WO2020151346A1 - 一种复合导电银浆及其制备方法 - Google Patents

一种复合导电银浆及其制备方法 Download PDF

Info

Publication number
WO2020151346A1
WO2020151346A1 PCT/CN2019/119142 CN2019119142W WO2020151346A1 WO 2020151346 A1 WO2020151346 A1 WO 2020151346A1 CN 2019119142 W CN2019119142 W CN 2019119142W WO 2020151346 A1 WO2020151346 A1 WO 2020151346A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
silver paste
silver
parts
composite conductive
Prior art date
Application number
PCT/CN2019/119142
Other languages
English (en)
French (fr)
Inventor
孙宝全
宋涛
李睿颖
刘佳伟
Original Assignee
苏州英纳电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州英纳电子材料有限公司 filed Critical 苏州英纳电子材料有限公司
Publication of WO2020151346A1 publication Critical patent/WO2020151346A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to the field of conductive silver paste, in particular to a composite conductive silver paste and a preparation method thereof.
  • Flexible stretchable electronics is a general term for technology that refers to making electronic devices on a flexible stretchable substrate. Compared with traditional electronic devices made on rigid substrates such as glass, the flexibility and adaptability of flexible stretchable electronics are greatly improved, and can be applied to different working environments to meet different deformation requirements. However, the corresponding technical requirements also pose new challenges and requirements for flexible and stretchable conductive electrodes; in addition, the preparation conditions for flexible and stretchable electronics are more stringent than those for electronic devices based on rigid substrates. It is also a major problem in blocking the development of flexible and stretchable electronics. The field of flexible and stretchable electronics has attracted a lot of attention from the scientific community in recent years, which has made rapid development in this field and has made great progress.
  • the key to the research of flexible and stretchable devices mainly includes the development of new mechanical durable materials, flexible and stretchable substrates, deformable electrodes and circuits, new processing methods, and system integration.
  • a typical method to achieve flexibility and stretchability is to apply functional molecular materials and nanostructures to natural flexible and stretchable polymer substrates. Based on this substrate, a variety of flexible and stretchable devices can be further combined with new materials and processing technologies.
  • the counter electrode in the flexible stretchable device is also required to maintain its electrical conductivity basically unchanged under multiple stretches. Because of its unique mechanical and electrical properties, silver paste has become an eye-catching functional conductive material, which can be applied to flexible photovoltaic and energy conversion devices by being integrated on a flexible stretchable substrate.
  • Conductive silver paste is a mechanically mixed viscous paste composed of high-purity metal silver particles, binders, solvents and additives.
  • traditional conductive electrode materials such as ITO
  • ITO Indium Tin Oxide
  • the conductive silver paste is widely used in the flexible and stretchable field due to its good conductivity, high cost performance and easy processing on flexible substrates.
  • traditional conductive electrode materials such as ITO
  • its mechanical properties are greatly improved, but after it is made into a conductive film, after many times of bending, a large number of cracks appear on the surface, which greatly affects its electrical properties.
  • the technical problem to be solved by the present invention is to provide a composite conductive silver paste with good mechanical properties and suitable for bendable electronic devices.
  • a composite conductive silver paste comprising the following components in parts by mass:
  • the silver powder particles include nano-sized silver powder and sub-micron-sized silver powder,
  • the size of the nano-scale silver powder is 3-30 nm, the volume density is 0.3-0.7 g/m 3 , and the specific surface area is 25-40 m 2 /g;
  • the size of the submicron silver powder is 200-80 nm.
  • the resin is one or more of epoxy resin, acrylic resin, alkyd resin, melamine formaldehyde resin, polyurethane resin, phenol resin, and vinyl chloride-vinyl acetate copolymer resin.
  • the solvent is water, dimethyl adipate, ethyl acetate, N-methylpyrrolidone, formamide acetone, ethanol, dimethyl formamide, methyl chloride, dimethyl sulfoxide, dioxane One or more of ring, tetrahydrofuran, tert-butyl methyl ether and ethylene glycol monomethyl ether.
  • organic additives are one or more of anti-settling agents, dispersants, defoamers, leveling agents, adhesion promoters and surfactants.
  • the conductive flexible filler is one or more of graphene, carbon nanotubes, silver nanowires, silver nanoflowers and silver nanorods.
  • This application further provides a method for preparing composite conductive silver paste, which includes the following steps:
  • the mixed powder and the mixed solution are uniformly mixed to prepare a composite conductive silver paste.
  • the solvent, the organic additive and the resin are mixed by ultrasonic treatment, wherein the power of the ultrasonic treatment is 150W-300W, and the time is 1h-2h.
  • the beneficial effects of the present invention In this application, the conductive flexible material, resin, and silver powder particles are compounded, and the conductive flexible material can greatly improve the mechanical properties of the silver paste without affecting the conductivity of the silver paste.
  • Figure 1 is an SEM image of Example 1 after film forming and bending of pure silver paste.
  • the scale in the figure is 5 micrometers.
  • Fig. 2 is a graph showing the ratio of the resistance of the silver paste before and after the addition of the flexible conductive filler to the non-bending resistance under different bending times.
  • Figure 3 is an SEM image of Example 2 after film forming and bending of pure silver paste.
  • the scale in the figure is 5 microns.
  • Fig. 4 is a graph showing the ratio of the resistance of the silver paste before and after the addition of the flexible conductive filler to the non-bending resistance under different bending times.
  • a composite conductive silver paste comprising the following components in parts by mass:
  • the silver powder particles include nano-sized silver powder and sub-micron-sized silver powder, the size of the nano-sized silver powder is 3-30 nm, the volume density is 0.3-0.7 g/m 3 , and the specific surface area is 25-40 m 2 /g; The size of the submicron silver powder is 200-80nm.
  • the advantages of mixing sub-micron silver powder and nano-silver powder are: first, the average size of silver powder is small, and the final slurry stability is good; second, the size of sub-micron silver powder and nano-scale silver powder are closer, and the mixture is arranged Closer, good conductivity; thirdly, due to the use of sub-micron silver powder, it can improve the fineness of the silver paste pattern processed by screen printing, squeegee, etc., to achieve a finer line width and improve the adhesion of the paste , Reduce resistance.
  • the resin is one or more of epoxy resin, acrylic resin, alkyd resin, melamine formaldehyde resin, polyurethane resin, phenol resin, and vinyl chloride-vinyl acetate copolymer resin.
  • the solvent is deionized water, dimethyl adipate, ethyl acetate, N-methylpyrrolidone, formamide acetone, ethanol, dimethyl formamide, methyl chloride, dimethyl sulfoxide, dioxane One or more of ring, tetrahydrofuran, tert-butyl methyl ether and ethylene glycol monomethyl ether.
  • the organic additives are one or more of anti-settling agents, dispersants, defoamers, leveling agents, adhesion promoters and surfactants.
  • the conductive flexible filler is one or more of graphene, carbon nanotubes, silver nanowires, silver nanoflowers, and silver nanorods.
  • the conductive flexible filler is graphene, functionalized graphene is preferably used.
  • the composite conductive silver paste includes the following components in parts by mass:
  • N-methylpyrrolidone and ethylene glycol monomethyl ether are used as solvents, and carboxymethyl cellulose is used as thickener.
  • the functionalized graphene uses functionalized graphene with relatively active acid chloride bonds on the surface.
  • the functionalized graphene can easily chemically react with the resin under heating to enhance the bonding force of the graphene and the resin. .
  • this graphene can also have a strong effect with silver particles, ensuring uniform mixing with silver.
  • N-methylpyrrolidone, ethylene glycol monomethyl ether, polyamino resin, and carboxymethyl cellulose are mixed in a weight ratio, and ultrasonically treated at 300 W for 2 hours to mix uniformly to obtain a mixed solution.
  • the above-mentioned mixed solution and the mixed powder are poured together, and are completely mixed uniformly through a centrifugal deaerator and a three-roller to prepare a composite conductive silver paste.
  • the above-mentioned composite conductive silver paste is prepared into a film and tested. Specifically, the composite conductive silver paste is made into a film by the following steps: the above composite conductive silver paste is used to draw a groove with a certain depth of 5 microns wide x 5 microns deep x 3 cm long. After heating at 130°C for 20 minutes, it is cured into a film, and the conductive silver paste after film formation is tested for conductivity, mechanical properties, and surface morphology.
  • Figure 1(a) is the scanning electron microscope image of the pure silver paste film after drying
  • Figure 1(b) the scanning electron microscope image of the pure silver paste film after 100 bending after drying
  • Figure 1(c) is the SEM image of the composite silver paste film after drying
  • Figure 1(d) is the SEM image of the composite silver paste film after being dried 100 times. It can be seen from Figure 1. There is no obvious change in the morphology of the application after 100 bendings, which indicates that the composite conductive silver paste prepared in the application has good mechanical properties and good bendability.
  • the resistance value of the application has no obvious change after multiple bendings, which indicates that after multiple bendings, the electrical conductivity of the application is less affected by bending.
  • the composite conductive silver paste includes the following components in parts by mass:
  • vinyl acetate copolymer is used as an organic additive to enhance the toughness and impact resistance of the system.
  • the conductive silver paste in this example was prepared into a film, and the conductivity, mechanical properties, and surface morphology were tested.
  • Figure 3 is the scanning electron microscope image of the pure silver paste film after drying
  • Figure 3 (b) is the pure silver paste film after 100 bending
  • Fig. 3(c) the scanning electron micrograph of the composite conductive silver paste film after drying
  • Fig. 3(d) the scanning electron micrograph of the composite conductive silver paste film after being dried 100 times.
  • the conductive flexible filler is added to the conductive composite silver paste in the present invention, so that the conductive flexible filler is interspersed in the silver powder particles.
  • These conductive flexible fillers can greatly improve the mechanical properties without affecting the conductive performance. After repeated bending, the initial conductivity can still be maintained.
  • the conductive flexible filler adopts functionalized ink
  • graphene is the thinnest material known, and it also has strong toughness, electrical conductivity and thermal conductivity, which can enhance the various properties of metal matrix composites. It has played a very important role.
  • this graphene has a certain chemically active group, which can be chemically bonded to the resin, and the layered graphene can be uniformly dispersed in the silver The middle of the particles has a good anti-bending effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

一种复合导电银浆,按质量份数包括以下组分:54-85份的银粉颗粒,15-28份的溶剂,1-8份的树脂,1-10份的有机添加剂,3-9份的导电柔性填料。通过将导电柔性材料、树脂和银粉颗粒进行复配,导电柔性材料在不影响银浆导电性的情况下能极大地提高银浆的机械性能。

Description

一种复合导电银浆及其制备方法 技术领域
本发明涉及导电银浆领域,具体涉及一种复合导电银浆及其制备方法。
背景技术
柔性可拉伸电子是一种技术的统称,是指在柔性可拉伸的基底上制作电子器件。相比较于传统的在玻璃等硬性基底上面制作的电子器件,柔性可拉伸电子的灵活性,适应性都大幅度提升,可应用于不同的工作环境,满足不同的形变要求。但是相应的技术要求对于柔性可拉伸的导电电极也提出了新的挑战和要求;除此之外,柔性可拉伸电子的制备条件相比较于基于刚性基底的电子器件要求更加严苛,这也是阻挡柔性可拉伸电子发展的一大难题。柔性可拉伸电子领域在近些年吸引了科学界的大量关注,使得该领域的发展日新月异并取得了长足的进展。柔性可拉伸电子的发展离不开材料科学、电子工程、生物医疗工程、化学、物理以及能源这些学科的交叉影响和作用。这个交叉学科领域的发展已经在电子皮肤、健康检测、能量储存和转换以及生物医疗器件等方面展现了诱人的应用前景。同时对新型的机械耐久性材料和结构,主动响应性软材料和器件,可拉伸电极和电路,器件-生物体通信界面,和器件的系统集成等有着极大的促进作用。同时,器件设计和加工的快速发展需要应用新的加工制造技术,印刷技术和器件工程技术等,这无疑拉伸了科学界,加工制造业等的发展,对整个社会有着极大的推动作用。
柔性及可拉伸器件的研究关键主要包括开发新型机械耐久材料、柔性和可拉伸性基底,可形变的电极和电路,新型加工方法以及系统集成等等。比较典型的实现柔性及可拉伸性的方法是通过将功能分子材料及纳米结构应用在天然 的柔性及可拉伸性高分子基底上。基于这种基底,多种多样的柔性及可拉伸器件可以被进一步与新型材料和加工技术结合。柔性可拉伸器件中对电极也要求在多次拉伸情况下,其导电性能可以基本保持不变。银浆因其独特的机械以及电学性质成为一种令人瞩目的功能性导电材料,其可以通过整合到柔性可拉伸基底上从而应用于柔性光电和能量转换器件中。
导电银浆是由高纯度的金属银微粒、粘合剂、溶剂和助剂所组成的一种机械混和物的粘稠状的浆料。传统的导电电极材料,如ITO等尽管性能优异,但是生产成本相对较高;且稀有金属铟采储量有限;材料比较脆;红外透射率低,在柔性电极中应用受到限制。而导电银浆由于其良好的导电性,性价比高以及容易被加工在柔性基底上面的优点而被广泛应用于柔性可拉伸领域。尽管相比于ITO等传统的导电电极材料,它的机械性能大大提高,然而在其被制成导电薄膜之后,在弯折多次之后,表面出现了大量裂痕,同时大大影响了它的电学性能,这无疑对柔性可拉伸电子器件的制备是大大不利的。在柔性可拉伸电子有着巨大的需求的市场前景下,开发具有高稳定性,机械性能良好的新型银浆,具有广泛的应用前景和重要的商业价值,也是实际应用的迫切需求。上述问题是本领域亟需解决的问题。
发明内容
本发明要解决的技术问题是提供一种具有良好的机械性能,适用于可弯折电子器件的复合导电银浆。
为了解决上述技术问题,本发明提供的方案是:一种复合导电银浆,按质量份数包括以下组分:
54-85份的银粉颗粒,15-28份的溶剂,1-8份的树脂,1-10份的有机添加剂,3-9份的导电柔性填料。
进一步的是:所述银粉颗粒包括纳米级银粉和亚微米级银粉,
所述纳米级银粉的尺寸为3-30nm,体积密度为0.3-0.7g/m 3,比表面积为25-40m 2/g;
所述亚微米级银粉的尺寸为200-80nm。
进一步的是:所述树脂为环氧树脂、丙烯酸树脂、醇酸树脂、三聚氰胺甲醛树脂、聚氨酯树脂、酚醛树脂、氯乙烯-醋酸乙烯共聚树脂中的一种或多种。
进一步的是:所述溶剂为水、己二酸二甲酯、乙酸乙酯、N-甲基吡咯烷酮、甲酰胺丙酮、乙醇、二甲基甲酰胺、氯甲烷、二甲亚砜、二氧六环、四氢呋喃、叔丁基甲基醚和乙二醇单甲醚中的一种或多种。
进一步的是:所述有机添加剂为防沉剂、分散剂、消泡剂、流平剂、附着力促进剂和表面活性剂中的一种或多种。
进一步的是:导电柔性填料为石墨烯、碳纳米管、银纳米线、银纳米花和银纳米棒中的一种或多种。
本申请进一步的提供了一种复合导电银浆的制备方法,包括以下步骤:
将所述银粉颗粒和所述导电柔性填料混合均匀,得到混合粉料;
将所述溶剂、所述有机添加剂和所述树脂混合均匀,得到混合溶液;
将所述混合粉料与所述混合溶液混合均匀,制备得到复合导电银浆。
进一步的是:在制备所述混合溶液时,所述溶剂、所述有机添加剂和所述树脂采用超声处理混合,其中所述超声处理的功率为150W-300W,时间为1h-2h。
本发明的有益效果:本申请通过将导电柔性材料、树脂和银粉颗粒进行复配,导电柔性材料在不影响银浆导电性的情况下能极大地提高银浆的机械性能。
附图说明
图1是实施例一成膜弯折和纯银浆折磨弯折后的SEM图,图中标尺为5微 米。
图2是实施例一在添加柔性导电填料前后银浆在不同弯折次数下的电阻与未弯折电阻比值曲线图。
图3是实施例二成膜弯折和纯银浆折磨弯折后的SEM图,图中标尺为5微米。
图4是实施例二在添加柔性导电填料前后银浆在不同弯折次数下的电阻与未弯折电阻比值曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
一种复合导电银浆,按质量份数包括以下组分:
54-85份的银粉颗粒,15-28份的溶剂,1-8份的树脂,1-10份的有机添加剂,3-9份的导电柔性填料。
其中,所述银粉颗粒包括纳米级银粉和亚微米级银粉,所述纳米级银粉的尺寸为3-30nm,体积密度为0.3-0.7g/m 3,比表面积为25-40m 2/g;所述亚微米级银粉的尺寸为200-80nm。
本申请中,将亚微米银粉和纳米银粉的混合的优点在于:第一,银粉平均尺寸小,最终浆料稳定性好;第二,亚微米级别银粉和纳米级别银粉尺寸大小更接近,混合物排列更紧密,导电性好;第三,由于使用亚微米级别银粉,可以提高使用丝网印刷、刮涂等方式加工银浆图案的精细度,达到更细的线宽,并提高浆料的附着力,降低电阻。
其中,所述树脂为环氧树脂、丙烯酸树脂、醇酸树脂、三聚氰胺甲醛树脂、聚氨酯树脂、酚醛树脂、氯乙烯-醋酸乙烯共聚树脂中的一种或多种。
其中,所述溶剂为去离子水、己二酸二甲酯、乙酸乙酯、N-甲基吡咯烷酮、甲酰胺丙酮、乙醇、二甲基甲酰胺、氯甲烷、二甲亚砜、二氧六环、四氢呋喃、 叔丁基甲基醚和乙二醇单甲醚中的一种或多种。
其中,所述有机添加剂为防沉剂、分散剂、消泡剂、流平剂、附着力促进剂和表面活性剂中的一种或多种。
其中,导电柔性填料为石墨烯、碳纳米管、银纳米线、银纳米花和银纳米棒中的一种或多种,当导电柔性填料为石墨烯时,优选采用功能化石墨烯。
为了便于对本申请进行理解,本申请进一步的提供了以下几种具体的实施例,
实施例1:
所述复合导电银浆按质量份数包括以下组分:
亚微米级银粉52g,纳米级银粉8g,功能化石墨烯5.5g,N-甲基吡咯烷酮15g,乙二醇单甲醚11g,聚氨基树脂4g,羧甲基纤维素2g。
其中,N-甲基吡咯烷酮和乙二醇单甲醚作为溶剂,羧甲基纤维素作为增稠剂。
其中,功能化石墨烯采用表面具有比较活泼的酰氯键的功能化石墨烯,该功能化石墨烯可以非常容易的和树脂在加热的情况下与树脂发生化学反应,增强石墨烯与树脂的结合力。同时,这种石墨烯也可以和银颗粒具有较强的作用,保证了与银的均匀混合。
首先,按上述质量份称取功能化石墨烯、亚微米级银粉、纳米银粉并混合均匀,得混合粉料。
将N-甲基吡咯烷酮、乙二醇单甲醚、聚氨基树脂和羧甲基纤维素按重量比例混合,并在300W下超声处理2h使其混合均匀,得到混合溶液。
接着,将上述混合溶液与混合粉料倒在一起,通过离心脱泡机和三辊机使其完全混合均匀,制备得到复合导电银浆。
将上述复合导电银浆制备成膜并进行测试,具体的,复合导电银浆由以下步骤制成膜:使用上述复合导电银浆刮涂在5微米宽x5微米深x3厘米长的一定深度的沟槽中,并于130℃加热20分钟后固化成膜,对成膜后的导电银浆便 分别进行导电性能,机械性能,表面形貌的测试。
如图1所示,其中,图1(a)是纯银浆料薄膜烘干后的扫描电镜图,图1(b)纯银浆料薄膜烘干后在100次弯折后的扫描电镜图,图1(c)是复合银浆薄膜烘干后的扫描电镜图,图1(d)是复合银浆薄膜烘干后在100次弯折后的扫描电镜图,由图1可以看出,本申请在100次弯折后形貌无明显变化,这表明本申请制备的复合导电银浆具有良好的机械性能,具有良好的可弯折性。
如图2所示,本申请在多次弯折后电阻值无明显变化,这表明经过多次弯折后,对本申请的导电性能受弯折影响较小。
实施例2:
所述复合导电银浆按质量份数包括以下组分:
亚微米级银粉5g,纳米级银粉58g,功能化石墨烯5.5g,去离子水35g,乙二醇单甲醚11g,丙烯酸树脂4g,醋酸乙烯共聚物2g。
其中,醋酸乙烯共聚物作为有机添加剂,其用于增强体系的韧性和抗冲击性。
将本实施例中的导电银浆制备成膜,并进行导电性能,机械性能,表面形貌的测试。
测试结果如图3和图5所示,其中图3(a)是纯银浆料薄膜烘干后的扫描电镜图,图3(b)是纯银浆料薄膜烘干后在100次弯折后的扫描电镜图,图3(c)复合导电银浆薄膜烘干后的扫描电镜图,图3(d)复合导电银浆薄膜烘干后在100次弯折后的扫描电镜图。
可以看出,本实施例在成膜后,经过多次弯折后表面形貌无明显变化,导电性能无明显下降,这表明本申请具有良好的机械性能和可弯折性能。
本发明中的导电复合银浆中添加了导电柔性填料,使得导电柔性填料穿插在银粉颗粒中,这些导电柔性填料可以在不影响其导电性能的前提下大大提升机械性能,成膜的导电银浆在反复弯折后仍然能保持初始的导电性能。
其中,优选的,导电柔性填料采用功能化墨烯,石墨烯是已知的最薄的一种材料,同时也具有很强的韧性、导电性和导热性,在增强金属基复合材料各 种性能方面起到了很大的作用,通过加入一定量的功能化石墨烯,这种石墨烯具有一定的化学活性基团,可以化学键合到树脂上,同时可使层状的石墨烯均匀的分散在银颗粒中间,起到很好的抗弯折作用。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

  1. 一种复合导电银浆,其特征在于,按质量份数包括以下组分:
    54-85份的银粉颗粒,15-28份的溶剂,1-8份的树脂,1-10份的有机添加剂,3-9份的导电柔性填料。
  2. 如权利要求1所述的复合导电银浆,其特征在于,所述银粉颗粒包括纳米级银粉和亚微米级银粉,
    所述纳米级银粉的尺寸为3-30nm,体积密度为0.3-0.7g/m 3,比表面积为25-40m 2/g;
    所述亚微米级银粉的尺寸为200-80nm。
  3. 如权利要求1所述的复合导电银浆,其特征在于,所述树脂为环氧树脂、丙烯酸树脂、醇酸树脂、三聚氰胺甲醛树脂、聚氨酯树脂、酚醛树脂、氯乙烯-醋酸乙烯共聚树脂中的一种或多种。
  4. 如权利要求1所述的复合导电银浆,其特征在于,所述溶剂为水、己二酸二甲酯、乙酸乙酯、N-甲基吡咯烷酮、甲酰胺丙酮、乙醇、二甲基甲酰胺、氯甲烷、二甲亚砜、二氧六环、四氢呋喃、叔丁基甲基醚和乙二醇单甲醚中的一种或多种。
  5. 如权利要求1所述的复合导电银浆,其特征在于,所述有机添加剂为防沉剂、分散剂、消泡剂、流平剂、附着力促进剂和表面活性剂中的一种或多种。
  6. 如权利要求1所述的复合导电银浆,其特征在于,导电柔性填料为石墨烯、碳纳米管、银纳米线、银纳米花和银纳米棒中的一种或多种。
  7. 如权利要求1~6中任一所述复合导电银浆的制备方法,其特征在于,包括以下步骤:
    将所述银粉颗粒和所述导电柔性填料混合均匀,得到混合粉料;
    将所述溶剂、所述有机添加剂和所述树脂混合均匀,得到混合溶液;
    将所述混合粉料与所述混合溶液混合均匀,制备得到复合导电银浆。
  8. 如权利要求7所述的制备方法,其特征在于,在制备所述混合溶液时,所述溶剂、所述有机添加剂和所述树脂采用超声处理混合,其中所述超声处理的功率为150W-300W,时间为1h-2h。
PCT/CN2019/119142 2019-01-24 2019-11-18 一种复合导电银浆及其制备方法 WO2020151346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910069358.2A CN109887640A (zh) 2019-01-24 2019-01-24 一种复合导电银浆及其制备方法
CN201910069358.2 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020151346A1 true WO2020151346A1 (zh) 2020-07-30

Family

ID=66926812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119142 WO2020151346A1 (zh) 2019-01-24 2019-11-18 一种复合导电银浆及其制备方法

Country Status (2)

Country Link
CN (1) CN109887640A (zh)
WO (1) WO2020151346A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887640A (zh) * 2019-01-24 2019-06-14 苏州英纳电子材料有限公司 一种复合导电银浆及其制备方法
CN110648781B (zh) * 2019-09-10 2021-07-16 广州市儒兴科技开发有限公司 一种适用于分步丝网印刷的主栅正银浆料
CN110760892B (zh) * 2019-11-15 2020-10-27 清华大学 一种连续电化学沉积制备金属颗粒的方法
CN111403082A (zh) * 2020-03-27 2020-07-10 苏州聚龙能源科技有限公司 一种复合水性石墨烯导电浆料及其制备方法
CN113517093A (zh) * 2021-04-22 2021-10-19 苏州海力金属粉体材料有限公司 一种球形银粉导电浆料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839606A (zh) * 2014-03-19 2014-06-04 惠州市力新化工有限公司 一种用于lds天线的导电银浆及其制备方法
CN105632588A (zh) * 2016-02-22 2016-06-01 昆山海斯电子有限公司 一种高导电性银浆及其制备方法
CN106024100A (zh) * 2016-07-20 2016-10-12 苏州顾氏新材料有限公司 一种低温导电银浆及其制备方法和应用
CN107123459A (zh) * 2017-03-09 2017-09-01 苏州工业园区英纳电子材料有限公司 导电银浆
US20170342279A1 (en) * 2014-12-11 2017-11-30 Dic Corporation Silver paste, and conductive molded article obtained using same
CN107492403A (zh) * 2017-07-13 2017-12-19 严巍峰 一种用于智能包装的射频标签用导电银浆及其制备方法
CN109887640A (zh) * 2019-01-24 2019-06-14 苏州英纳电子材料有限公司 一种复合导电银浆及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839606A (zh) * 2014-03-19 2014-06-04 惠州市力新化工有限公司 一种用于lds天线的导电银浆及其制备方法
US20170342279A1 (en) * 2014-12-11 2017-11-30 Dic Corporation Silver paste, and conductive molded article obtained using same
CN105632588A (zh) * 2016-02-22 2016-06-01 昆山海斯电子有限公司 一种高导电性银浆及其制备方法
CN106024100A (zh) * 2016-07-20 2016-10-12 苏州顾氏新材料有限公司 一种低温导电银浆及其制备方法和应用
CN107123459A (zh) * 2017-03-09 2017-09-01 苏州工业园区英纳电子材料有限公司 导电银浆
CN107492403A (zh) * 2017-07-13 2017-12-19 严巍峰 一种用于智能包装的射频标签用导电银浆及其制备方法
CN109887640A (zh) * 2019-01-24 2019-06-14 苏州英纳电子材料有限公司 一种复合导电银浆及其制备方法

Also Published As

Publication number Publication date
CN109887640A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2020151346A1 (zh) 一种复合导电银浆及其制备方法
Hu et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits
CN103113786B (zh) 一种石墨烯导电油墨及其制备方法
WO2016026190A1 (zh) 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
CN105387957B (zh) 基于印刷透明电极的可拉伸压力传感器及其制备方法
WO2016008187A1 (zh) 导电胶的制备方法及导电胶
WO2020113807A1 (zh) 一种用于制备柔性压阻式传感器的多孔导电浆料及其制备方法和应用
CN106928773A (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
TW201437301A (zh) 透明碳納米管高分子複合導電墨水及其製備方法
CN106752878A (zh) 一种石墨烯低压发热涂料及其制备方法
KR101401574B1 (ko) 하이브리드 필러를 이용한 전도성 접착제 및 이의 제조방법
CN109207029A (zh) 具有强附着牢度的导电涂料
CN112105248B (zh) 一种电磁屏蔽膜及其制备方法
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
JP2017508855A (ja) 高分散のカーボンナノチューブ複合導電インク
CN113077921A (zh) 生物微流控芯片3d打印电极材料与3d打印电极及其制备方法
CN109799012B (zh) 一种基于纤维素的类三明治结构压力传感器及其制备方法
CN110993149A (zh) 一种金属网格电容式柔性触摸屏用银浆及其制备方法与应用
Gao et al. Facile synthesis of Ag/carbon quantum dots/graphene composites for highly conductive water-based inks
CN105153813B (zh) 一种低渗流阈值导电油墨的制备方法
KR20160019570A (ko) 전자섬유용 유연신축성 나노카본 잉크 소재, 상기 잉크 소재를 이용한 직물 전극 및 그 제조방법
CN112679772A (zh) 一种用于智能穿戴的柔性导电复合材料及制备方法
CN108314932A (zh) 一种基于光固化石墨烯导电油墨印刷方法
CN115101237A (zh) 一种银电极导电浆料及由其制备的银电极、电热膜
CN113539548A (zh) 一种空心银纳米管导电浆料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911480

Country of ref document: EP

Kind code of ref document: A1