WO2019142324A1 - ショーケース - Google Patents

ショーケース Download PDF

Info

Publication number
WO2019142324A1
WO2019142324A1 PCT/JP2018/001609 JP2018001609W WO2019142324A1 WO 2019142324 A1 WO2019142324 A1 WO 2019142324A1 JP 2018001609 W JP2018001609 W JP 2018001609W WO 2019142324 A1 WO2019142324 A1 WO 2019142324A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
refrigerant
evaporator
showcase
heat transfer
Prior art date
Application number
PCT/JP2018/001609
Other languages
English (en)
French (fr)
Inventor
杉本 猛
洋一 安西
大林 誠善
賢一 実川
恵子 保坂
Original Assignee
三菱電機株式会社
三菱電機冷熱応用システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機冷熱応用システム株式会社 filed Critical 三菱電機株式会社
Priority to JP2019565657A priority Critical patent/JPWO2019142324A1/ja
Priority to PCT/JP2018/001609 priority patent/WO2019142324A1/ja
Publication of WO2019142324A1 publication Critical patent/WO2019142324A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the present invention relates to a showcase, and more particularly to a showcase provided with a refrigerant circuit having a compressor and the like.
  • Refrigerants such as hydrofluorocarbon refrigerants, R404A refrigerants, and R410A refrigerants may be used in the refrigeration system.
  • these refrigerants have the disadvantage of having a high global warming potential.
  • the global warming potential of the carbon dioxide refrigerant is 1, the global warming potential of the hydrofluorocarbon refrigerant is about 1430, the global warming potential of the R404A refrigerant is about 3920, and the earth of the R410A refrigerant The global warming potential is around 2090. Therefore, a showcase provided with a refrigerant circuit in which a natural refrigerant such as propane refrigerant is used has been proposed (see, for example, Patent Document 1).
  • the showcase of Patent Document 1 is provided with a refrigerant circuit having a compressor, a condenser, a throttling device, and an evaporator.
  • the case of the showcase of Patent Document 1 is disposed at the lower side of a storage room provided with a shelf for placing goods, a circulation path of cold air provided with an evaporator, and the storage room, A machine room in which a condenser is provided is formed.
  • the propane refrigerant has a low global warming potential as compared to refrigerants such as hydrofluorocarbon refrigerant, R404A refrigerant, and R410A refrigerant.
  • the global warming potential of propane refrigerant is about 3.3. That is, the propane refrigerant is a refrigerant having a smaller environmental load as compared to refrigerants such as hydrofluorocarbon refrigerant, R404A refrigerant, and R410A refrigerant.
  • the refrigerant may leak from the refrigerant circuit due to various factors of the refrigerant circuit, for example, an aging deterioration factor.
  • an aging deterioration factor For example, an aging deterioration factor.
  • the overall length of the refrigerant circuit increases.
  • the amount of refrigerant sealed in the refrigerant circuit also increases. That is, as the configuration of the showcase increases, the amount of refrigerant sealed in the refrigerant circuit of the showcase increases.
  • the amount of leakage of refrigerant in the refrigerant circuit also increases.
  • the showcase of Patent Document 1 Since the showcase of Patent Document 1 is configured to have only one refrigerant circuit, all the propane refrigerant used in the showcase is sealed in the refrigerant circuit. Therefore, when the refrigerant leaks from the refrigerant circuit in the showcase of Patent Document 1, most of the propane refrigerant used in the showcase may leak into the air. That is, the showcase of Patent Document 1 has a problem that the leakage amount of propane refrigerant is likely to increase.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a showcase capable of suppressing the amount of leakage of propane refrigerant.
  • a showcase according to the present invention comprises a first refrigerant circuit having a first compressor, a first condenser, a first throttling device and a first evaporator, a second compressor, and a second condenser.
  • a second refrigerant circuit having a second throttling device and a second evaporator, a cooling air passage provided with the first evaporator and the second evaporator, a first condenser and a first evaporator, and A machine chamber in which the second condenser is provided, and a first refrigerant in the first refrigerant circuit and a second refrigerant in the second refrigerant circuit are propane refrigerants. is there.
  • the cause of refrigerant leakage in one of the first refrigerant circuit and the second refrigerant circuit is Influence on the other refrigerant circuit is avoided. Therefore, according to the present invention, even if the propane refrigerant leaks from one refrigerant circuit due to the refrigerant leakage in one of the first refrigerant circuit and the second refrigerant circuit, the other refrigerant is Leakage of propane refrigerant from the circuit is avoided. Therefore, according to the present invention, the leakage amount of propane refrigerant can be suppressed.
  • FIG. 5 is an explanatory view of a refrigerant circuit of the showcase 200 according to Embodiment 1.
  • FIG. FIG. 2 is a front view of a showcase 200 according to Embodiment 1. It is explanatory drawing of arrangement
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB shown in FIG. 4; It is a front view of the 1st condenser 101a and the 2nd condenser 101b. It is explanatory drawing of the heat exchanger tube tua of the 1st condenser 101a. It is explanatory drawing of the fin Fia of the 1st condenser 101a.
  • FIG. 5 is a functional block diagram of a control device Cnt of the showcase 200 according to Embodiment 1.
  • FIG. FIG. 16 is a perspective view of a modified example of the showcase 200 according to the first embodiment.
  • FIG. 16 is an explanatory diagram of a refrigerant circuit of the showcase 200B according to the second embodiment. It is explanatory drawing of arrangement
  • FIG. 20 is a cross-sectional view of a showcase 200B according to Embodiment 2.
  • FIG. 16 is a front view of an integrated condenser 101c of a showcase 200B according to a second embodiment.
  • 21 is a front view of an integrated evaporator 103 c of the showcase 200 B according to Embodiment 2. It is a schematic diagram which shows the flow of the refrigerant
  • FIG. 1 is an explanatory view of a refrigerant circuit of the showcase 200 according to the first embodiment.
  • the showcase 200 includes a first refrigerant circuit C1 and a second refrigerant circuit C2.
  • the first refrigerant circuit C1 includes a first compressor 100a for compressing the first refrigerant, a first condenser 101a for liquefying the first refrigerant, and a first expansion device for reducing the pressure of the first refrigerant.
  • a first evaporator 103a that vaporizes a first refrigerant, and a first accumulator 104a that stores the first refrigerant are provided.
  • the showcase 200 also includes a condenser blower 101A that supplies air to the first condenser 101a and an evaporator blower 103A that supplies air to the evaporator 103.
  • the showcase 200 also connects a refrigerant pipe Rp1a connecting the first compressor 100a and the first condenser 101a, and connects the first condenser 101a and the first expansion device 102a.
  • a refrigerant pipe Rp2a and a refrigerant pipe Rp3a connecting the first expansion device 102a and the first evaporator 103a are provided.
  • the showcase 200 includes a refrigerant pipe Rp4a connecting the first evaporator 103a and the first accumulator 104a, and a refrigerant pipe connecting the first accumulator 104a and the first compressor 100a. And Rp5a.
  • the first refrigerant of the first refrigerant circuit C1 is a propane refrigerant.
  • the second refrigerant circuit C2 has a configuration according to the first refrigerant circuit C1. That is, the second refrigerant circuit C2 includes the second compressor 100b for compressing the second refrigerant, the second condenser 101b for liquefying the second refrigerant, and the second for reducing the pressure of the second refrigerant.
  • a throttling device 102b, a second evaporator 103b for evaporating the second refrigerant, and a second accumulator 104b for storing the second refrigerant are provided.
  • the showcase 200 also includes a refrigerant pipe Rp1b connecting the second compressor 100b and the second condenser 101b, and a refrigerant connecting the second condenser 101b and the second expansion device 102b.
  • a pipe Rp2b and a refrigerant pipe Rp3b connecting the second expansion device 102b and the second evaporator 103b are provided.
  • the showcase 200 includes a refrigerant pipe Rp4b connecting the second evaporator 103b and the second accumulator 104b, and a refrigerant pipe Rp5b connecting the second accumulator 104b and the second compressor 100b.
  • the second refrigerant of the second refrigerant circuit C2 is a propane refrigerant.
  • the condenser blower 101A includes a blower 101Aa that supplies air to the first condenser 101a and a blower 101Ab that supplies air to the second condenser 101b.
  • the evaporator fan 103A includes a fan 103Aa that supplies air to the first evaporator 103a and a fan 103Ab that supplies air to the second evaporator 103b.
  • the showcase 200 includes the rotation speed of the first compressor 100a, the rotation speed of the second compressor 100b, the opening degree of the first expansion device 102a, the opening degree of the second expansion device 102b, and the condenser blower 101A.
  • a controller Cnt is provided to control the number of rotations and the number of rotations of the evaporator fan 103A.
  • FIG. 2 is a front view of the showcase 200 according to the first embodiment.
  • FIG. 3 is an explanatory view of the arrangement of each component of the showcase 200 shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB shown in FIG.
  • the showcase 200 is provided with a housing 1 that constitutes an outer shell of the showcase 200.
  • a cooling air passage Ap1 provided with a first evaporator 103a and a second evaporator 103b, and a machine room provided with a first condenser 101a and a second condenser 101b.
  • Ap2 is formed.
  • the showcase 200 is provided with a housing portion 2 having a shelf 2A on which food is placed, and a machine room portion 3 in which a first compressor 100a and a second compressor 100b are provided.
  • the housing portion 2 is provided in the first drain pan 2B and the first drain pan 2B disposed below the first evaporator 103a and below the second evaporator 103b, and the first drain pan 2B. It has the drainage part 2C which pours the water of this to the machine room part 3, and the storage panel 2D which forms cooling air path Ap1.
  • a cold air flow outlet Op 1 provided in the upper portion of the housing portion 2 and a cold air flow inlet Op 2 provided in the lower portion of the housing portion 2 are formed.
  • the housing portion 2 includes a back surface portion 2E which constitutes a part of the back surface of the showcase 200, an upper surface portion 2F provided at the top of the showcase 200, a cooling air path Ap1 and a machine room Ap2. And a partition part 2G that Furthermore, as shown in FIG. 4, the showcase 200 has a defrost heater 14 b that melts the frost formed on the second evaporator 103 b. Although not shown in FIGS. 2 to 5, the showcase 200 also has a defrost heater 14a for melting the frost formed on the first evaporator 103a.
  • an evaporator fan 103A, a defrost heater 14a and a defrost heater 14b, and a first evaporator 103a and a second evaporator 103b are provided in the cooling air passage Ap1.
  • the inner panel 2D is a lower panel 2D1 forming a cooling air passage Ap1 with the partition 2G, and a back panel 2D2 forming a cooling air passage Ap1 between the back 2E, and a shelf 2A.
  • the first evaporator 103a and the second evaporator 103b are disposed between the back panel 2D2 and the back surface 2E.
  • the evaporator fan 103A is disposed between the lower panel 2D1 and the partition 2G.
  • the first drain pan 2B is provided on the upper surface of the partition 2G.
  • the machine room 3 has a front panel 3A in which an air inlet Op 3 is formed, and a side provided at one end of the front panel 3A in the longitudinal direction. It has the panel 3B and the side panel 3C provided at the other end of the front panel 3A in the longitudinal direction.
  • the machine room 3 includes a first condenser 101a, a second condenser 101b, a condenser blower 101A for supplying air to the first condenser 101a and the second condenser 101b, and a first blower 101A.
  • a compressor 100a, a second compressor 100b, a first accumulator 104a, and a second accumulator 104b are provided.
  • the condenser blower 101A includes a blower 101Aa that supplies air to the first condenser 101a and a blower 101Ab that supplies air to the second condenser 101b.
  • the machine room 3 is provided under the back surface 2E of the housing 2, and includes a back panel 3D that constitutes a part of the back surface of the showcase 200, the first compressor 100a, and the second compression. And a bottom portion 3E on which the machine 100b is mounted.
  • the machine room 3 is disposed between the second drain pan 13a for storing the water flowing into the machine room Ap2 from the drainage 2C, the first condenser 101a and the first compressor 100a, and And an evaporation promoting member 11a provided on the second drain pan 13a.
  • the machine room 3 is provided side by side with the second drain pan 13a, and stores the water flowing into the machine room Ap2 from the drainage part 2C, the second drain pan 13b, the second condenser 101b, and the second An evaporation promoting member 11b is disposed between the compressor 100b and the second drain pan 13b. Furthermore, the machine room unit 3 has an electrical item box 12 that accommodates the control device Cnt.
  • the condenser blower 101A, the first condenser 101a, the second condenser 101b, the evaporation promoting member 11a, and the evaporation promoting member 11b A second drain pan 13a and a second drain pan 13b are provided. Further, in the machine room Ap2, the first compressor 100a, the second compressor 100b, the first accumulator 104a, the second accumulator 104b, the first expansion device 102a, and the second throttle A device 102 b and an electrical component box 12 are provided.
  • a front panel 3A, a blower 101Aa, a first condenser 101a, an evaporation promoting member 11a, a first compressor 100a and a back panel 3D are disposed in this order from the upstream side in the air flow direction. Further, in the machine room Ap2, the front panel 3A, the blower 101Ab, the second condenser 101b, the evaporation promoting member 11b, the second compressor 100b and the back panel 3D are arranged in order from the upstream in the air flow direction. There is.
  • the first compressor 100a is compressed in a closed container 100aA containing a motor (not shown) and a compression mechanism (not shown), an intake muffler 100aB having a muffling function, and a closed container 100aA. And a discharge pipe 100aC for discharging the first refrigerant.
  • the suction muffler 100aB is connected to the refrigerant pipe Rp5a.
  • the discharge pipe 100aC is connected to the refrigerant pipe Rp1a.
  • the second compressor 100b also includes a closed container 100bA, a suction muffler 100bB, and a discharge pipe 100bC.
  • the suction muffler 100bB is connected to the refrigerant pipe Rp5b.
  • the discharge pipe 100bC is connected to the refrigerant pipe Rp1b.
  • the first condenser 101a is disposed between the blower 101Aa and the evaporation promoting member 11a.
  • the second condenser 101b is disposed between the blower 101Ab and the evaporation promoting member 11b.
  • the first evaporator 103a is disposed above the first compressor 100a and the first accumulator 104a, and the second evaporator 103b is a second compressor 100b. And the upper side of the second accumulator 104b.
  • the electrical component box 12 is provided upstream of the first condenser 101 a and the second condenser 101 b in the air flow direction in the machine room Ap 2. Further, the electrical component box 12 is provided between the side panel 3B and the blower 101Aa.
  • FIG. 6 is a front view of the first condenser 101a and the second condenser 101b.
  • FIG. 7 is an explanatory view of the heat transfer tube tua of the first condenser 101a.
  • FIG. 8 is an explanatory view of the fin Fia of the first condenser 101a.
  • the configurations of the first condenser 101a and the second condenser 101b will be described based on FIGS. 6 to 8.
  • the first condenser 101a has fins Fia in which a circular through hole Fial is formed, a heat transfer tube tua inserted in the through hole Fial, and a heat transfer tube Ua joined to the heat transfer tube tua. ing.
  • the first condenser 101a has a plurality of fins Fia, and the heat transfer tube tua is inserted into each through hole Fial of each fin Fia. After the heat transfer tube tua is inserted into each through hole Fial of each fin Fia, the heat transfer tube Ua is connected to the heat transfer tube tua.
  • the second condenser 101b also has the same configuration as the first condenser 101a. That is, the second condenser 101b includes fins Fib, a heat transfer tube tub, and a heat transfer tube Ub.
  • the configuration of the first evaporator 103a is the same as the configuration of the first condenser 101a
  • the configuration of the second evaporator 103b is the same as that of the second condenser 101b. It is similar to the configuration. That is, the first evaporator 103a has fins Fia, a heat transfer tube tua, and a heat transfer tube Ua.
  • the second evaporator 103b also has fins Fia, a heat transfer tube tua, and a heat transfer tube Ua.
  • FIG. 9 is a view of the evaporation promoting member 11 a as viewed from the upper side.
  • the configuration of the evaporation promoting member 11a and the configuration of the evaporation promoting member 11b are the same, so in FIG. 9, the configuration of the evaporation promoting member 11a will be described. Further, an arrow AR shown in FIG. 9 indicates the flow of air flowing into the evaporation promoting member 11.
  • the evaporation promoting member 11a has an evaporation plate 11a1 in which a not-shown notch is formed, and a support member 11a2 provided on the evaporation plate 11a1.
  • the evaporation promoting member 11 has a plurality of evaporation plates 11 a 1 and a plurality of support members 11 a 2.
  • a gap Gp through which air passes is formed between the adjacent evaporation plates 11a1.
  • the evaporation plate 11a1 is made of a material which absorbs water of the second drain pan 13a shown in FIG. 5 by capillary action.
  • the evaporation plate 11a1 can be made of a non-woven fabric in which PET (polyethylene terephthalate) and glass fiber are integrated.
  • the evaporation board 11a1 can also be comprised with a porous resin molding.
  • the support member 11a2 is a long member provided orthogonal to the evaporation plate 11a1.
  • the support plate 11a2 is inserted into the cutouts of the evaporation plates 11a1, whereby the evaporation plates 11a1 are provided upright on the second drain pan 13a shown in FIG.
  • FIG. 10 is a functional block diagram of the control device Cnt of the showcase 200 according to the first embodiment.
  • the control device Cnt includes a memory 61 for storing data, a processing unit 62 for performing various arithmetic processing, and an inverter Inv for controlling the first compressor 100a and the second compressor 100b.
  • the processing unit 62 includes an operation control unit 62A that controls an actuator.
  • the operation control unit 62A controls the inverter Inv.
  • both the 1st compressor 100a and the 2nd compressor 100b are controlled by inverter Inv.
  • the operation control unit 62A also controls the first expansion device 102a, the defrosting heater 14a, the second expansion device 102b, the defrosting heater 14b, the condenser blower 101A, and the evaporator blower 103A.
  • Each functional unit included in the control device Cnt is configured by dedicated hardware or an MPU (Micro Processing Unit) that executes a program stored in the memory 61.
  • the controller Cnt is a dedicated hardware, the controller is, for example, a single circuit, a composite circuit, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination thereof.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Each of the functional units realized by the control device Cnt may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control device Cnt is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as a program and stored in the memory 61.
  • the MPU implements the functions of the control device Cnt by reading and executing the program stored in the memory 61.
  • the memory 61 is, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, and an EEPROM.
  • Embodiment 1 The operation and the like of the showcase 200 will be described based on FIGS. First, the flow of the first refrigerant in the first refrigerant circuit C1 in the cooling operation for cooling the food placed on the shelf 2A will be described.
  • the flow of the second refrigerant in the second refrigerant circuit C2 is the same as the flow of the first refrigerant in the first refrigerant circuit C1, and therefore the description thereof is omitted.
  • the control device Cnt controls the inverter Inv, and the control device Cnt drives the first compressor 100a and the second compressor 100b.
  • the first refrigerant is discharged from the first compressor 100a after being compressed by the first compressor 100a.
  • the first refrigerant discharged from the first compressor 100a flows into the first condenser 101a.
  • the first refrigerant releases heat to air and is liquefied in the process of passing through the first condenser 101a.
  • the first refrigerant flowing out of the first condenser 101a is depressurized by the first expansion device 102a.
  • the first refrigerant decompressed by the first expansion device 102a is in a gas-liquid two-phase state.
  • the refrigerant flowing out of the first expansion device 102a flows into the first evaporator 103a.
  • the first refrigerant absorbs heat from the air and gasifies in the process of passing through the first evaporator 103a.
  • the first refrigerant flowing out of the first evaporator 103a flows into the first accumulator 100a and then flows into the first compressor 100a.
  • the showcase 200 has a first refrigerant circuit C1 and a second refrigerant circuit C2 independent of the first refrigerant circuit C1. For this reason, it is avoided that the cause of refrigerant leakage in one refrigerant circuit of the first refrigerant circuit C1 and the second refrigerant circuit C2 affects the other refrigerant circuit. Therefore, even if propane refrigerant leaks from one refrigerant circuit due to refrigerant leakage in one of the first refrigerant circuit C1 and the second refrigerant circuit C2, the propane refrigerant from the other refrigerant circuit Leakage is avoided. Therefore, the leakage amount of the propane refrigerant of the showcase 200 is suppressed.
  • the showcase 200 includes an inverter Inv that controls the rotation speed of the first compressor 100 a and the rotation speed of the second compressor 100 b, and a control device Cnt that controls the inverter Inv. That is, the showcase 200 does not include an inverter for each of the first compressor 100a and the second compressor 100b, and the showcase 200 includes the first compressor 100a and the second compressor 100b. It has an inverter Inv that controls both. For this reason, as for the showcase 200, since the number of units provided with the inverter can be reduced, the manufacturing cost is suppressed.
  • liquid refrigerant having a higher density flows as compared to the gas refrigerant.
  • the condenser is a leakage place of the refrigerant
  • the leakage amount of the refrigerant is likely to increase. Therefore, when the condenser is a leakage place, the concentration of the refrigerant in the machine room tends to be high.
  • the control device is provided downstream of the condenser in the air flow direction, when the propane refrigerant leaks from the condenser, the leaked propane refrigerant is fed to the control device by the condenser blower.
  • a control device Cnt is provided upstream of the first condenser 101a and the second condenser 101b in the air flow direction. Therefore, even if the propane refrigerant leaks from the first condenser 101a or the second condenser 101b, the leaked propane refrigerant is discharged from the machine room Ap2 to the outside of the showcase 200 without passing through the control device Cnt. Ru.
  • the concentration of the propane refrigerant discharged to the outside of the showcase 200 decreases. Therefore, even if the condenser blower 101A takes in the air outside the showcase 200 into the machine room Ap2, the concentration of the propane refrigerant fed to the control device Cnt is low. As described above, since the control device Cnt is provided in the machine chamber Ap2 on the upstream side of the first condenser 101a and the second condenser 101b in the air flow direction, the high concentration propane refrigerant is a controller It is suppressed to be sent to Cnt.
  • a condenser blower 101A is provided upstream of the first condenser 101a and the second condenser 101b in the air flow direction.
  • the condenser blower 101A takes in air outside the showcase 200 into the machine room Ap2, the concentration of propane refrigerant reaching the condenser blower 101A is low.
  • the condenser blower 101A is provided in the machine room Ap2 on the upstream side in the air flow direction with respect to the first condenser 101a and the second condenser 101b, the high concentration propane refrigerant is controlled Delivery to the device Cnt is suppressed.
  • FIG. 11 is a perspective view of a modification of the showcase 200 according to the first embodiment.
  • the showcase 200 according to the first embodiment is a showcase provided with the shelf 2A.
  • the showcase 200t according to the modification is a showcase without the shelf 2A and of a low profile.
  • the showcase 200t includes a housing 2t having a concave portion 2At on which food is placed, and a machine room 3t provided below the housing 2t.
  • the shape of the housing portion 2 t is different from the shape of the housing portion 2, the components provided in the housing portion 2 t are the same as the components provided in the housing portion 2.
  • the configuration of the machine room 3t is the same as that of the machine room 3.
  • the showcase 200t according to the modification also has the same effect as the showcase 200 according to the first embodiment.
  • showcase 200 and showcase 200t are open showcases in which the space for placing food is open, the present invention is not limited to these embodiments. In other words, the showcase 200 and the showcase 200t may be provided with an open / close door.
  • the first condenser 101a and the second condenser 101b are separate components, and the first evaporator 103a and the second evaporator 103b are separate components.
  • the integrated condenser 101c in the integrated condenser 101c, the first condenser 101a described in the first embodiment and the second condenser 101b described in the first embodiment are integrated.
  • the integrated evaporator 103c in the integrated evaporator 103c, the first evaporator 103a described in the first embodiment and the second evaporator 103b described in the first embodiment are integrated.
  • FIG. 12 is an explanatory diagram of a refrigerant circuit of the showcase 200B according to the second embodiment.
  • FIG. 13 is an explanatory diagram of the arrangement of each component of the showcase 200B shown in FIG.
  • FIG. 14 is a cross-sectional view of the showcase 200B according to the second embodiment.
  • FIG. 15 is a front view of the integrated condenser 101c of the showcase 200B according to the second embodiment.
  • the integral type condenser 101c is comprised from 1st area
  • the first region Rg1 is a condenser of the first refrigerant circuit C1
  • the second region Rg2 is a condenser of the second refrigerant circuit C2.
  • the integrated condenser 101c includes a first common fin Fic, a heat transfer tube tu1, a heat transfer tube U1, a heat transfer tube tu2, and a heat transfer tube U2.
  • the first region Rg1 includes a first common fin Fic, a heat transfer tube tu1, and a heat transfer tube U1.
  • the heat transfer pipe tu1 and the heat transfer pipe U1 correspond to the first heat transfer pipe.
  • the second region Rg2 includes a first common fin Fic, a heat transfer tube tu2, and a heat transfer tube U2.
  • the heat transfer pipe tu2 and the heat transfer pipe U2 correspond to the second heat transfer pipe.
  • the configuration of the first common fin Fic is the same as the configuration of the fin Fia shown in FIG. 8 of the first embodiment. Further, the dimension of the straight tube portion of the heat transfer tube tu1 in the tube axial direction is approximately twice the dimension of the straight tube portion of the heat transfer tube tua in the tube axial direction.
  • the configuration of the heat transfer tube tu2 is similar to the configuration of the heat transfer tube tu1. Furthermore, the configuration of the heat transfer tube U1 and the configuration of the heat transfer tube U2 are the same as those of the heat transfer tube Ua shown in FIG. 6 of the first embodiment.
  • FIG. 16 is a front view of the integrated evaporator 103c of the showcase 200B according to the second embodiment.
  • the configuration of the integral evaporator 103c is also similar to the configuration of the integral condenser 101c. That is, the integrated evaporator 103c is configured of the third region Rg3 and the fourth region Rg4.
  • the third region Rg3 of the integrated evaporator 103c is the evaporator of the first refrigerant circuit C1
  • the fourth region Rg4 of the integrated evaporator 103c is the evaporator of the second refrigerant circuit C2.
  • the integrated evaporator 103c has a second common fin Ficc, a heat transfer tube tu3, a heat transfer tube U3, a heat transfer tube tu4, and a heat transfer tube U4.
  • the third region Rg3 of the integrated evaporator 103c includes a second common fin Ficc, a heat transfer tube tu3, and a heat transfer tube U3.
  • the heat transfer pipe tu3 and the heat transfer pipe U3 correspond to the third heat transfer pipe.
  • the fourth region Rg4 of the integrated evaporator 103c has a second common fin Ficc, a heat transfer tube tu4, and a heat transfer tube U4.
  • the heat transfer pipe tu4 and the heat transfer pipe U4 correspond to the fourth heat transfer pipe.
  • FIG. 17 is a schematic view showing the flow of the refrigerant in the integrated condenser 101c.
  • the solid line in FIG. 17 shows the flow of refrigerant in the heat exchanger in the front row of the integral condenser 101c
  • the broken line in FIG. 17 shows the flow of refrigerant in the heat exchanger in the rear row of the integral condenser 101c. It shows.
  • the flow of the refrigerant in the integrated condenser 101c in the cooling operation will be described based on FIG.
  • the first refrigerant flows from the inlet INa into the refrigerant flow path Rfpa of the first region Rg1.
  • the first refrigerant reaches the outlet Outa while exchanging heat with air.
  • the second refrigerant circuit C2 the second refrigerant flows from the inlet INb into the refrigerant flow path Rfpb in the second region Rg2. Then, the second refrigerant reaches the outlet Outb while exchanging heat with air.
  • FIG. 18 is a schematic view showing the flow of the refrigerant in the integrated evaporator 103c.
  • the solid line in FIG. 18 shows the flow of refrigerant in the heat exchanger in the front row of the integral evaporator 103c
  • the broken line in FIG. 18 shows the flow of refrigerant in the heat exchanger in the rear row of the integral evaporator 103c. It shows.
  • the flow of the refrigerant in the integrated evaporator 103c in the cooling operation will be described based on FIG.
  • the first refrigerant flows from the inlet INc into the refrigerant flow path Rfpc of the third region Rg3.
  • the first refrigerant reaches the outlet Outc while exchanging heat with air.
  • the second refrigerant flows from the inlet INd into the refrigerant flow path Rfpd of the fourth region Rg4. Then, the second refrigerant reaches the outlet Outd while exchanging heat with air.
  • the showcase 200B includes an integrated condenser 101c and an integrated evaporator 103c.
  • the condenser In the case where the condenser is not integrated, it is necessary to secure a gap for arranging the heat transfer pipe between one condenser and the other. However, there is no need to secure such a gap in the integrated condenser 101c. For this reason, in the case where the heat exchange capacity of the integral condenser 101c is the same as the heat exchange capacity of the separate condenser, the integrated condenser 101c is more compact than the separate condenser. Moreover, the integrated evaporator 103c can also acquire the same effect as the integrated condenser 101c. That is, in the case where the heat exchange capacity of the integrated evaporator 103c is the same as the heat exchange capacity of the separated evaporator, the integrated evaporator 103c is more compact than the separated evaporator.
  • the flow path length of the first refrigerant of the integrated condenser 101c and the flow path length of the second refrigerant of the integrated condenser 101c become short accordingly. .
  • the volume of the first refrigerant circuit C1 is reduced.
  • the flow path length of the first refrigerant of the integrated evaporator 103c and the flow path length of the second refrigerant of the integrated condenser 101c become short accordingly.
  • the volume of the second refrigerant circuit C2 also decreases.
  • the amount of the first refrigerant enclosed in the first refrigerant circuit C1 decreases accordingly, and as the volume of the second refrigerant circuit C2 decreases, the second The charged amount of the second refrigerant in the refrigerant circuit C2 is reduced. As a result, when refrigerant leakage occurs in the showcase 200B, the amount of refrigerant leakage is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Freezers Or Refrigerated Showcases (AREA)

Abstract

第1の圧縮機、第1の凝縮器、第1の絞り装置及び第1の蒸発器を有する第1の冷媒回路と、第2の圧縮機、第2の凝縮器、第2の絞り装置及び第2の蒸発器を有する第2の冷媒回路と、第1の蒸発器及び第2の蒸発器が設けられている冷却風路と、第1の凝縮器及び第2の凝縮器が設けられている機械室とが形成されている筐体と、を備え、第1の冷媒回路の第1の冷媒及び第2の冷媒回路の第2の冷媒は、プロパン冷媒である。

Description

ショーケース
 本発明は、ショーケースに関し、特に、圧縮機等を有する冷媒回路を備えているショーケースに関するものである。
 冷凍装置には、ハイドロフルオロカーボン冷媒、R404A冷媒、及びR410A冷媒といった冷媒が用いられる場合がある。しかし、これらの冷媒は地球温暖化係数が高いという短所がある。具体的には、二酸化炭素冷媒の地球温暖化係数を1としたとき、ハイドロフルオロカーボン冷媒の地球温暖化係数は1430程度であり、R404A冷媒の地球温暖化係数は3920程度であり、R410A冷媒の地球温暖化係数は2090程度である。そこで、プロパン冷媒といった自然冷媒が用いられている冷媒回路を備えたショーケースが提案されている(例えば、特許文献1参照)。
 特許文献1のショーケースには、圧縮機、凝縮器、絞り装置及び蒸発器を有する冷媒回路が設けられている。特許文献1のショーケースの筐体には、商品を載置する棚が設けられている貯蔵室と、蒸発器が設けられている冷気の循環風路と、貯蔵室の下側に配置され、凝縮器が設けられている機械室とが形成されている。プロパン冷媒は、ハイドロフルオロカーボン冷媒、R404A冷媒、及びR410A冷媒といった冷媒と比較すると地球温暖化係数が低く、具体的にはプロパン冷媒の地球温暖化係数は3.3程度である。つまり、プロパン冷媒は、ハイドロフルオロカーボン冷媒、R404A冷媒、及びR410A冷媒といった冷媒と比較すると環境負荷が小さい冷媒である。
特開2014-163627号公報
 冷媒回路の各種の要因、例えば経年劣化要因により、冷媒が冷媒回路から漏洩してしまうことがある。ここで、ショーケースの構成が大型化する程、冷媒回路の全長が長くなる。冷媒回路の全長が長くなると、冷媒回路に封入される冷媒量も増大する。つまり、ショーケースの構成が大型化する程、ショーケースの冷媒回路に封入される冷媒量が増加することになる。そして、冷媒回路の冷媒量が増加すれば、冷媒回路の冷媒の漏洩量も増大することになる。
 特許文献1のショーケースは冷媒回路を1つだけ有する構成であるため、ショーケースに用いられるプロパン冷媒の全てが、この冷媒回路に封入されることになる。このため、特許文献1のショーケースにおいて冷媒が冷媒回路から漏洩してしまうと、ショーケースに用いられているプロパン冷媒のうちの大部分が空気中に漏洩してしまう可能性がある。つまり、特許文献1のショーケースは、プロパン冷媒の漏洩量が増大しやすい、という課題がある。
 本発明は、上記のような課題を解決するためになされたもので、プロパン冷媒の漏洩量を抑制することができるショーケースを提供することを目的としている。
 本発明に係るショーケースは、第1の圧縮機、第1の凝縮器、第1の絞り装置及び第1の蒸発器を有する第1の冷媒回路と、第2の圧縮機、第2の凝縮器、第2の絞り装置及び第2の蒸発器を有する第2の冷媒回路と、第1の蒸発器及び第2の蒸発器が設けられている冷却風路と、第1の凝縮器及び第2の凝縮器が設けられている機械室とが形成されている筐体と、を備え、第1の冷媒回路の第1の冷媒及び第2の冷媒回路の第2の冷媒は、プロパン冷媒である。
 本発明によれば、第1の冷媒回路と第2の冷媒回路とは独立しているので、第1の冷媒回路及び第2の冷媒回路のうちの一方の冷媒回路における冷媒漏洩の要因が、他方の冷媒回路へ影響を及ぼしてしまうことが回避される。このため、本発明によれば、第1の冷媒回路及び第2の冷媒回路のうちの一方の冷媒回路における冷媒漏洩の要因により、一方の冷媒回路からプロパン冷媒が漏洩したとしても、他方の冷媒回路からプロパン冷媒が漏洩することが回避される。したがって、本発明によれば、プロパン冷媒の漏洩量を抑制することができる。
実施の形態1に係るショーケース200の冷媒回路の説明図である。 実施の形態1に係るショーケース200の正面図である。 図2に示すショーケース200の各構成の配置の説明図である。 図2に示すA-A断面図である。 図4に示すB-B断面図である。 第1の凝縮器101a及び第2の凝縮器101bの正面図である。 第1の凝縮器101aの伝熱管tuaの説明図である。 第1の凝縮器101aのフィンFiaの説明図である。 蒸発促進部材11aを上側から見た図である。 実施の形態1に係るショーケース200の制御装置Cntの機能ブロック図である。 実施の形態1に係るショーケース200の変形例の斜視図である。 実施の形態2に係るショーケース200Bの冷媒回路の説明図である。 図12に示すショーケース200Bの各構成の配置の説明図である。 実施の形態2に係るショーケース200Bの断面図である。 実施の形態2に係るショーケース200Bの一体型凝縮器101cの正面図である。 実施の形態2に係るショーケース200Bの一体型蒸発器103cの正面図である。 一体型凝縮器101cの冷媒の流れを示す模式図である。 一体型蒸発器103cの冷媒の流れを示す模式図である。
実施の形態1.
 以下、図面を適宜参照しながら実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
<実施の形態1の構成>
 図1は、実施の形態1に係るショーケース200の冷媒回路の説明図である。ショーケース200は、第1の冷媒回路C1と第2の冷媒回路C2とを備えている。第1の冷媒回路C1は、第1の冷媒を圧縮する第1の圧縮機100aと、第1の冷媒を液化する第1の凝縮器101aと、第1の冷媒を減圧させる第1の絞り装置102aと、第1の冷媒を気化する第1の蒸発器103aと、第1の冷媒を貯留する第1のアキュムレータ104aとを備えている。また、ショーケース200は、第1の凝縮器101aへ空気を供給する凝縮器用送風機101Aと、蒸発器103へ空気を供給する蒸発器用送風機103Aとを備えている。また、ショーケース200は、第1の圧縮機100aと第1の凝縮器101aとを接続している冷媒配管Rp1aと、第1の凝縮器101aと第1の絞り装置102aとを接続している冷媒配管Rp2aと、第1の絞り装置102aと第1の蒸発器103aとを接続している冷媒配管Rp3aとを備えている。更に、ショーケース200は、第1の蒸発器103aと第1のアキュムレータ104aとを接続している冷媒配管Rp4aと、第1のアキュムレータ104aと第1の圧縮機100aとを接続している冷媒配管Rp5aとを備えている。第1の冷媒回路C1の第1の冷媒は、プロパン冷媒である。
 第2の冷媒回路C2は、第1の冷媒回路C1に準ずる構成を備えている。つまり、第2の冷媒回路C2は、第2の冷媒を圧縮する第2の圧縮機100bと、第2の冷媒を液化する第2の凝縮器101bと、第2の冷媒を減圧させる第2の絞り装置102bと、第2の冷媒を気化する第2の蒸発器103bと、第2の冷媒を貯留する第2のアキュムレータ104bとを備えている。また、ショーケース200は、第2の圧縮機100bと第2の凝縮器101bとを接続している冷媒配管Rp1bと、第2の凝縮器101bと第2の絞り装置102bを接続している冷媒配管Rp2bと、第2の絞り装置102bと第2の蒸発器103bとを接続している冷媒配管Rp3bとを備えている。更に、ショーケース200は、第2の蒸発器103bと第2のアキュムレータ104bとを接続している冷媒配管Rp4bと、第2のアキュムレータ104bと第2の圧縮機100bを接続している冷媒配管Rp5bとを備えている。第2の冷媒回路C2の第2の冷媒は、プロパン冷媒である。
 凝縮器用送風機101Aは、第1の凝縮器101aへ空気を供給する送風機101Aaと、第2の凝縮器101bへ空気を供給する送風機101Abとを有している。また、蒸発器用送風機103Aは、第1の蒸発器103aへ空気を供給する送風機103Aaと、第2の蒸発器103bへ空気を供給する送風機103Abとを有している。
 ショーケース200は、第1の圧縮機100aの回転数、第2の圧縮機100bの回転数、第1の絞り装置102aの開度、第2の絞り装置102bの開度、凝縮器用送風機101Aの回転数、及び蒸発器用送風機103Aの回転数を制御する制御装置Cntを備えている。
 図2は、実施の形態1に係るショーケース200の正面図である。図3は、図2に示すショーケース200の各構成の配置の説明図である。図4は、図2に示すA-A断面図である。図5は、図4に示すB-B断面図である。ショーケース200は、ショーケース200の外郭を構成する筐体1を備えている。筐体1には、第1の蒸発器103a及び第2の蒸発器103bが設けられている冷却風路Ap1と、第1の凝縮器101a及び第2の凝縮器101bが設けられている機械室Ap2とが形成されている。
 図2に示すように、ショーケース200は、食品を載置する棚2Aを有する収容部2と第1の圧縮機100a及び第2の圧縮機100bが設けられている機械室部3とを備えている。収容部2は、第1の蒸発器103aの下側及び第2の蒸発器103bの下側に配置されている第1のドレンパン2Bと、第1のドレンパン2Bに設けられ、第1のドレンパン2Bの水を機械室部3へ流す排水部2Cと、冷却風路Ap1を形成する庫内パネル2Dとを有している。また、収容部2には、収容部2の上部に設けられている冷気流出口Op1と、収容部2の下部に設けられている冷気流入口Op2とが形成されている。また、収容部2は、ショーケース200の背面の一部を構成している背面部2Eと、ショーケース200の最上部に設けられている上面部2Fと、冷却風路Ap1と機械室Ap2とを仕切る仕切部2Gとを有している。更に、図4に示すように、ショーケース200は、第2の蒸発器103bに形成された霜を溶かす除霜用ヒータ14bを有している。なお、図2~5において図示されていないが、ショーケース200は、第1の蒸発器103aに形成された霜を溶かす除霜用ヒータ14aも有している。
 冷却風路Ap1には、蒸発器用送風機103Aと、除霜用ヒータ14a及び除霜用ヒータ14bと、第1の蒸発器103a及び第2の蒸発器103bと、が設けられている。庫内パネル2Dは、仕切部2Gとの間に冷却風路Ap1を形成している下パネル2D1と、背面部2Eとの間に冷却風路Ap1を形成している奥パネル2D2と、棚2Aを支持しているサイドパネル2D3とを有している。また、庫内パネル2Dは、サイドパネル2D3に並行に設けられ、棚2Aを支持しているサイドパネル2D4と、上面部2Fとの間に冷却風路Ap1を形成している上パネル2D5とを有している。第1の蒸発器103a及び第2の蒸発器103bは、奥パネル2D2と背面部2Eとの間に配置されている。蒸発器用送風機103Aは、下パネル2D1と仕切部2Gとの間に配置されている。第1のドレンパン2Bは、仕切部2Gの上面に設けられている。
 図2、図4及び図5に示すように、機械室部3は、空気流入口Op3が形成されている前面パネル3Aと、前面パネル3Aの長手方向の一方の端部に設けられているサイドパネル3Bと、前面パネル3Aの長手方向の他方の端部に設けられているサイドパネル3Cとを有している。機械室部3には、第1の凝縮器101aと、第2の凝縮器101bと、第1の凝縮器101a及び第2の凝縮器101bに空気を供給する凝縮器用送風機101Aと、第1の圧縮機100aと、第2の圧縮機100bと、第1のアキュムレータ104aと、第2のアキュムレータ104bとが設けられている。凝縮器用送風機101Aは、第1の凝縮器101aに空気を供給する送風機101Aaと、第2の凝縮器101bに空気を供給する送風機101Abとを有している。また、機械室部3は、収容部2の背面部2Eの下に設けられ、ショーケース200の背面の一部を構成している背面パネル3Dと、第1の圧縮機100a及び第2の圧縮機100bが載置されている底面部3Eとを有している。また、機械室部3は、排水部2Cから機械室Ap2へ流れ込んだ水を貯留する第2のドレンパン13aと、第1の凝縮器101aと第1の圧縮機100aとの間に配置され、第2のドレンパン13a上に設けられている蒸発促進部材11aとを有している。また、機械室部3は、第2のドレンパン13aに並んで設けられ、排水部2Cから機械室Ap2へ流れ込んだ水を貯留する第2のドレンパン13bと、第2の凝縮器101bと第2の圧縮機100bとの間に配置され、第2のドレンパン13b上に設けられている蒸発促進部材11bとを有している。更に、機械室部3は、制御装置Cntを収容している電気品箱12を有している。
 図3~図5に示すように、機械室Ap2には、凝縮器用送風機101Aと、第1の凝縮器101aと、第2の凝縮器101bと、蒸発促進部材11aと、蒸発促進部材11bと、第2のドレンパン13aと、第2のドレンパン13bとが設けられている。また、機械室Ap2には、第1の圧縮機100aと、第2の圧縮機100bと、第1のアキュムレータ104aと、第2のアキュムレータ104bと、第1の絞り装置102aと、第2の絞り装置102bと、電気品箱12とが設けられている。機械室Ap2には、空気流れ方向の上流から順番に、前面パネル3A、送風機101Aa、第1の凝縮器101a、蒸発促進部材11a、第1の圧縮機100a及び背面パネル3Dが配置されている。また、機械室Ap2には、空気流れ方向の上流から順番に、前面パネル3A、送風機101Ab、第2の凝縮器101b、蒸発促進部材11b、第2の圧縮機100b及び背面パネル3Dが配置されている。
 図5に示すように、第1の圧縮機100aは、図示省略の電動機及び図示省略の圧縮機構を収容している密閉容器100aAと、消音機能を有する吸入マフラ100aBと、密閉容器100aA内で圧縮された第1の冷媒を吐出する吐出管100aCとを有している。吸入マフラ100aBは冷媒配管Rp5aに接続されている。吐出管100aCは冷媒配管Rp1aに接続されている。第2の圧縮機100bも、第1の圧縮機100aと同様に、密閉容器100bAと、吸入マフラ100bBと、吐出管100bCとを有している。吸入マフラ100bBは冷媒配管Rp5bに接続されている。吐出管100bCは冷媒配管Rp1bに接続されている。
 図5に示すように、第1の凝縮器101aは送風機101Aaと蒸発促進部材11aとの間に配置されている。第2の凝縮器101bは送風機101Abと蒸発促進部材11bとの間に配置されている。また、図3及び図5に示すように、第1の蒸発器103aは第1の圧縮機100a及び第1のアキュムレータ104aの上側に配置され、第2の蒸発器103bは第2の圧縮機100b及び第2のアキュムレータ104bの上側に配置されている。電気品箱12は、第1の凝縮器101a及び第2の凝縮器101bよりも、機械室Ap2における空気流れ方向の上流側に設けられている。また、電気品箱12はサイドパネル3Bと送風機101Aaとの間に設けられている。
 図6は、第1の凝縮器101a及び第2の凝縮器101bの正面図である。図7は、第1の凝縮器101aの伝熱管tuaの説明図である。図8は、第1の凝縮器101aのフィンFiaの説明図である。図6~図8に基づいて第1の凝縮器101a及び第2の凝縮器101bの構成を説明する。第1の凝縮器101aは、円形状の貫通穴Fia1が形成されているフィンFiaと、貫通穴Fia1に挿入される伝熱管tuaと、伝熱管tuaに接合されている伝熱管Uaとを有している。第1の凝縮器101aは複数のフィンFiaを有しており、伝熱管tuaは各フィンFiaの各貫通穴Fia1に挿入されている。伝熱管tuaが各フィンFiaの各貫通穴Fia1に挿入された後に、伝熱管Uaは伝熱管tuaに接続される。第2の凝縮器101bも第1の凝縮器101aと同様の構成を有している。すなわち、第2の凝縮器101bは、フィンFibと、伝熱管tubと、伝熱管Ubとを有している。
 また、図6において、図示されていないが、第1の蒸発器103aの構成は第1の凝縮器101aの構成と同様であり、第2の蒸発器103bの構成は第2の凝縮器101bの構成と同様である。つまり、第1の蒸発器103aは、フィンFiaと、伝熱管tuaと、伝熱管Uaとを有している。また、第2の蒸発器103bも、フィンFiaと、伝熱管tuaと、伝熱管Uaとを有している。
 図9は、蒸発促進部材11aを上側から見た図である。蒸発促進部材11aの構成と蒸発促進部材11bの構成とは同様であるため、図9では、蒸発促進部材11aの構成について説明する。また、図9に示す矢印ARは、蒸発促進部材11に流入する空気の流れを示している。蒸発促進部材11aは、図示省略の切欠部が形成されている蒸発板11a1と、蒸発板11a1に設けられている支持部材11a2とを有している。蒸発促進部材11は、複数の蒸発板11a1と、複数の支持部材11a2とを有している。蒸発促進部材11aには、隣接する蒸発板11a1の間に、空気が通る隙間Gpが形成されている。蒸発板11a1は、図5に示す第2のドレンパン13aの水を毛細管作用により吸水する材料で構成されている。具体的には、蒸発板11a1は、PET(ポリエチレンテレフタレート)とガラス繊維とが一体となった不織布で構成することができる。また、蒸発板11a1は、多孔質の樹脂成形体で構成することもできる。支持部材11a2は、蒸発板11a1に直交して設けられている長尺状部材である。支持部材11a2が各蒸発板11a1の各切欠部に挿入されることで、各蒸発板11a1は、図5に示す第2のドレンパン13a上で立てられた状態で設けられている。
 図10は、実施の形態1に係るショーケース200の制御装置Cntの機能ブロック図である。制御装置Cntは、データを記憶するメモリ61と、各種の演算処理を行う処理部62と、第1の圧縮機100a及び第2の圧縮機100bを制御するインバーターInvとを備えている。処理部62は、アクチュエータを制御する動作制御部62Aを有している。動作制御部62AはインバーターInvを制御する。そして、第1の圧縮機100a及び第2の圧縮機100bは、共に、インバーターInvによって制御される。また、動作制御部62Aは、第1の絞り装置102a、除霜用ヒータ14a、第2の絞り装置102b、除霜用ヒータ14b、凝縮器用送風機101A、及び蒸発器用送風機103Aを制御する。
 制御装置Cntに含まれる各機能部は、専用のハードウェア、又は、メモリ61に格納されるプログラムを実行するMPU(Micro Processing Unit)で構成される。制御装置Cntが専用のハードウェアである場合、制御装置は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが該当する。制御装置Cntが実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。制御装置CntがMPUの場合、制御装置Cntが実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ61に格納される。MPUは、メモリ61に格納されたプログラムを読み出して実行することにより、制御装置Cntの各機能を実現する。メモリ61は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。
<実施の形態1の動作>
 図1~10に基づいて、ショーケース200の動作等を説明する。まず、棚2Aに載置される食品を冷却する冷却運転における第1の冷媒回路C1の第1の冷媒の流れを説明する。なお、第2の冷媒回路C2の第2の冷媒の流れは、第1の冷媒回路C1の第1の冷媒の流れと同様なので説明を省略する。ユーザーがショーケース200の運転のスイッチをONにすると、制御装置CntはインバーターInvを制御し、制御装置Cntは第1の圧縮機100a及び第2の圧縮機100bを駆動する。第1の冷媒は第1の圧縮機100aで圧縮された後に第1の圧縮機100aから吐出される。第1の圧縮機100aから吐出された第1の冷媒は、第1の凝縮器101aに流入する。第1の冷媒は、第1の凝縮器101aを通過する過程で、空気に放熱して液化する。第1の凝縮器101aから流出した第1の冷媒は、第1の絞り装置102aで減圧される。第1の絞り装置102aで減圧された第1の冷媒は気液二相状態になっている。第1の絞り装置102aから流出した冷媒は、第1の蒸発器103aに流入する。第1の冷媒は、第1の蒸発器103aを通過する過程で、空気から吸熱してガス化する。第1の蒸発器103aから流出した第1の冷媒は、第1のアキュムレータ104aに流入した後に、第1の圧縮機100aに流入する。
 次に、冷却運転における冷却風路Ap1の空気の流れを説明する。制御装置Cntが蒸発器用送風機103Aを駆動すると、空気が冷気流入口Op2から冷却風路Ap1に流入する。冷却風路Ap1に流入した空気は、蒸発器用送風機103Aを通過する。蒸発器用送風機103Aを通過した空気は、第1の蒸発器103a及び第2の蒸発器103bに流入して冷却される。その後、第1の蒸発器103aで冷却された空気及び第2の蒸発器103bで冷却された空気は、冷気流出口Op1から吹き出され、棚2Aに載置される食品を冷却する。
<実施の形態1の効果>
 ショーケース200は、第1の冷媒回路C1と第1の冷媒回路C1とは独立した第2の冷媒回路C2とを有している。このため、第1の冷媒回路C1及び第2の冷媒回路C2のうちの一方の冷媒回路における冷媒漏洩の要因が、他方の冷媒回路へ影響を及ぼしてしまうことが回避される。したがって、第1の冷媒回路C1及び第2の冷媒回路C2のうちの一方の冷媒回路における冷媒漏洩の要因により、一方の冷媒回路からプロパン冷媒が漏洩したとしても、他方の冷媒回路からプロパン冷媒が漏洩することが回避される。よって、ショーケース200のプロパン冷媒の漏洩量が抑制される。
 ショーケース200は、第1の圧縮機100aの回転数及び第2の圧縮機100bの回転数を制御するインバーターInvと、インバーターInvを制御する制御装置Cntとを備えている。つまり、ショーケース200は、第1の圧縮機100aと第2の圧縮機100bとのそれぞれにインバーターを備えておらず、ショーケース200は、第1の圧縮機100aと第2の圧縮機100bとの両方を制御するインバーターInvを備えている。このため、ショーケース200は、インバーターを設ける台数を減らせる分、製造コストが抑制されている。
 凝縮器はガス冷媒と比較すると密度が高い液冷媒が流れる。このため、凝縮器が冷媒の漏洩場所となっている場合には、冷媒の漏洩量が増大しやすい。したがって、凝縮器が漏洩場所となっている場合には、機械室の冷媒の濃度が高くなりやすい。また、凝縮器よりも空気流れ方向の下流側に制御装置が設けられている場合において、プロパン冷媒が凝縮器から漏洩すると、漏洩したプロパン冷媒が凝縮器用送風機によって制御装置に送り込まれる。制御装置には電流が流れるため、ショーケースは漏洩した冷媒が制御装置に送り込まれない構成を備えていることが望ましい。そこで、実施の形態1に係るショーケース200の機械室Ap2には、第1の凝縮器101a及び第2の凝縮器101bよりも空気流れ方向の上流側に制御装置Cntが設けられている。このため、プロパン冷媒が第1の凝縮器101a又は第2の凝縮器101bから漏洩したとしても、漏洩したプロパン冷媒は、制御装置Cntを介さずに、機械室Ap2からショーケース200外へ排出される。ショーケース200外へ排出されたプロパン冷媒は空気中に拡散するため、ショーケース200外へ排出されたプロパン冷媒の濃度は低下している。このため、凝縮器用送風機101Aがショーケース200外の空気を機械室Ap2に取り込んでも、制御装置Cntへ送り込まれるプロパン冷媒の濃度は低くなっている。このように、機械室Ap2には、第1の凝縮器101a及び第2の凝縮器101bよりも空気流れ方向の上流側に制御装置Cntが設けられているので、高濃度のプロパン冷媒が制御装置Cntへ送り込まれることが抑制される。
 また、凝縮器よりも空気流れ方向の下流側に凝縮器用送風機が設けられている場合において、プロパン冷媒が凝縮器から漏洩すると、漏洩したプロパン冷媒が凝縮器用送風機に至る。凝縮器用送風機は電流が流れる電動機を有するため、ショーケースは漏洩した冷媒が凝縮器用送風機に送り込まれない構成を備えていることが望ましい。そこで、実施の形態1に係るショーケース200の機械室Ap2には、第1の凝縮器101a及び第2の凝縮器101bよりも空気流れ方向の上流側に凝縮器用送風機101Aが設けられている。このため、プロパン冷媒が第1の凝縮器101a又は第2の凝縮器101bから漏洩したとしても、漏洩したプロパン冷媒は、凝縮器用送風機101Aを介さずに、機械室Ap2からショーケース200外へ排出される。ショーケース200外へ排出されたプロパン冷媒は空気中に拡散するため、ショーケース200外へ排出されたプロパン冷媒の濃度は低下している。このため、凝縮器用送風機101Aがショーケース200外の空気を機械室Ap2に取り込んでも、凝縮器用送風機101Aへ至るプロパン冷媒の濃度は低くなっている。このように、機械室Ap2には、第1の凝縮器101a及び第2の凝縮器101bよりも空気流れ方向の上流側に凝縮器用送風機101Aが設けられているので、高濃度のプロパン冷媒が制御装置Cntへ送り込まれることが抑制される。
 図11は、実施の形態1に係るショーケース200の変形例の斜視図である。実施の形態1に係るショーケース200は、棚2Aを備えている態様のショーケースであった。変形例に係るショーケース200tは、棚2Aを備えておらず、且つ、低背な態様のショーケースである。ショーケース200tは、食品を載置する凹状部2Atを有している収容部2tと、収容部2tの下に設けられている機械室部3tとを備えている。収容部2tの形状は収容部2の形状とは異なるが、収容部2tが備える構成要素は、収容部2が備える構成要素と同様である。また、機械室部3tの構成は、機械室部3と同様である。変形例に係るショーケース200tも、実施の形態1に係るショーケース200と同様の効果を有する。
 なお、ショーケース200及びショーケース200tは、食品を載置する空間が開放されているオープン型のショーケースであったが、これらの態様に限定されるものではない。つまり、ショーケース200及びショーケース200tには開閉扉が設けられている態様であってもよい。
実施の形態2.
 実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。実施の形態1では第1の凝縮器101aと第2の凝縮器101bとが別体型の構成であり、第1の蒸発器103aと第2の蒸発器103bとが別体型の構成であった。実施の形態2に係るショーケース200Bにおいて、一体型凝縮器101cは、実施の形態1で説明した第1の凝縮器101aと実施の形態1で説明した第2の凝縮器101bとが一体となっており、また、一体型蒸発器103cは、実施の形態1で説明した第1の蒸発器103aと実施の形態1で説明した第2の蒸発器103bとが一体となっている。
<実施の形態2の構成>
 図12は、実施の形態2に係るショーケース200Bの冷媒回路の説明図である。図13は、図12に示すショーケース200Bの各構成の配置の説明図である。図14は、実施の形態2に係るショーケース200Bの断面図である。図15は、実施の形態2に係るショーケース200Bの一体型凝縮器101cの正面図である。一体型凝縮器101cは、第1の領域Rg1と第1の領域Rg1の上側に設けられている第2の領域Rg2とから構成されている。第1の領域Rg1は第1の冷媒回路C1の凝縮器であり、第2の領域Rg2は第2の冷媒回路C2の凝縮器である。一体型凝縮器101cは、第1の共通フィンFicと、伝熱管tu1と、伝熱管U1と、伝熱管tu2と、伝熱管U2とを有している。そして、第1の領域Rg1は、第1の共通フィンFicと、伝熱管tu1と、伝熱管U1とを有している。伝熱管tu1及び伝熱管U1が第1の伝熱管に対応している。第2の領域Rg2は、第1の共通フィンFicと、伝熱管tu2と、伝熱管U2とを有している。伝熱管tu2及び伝熱管U2が第2の伝熱管に対応している。
 第1の共通フィンFicの構成は、実施の形態1の図8に示すフィンFiaの構成と同様である。また、伝熱管tu1の直管部の管軸方向の寸法は、伝熱管tuaの直管部の管軸方向の寸法の約2倍となっている。伝熱管tu2の構成は、伝熱管tu1の構成と同様である。更に、伝熱管U1の構成及び伝熱管U2の構成は、実施の形態1の図6に示す伝熱管Uaと同様である。
 図16は、実施の形態2に係るショーケース200Bの一体型蒸発器103cの正面図である。一体型蒸発器103cの構成も、一体型凝縮器101cの構成と同様である。つまり、一体型蒸発器103cは、第3の領域Rg3と第4の領域Rg4とから構成されている。一体型蒸発器103cの第3の領域Rg3は第1の冷媒回路C1の蒸発器であり、一体型蒸発器103cの第4の領域Rg4は第2の冷媒回路C2の蒸発器である。そして、一体型蒸発器103cは、第2の共通フィンFiccと、伝熱管tu3と、伝熱管U3と、伝熱管tu4と、伝熱管U4とを有している。一体型蒸発器103cの第3の領域Rg3は、第2の共通フィンFiccと、伝熱管tu3と、伝熱管U3とを有している。伝熱管tu3及び伝熱管U3が第3の伝熱管に対応している。一体型蒸発器103cの第4の領域Rg4は、第2の共通フィンFiccと、伝熱管tu4と、伝熱管U4とを有している。伝熱管tu4及び伝熱管U4が第4の伝熱管に対応している。
<実施の形態2の動作>
 図17は、一体型凝縮器101cの冷媒の流れを示す模式図である。図17の実線は、一体型凝縮器101cのうちの前列の熱交換器の冷媒の流れを示し、図17の破線は、一体型凝縮器101cのうちの後列の熱交換器の冷媒の流れを示している。図17に基づいて、冷却運転における、一体型凝縮器101cの冷媒の流れについて説明する。第1の冷媒回路C1において、第1の冷媒は、入口INaから第1の領域Rg1の冷媒流路Rfpaに流入する。そして、その後、第1の冷媒は、空気と熱交換しながら出口Outaへ至る。また、第2の冷媒回路C2において、第2の冷媒は、入口INbから第2の領域Rg2の冷媒流路Rfpbに流入する。そして、その後、第2の冷媒は、空気と熱交換しながら出口Outbへ至る。
 図18は、一体型蒸発器103cの冷媒の流れを示す模式図である。図18の実線は、一体型蒸発器103cのうちの前列の熱交換器の冷媒の流れを示し、図18の破線は、一体型蒸発器103cのうちの後列の熱交換器の冷媒の流れを示している。図18に基づいて、冷却運転における、一体型蒸発器103cの冷媒の流れについて説明する。第1の冷媒回路C1において、第1の冷媒は、入口INcから第3の領域Rg3の冷媒流路Rfpcに流入する。そして、その後、第1の冷媒は、空気と熱交換しながら出口Outcへ至る。また、第2の冷媒回路C2において、第2の冷媒は、入口INdから第4の領域Rg4の冷媒流路Rfpdに流入する。そして、その後、第2の冷媒は、空気と熱交換しながら出口Outdへ至る。
<実施の形態2の効果>
 ショーケース200Bは一体型凝縮器101c及び一体型蒸発器103cを備えている。凝縮器が一体型でない場合において、一方の凝縮器と他方の凝縮器との間には、伝熱管を配置する隙間を確保する必要がある。しかし、一体型凝縮器101cにはこのような隙間を確保する必要性がない。このため、一体型凝縮器101cの熱交換能力を分離型の凝縮器の熱交換能力と同じとする場合において、一体型凝縮器101cは、分離型の凝縮器よりも、コンパクトになる。また、一体型蒸発器103cも、一体型凝縮器101cと同様の効果を得ることができる。つまり、一体型蒸発器103cの熱交換能力を分離型の蒸発器の熱交換能力と同じとする場合において、一体型蒸発器103cは、分離型の蒸発器よりも、コンパクトになる。
 上述のように、一体型凝縮器101cがコンパクトになると、その分、一体型凝縮器101cの第1の冷媒の流路長及び一体型凝縮器101cの第2の冷媒の流路長が短くなる。これにより、第1の冷媒回路C1の容積が小さくなる。また、一体型蒸発器103cがコンパクトになると、その分、一体型蒸発器103cの第1の冷媒の流路長及び一体型凝縮器101cの第2の冷媒の流路長が短くなる。これにより、第2の冷媒回路C2の容積も小さくなる。第1の冷媒回路C1の容積が小さくなると、その分、第1の冷媒回路C1の第1の冷媒の封入量が低減し、第2の冷媒回路C2の容積が小さくなると、その分、第2の冷媒回路C2の第2の冷媒の封入量が低減する。その結果、ショーケース200Bに冷媒漏洩が発生した場合において、冷媒の漏洩量が抑制される。
 1 筐体、2 収容部、2A 棚、2At 凹状部、2B 第1のドレンパン、2C 排水部、2D 庫内パネル、2D1 下パネル、2D2 奥パネル、2D3 サイドパネル、2D4 サイドパネル、2D5 上パネル、2E 背面部、2F 上面部、2G 仕切部、2t 収容部、3 機械室部、3A 前面パネル、3B サイドパネル、3C サイドパネル、3D 背面パネル、3E 底面部、3t 機械室部、11 蒸発促進部材、11a 蒸発促進部材、11a1 蒸発板、11a2 支持部材、11b 蒸発促進部材、12 電気品箱、13a 第2のドレンパン、13b 第2のドレンパン、14a 除霜用ヒータ、14b 除霜用ヒータ、61 メモリ、62 処理部、62A 動作制御部、100a 第1の圧縮機、100aA 密閉容器、100aB 吸入マフラ、100aC 吐出管、100b 第2の圧縮機、100bA 密閉容器、100bB 吸入マフラ、100bC 吐出管、101A 凝縮器用送風機、101Aa 送風機、101Ab 送風機、101a 第1の凝縮器、101b 第2の凝縮器、101c 一体型凝縮器、102a 第1の絞り装置、102b 第2の絞り装置、103 蒸発器、103A 蒸発器用送風機、103Aa 送風機、103Ab 送風機、103a 第1の蒸発器、103b 第2の蒸発器、103c 一体型蒸発器、104a 第1のアキュムレータ、104b 第2のアキュムレータ、200 ショーケース、200B ショーケース、200t ショーケース、AR 矢印、Ap1 冷却風路、Ap2 機械室、C1 第1の冷媒回路、C2 第2の冷媒回路、Cnt 制御装置、Fia フィン、Fia1 貫通穴、Fib フィン、Fic 第1の共通フィン、Ficc 第2の共通フィン、Gp 隙間、INa 入口、INb 入口、INc 入口、INd 入口、Inv インバーター、Op1 冷気流出口、Op2 冷気流入口、Op3 空気流入口、Outa 出口、Outb 出口、Outc 出口、Outd 出口、Rfpa 冷媒流路、Rfpb 冷媒流路、Rfpc 冷媒流路、Rfpd 冷媒流路、Rg1 第1の領域、Rg2 第2の領域、Rg3 第3の領域、Rg4 第4の領域、Rp1a 冷媒配管、Rp1b 冷媒配管、Rp2a 冷媒配管、Rp2b 冷媒配管、Rp3a 冷媒配管、Rp3b 冷媒配管、Rp4a 冷媒配管、Rp4b 冷媒配管、Rp5a 冷媒配管、Rp5b 冷媒配管、U1 伝熱管、U2 伝熱管、U3 伝熱管、U4 伝熱管、Ua 伝熱管、Ub 伝熱管、tu1 伝熱管、tu2 伝熱管、tu3 伝熱管、tu4 伝熱管、tua 伝熱管、tub 伝熱管。

Claims (6)

  1.  第1の圧縮機、第1の凝縮器、第1の絞り装置及び第1の蒸発器を有する第1の冷媒回路と、
     第2の圧縮機、第2の凝縮器、第2の絞り装置及び第2の蒸発器を有する第2の冷媒回路と、
     前記第1の蒸発器及び前記第2の蒸発器が設けられている冷却風路と前記第1の凝縮器及び前記第2の凝縮器が設けられている機械室とが形成されている筐体と、
     を備え、
     前記第1の冷媒回路の第1の冷媒及び前記第2の冷媒回路の第2の冷媒は、プロパン冷媒である
     ショーケース。
  2.  前記第1の凝縮器及び前記第2の凝縮器を含む一体型凝縮器を備え、
     前記一体型凝縮器は、第1の共通フィンを有し、
     前記第1の凝縮器は、前記第1の共通フィンに挿入されている第1の伝熱管を有し、
     前記第2の凝縮器は、前記第1の共通フィンに挿入されている第2の伝熱管を有している
     請求項1に記載のショーケース。
  3.  前記第1の蒸発器及び前記第2の蒸発器を含む一体型蒸発器を備え、
     前記一体型蒸発器は、第2の共通フィンを有し、
     前記第1の蒸発器は、前記第2の共通フィンに挿入されている第3の伝熱管を有し、
     前記第2の蒸発器は、前記第2の共通フィンに挿入されている第4の伝熱管を有している
     請求項1又は2に記載のショーケース。
  4.  前記第1の圧縮機の回転数及び前記第2の圧縮機の回転数を制御するインバーターを有する制御装置を更に備えている
     請求項1~3のいずれか一項に記載のショーケース。
  5.  前記機械室には、前記第1の凝縮器及び前記第2の凝縮器よりも空気流れ方向の上流側に前記制御装置が設けられている
     請求項4に記載のショーケース。
  6.  前記機械室に設けられ、前記第1の凝縮器及び前記第2の凝縮器に空気を供給する凝縮器用送風機を更に備え、
     前記機械室には、前記第1の凝縮器及び前記第2の凝縮器よりも空気流れ方向の上流側に前記凝縮器用送風機が設けられている
     請求項1~5のいずれか一項に記載のショーケース。
PCT/JP2018/001609 2018-01-19 2018-01-19 ショーケース WO2019142324A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019565657A JPWO2019142324A1 (ja) 2018-01-19 2018-01-19 ショーケース
PCT/JP2018/001609 WO2019142324A1 (ja) 2018-01-19 2018-01-19 ショーケース

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001609 WO2019142324A1 (ja) 2018-01-19 2018-01-19 ショーケース

Publications (1)

Publication Number Publication Date
WO2019142324A1 true WO2019142324A1 (ja) 2019-07-25

Family

ID=67302066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001609 WO2019142324A1 (ja) 2018-01-19 2018-01-19 ショーケース

Country Status (2)

Country Link
JP (1) JPWO2019142324A1 (ja)
WO (1) WO2019142324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021074993A1 (ja) * 2019-10-16 2021-04-22
JP7036527B1 (ja) 2020-12-01 2022-03-15 中野冷機株式会社 ショーケース

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476275Y1 (ja) * 1969-09-29 1972-03-04
JPS5249954U (ja) * 1975-10-07 1977-04-09
JPS6089570U (ja) * 1983-11-26 1985-06-19 株式会社東芝 シヨ−ケ−ス
JPH02106570U (ja) * 1989-02-10 1990-08-24
JPH064587U (ja) * 1992-06-29 1994-01-21 サンデン株式会社 ショーケース
JP2000046446A (ja) * 1998-05-26 2000-02-18 Matsushita Electric Ind Co Ltd 空気調和装置の保管・運送・設置方法
US20020092318A1 (en) * 2001-01-16 2002-07-18 Russ Tipton Multi-stage refrigeration system
JP2005016874A (ja) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2005106454A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2006010126A (ja) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2009150562A (ja) * 2007-12-19 2009-07-09 Hoshizaki Electric Co Ltd 冷凍装置
WO2016173782A1 (de) * 2015-04-29 2016-11-03 Aht Cooling Systems Gmbh Kühlregalvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592461Y2 (ja) * 1979-04-18 1984-01-23 株式会社東芝 シヨ−ケ−ス
JPS60108974U (ja) * 1983-12-27 1985-07-24 ダイキン工業株式会社 冷凍機内蔵形シヨ−ケ−ス
JP2804520B2 (ja) * 1989-06-28 1998-09-30 三洋電機株式会社 低温庫
JPH07294094A (ja) * 1994-04-26 1995-11-10 Matsushita Refrig Co Ltd 冷却貯蔵庫
JP3702120B2 (ja) * 1999-03-11 2005-10-05 三洋電機株式会社 冷却装置
JP3759013B2 (ja) * 2001-10-05 2006-03-22 ホシザキ電機株式会社 冷却貯蔵庫
JP2004150658A (ja) * 2002-10-29 2004-05-27 Sanyo Electric Co Ltd 低温ショーケース
JP2013204964A (ja) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp ショーケース
JP5627647B2 (ja) * 2012-06-28 2014-11-19 三菱電機株式会社 オープンショーケース
JP6128490B2 (ja) * 2014-02-28 2017-05-17 パナソニックIpマネジメント株式会社 冷却装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476275Y1 (ja) * 1969-09-29 1972-03-04
JPS5249954U (ja) * 1975-10-07 1977-04-09
JPS6089570U (ja) * 1983-11-26 1985-06-19 株式会社東芝 シヨ−ケ−ス
JPH02106570U (ja) * 1989-02-10 1990-08-24
JPH064587U (ja) * 1992-06-29 1994-01-21 サンデン株式会社 ショーケース
JP2000046446A (ja) * 1998-05-26 2000-02-18 Matsushita Electric Ind Co Ltd 空気調和装置の保管・運送・設置方法
US20020092318A1 (en) * 2001-01-16 2002-07-18 Russ Tipton Multi-stage refrigeration system
JP2005016874A (ja) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2005106454A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2006010126A (ja) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd 冷凍冷蔵ユニットおよび冷蔵庫
JP2009150562A (ja) * 2007-12-19 2009-07-09 Hoshizaki Electric Co Ltd 冷凍装置
WO2016173782A1 (de) * 2015-04-29 2016-11-03 Aht Cooling Systems Gmbh Kühlregalvorrichtung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021074993A1 (ja) * 2019-10-16 2021-04-22
JP7258174B2 (ja) 2019-10-16 2023-04-14 三菱電機株式会社 ショーケース
JP7036527B1 (ja) 2020-12-01 2022-03-15 中野冷機株式会社 ショーケース
JP2022087492A (ja) * 2020-12-01 2022-06-13 中野冷機株式会社 ショーケース

Also Published As

Publication number Publication date
JPWO2019142324A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5912746B2 (ja) 冷蔵庫
US20060130518A1 (en) Refrigerator and manufacturing method of the same
US10041716B2 (en) Refrigerator
JP6491791B2 (ja) 二重管
WO2019142324A1 (ja) ショーケース
GB2579476A (en) Heat exchange unit and refrigeration cycle device
JPH11132596A (ja) 冷蔵庫
JP2018096662A (ja) 冷蔵庫
JP2009133593A (ja) 冷却装置
WO2010001643A1 (ja) 冷却装置およびその製造方法
KR102289303B1 (ko) 냉장고 및 그 제어방법
JP6273838B2 (ja) 熱交換器
JP6769315B2 (ja) 小型冷凍サイクル装置
JP5322551B2 (ja) 冷凍装置
KR20160011111A (ko) 냉장고 및 그 제어방법
KR20040012417A (ko) 나선형 열교환장치
JP2013185762A (ja) 冷媒サイクル装置
JP2005345061A (ja) 冷蔵庫
JP2003106693A (ja) 冷蔵庫
JP6799853B2 (ja) 冷蔵庫
WO2017051643A1 (ja) 冷却庫
JP7412446B2 (ja) 冷蔵庫
JP4155329B1 (ja) 自動販売機
JP2023131655A (ja) 冷蔵庫
JP2022185802A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901163

Country of ref document: EP

Kind code of ref document: A1