WO2019141260A1 - 一种表面粗糙化纳米银线的制备方法 - Google Patents

一种表面粗糙化纳米银线的制备方法 Download PDF

Info

Publication number
WO2019141260A1
WO2019141260A1 PCT/CN2019/072420 CN2019072420W WO2019141260A1 WO 2019141260 A1 WO2019141260 A1 WO 2019141260A1 CN 2019072420 W CN2019072420 W CN 2019072420W WO 2019141260 A1 WO2019141260 A1 WO 2019141260A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
reaction
silver wire
nano silver
preparing
Prior art date
Application number
PCT/CN2019/072420
Other languages
English (en)
French (fr)
Inventor
赵祖珍
Original Assignee
深圳市希诺威光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市希诺威光电科技有限公司 filed Critical 深圳市希诺威光电科技有限公司
Publication of WO2019141260A1 publication Critical patent/WO2019141260A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to a method for preparing nano silver wires.
  • a nanowire can be defined as a one-dimensional structure having a lateral limit of less than 100 nanometers (with no limitation in the longitudinal direction). At this scale, quantum mechanical effects are important and are therefore also referred to as "quantum wires.” Nanowires can be used to make ultra-small circuits.
  • silver In addition to excellent electrical conductivity, silver also has excellent light transmittance and flex resistance due to the size effect at the nanometer level. Therefore, nano-silver is considered to be the most likely material to replace the traditional ITO (Indium Tin Oxides) transparent electrode, which provides the possibility of flexible, bendable LED (Light-Emitting Diode) display, touch screen, and The large aspect ratio effect of silver nanowires also has outstanding advantages in the application of conductive adhesives and thermal conductive adhesives.
  • ITO Indium Tin Oxides
  • Osaka University of Japan showed the application of silver nanowire transparent electrodes.
  • Osaka University has developed a technology that uses silver nanowires but eliminates the need for a sintering process. Specifically, the silver nanowires dispersed in PVP (polyvinyl pyrrolidone) are washed to minimize the amount of PVP attached to the silver nanowires. Thereby, the sintering process of evaporating PVP after coating can be omitted.
  • the desired transparency and low electrical resistance are achieved by applying only the stamping process after coating.
  • Toshiba also combined a nanowire and a carbon material graphene to develop a transparent electrode with a low sheet resistance.
  • the methods for synthesizing nano silver wires mainly include a hard template method and a soft template method.
  • the hard template method refers to an anodized aluminum film, porous silicon, a metal template natural polymer material, a molecular sieve, a colloidal crystal, and the like.
  • the structure and morphology of the template are copied into the product by filling, encapsulation, etc. of the nano-silver precursor, and then the template is removed by acid-base dissolution, pyrolysis, etc. to synthesize the nano silver wire.
  • the hard template method has high requirements on the preparation process of the template material, and it is also difficult to remove the template, which is difficult to mass produce.
  • the soft template method utilizes DNA molecules, surfactant SDBS (sodium dodecylbenzenesulfonate), SDS (sodium dodecyl sulfate), CTBA (cetyltrimethyl bromide). Ammonium, cetrimonium bronmide), polyoxyethylene ethers, pentaerythritol, etc. are combined with microemulsion method, micelle method, liquid-liquid interface method to prepare nano silver wire. Compared with the hard template method, the post-template removal of the soft template method is more convenient, and the recovered template fragments can be reused.
  • SDBS sodium dodecylbenzenesulfonate
  • SDS sodium dodecyl sulfate
  • CTBA cetyltrimethyl bromide
  • Ammonium, cetrimonium bronmide), polyoxyethylene ethers, pentaerythritol, etc. are combined with microemulsion method, micelle method, liquid-liquid interface method to prepare nano silver wire.
  • the object of the present invention is to solve the technical problem that the surface of the existing nano silver wire is flat, the specular reflection is generated, and the haze is large, and a preparation method of the surface roughened nano silver wire is provided.
  • the mass concentration of silver nitrate in solution a is 0.001%-10%, the mass concentration of surfactant is 0.0001%-1%, and the mass concentration of halogen salt is 0.0001%-1%;
  • the concentration of silver nitrate in solution b is 0.001%-10%;
  • the solution a is added to the solution b, the reaction is carried out at 70 ° C - 180 ° C for 0.5 h - 24 h, and when the reaction is completed 75% - 85%, an iron nitrate solution is added, wherein the ferric nitrate and The molar ratio of silver nitrate is 1:100-10, and the reaction is continued at 70 ° C -180 ° C;
  • the reaction liquid in the second step is washed in the order of adding water first and then adding an organic solvent, and centrifuging and sedimenting 2-5 times to obtain a nano silver wire;
  • volume ratio of water to the reaction solution is 3-1:1
  • volume ratio of the organic solvent to the reaction solution is 3-1:1
  • centrifugal speed is 3000 rpm to 20,000 rpm
  • the concentration of ascorbic acid in the dilute acidic solution containing ascorbic acid is 0.01 mol/L-0.1 mol/L
  • the concentration of dilute acid is 0.01 mol/L-0.1 mol/L
  • the dilute acid is dilute sulfuric acid, dilute hydrochloric acid or dilute nitric acid.
  • the surfactant is sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTBA), pentaerythritol or polyvinylpyrrolidone (PVP). ).
  • SDBS sodium dodecylbenzenesulfonate
  • SDS sodium dodecyl sulfate
  • CBA cetyltrimethylammonium bromide
  • PVP polyvinylpyrrolidone
  • the halogen salt is sodium chloride, iron chloride, aluminum chloride, potassium chloride, sodium bromide or potassium bromide.
  • the polyol is ethylene glycol, propylene glycol or glycerol.
  • the organic solvent is ethanol or acetone.
  • the invention adopts a method for reducing nano silver by a polyol, and synthesizes a nano silver alloy material having an active metal on the surface by adding a certain proportion of active metal ions in the late stage of the reaction. After separating and purifying the nano silver wire, the active metal on the surface of the nano silver is removed by acid-base etching to obtain a high-roughness nano silver wire, and the nano silver wire is used for preparing the conductive film without specular reflection effect.
  • the nano-silver conductive film has a reduced haze (the transparent conductive film prepared by using the nano silver wire of the invention has a haze of less than 1.0 when the surface resistance is less than 100 ohm/ ⁇ ), which is advantageous for large-scale use, especially for small sizes such as mobile phones. Touch screen field.
  • Figure 1 is a SEM photograph of a surface roughened nanosilver line prepared in Experiment 1 of the present invention.
  • the roughened nano silver wire in this embodiment is carried out according to the following steps:
  • the mass concentration of silver nitrate in solution a is 0.001%-10%, the mass concentration of surfactant is 0.0001%-1%, and the mass concentration of halogen salt is 0.0001%-1%;
  • the concentration of silver nitrate in solution b is 0.001%-10%;
  • the solution a is added to the solution b, the reaction is carried out at 70 ° C - 180 ° C for 0.5 h - 24 h, and when the reaction is completed 75% - 85%, an iron nitrate solution is added, wherein the ferric nitrate and The molar ratio of silver nitrate is 1:100-10, and the reaction is continued at 70 ° C -180 ° C;
  • the reaction liquid in the second step is washed in the order of adding water first and then adding an organic solvent, and centrifuging and sedimenting 2-5 times to obtain a nano silver wire;
  • volume ratio of water to the reaction solution is 3-1:1
  • volume ratio of the organic solvent to the reaction solution is 3-1:1
  • centrifugal speed is 3000 rpm to 20,000 rpm
  • the concentration of ascorbic acid in the dilute acidic solution containing ascorbic acid is 0.01 mol/L-0.1 mol/L
  • the concentration of dilute acid is 0.01 mol/L-0.1 mol/L
  • the dilute acid is dilute sulfuric acid, dilute hydrochloric acid or dilute nitric acid.
  • Embodiment 2 This embodiment differs from Embodiment 1 in that the surfactant in the first step is sodium dodecylbenzenesulfonate, sodium lauryl sulfate, cetyltrimethylammonium bromide, Pentaerythritol or polyvinylpyrrolidone. Others are the same as in the first embodiment.
  • This embodiment differs from one or two of the specific embodiments in that the halogen salt in the first step is sodium chloride, iron chloride, aluminum chloride, potassium chloride, sodium bromide or potassium bromide. Others are the same as one or two of the specific embodiments.
  • This embodiment differs from one of the specific embodiments 1 to 3 in that the polyol in the first step is ethylene glycol, propylene glycol or glycerin. Others are the same as one of the specific embodiments one to three.
  • This embodiment differs from one of the specific embodiments 1 to 4 in that the mass concentration of silver nitrate in solution a is 0.01%-1% in step 1, the mass concentration of surfactant is 0.01%-0.1%, and the halogen salt The mass concentration is from 0.001% to 0.01%. Others are the same as one of the specific embodiments one to four.
  • Specific Embodiment 6 This embodiment differs from one of the specific embodiments 1 to 5 in that the solution a is added to the solution b in the second step, and the reaction is carried out at a temperature of 80 ° C to 130 ° C for 2.5 h to 20 h. Others are the same as one of the specific embodiments one to five.
  • Specific Embodiment 7 This embodiment differs from one of the specific embodiments 1 to 6 in that the solution a is added to the solution b in the second step, and the reaction is carried out for 5 to 15 hours under the condition of 90 ° C to 120 ° C. Others are the same as one of the specific embodiments one to six.
  • Embodiment 8 This embodiment differs from one of Embodiments 1 to 7 in that the organic solvent in the third step is ethanol or acetone. Others are the same as one of the specific embodiments one to seven.
  • This embodiment differs from one of the specific embodiments 1 to 8 in that the reaction is completed in the step 4 at 35 ° C - 55 ° C for 1.5 h - 4 h until the reaction is completed. Others are the same as one of the specific embodiments one to eight.
  • This embodiment differs from one of the specific embodiments 1 to 9 in that the ascorbic acid concentration in the dilute acidic solution containing ascorbic acid in the fourth step is 0.02 mol/L to 0.09 mol/, and the dilute acid concentration is 0.03 mol/L. Others are the same as one of the specific embodiments 1 to 9.
  • the silver alloy nanowires were added to a nitric acid solution containing ascorbic acid (the concentration of ascorbic acid was 0.1 mol/L, and the concentration of nitric acid was 0.1 mol/L), heated to 60 ° C, reacted for 0.5 h, and then centrifuged at 3000 rpm for 30 minutes. Then, pure water was added, and centrifugation was repeated 3 times to obtain a surface roughened nano silver wire.
  • the active metal on the surface of the nano-silver is removed by acid-base etching to obtain a high-roughness nano-silver wire, and the nano-silver wire is used for preparing the conductive film without specular reflection.
  • the effect is to reduce the haze of the nano silver conductive film to less than 0.8.
  • the active metal on the surface of the nano-silver is removed by acid-base etching to obtain a high-roughness nano-silver wire, and the nano-silver wire is used for preparing the conductive film without specular reflection.
  • the effect is to reduce the haze of the nano silver conductive film to 0.9.
  • the active metal on the surface of the nano-silver is removed by acid-base etching to obtain a high-roughness nano-silver wire, and the nano-silver wire is used for preparing the conductive film without specular reflection.
  • the effect is to reduce the haze of the nano silver conductive film to 0.6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种纳米银线的制备方法,包括以下步骤:一、将硝酸银、表面活性剂和卤素盐溶解于多元醇中得到溶液a,将硝酸银溶解于乙二醇得到溶液b;二、将溶液a加入到溶液b中,在反应完成75-85%时,加入硝酸铁乙二醇溶液至反应完全;三、洗涤、离心沉降,得到纳米银线;四、将纳米银线分散于含有抗坏血酸的稀酸溶液中反应,离心沉降,得到表面粗糙化纳米银线,该制备方法通过添加活泼金属离子,合成表面具有活泼金属的纳米银材料,通过酸碱蚀刻的方法,除去纳米银表面的活泼金属,得到高粗糙度的纳米银线。

Description

一种表面粗糙化纳米银线的制备方法
本公开基于申请号为201810058825.7,申请日为2018年1月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种纳米银线的制备方法。
背景技术
纳米线是一种纳米尺度(1纳米=10 -9米)的线。纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种尺度上,量子力学效应很重要,因此也被称作"量子线"。纳米线可以被用来制作超小电路。
银除了具有优良的导电性之外,由于纳米级别的尺寸效应,还具有优异的透光性、耐曲挠性。因此纳米银被视为是最有可能替代传统ITO(氧化铟锡,Indium Tin Oxides)透明电极的材料,为实现柔性、可弯折LED(Light-Emitting Diode)显示、触摸屏提供了可能,此外由于银纳米线的大长径比效应,使其在导电胶、导热胶方面的应用中也具有突出的优势。
国际上有很多科研单位应用银纳米线进行研究工作。2012年,Yong Zhu博士和北卡罗莱纳州立大学的团队用银纳米线研发出了高传导高伸缩导体(Highly conductive and elastic conductors)。Zhu博士指出这种导体可以用来制作可穿戴多功能传感器设备上的弹性电子零件。两年之后,他们开发出了这种传感器。该团队的论文“用银纳米线弹性导体制成的可穿戴多功能传感器”网上发表在Nanoscale杂志上,研究人员通过在两块这种导体间插入一块绝缘材料,研发出了储电设备。爱尔兰都柏林三一学院的Jonathan N.Coleman研究纳米银线所表现出的柔性以及透明的性能,将其制成膜材将会是科学界寻找已 久的替代ITO(Indium Tin Oxides)的理想材料。Coleman和他的同事们现在发现纳米级厚度的纳米银线膜表现出与ITO同等的光电性能,并且在挠曲千次后依然能保持良好的性能。此外他们报道,因为该膜的制备时从分散的水性溶液中,它完全可能通过喷涂工艺实现大面积的材料制备。
日本大阪大学在2011年就有银纳米线透明电极的应用展示。大阪大学开发出了采用银纳米线、但可省去烧结工序的技术。具体方法是,清洗分散在PVP(聚乙烯吡咯烷酮,Polyvinyl Pyrrolidone)中的银纳米线,将银纳米线上附着的PVP量减至最低。由此,可省去在涂布后蒸发PVP的烧结工序。涂布后只实施冲压工序便实现了希望的透明性和低电阻。东芝也将Ag纳米线和碳材料石墨烯相组合,开发出了低薄膜电阻值的透明电极。今后将推进这些新一代透明电极的开发,为实现有机EL照明面板的大型化做出贡献。爱尔兰都柏林三一学院的Jonathan N.Coleman利用纳米银线所表现出的柔性以及透明的性能,将其制成膜材将会是科学界寻找已久的替代ITO的理想材料。在国内也有一些研究,但目前基本上都处于实验室研发阶段。国内武汉大学,山东大学等一些团队也进行了纳米银线在锂离子电池及燃料电池领域的一些研究。清华大学于2003年就开始了微纳米纤维金属或者非金属方面的研究工作,在这一领域提出了系统材料成型的理论。特别是在无机材料与有机材料的结合方面做了大量的工作,为纳米银线与有机混合物直接均匀结合提供了理论基础。
目前,合成纳米银线的方法主要有硬模板法、软模板法。硬模板法是指以阳极氧化铝膜、多孔硅、金属模板天然高分子材料、分子筛、胶态晶体等。通过纳米银前驱体的填充、包裹等将模板的结构、形貌复制到产物中去,然后通过酸碱溶解、高温分解等去除模板,合成纳米银线。硬模板法对模版材料制备工艺要求较高,去除模板也难度较大,难以大规模生产。软模板法是利用DNA分子,表面活性剂SDBS(十二烷基苯磺酸钠,sodiumdodecylbenzenesulfonate)、SDS(十二烷基硫酸钠,Sodium dodecyl sulfate)、CTBA(十六烷基三甲基溴化铵,cetrimonium bronmide)、聚氧乙烯醚类、季戊四醇等结合使用微乳法、胶束法、液-液界面法等技术制备纳米银线。与硬模板法相比,软模板法的后期模板去除工作较为方便,并可以将回收的模板碎片再利用。
但是现有模板方法大多合成纳米银线表面平整,在后期应用中使得纳米银 表面产生镜面反射,导致雾度较大,大于1.5,制约了纳米银导电膜的应用,不利于大规模使用,特别是手机等小尺寸触摸屏领域。
发明内容
本发明的目的是为了解决现有纳米银线表面平整,产生镜面反射,导致雾度较大的技术问题,提供了一种表面粗糙化纳米银线的制备方法。
表面粗糙化纳米银线按照以下步骤进行:
一、将硝酸银、表面活性剂和卤素盐溶解于多元醇中得到溶液a,将硝酸银溶解于乙二醇得到溶液b;
溶液a中硝酸银质量浓度为0.001%-10%,表面活性剂质量浓度为0.0001%-1%,卤素盐质量浓度为0.0001%-1%;
溶液b中硝酸银质量浓度为0.001%-10%;
二、将溶液a加入到溶液b中,在70℃-180℃的条件下,反应0.5h-24h,并且在反应完成75%-85%时,加入硝酸铁乙二醇溶液,其中硝酸铁与硝酸银摩尔比为1﹕100-10,继续在70℃-180℃的条件下反应完全;
三、向步骤二的反应液中按照先加入水再加有机溶剂的顺序洗涤、离心沉降2-5次,得到纳米银线;
其中水与反应液体积比3-1﹕1,有机溶剂与反应液体积比3-1﹕1,离心速度为3000rpm-20000rpm;
四、将纳米银线分散于含有抗坏血酸的稀酸性溶液中,在30℃-60℃的条件下,反应0.5h-5h至反应完全,离心沉降,得到表面粗糙化纳米银线;
其中含有抗坏血酸的稀酸性溶液中抗坏血酸浓度为0.01mol/L-0.1mol/L,稀酸浓度为0.01mol/L-0.1mol/L,稀酸为稀硫酸、稀盐酸或稀硝酸。
步骤一中表面活性剂为十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTBA)、季戊四醇或聚乙烯吡咯烷酮(PVP)。
步骤一中卤素盐为氯化钠、氯化铁、氯化铝、氯化钾、溴化钠或溴化钾。
步骤一中多元醇为乙二醇、丙二醇或丙三醇。
步骤三中有机溶剂为乙醇或丙酮。
本发明采用多元醇还原纳米银的方法,在反应后期通过添加一定比例的活 泼金属离子,合成表面具有活泼金属的纳米银合金材料。通过对纳米银线分离纯化后,通过酸碱蚀刻的方法,除去纳米银表面的活泼金属,得到高粗糙度的纳米银线,将此纳米银线用于制备导电膜不会产生镜面反射效果,使纳米银导电膜雾度减小(采用本发明的纳米银线制备的透明导电膜在表面电阻小于100欧姆/□的情况下雾度小于1.0),利于大规模使用,特别是手机等小尺寸触摸屏领域。
附图说明
图1是本发明实验一制备的表面粗糙化纳米银线的SEM照片。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式中表面粗糙化纳米银线按照以下步骤进行:
一、将硝酸银、表面活性剂和卤素盐溶解于多元醇中得到溶液a,将硝酸银溶解于乙二醇得到溶液b;
溶液a中硝酸银质量浓度为0.001%-10%,表面活性剂质量浓度为0.0001%-1%,卤素盐质量浓度为0.0001%-1%;
溶液b中硝酸银质量浓度为0.001%-10%;
二、将溶液a加入到溶液b中,在70℃-180℃的条件下,反应0.5h-24h,并且在反应完成75%-85%时,加入硝酸铁乙二醇溶液,其中硝酸铁与硝酸银摩尔比为1﹕100-10,继续在70℃-180℃的条件下反应完全;
三、向步骤二的反应液中按照先加入水再加有机溶剂的顺序洗涤、离心沉降2-5次,得到纳米银线;
其中水与反应液体积比3-1﹕1,有机溶剂与反应液体积比3-1﹕1,离心速度为3000rpm-20000rpm;
四、将纳米银线分散于含有抗坏血酸的稀酸性溶液中,在30℃-60℃的条件下,反应0.5h-5h至反应完全,离心沉降,得到表面粗糙化纳米银线;
其中含有抗坏血酸的稀酸性溶液中抗坏血酸浓度为0.01mol/L-0.1mol/L, 稀酸浓度为0.01mol/L-0.1mol/L,稀酸为稀硫酸、稀盐酸或稀硝酸。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中表面活性剂为十二烷基苯磺酸钠、十二烷基硫酸钠、十六烷基三甲基溴化铵、季戊四醇或聚乙烯吡咯烷酮。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是步骤一中卤素盐为氯化钠、氯化铁、氯化铝、氯化钾、溴化钠或溴化钾。其它与具体实施方式一或二之一相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中多元醇为乙二醇、丙二醇或丙三醇。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤一中溶液a中硝酸银质量浓度为0.01%-1%,表面活性剂质量浓度为0.01%-0.1%,卤素盐质量浓度为0.001%-0.01%。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤二中将溶液a加入到溶液b中,在80℃-130℃的条件下,反应2.5h-20h。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤二中将溶液a加入到溶液b中,在90℃-120℃的条件下,反应5h-15h。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤三中有机溶剂为乙醇或丙酮。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤四中在35℃-55℃的条件下,反应1.5h-4h至反应完全。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤四中含有抗坏血酸的稀酸性溶液中抗坏血酸浓度为0.02mol/L-0.09mol/,稀酸浓度为0.03mol/L。其它与具体实施方式一至九之一相同。
采用下述实验验证本发明效果:
实验一:
取0.1g AgNO 3,0.5g PVP和0.001g氯化铁溶解于20g乙二醇中得到溶液a,另取5g AgNO 3溶解于100g乙二醇中得到溶液b。将溶液a缓慢加入溶液b中,边加热边搅拌,加热至温度为150℃反应40分钟,加入由0.01g硝酸铁溶解于10g乙二醇中制备的硝酸铁乙二醇溶液,继续反应10分钟。加入360g水进入反应母液,以3000rpm的离心速度离心30分钟,加入纯水,反复离心3次,得到银合金纳米线。将银合金纳米线加入含有抗坏血酸的硝酸溶液中(其中抗坏血酸的浓度为0.1mol/L,硝酸的浓度为0.1mol/L),加热至60℃,反应0.5h,然后在3000rpm速度下离心30分钟,然后加入纯水,反复离心3次,得到表面粗糙化纳米银线。
本实验通过对纳米银线分离纯化后,通过酸碱蚀刻的方法,除去纳米银表面的活泼金属,得到高粗糙度的纳米银线,将此纳米银线用于制备导电膜不会产生镜面反射效果,使纳米银导电膜雾度降低至小于0.8。
实验二:
取10g AgNO 3,65g PVP和0.1g溴化钾溶解于200g乙二醇中得到溶液a,另取500g AgNO 3溶解于1000g乙二醇中得到溶液b。将溶液a缓慢加入溶液b中,边加热边搅拌,加热至温度为80℃反应16h,加入由5g硝酸铁溶解于50g乙二醇中制备的硝酸铁乙二醇溶液,继续反应4h。加入1250g水进入反应母液,以3000rpm的离心速度离心30分钟,加入纯水,反复离心3次,得到银合金纳米线。将银合金纳米线加入含有抗坏血酸的盐酸溶液中(其中抗坏血酸的浓度为0.1mol/L,盐酸的浓度为0.1mol/L),加热至30℃,反应5h,然后在3000rpm速度下离心30分钟,然后加入纯水,反复离心3次,得到表面粗糙化纳米银线。
本实验通过对纳米银线分离纯化后,通过酸碱蚀刻的方法,除去纳米银表面的活泼金属,得到高粗糙度的纳米银线,将此纳米银线用于制备导电膜不会产生镜面反射效果,使纳米银导电膜雾度降低至0.9。
实验三:
取1g AgNO3,5g CTBA和0.01g氯化铁溶解于200g丙二醇中得到溶液a,另取50g AgNO3溶解于200g丙二醇中得到溶液b。将溶液a缓慢加入溶液b中,边加热边搅拌,加热温度为100℃反应8h,加入由0.01g硝酸铁溶解于10g丙二醇中制备的硝酸铁乙二醇溶液,继续反应2h。加入400g水进入反应母液,以 3000rpm的离心速度离心30分钟,加入纯水,反复离心3次,得到银合金纳米线。将银合金纳米线加入含有抗坏血酸的硝酸溶液中(其中抗坏血酸的浓度为0.1mol/L,硝酸的浓度为0.1mol/L),加热至50℃,反应1h,然后在3000rpm速度下离心30分钟,然后加入纯水,反复离心三次,得到表面粗糙化纳米银线。
本实验通过对纳米银线分离纯化后,通过酸碱蚀刻的方法,除去纳米银表面的活泼金属,得到高粗糙度的纳米银线,将此纳米银线用于制备导电膜不会产生镜面反射效果,使纳米银导电膜雾度降低至0.6。

Claims (10)

  1. 一种表面粗糙化纳米银线的制备方法,其特征在于表面粗糙化纳米银线按照以下步骤进行:
    一、将硝酸银、表面活性剂和卤素盐溶解于多元醇中得到溶液a,将硝酸银溶解于乙二醇得到溶液b;
    所述溶液a中硝酸银质量浓度为0.001%-10%,表面活性剂质量浓度为0.0001%-1%,卤素盐质量浓度为0.0001%-1%;
    所述溶液b中硝酸银质量浓度为0.001%-10%;
    二、将溶液a加入到溶液b中,在70℃-180℃的条件下,反应0.5h-24h,并且在反应完成75%-85%时,加入硝酸铁乙二醇溶液,其中硝酸铁与硝酸银摩尔比为1﹕100-10,继续在70℃-180℃的条件下反应完全;
    三、向步骤二的反应液中按照先加入水再加有机溶剂的顺序洗涤、离心沉降2-5次,得到纳米银线;
    其中水与反应液体积比3-1﹕1,有机溶剂与反应液体积比3-1﹕1,离心速度为3000rpm-20000rpm;
    四、将纳米银线分散于含有抗坏血酸的稀酸性溶液中,在30℃-60℃的条件下,反应0.5h-5h至反应完全,离心沉降,得到表面粗糙化纳米银线;
    其中含有抗坏血酸的稀酸性溶液中抗坏血酸浓度为0.01mol/L-0.1mol/L,稀酸浓度为0.01mol/L-0.1mol/L,所述稀酸为稀硫酸、稀盐酸或稀硝酸。
  2. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤一中所述表面活性剂为十二烷基苯磺酸钠、十二烷基硫酸钠、十六烷基三甲基溴化铵、、季戊四醇或聚乙烯吡咯烷酮。
  3. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤一中所述卤素盐为氯化钠、氯化铁、氯化铝、氯化钾、溴化钠或溴化钾。
  4. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤一中所述多元醇为乙二醇、丙二醇或丙三醇。
  5. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤一中所述溶液a中硝酸银质量浓度为0.01%-1%,表面活性剂质量浓度为0.01%-0.1%,卤素盐质量浓度为0.001%-0.01%。
  6. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤二中将溶液a加入到溶液b中,在80℃-130℃的条件下,反应2.5h-20h。
  7. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤二中将溶液a加入到溶液b中,在90℃-120℃的条件下,反应5h-15h。
  8. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤三中所述有机溶剂为乙醇或丙酮。
  9. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤四中在35℃-55℃的条件下,反应1.5h-4h至反应完全。
  10. 根据权利要求1所述一种表面粗糙化纳米银线的制备方法,其特征在于步骤四中含有抗坏血酸的稀酸性溶液中抗坏血酸浓度为0.02mol/L-0.09mol/L,所述稀酸浓度为0.03mol/L。
PCT/CN2019/072420 2018-01-22 2019-01-18 一种表面粗糙化纳米银线的制备方法 WO2019141260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810058825.7A CN108453267B (zh) 2018-01-22 2018-01-22 一种表面粗糙化纳米银线的制备方法
CN201810058825.7 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019141260A1 true WO2019141260A1 (zh) 2019-07-25

Family

ID=63238369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072420 WO2019141260A1 (zh) 2018-01-22 2019-01-18 一种表面粗糙化纳米银线的制备方法

Country Status (2)

Country Link
CN (1) CN108453267B (zh)
WO (1) WO2019141260A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999357A (zh) * 2020-07-31 2020-11-27 惠州市钰芯电子材料有限公司 一种纳米银线阵列传感器的制备方法及其在抗坏血酸生物分子测定中的应用
CN112778524A (zh) * 2020-12-30 2021-05-11 江苏慧智新材料科技有限公司 一种聚酰胺酰亚胺树脂及其制备的透明耐酸碱电磁屏蔽复合薄膜
CN114871440A (zh) * 2022-05-19 2022-08-09 天津宝兴威科技股份有限公司 一种高效生产纳米银线的合成方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108453267B (zh) * 2018-01-22 2020-04-10 深圳清华大学研究院 一种表面粗糙化纳米银线的制备方法
CN109338714B (zh) * 2018-09-04 2021-07-30 浙江理工大学 一种纳米银线复合涤纶导电织物的制备方法
CN111820240A (zh) * 2020-07-01 2020-10-27 深圳市云记科技有限公司 一种基于纳米金属丝的抗菌消毒添加剂及其制备方法
CN112956495A (zh) * 2021-03-25 2021-06-15 重庆烯珀医疗器械有限公司 一种长效广谱活性纳米银离子消毒剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744417A (zh) * 2011-06-16 2012-10-24 浙江科创新材料科技有限公司 一种高长径比纳米银线的制备方法
CN104511596A (zh) * 2013-09-30 2015-04-15 中科院广州化学有限公司 一种纳米银线的连续制备方法及其装置
KR20160037298A (ko) * 2014-09-26 2016-04-06 주식회사 효성 자외선 조사에 의한 환원법을 이용한 은 나노와이어, 이의 제조방법 및 이를 포함하는 투명 도전성 필름
CN106513698A (zh) * 2016-11-01 2017-03-22 复旦大学 一种高浓度纳米银线的逐次添加制备工艺
CN108453267A (zh) * 2018-01-22 2018-08-28 深圳清华大学研究院 一种表面粗糙化纳米银线的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833942B2 (ja) * 2007-08-29 2011-12-07 株式会社コベルコ科研 Ag基合金スパッタリングターゲット
CN102161102B (zh) * 2011-02-12 2013-12-11 明基材料有限公司 纳米银线及其制造方法
CN102259190A (zh) * 2011-06-16 2011-11-30 浙江科创新材料科技有限公司 一种快速大批量制备高长径比纳米银线的方法
CN102689018B (zh) * 2012-06-11 2015-02-25 清华大学深圳研究生院 纳米银线材料的生产方法
CN103894624B (zh) * 2014-04-03 2016-11-23 复旦大学 一种纳米银线粉体的过滤制备筛选工艺
US10294422B2 (en) * 2015-07-16 2019-05-21 Hailiang Wang Etching compositions for transparent conductive layers comprising silver nanowires
CN105441949A (zh) * 2016-01-26 2016-03-30 苏州诺菲纳米科技有限公司 纳米银蚀刻液、制备图案化的纳米银导电膜的方法及触控传感器
CN106475570A (zh) * 2016-09-30 2017-03-08 天津宝兴威科技有限公司 一种纳米银线的制造方法
CN106513697B (zh) * 2016-11-01 2019-01-15 复旦大学 一种纳米银线粉体的多次反应过滤制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744417A (zh) * 2011-06-16 2012-10-24 浙江科创新材料科技有限公司 一种高长径比纳米银线的制备方法
CN104511596A (zh) * 2013-09-30 2015-04-15 中科院广州化学有限公司 一种纳米银线的连续制备方法及其装置
KR20160037298A (ko) * 2014-09-26 2016-04-06 주식회사 효성 자외선 조사에 의한 환원법을 이용한 은 나노와이어, 이의 제조방법 및 이를 포함하는 투명 도전성 필름
CN106513698A (zh) * 2016-11-01 2017-03-22 复旦大学 一种高浓度纳米银线的逐次添加制备工艺
CN108453267A (zh) * 2018-01-22 2018-08-28 深圳清华大学研究院 一种表面粗糙化纳米银线的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999357A (zh) * 2020-07-31 2020-11-27 惠州市钰芯电子材料有限公司 一种纳米银线阵列传感器的制备方法及其在抗坏血酸生物分子测定中的应用
CN112778524A (zh) * 2020-12-30 2021-05-11 江苏慧智新材料科技有限公司 一种聚酰胺酰亚胺树脂及其制备的透明耐酸碱电磁屏蔽复合薄膜
CN112778524B (zh) * 2020-12-30 2023-11-10 江苏慧智新材料科技有限公司 一种聚酰胺酰亚胺树脂及其制备的透明耐酸碱电磁屏蔽复合薄膜
CN114871440A (zh) * 2022-05-19 2022-08-09 天津宝兴威科技股份有限公司 一种高效生产纳米银线的合成方法和装置
CN114871440B (zh) * 2022-05-19 2024-03-15 天津宝兴威科技股份有限公司 一种高效生产纳米银线的合成方法和装置

Also Published As

Publication number Publication date
CN108453267A (zh) 2018-08-28
CN108453267B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2019141260A1 (zh) 一种表面粗糙化纳米银线的制备方法
Li et al. Copper nanowires in recent electronic applications: progress and perspectives
WO2017084561A1 (zh) 一种大尺寸氧化石墨烯或石墨烯的制备方法
CN106504829B (zh) 一种高透过率低电阻银纳米线薄膜的制备方法
CN104934108A (zh) 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN102073428B (zh) 基于碳纳米管薄膜的电容式柔性透明触摸屏
CN105949512A (zh) 插层组装氮化硼-石墨烯复合材料、应用及其制备方法
CN104992781B (zh) 一种石墨烯基三元复合材料的制备方法
CN102993820A (zh) 一种碳纳米材料/金属纳米材料复合纳米油墨
CN109887647A (zh) 一种复合柔性透明导电薄膜及其制备方法
WO2013191337A1 (ko) 은 나노와이어의 제조방법
WO2020151346A1 (zh) 一种复合导电银浆及其制备方法
CN107039646A (zh) 一种锂离子电池柔性负极材料及其制备方法
CN103215628A (zh) 一种电化学复合石墨烯与金属氧化物的方法
CN111014719A (zh) 一种高纯度银纳米线及其制备方法和银纳米线导电薄膜
WO2023078320A1 (zh) 一种超长纳米银线材料及其制备方法
CN105197918A (zh) 一种高质量石墨烯及其快速制备方法
CN111313028A (zh) 一种石墨烯-碳纳米管-硅复合薄膜材料及其制备方法和应用
CN108342128B (zh) 一种低雾度透明导电导体的制备方法
Wang et al. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application
CN113878127B (zh) 一种以格氏试剂为助剂辅助合成超细纳米银线的方法
KR101536627B1 (ko) 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 제조 방법
CN103198886A (zh) 一种柔性基底表面透明导电薄膜的制备方法
CN104934137A (zh) 一种基于纳米银焊接制备透明导电薄膜的方法
KardanMoghaddam et al. Graphene-reinforced polymeric nanocomposites in computer and electronics industries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19741426

Country of ref document: EP

Kind code of ref document: A1