよい。
 本発明の一態様における蓄電デバイスの製造方法は、
 正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
 負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
 前記第1活物質層および前記第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
 前記ペースト層に含まれる高分子化合物を架橋させてゲル電解質層を形成する工程と、
 前記第1活物質層と前記第2活物質層の間に前記ゲル電解質層を挟む工程と、
を備え、
 前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする。
 本発明の別の態様における蓄電デバイスの製造方法は、
 正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
 負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
 前記第1活物質層および前記第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
 前記ペースト層に含まれる第1の高分子化合物を架橋させてゲル電解質層を形成する工程と、
 前記第1活物質層と前記第2活物質層の間に前記ゲル電解質層を挟む工程と、
を備え、
 前記第1活物質層および前記第2活物質層のうちペースト層を形成する活物質層は、電解液および架橋していない第3の高分子化合物をさらに含み、
 前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする。
 前記第3の高分子化合物は、前記第1の高分子化合物と同じ材料であってもよい。
 前記ゲル電解質層を形成する工程では、紫外線を照射することによって、前記第1の高分子化合物を架橋させてもよい。
 前記正極活物質および前記負極活物質は、活性炭を含んでいてもよい。
 前記ペーストに含まれる前記第1の高分子化合物の含有量は、前記ペーストの10重量%以下としてもよい。
 本発明の蓄電デバイスによれば、正極活物質層および負極活物質層のうちの少なくとも一方では、高分子化合物が溶解しており、セパレータ層では高分子化合物が架橋しているため、上記少なくとも一方の活物質層の電解液の粘度は、セパレータ層内の電解液の粘度よりも高くなる。これにより、上記少なくとも一方の活物質層内を水が拡散する速度は、セパレータ層内を水が拡散する速度よりも遅くなるので、蓄電デバイスの内部に水分が侵入した場合に、正極および負極への水分の侵入を抑制することができる。
 また、上述した本発明の一態様における蓄電デバイスの製造方法によれば、正極活物質層および負極活物質層のうちの少なくとも一方の層とセパレータ層を同時に作製することができ、効率良く上記蓄電デバイスを製造することができる。
 また、上述した本発明の別の態様における蓄電デバイスの製造方法によれば、活物質層に架橋開始剤を含まない蓄電デバイスを製造することができる。活物質層に含まれる架橋開始剤は、不純物であるので、架橋開始剤が含まれない構成とすることで、蓄電デバイスの信頼性を向上させることができる。
第1の実施形態における蓄電デバイスの構成を示す断面図である。 正極、および、セパレータ層の正極側に位置する部分の作製方法について説明するための図である。 負極、および、セパレータ層の負極側に位置する部分の作製方法について説明するための図である。 製造された蓄電デバイスの構成を示す断面図である。 第2の実施形態における蓄電デバイスの製造方法のうち、正極、および、セパレータ層の正極側に位置する部分の作製方法について説明するための図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところを具体的に説明する。
 以下では、蓄電デバイスの一例として電気二重層キャパシタを例に挙げて説明するが、蓄電デバイスが電気二重層キャパシタに限定されることはない。
 <第1の実施形態>
 図1は、第1の実施形態における蓄電デバイス100の構成を示す断面図である。第1の実施形態における蓄電デバイス100は、正極10と、負極20と、セパレータ層30とを備える。
 正極10は、正極集電体11と、正極活物質層12とを備える。正極集電体11として、例えば、アルミニウムを用いることができる。
 正極活物質層12は、正極集電体11の一方主面に形成されており、正極活物質である活性炭と、電解液と、架橋していない第1の高分子化合物と、バインダと、架橋開始剤とを含む。
 バインダは、第2の高分子化合物を含む。第2の高分子化合物として、例えば、CMC(カルボキシメチルセルロース)を用いることができる。また、架橋開始剤として、例えば、フェニル系誘導体を用いることができる。
 架橋していない第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なる高分子化合物であって、電解液に溶解している。本実施形態では、正極活物質層12は、第1の高分子化合物として、紫外線の照射や加熱によって架橋するが、架橋していない状態で存在する高分子化合物を含むものとし、そのような高分子化合物として、例えば、ポリエチレンオキシドを用いる。
 第1の高分子化合物と第2の高分子化合物とは、例えば、組成を分析することによって区別することができる。
 電解液として、例えば、EMI-TFSI(1-エチル-3-メチルイミダゾリウムビスイミド)などのイオン液体を用いることができる。
 負極20は、負極集電体21と、負極活物質層22とを備える。負極集電体21として、例えば、アルミニウムを用いることができる。負極活物質層22の構成は、正極活物質層12の構成と同じである。
 セパレータ層30は、正極10と負極20との間の短絡を防ぐために設けられており、ゲル電解質を含む。詳しくは、正極10と負極20との間に介在しているゲル電解質がセパレータ層30として機能する。ゲル電解質には、架橋した第1の高分子化合物、例えば、架橋したポリエチレンオキシドが含まれる。
 本実施形態における蓄電デバイス100では、正極10および負極20に含まれる電解液には、架橋していない第1の高分子化合物が溶解しているので、正極10および負極20に含まれる電解液の粘度は、セパレータ層30内の電解液の粘度よりも高い。この場合、正極10および負極20の活物質層内を水が拡散する速度は、セパレータ層30内を水が拡散する速度よりも遅くなる。
 したがって、蓄電デバイス100の内部に水分が侵入した場合、水の拡散速度の違いにより、正極10および負極20には水分が侵入しにくくなるので、正極10および負極20への水分の侵入を抑制することができる。
 (蓄電デバイスの製造方法)
 蓄電デバイス100の製造方法について説明する。
 初めに、正極10、および、セパレータ層30の正極側に位置する部分の作製方法について説明する。
 正極集電体11を構成するアルミニウム箔の上に、正極活物質とバインダを混合してなる材料を塗工して、第1活物質層12Aを形成する(図2(a)参照)。ここでは、正極活物質として、活性炭を用いるものとして説明する。第1活物質層12Aの厚みは、例えば、5μm以上15μm以下である。
 続いて、電解液、架橋していない第1の高分子化合物、および、架橋開始剤を含むペーストを作成する。第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なるものであり、ここでは、ポリエチレンオキシドを用いるものとして説明する。ペーストに含まれるポリエチレンオキシドの含有量は、ペーストの10重量%以下とする。ペーストに含まれるポリエチレンオキシドの含有量を、ペーストの10重量%以下とすることにより、正極活物質層12に含まれる電解液中のイオン伝導を確保して、抵抗の低い蓄電デバイスを製造することができる。このペーストは、ポリエチレンオキシドを架橋させると、ゲル状高分子化合物となるゲル前駆体である。
 なお、ペーストは、作成せずに予め用意されたものを用いるようにしてもよい。
 続いて、第1活物質層12Aの上から、上記ペーストを塗工する。塗工されたペーストは、第1活物質層12Aに浸透していく。ここでは、ペーストが浸透した第1活物質層に12Bの符号を付して、ペーストが浸透する前の第1活物質層12Aと区別する。ペーストが浸透した第1活物質層12Bの上には、第1ペースト層30A1が形成される(図2(b)参照)。第1ペースト層30A1の厚みは、例えば、5μm以上50μm以下である。
 続いて、第1ペースト層30A1の表面に、紫外線を照射することによって、第1ペースト層30A1に含まれているポリエチレンオキシドを架橋させて、第1のゲル電解質層30A2を形成する(図2(c)参照)。
 このとき、ペーストが浸透した第1活物質層12Bには活性炭が含まれているため、紫外線は、活性炭に遮られて第1活物質層12Bの中までは届かない。したがって、第1活物質層12Bに含まれているポリエチレンオキシドは架橋されず、第1活物質層12B内でペースト状態のまま残る。これにより、活性炭と、電解液と、架橋していないポリエチレンオキシドと、バインダと、架橋開始剤とを含む正極活物質層12が形成される。
 なお、上述した理由により、第1活物質層12Bに含まれているポリエチレンオキシドは架橋されないが、実際には、第1ペースト層30A1側に存在するポリエチレンオキシドには紫外線が照射されて架橋される。
 上述したように、本実施形態において、ペーストに含まれる第1の高分子化合物は、化学架橋によってゲル化するものであるので、物理架橋によってゲル化するものと比べて、架橋のコントロールが容易となる。なお、PVdFなどの物理架橋ゲルでは、架橋させていない第1の高分子化合物を含むペーストを作製することができない。
 続いて、負極20、および、セパレータ層30の負極側に位置する部分の作成方法について説明する。負極20の作製方法は、正極10の作製方法と同じであるため、以下では、簡単に説明する。
 負極集電体21を構成するアルミニウム箔の上に、負極活物質とバインダを混合してなる材料を塗工して、第2活物質層22Aを形成する(図3(a)参照)。ここでは、負極活物質として、活性炭を用いるものとして説明する。
 続いて、第2活物質層22Aの上から、正極10の作製時に作成したペーストを塗工する。上述したように、塗工するペーストは、事前に用意されたものを用いてもよい。塗工されたペーストは、第2活物質層22Aに浸透していく。ここでは、ペーストが浸透した第2活物質層に22Bの符号を付して、ペーストが浸透する前の第2活物質層22Aと区別する。ペーストが浸透した第2活物質層22Bの上には、第2ペースト層30B1が形成される(図3(b)参照)。
 続いて、第2ペースト層30B1の表面に、紫外線を照射することによって、第2ペースト層30B1に含まれているポリエチレンオキシドを架橋させて、第2のゲル電解質層30B2を形成する(図3(c)参照)。
 このとき、ペーストが浸透した第2活物質層22Bには活性炭が含まれているため、紫外線は、活性炭に遮られて第2活物質層22Bの中までは届かない。したがって、第2活物質層22Bに含まれているポリエチレンオキシドは架橋されず、第2活物質層22B内でペースト状態のまま残る。これにより、活性炭と、電解液と、架橋していないポリエチレンオキシドと、バインダと、架橋開始剤とを含む負極活物質層22が形成される。
 最後に、正極集電体11と負極集電体21との間に、第1のゲル電解質層30A2と第2のゲル電解質層30B2が挟まれるような態様で、第1のゲル電解質層30A2と第2のゲル電解質層30B2とを当接させる(図4参照)。第1のゲル電解質層30A2と第2のゲル電解質層30B2は、図1に示すセパレータ層30を構成する。
 上述した蓄電デバイスの製造方法によれば、紫外線を照射することによって、正極活物質層12とセパレータ層30の一部(第1のゲル電解質層30A2)、および、負極活物質層22とセパレータ層30の一部(第2のゲル電解質層30B2)とをそれぞれ同時に作製することができる。これにより、効率良く蓄電デバイス100を製造することができる
 本実施形態では、正極活物質層12および負極活物質層22に含まれている第1の高分子化合物の組成と、セパレータ層30に含まれている第1の高分子化合物の組成は、同一である。以下では、組成が同一である、正極活物質層12に含まれている第1の高分子化合物と、セパレータ層30に含まれている第1の高分子化合物との架橋の有無の判別方法について説明する。なお、負極活物質層22に含まれている第1の高分子化合物と、セパレータ層30に含まれている第1の高分子化合物の架橋の有無の判別方法についても同様である。
 まず初めに、正極活物質層12に含まれている第1の高分子化合物と、セパレータ層30に含まれている第1の高分子化合物の組成を、例えば、フーリエ変換赤外分光法(FT-IR)によって分析し、バインダとしての第2の高分子化合物と、ゲル前駆体としての第1の高分子化合物とを区別する。
 続いて、架橋した高分子化合物は溶解しないが、架橋していない高分子化合物は溶解する溶剤で、蓄電デバイス内の電解液を洗い流す。架橋した高分子化合物は溶解しないが、架橋していない高分子化合物は溶解する溶剤として、例えば、アセトンを用いることができる。
 電解液を洗い流した後の、蓄電デバイス内部の断面を観察し、有機固形物残渣の有無を確認する。すなわち、架橋した高分子化合物は有機固形物残渣として残るが、架橋していない高分子化合物は、上記溶剤によって洗い流されて残っていない。したがって、本実施形態における蓄電デバイス100の場合には、正極活物質層には、有機固形物残渣がないが、セパレータ層30には、有機固形物残渣がある。
 <第2の実施形態>
 第1の実施形態における蓄電デバイス100は、正極活物質層12および負極活物質層22に、架橋開始剤が含まれている。これにより、紫外線を照射することによって、正極10とセパレータ層30の一部とを同時に作製することができるとともに、負極20とセパレータ層30の一部とを同時に作製することができる。
 これに対して、第2の実施形態における蓄電デバイス100では、正極活物質層12および負極活物質層22に、架橋開始剤が含まれない。
 第2の実施形態における蓄電デバイス100の製造方法を以下で簡単に説明する。
 まず、正極集電体11を構成するアルミニウム箔の上に、正極活物質と、バインダと、電解液と、架橋していない第3の高分子化合物とを混合してなる材料を塗工して、正極活物質層12を形成する(図5(a)参照)。ここでは、正極活物質として活性炭を用い、第3の高分子化合物として、ポリエチレンオキシドを用いるものとして説明する。
 続いて、電解液、架橋していない第1の高分子化合物、および、架橋開始剤を含むペーストを作成する。第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なるものであり、ここでは、ポリエチレンオキシドを用いるものとして説明する。ペーストに含まれるポリエチレンオキシドの含有量は、ペーストの10重量%以下とする。このペーストは、ポリエチレンオキシドを架橋させると、ゲル状高分子化合物となるゲル前駆体である。
 なお、第1の実施形態と同様に、ペーストは、作成せずに予め用意されたものを用いるようにしてもよい。
 続いて、正極活物質層12の上から、上記ペーストを塗工する。これにより、正極活物質層12の上に第1ペースト層30A1が形成される(図5(b)参照)。なお、正極活物質層12には、電解液が含まれているため、ペーストは正極活物質層12には浸透しない。
 続いて、第1ペースト層30A1の表面に、紫外線を照射することによって、第1ペースト層30A1に含まれているポリエチレンオキシドを架橋させて、第1のゲル電解質層30A2を形成する(図5(c)参照)。正極活物質層12には架橋開始剤が含まれていないため、正極活物質層12内のポリエチレンオキシドは架橋しない。
 負極側についても同様に、負極集電体21を構成するアルミニウム箔の上に負極活物質層22を形成し、かつ、負極活物質層22の上に第2のゲル電解質層を形成する。そして、正極集電体11と負極集電体21との間に、第1のゲル電解質層と第2のゲル電解質層が挟まれるような態様で、第1のゲル電解質層と第2のゲル電解質層とを当接させる。第1のゲル電解質層と第2のゲル電解質層は、図1に示すセパレータ層30を構成する。
 第2の実施形態における蓄電デバイス100によれば、正極活物質層12および負極活物質層22に架橋開始剤が含まれない構成とすることができる。活物質層に含まれる架橋開始剤は、不純物であるので、架橋開始剤が含まれない構成とすることで、蓄電デバイス100の信頼性を向上させることができる。
 また、蓄電デバイス100の製造工程において、正極活物質層および負極活物質層には架橋開始剤が含まれないようにしているので、紫外線を照射する代わりに、加熱して架橋させる方法を用いた場合でも、正極活物質層および負極活物質層に含まれる第3の高分子化合物の架橋を防ぐことができる。
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。
 例えば、上述した実施形態では、蓄電デバイスの製造工程において、紫外線を照射することによって、第1の高分子化合物を架橋させるものとして説明したが、加熱することによって、第1の高分子化合物を架橋させる方法を用いてもよい。
 上述した第2の実施形態における蓄電デバイス100の製造方法では、正極活物質層12および負極活物質層22に含まれる第3の高分子化合物として、ペーストに含まれる第1の高分子化合物と、同じ高分子化合物を用いるものとして説明した。しかし、第3の高分子化合物として、第1の高分子化合物とは異なる高分子化合物を用いてもよい。ただし、同じ高分子化合物を用いることにより、材料種を増やすことなく、安価に製造することができる。
 また、上述した構成を有する蓄電デバイスを、上記実施形態で説明した製造方法以外の製造方法により製造してもよい。
 上述した実施形態では、正極活物質層および負極活物質層はそれぞれ、電極活物質と、バインダと、電解液と、架橋していない高分子化合物であって、バインダに含まれる第2の高分子化合物とは異なる第1の高分子化合物とを含むものとして説明した。
 しかし、正極活物質層および負極活物質層のうちの一方が電極活物質と、バインダと、電解液と、架橋していない高分子化合物であって、バインダに含まれる第2の高分子化合物とは異なる第1の高分子化合物とを含む構成とすることもできる。この場合、正極活物質層および負極活物質層のうちの他方は、バインダと、電解液とを含む。そのような構成を有する蓄電デバイスにおいても、内部に水が侵入した場合に、架橋していない第1の高分子化合物を含む電極への水の侵入を抑制することができる。
 また、上述したような構成、すなわち、正極活物質層および負極活物質層のうちの一方が架橋していない第1の高分子化合物を含む構成とする場合、その一方の活物質層にだけ架橋開始剤が含まれるように構成してもよい。
 ただし、上述した実施形態のように、正極活物質層および負極活物質層のそれぞれが、電極活物質と、バインダと、電解液と、架橋していない第1の高分子化合物とを含む構成とすることにより、正極および負極への水の侵入を抑制することができるので好ましい。
 上述したように、本発明の蓄電デバイスでは、正極活物質層および負極活物質層のうちの少なくとも一方が、電極活物質と、バインダと、電解液と、架橋していない第1の高分子化合物とを含む構成であればよい。そのような構成を有する蓄電デバイスの製造方法は、
 正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
 負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
 第1活物質層および第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
 ペースト層に含まれる第1の高分子化合物を架橋させてゲル電解質層を形成する工程と、
 第1活物質層と第2活物質層の間にゲル電解質層を挟む工程と、
を備え、第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なる。
 また、正極活物質層および負極活物質層のうちの少なくとも一方が、電極活物質と、バインダと、電解液と、架橋していない高分子化合物とを含む構成を有する蓄電デバイスの別の製造方法は、
 正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
 負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
 第1活物質層および第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
 ペースト層に含まれる第1の高分子化合物を架橋させてゲル電解質層を形成する工程と、
 第1活物質層と第2活物質層の間にゲル電解質層を挟む工程と、
を備え、
 第1活物質層および第2活物質層のうち、その上にペースト層を形成する活物質層は、電解液および架橋していない第3の高分子化合物をさらに含み、
 第1の高分子化合物は、バインダに含まれる第2の高分子化合物とは異なる。
10  正極
11  正極集電体
12  正極活物質層
12A ペーストが浸透する前の第1活物質層
12B ペーストが浸透した第1活物質層
20  負極
21  負極集電体
22  負極活物質層
22A ペーストが浸透する前の第2活物質層
22B ペーストが浸透した第2活物質層
30  セパレータ
30A1 第1ペースト層
30A2 第1のゲル電解質層
30B1 第2ペースト層
30B2 第2のゲル電解質層
100 蓄電デバイス

Claims (10)

  1.  正極集電体および正極活物質層を備える正極と、
     負極集電体および負極活物質層を備える負極と、
     前記正極と前記負極との間に設けられ、ゲル電解質を含むセパレータ層と、
    を備え、
     前記正極活物質層および前記負極活物質層のうちの少なくとも一方は、電極活物質と、バインダと、電解液と、架橋していない第1の高分子化合物とを含み、
     前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする蓄電デバイス。
  2.  前記正極活物質層および前記負極活物質層は、活性炭を含むことを特徴とする請求項1に記載の蓄電デバイス。
  3.  前記正極活物質層および前記負極活物質層のうち、前記第1の高分子化合物を含む層には、架橋開始剤が含まれていることを特徴とする請求項1または2に記載の蓄電デバイス。
  4.  前記正極活物質層および前記負極活物質層には、架橋開始剤が含まれていないことを特徴とする請求項1または2に記載の蓄電デバイス。
  5.  正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
     負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
     前記第1活物質層および前記第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
     前記ペースト層に含まれる前記第1の高分子化合物を架橋させてゲル電解質層を形成する工程と、
     前記第1活物質層と前記第2活物質層の間に前記ゲル電解質層を挟む工程と、
    を備え、
     前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする蓄電デバイスの製造方法。
  6.  正極集電体上に、正極活物質およびバインダを含む第1活物質層を形成する工程と、
     負極集電体上に、負極活物質およびバインダを含む第2活物質層を形成する工程と、
     前記第1活物質層および前記第2活物質層のうちの少なくとも一方の上に、電解液、架橋開始剤、および、架橋していない第1の高分子化合物を含むペーストを塗工して、ペースト層を形成する工程と、
     前記ペースト層に含まれる前記第1の高分子化合物を架橋させてゲル電解質層を形成する工程と、
     前記第1活物質層と前記第2活物質層の間に前記ゲル電解質層を挟む工程と、
    を備え、
     前記第1活物質層および前記第2活物質層のうち、その上にペースト層を形成する活物質層は、電解液および架橋していない第3の高分子化合物をさらに含み、
     前記第1の高分子化合物は、前記バインダに含まれる第2の高分子化合物とは異なることを特徴とする蓄電デバイスの製造方法。
  7.  前記第3の高分子化合物は、前記第1の高分子化合物と同じ材料であることを特徴とする請求項6に記載の蓄電デバイスの製造方法。
  8.  前記ゲル電解質層を形成する工程では、紫外線を照射することによって、前記第1の高分子化合物を架橋させることを特徴とする請求項5~7のいずれかに記載の蓄電デバイスの製造方法。
  9.  前記正極活物質および前記負極活物質は、活性炭を含むことを特徴とする請求項5~8のいずれかに記載の蓄電デバイスの製造方法。
  10.  前記ペーストに含まれる前記第1の高分子化合物の含有量は、前記ペーストの10重量%以下であることを特徴とする請求項5~9のいずれかに記載の蓄電デバイスの製造方法。
PCT/JP2018/044219 2018-01-16 2018-11-30 蓄電デバイスおよび蓄電デバイスの製造方法 WO2019142511A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880085864.4A CN111602218B (zh) 2018-01-16 2018-11-30 蓄电器件以及蓄电器件的制造方法
JP2019565741A JP6930608B2 (ja) 2018-01-16 2018-11-30 蓄電デバイスの製造方法
US16/902,377 US11289278B2 (en) 2018-01-16 2020-06-16 Power storage device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004962 2018-01-16
JP2018004962 2018-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/902,377 Continuation US11289278B2 (en) 2018-01-16 2020-06-16 Power storage device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019142511A1 true WO2019142511A1 (ja) 2019-07-25

Family

ID=67302211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044219 WO2019142511A1 (ja) 2018-01-16 2018-11-30 蓄電デバイスおよび蓄電デバイスの製造方法

Country Status (4)

Country Link
US (1) US11289278B2 (ja)
JP (1) JP6930608B2 (ja)
CN (1) CN111602218B (ja)
WO (1) WO2019142511A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131414A (ja) * 1997-07-10 1999-02-02 Showa Denko Kk 重合性組成物及びその用途
JP2003123842A (ja) * 2001-10-19 2003-04-25 Shirouma Science Co Ltd ポリマーゲル電解質組成物およびその製造法
WO2017057603A1 (ja) * 2015-09-30 2017-04-06 株式会社大阪ソーダ ゲル電解質用組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627096B2 (ja) 1998-12-11 2011-02-09 シンジーテック株式会社 電気二重層コンデンサ用分極性電極の製造方法
JP2000182903A (ja) * 1998-12-17 2000-06-30 Casio Comput Co Ltd 電気二重層コンデンサおよび電気二重層コンデンサの作製方法
JP2001307716A (ja) 2000-02-16 2001-11-02 Nisshinbo Ind Inc 多層電極構造体、それを用いた電池、電気二重層キャパシター及びそれらの製造方法
WO2005013298A1 (ja) 2003-08-04 2005-02-10 Zeon Corporation 電気二重層キャパシタ電極用バインダー
JP2011035205A (ja) 2009-08-03 2011-02-17 Sony Corp 電気化学キャパシタ
JP2013514963A (ja) * 2009-12-22 2013-05-02 スー・クワンスック グラフェン分散液およびグラフェン−イオン性液体高分子複合物
WO2012037171A2 (en) * 2010-09-13 2012-03-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
JP5894267B2 (ja) * 2011-06-23 2016-03-23 エルジー ケム. エルティーディ. 新規構造の電極組立体及びそれを用いた二次電池
JP2013069517A (ja) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池
CN102779977B (zh) * 2011-12-30 2015-06-03 华明电源(深圳)有限公司 聚合物锂离子电池及电池正极片的制造方法
PL2808933T3 (pl) * 2012-05-23 2019-09-30 Lg Chem, Ltd. Sposób wytwarzania zespołu elektrodowego i zawierające go ogniwo elektrochemiczne
US9520598B2 (en) * 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
JP2016167403A (ja) 2015-03-10 2016-09-15 株式会社リコー 非水電解液蓄電素子
CN113039623A (zh) * 2018-09-14 2021-06-25 新罗纳米技术有限公司 包含源自生物质的碳的电池电极组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131414A (ja) * 1997-07-10 1999-02-02 Showa Denko Kk 重合性組成物及びその用途
JP2003123842A (ja) * 2001-10-19 2003-04-25 Shirouma Science Co Ltd ポリマーゲル電解質組成物およびその製造法
WO2017057603A1 (ja) * 2015-09-30 2017-04-06 株式会社大阪ソーダ ゲル電解質用組成物

Also Published As

Publication number Publication date
JP6930608B2 (ja) 2021-09-01
US11289278B2 (en) 2022-03-29
CN111602218B (zh) 2022-02-18
US20200312577A1 (en) 2020-10-01
CN111602218A (zh) 2020-08-28
JPWO2019142511A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
Reina et al. Boosting electric double layer capacitance in laser‐induced graphene‐based supercapacitors
Kim et al. A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction
JP2019516241A (ja) ハイブリッドコンデンサ及びコンデンサの製造方法
JP6405534B2 (ja) 電解コンデンサ及びその製造方法
US10079118B2 (en) Electrode for an electric-energy storage system with collector including a protective conductive layer and corresponding manufacturing method
KR101793040B1 (ko) 울트라커패시터용 전극활물질의 제조방법, 상기 울트라커패시터용 전극활물질을 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터
EP2789045A1 (en) An apparatus and a method of manufacturing an apparatus
WO2019142511A1 (ja) 蓄電デバイスおよび蓄電デバイスの製造方法
JP2016082053A (ja) 電解コンデンサ
Hong et al. Triple‐Layer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dye‐Sensitized Solar Cells
Ervin et al. Thermal processing for graphene oxide supercapacitor electrode reduction and wetting
Safari et al. Influence of electrolytes of L i salts, EMIMBF 4, and mixed phases on electrochemical and physical properties of N afion membrane
KR20120134674A (ko) 하이브리드 고체 전해 콘덴서 및 그 제조 방법
JP4932196B2 (ja) 電極及び光電変換素子
JP2008010521A (ja) 固体電解コンデンサおよびその製造方法
KR102259541B1 (ko) 하이브리드 알루미늄 고분자 커패시터의 제조 방법
WO2021153750A1 (ja) 電解コンデンサおよびその製造方法
JP4797505B2 (ja) 電気二重層キャパシタの製造方法
TW201735379A (zh) 染料敏化型太陽能電池模組
EP2680340A1 (en) Membrane
KR101770789B1 (ko) 연료전지의 장기 성능 향상을 위한 3차원 맞물림 계면구조를 포함하는 막-전극 접합체, 그 제조방법, 이를 포함하는 연료전지
JP2005166738A (ja) 電気化学デバイス及び電気化学デバイス用高分子多層体の製造方法
JP5736548B2 (ja) コンデンサ
Park et al. Effect of Addition of Soybean Oil and Gamma‐Ray Cross‐linking on the Nanoporous HDPE Membrane
JP2005166978A (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900948

Country of ref document: EP

Kind code of ref document: A1