WO2019131410A1 - 試料検査装置、および、試料検査方法 - Google Patents

試料検査装置、および、試料検査方法 Download PDF

Info

Publication number
WO2019131410A1
WO2019131410A1 PCT/JP2018/046926 JP2018046926W WO2019131410A1 WO 2019131410 A1 WO2019131410 A1 WO 2019131410A1 JP 2018046926 W JP2018046926 W JP 2018046926W WO 2019131410 A1 WO2019131410 A1 WO 2019131410A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electron beam
light
frequency
light source
Prior art date
Application number
PCT/JP2018/046926
Other languages
English (en)
French (fr)
Inventor
智博 西谷
小泉 淳
悠 鹿野
Original Assignee
株式会社Photo electron Soul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Photo electron Soul filed Critical 株式会社Photo electron Soul
Priority to IL270143A priority Critical patent/IL270143B2/en
Priority to EP18897698.9A priority patent/EP3734641A4/en
Priority to CN201880028185.3A priority patent/CN110582833B/zh
Priority to JP2019531344A priority patent/JP6604649B1/ja
Priority to KR1020197031879A priority patent/KR102238479B1/ko
Priority to US16/609,728 priority patent/US11150204B2/en
Publication of WO2019131410A1 publication Critical patent/WO2019131410A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers

Definitions

  • the present invention relates to a sample inspection apparatus and a sample inspection method, and more particularly to a sample inspection apparatus that inspects a sample using an electron beam emitted from a photocathode and a sample inspection method.
  • Patent Document 1 discloses an electron microscope absorption current image observation apparatus.
  • the observation apparatus described in Patent Document 1 includes means for modulating an electron beam at a predetermined frequency, means for irradiating the modulated electron beam to a sample, and current of the current excited in the sample by the irradiated electron beam. And means for measuring the modulation frequency component.
  • the absorption current signal absorbed by the sample is a signal centered on the blanking frequency of the electron beam. And in the electron microscope absorption current image observation device of patent document 1, reduction of noise is aimed at by using the band pass filter united with the blanking frequency.
  • Patent Document 2 discloses a semiconductor device inspection apparatus.
  • the semiconductor device inspection apparatus described in Patent Document 2 includes a laser light source that emits light, an optical sensor that detects reflected light of the light at the semiconductor device, and outputs a detection signal, and a measurement frequency band for the detection signal.
  • the frequency band setting unit that sets the reference frequency band
  • the spectrum analyzer that generates the measurement signal and the reference signal from the detection signal in the measurement frequency band and the reference frequency band
  • a signal acquisition unit that acquires an analysis signal.
  • a lock-in method (S / N improvement method by acquiring a frequency synchronized with a pulse train of a signal) is used.
  • a pulse electron beam is formed by actively excluding a part of the electron beam using a blanking electrode. For this reason, useless electron beams that do not contribute to the inspection of the sample are generated, and additional devices (such as blanking electrodes and blanking slits) for generating the useless electron beams are required.
  • the semiconductor device inspection apparatus described in Patent Document 2 is an apparatus for irradiating a semiconductor device with light to inspect the semiconductor device.
  • the inspection spot diameter spot diameter of light
  • the inspection of the fine structure can not be performed sufficiently.
  • an object of the present invention is to provide a sample inspection apparatus and a sample inspection method in which noise is removed from a detection signal and the generated electron beam is effectively used for inspection.
  • Other optional additional effects of the present invention will be apparent in the Detailed Description of the Invention.
  • the present invention relates to a sample inspection apparatus and a sample inspection method described below.
  • the signal extractor includes a lock-in amplifier, The lock-in amplifier receives the detection signal and the reference signal, The sample inspection apparatus according to (1), wherein the lock-in amplifier extracts a signal of a frequency corresponding to the frequency of the reference signal from the detection signal.
  • a light source control device that controls the operation of the light source according to a control parameter value
  • a storage device for storing first related data in which the type of sample and the control parameter value are associated with each other.
  • the control parameter value may be an amplitude control parameter value or a pulse amplitude control parameter value of the frequency modulated light, a control parameter value or a pulse width control parameter value defining a time interval between two maximum amplitudes of the frequency modulated light, the frequency
  • the sample inspection device according to (1) or (2), including at least one of a parameter value defining a unit waveform of modulated light or a parameter value defining a unit pulse waveform, and a pulse interval control parameter value.
  • the light source control device changes a light amount per unit time of the frequency modulated light emitted from the light source by a first control mode, and makes a light amount per unit time of the frequency modulated light emitted from the light source constant.
  • a light irradiation step of irradiating the photocathode with frequency modulated light An electron beam irradiation step of irradiating a sample with an electron beam emitted from the photocathode; Detecting the electrons emitted from the sample by a detector; A signal extraction step of extracting a signal of a frequency corresponding to the modulation frequency of the frequency modulated light from among the detection signals generated by the detector.
  • the sample inspection method according to (5) further including the step of changing at least one of a unit waveform of modulated light and a pulse interval of the frequency modulated light.
  • a sample inspection process including the light irradiation process, the electron beam irradiation process, the detection process, and the signal extraction process; And a durability inspection step performed before the sample inspection step;
  • the endurance inspection step includes inspecting the durability of the sample against the electron beam, or inspecting the durability of a sample of the same type as the sample against the electron beam.
  • the sample inspection method according to (5) wherein the control parameter value of the light source used in the sample inspection step is determined according to the inspection result of the endurance inspection step.
  • a sample inspection process including the light irradiation process, the electron beam irradiation process, the detection process, and the signal extraction process; And a durability inspection step performed before the sample inspection step;
  • the endurance inspection step includes inspecting the durability of the sample against the electron beam, or inspecting the durability of a sample of the same type as the sample against the electron beam.
  • the sample inspection method according to (6) wherein the control parameter value of the light source used in the sample inspection step is determined according to the inspection result of the endurance inspection step.
  • a first layer inspection step of inspecting the first layer of the sample A second layer inspection step of inspecting the second layer of the sample after the second layer is stacked above the first layer;
  • Each of the first layer inspection step and the second layer inspection step includes the light irradiation step, the electron beam irradiation step, the detection step, and the signal extraction step.
  • the electron beam is irradiated to the second layer so that the electron beam does not reach the first layer.
  • the present invention it is possible to provide a sample inspection apparatus and a sample inspection method in which noise is removed from a detection signal and the generated electron beam is effectively used for inspection.
  • FIG. 1 is a view schematically showing a sample inspection apparatus in the first embodiment.
  • FIG. 2 is a diagram schematically showing how a signal of a frequency corresponding to the frequency of the reference signal is extracted from the detection signal.
  • FIG. 3 is a figure which shows typically an example of the sample inspection apparatus in 2nd Embodiment.
  • FIG. 4A is a diagram for explaining the pulse amplitude, the pulse width, and the pulse interval.
  • FIG. 4B is a diagram for describing an amplitude of frequency modulated light and a time interval between two maximum amplitudes of frequency modulated light.
  • FIG. 5 is a diagram schematically showing how the type of sample and a plurality of control parameter values are associated and stored. In FIG.
  • the light source control device maintains the first control mode in which the light quantity per unit time of pulse light emitted from the pulse light source is varied, and the light quantity per unit time of pulse light emitted from the pulse light source remains constant. It is a figure which shows typically a mode which can selectively perform the 2nd control mode to carry out.
  • FIG. 7 is a view schematically showing an example of the sample inspection apparatus in the second embodiment.
  • FIG. 8 is a flowchart showing an example of the sample inspection method in the embodiment.
  • FIG. 9 is a view schematically showing a method of inspecting a sample which is a laminate.
  • FIG. 1 is a view schematically showing a sample inspection apparatus 1A in the first embodiment.
  • FIG. 2 is a diagram schematically showing how a signal of a frequency corresponding to the frequency of the reference signal S2 is extracted from the detection signal S1.
  • the sample inspection apparatus 1A in the first embodiment includes a light source 2, a photocathode 3, a detector 7, and a signal extractor 8.
  • the light source 2 is a light source that emits frequency-modulated frequency-modulated light.
  • the light source 2 is a pulsed light source for emitting pulsed light which is a kind of frequency modulated light
  • the light source 2 may be a light source that emits frequency-modulated light other than pulsed light (for example, a light source that emits frequency-modulated light whose intensity changes in a sine wave).
  • pulsed light is read as frequency modulated light.
  • frequency modulated light means light whose light intensity changes periodically.
  • pulsed light means light of which frequency in which light intensity is substantially zero among the frequency modulation light periodically exists.
  • the light source 2 is a light source that emits pulsed light L.
  • the light source 2 is preferably a laser light source that emits pulsed light L.
  • the light source 2 is, for example, a light source that emits high-power (watt-class), high-frequency (several hundreds MHz), short pulse (several hundreds femtoseconds) laser pulses.
  • the light source 2 may be a relatively inexpensive laser diode, an LED or the like.
  • the light source 2 is disposed outside the vacuum chamber CB.
  • the light source 2 may be disposed in the vacuum chamber CB.
  • the light source 2 An arbitrary configuration can be adopted as the light source 2.
  • the light source 2 it is possible to use a pulse light source using Q switch pulse oscillation. In this case, for example, by applying a voltage to the electro-optical element 21 included in the light source 2, the Q value of the electro-optical element changes. As a result, pulsed light synchronized with the timing of voltage application is obtained.
  • the pulse light source 2 it is possible to use the light source 2 which turns on / off the beam output of the continuous laser with a mechanical shutter (including a so-called light chopper).
  • a mechanical shutter instead of a mechanical shutter, a liquid crystal shutter, an electro-optic modulator, an acousto-optic modulator may be used to generate pulsed light from a continuous laser beam.
  • a semiconductor laser light source can be used as a third example of the light source 2.
  • pulse light can be obtained by turning on / off the current flowing through the semiconductor element.
  • As a fourth example of the light source 2 it is possible to use a pulse light source using a mode lock method.
  • the photocathode 3 is disposed in a vacuum chamber CB.
  • the photocathode 3 (more specifically, the semiconductor photocathode) emits an electron beam B (more specifically, a pulsed electron beam) in response to the reception of the pulsed light L emitted by the light source 2. More specifically, electrons in the photocathode 3 are excited by pulsed light, and the excited electrons are emitted from the photocathode 3. The emitted electrons are accelerated by the electric field generated by the anode 4 and the cathode (including the photocathode 3) to form an electron beam.
  • FIG. 1 the example shown in FIG.
  • pulsed light is emitted from the front side of the photocathode 3, but alternatively, pulsed light may be emitted from the back side of the photocathode 3.
  • the photocathode 3 is disposed in the photocathode storage container 5 provided with the electron beam passage hole 5h.
  • a processing material 5 m may be disposed for EA surface treatment (in other words, electron affinity reduction treatment) of the photocathode 3.
  • the photocathode material for forming the photocathode 3 is not particularly limited, and examples thereof include III-V semiconductor materials and II-VI semiconductor materials. Specific examples thereof include AlN, Ce 2 Te, GaN, K 2 CsSb, AlAs, GaP, GaAs, GaSb, InAs, and mixed crystals thereof. Other examples include metals, and specific examples include Mg, Cu, Nb, LaB 6 , SeB 6 , Ag and the like.
  • the photocathode 3 can be fabricated by subjecting the semiconductor photocathode material to an EA surface treatment, and the photocathode 3 can select electron excitation light in a near ultraviolet-infrared wavelength region according to the gap energy of the semiconductor. In addition, the electron beam source performance (quantum yield, durability, monochromaticity, time response, spin polarization) according to the application of the electron beam is made possible by the selection of the material and structure of the semiconductor.
  • the electron beam B emitted from the photocathode 3 is incident on the sample T.
  • the sample T is supported by the sample stage 6.
  • the sample T is a wafer, an integrated circuit, a NAND flash memory, a DRAM, or an intermediate product (semi-finished product) thereof, or any electronic material.
  • the sample T may be a sample that is easily damaged by electron beam irradiation, such as a battery material, an LED, an LD, a biological sample, or an organic substance.
  • the sample T and the sample stand 6 are disposed in the vacuum chamber CB.
  • Electrons such as reflected electrons, secondary electrons, and transmitted electrons are emitted from the sample T irradiated with the electron beam B.
  • the reflected electrons are electrons of the electrons in the electron beam B that are reflected by the sample T.
  • Secondary electrons are electrons emitted from the inside of the sample T due to the electron beam B being irradiated to the sample T.
  • the transmission electrons are electrons among the electrons in the electron beam B that have passed through the sample T.
  • the detector 7 detects an electron e such as a backscattered electron, a secondary electron, or a transmission electron emitted from a sample, and generates a detection signal S1.
  • Detector 7 contains arbitrary electronic detectors, such as a scintillator and a microchannel plate, for example. In the example shown in FIG. 1, the detector 7 is disposed in the vacuum chamber CB.
  • the electron detection unit of the detector 7 may be disposed in the vacuum chamber CB, and any component other than the electron detection unit of the detector 7 may be disposed outside the vacuum chamber.
  • the signal extractor 8 extracts a signal having a frequency corresponding to the pulse frequency of the pulsed light L (pulsed light emitted from the light source 2) from the detection signal S1 generated by the detector 7. For example, the signal extractor 8 receives the detection signal S1 from the detector 7, and receives from the light source 2 a signal (reference signal S2) corresponding to the pulse waveform of pulsed light. Then, the signal extractor 8 extracts, from the detection signal S1 received from the detector 7, a signal of a frequency corresponding to the frequency of the reference signal S2.
  • the “pulse frequency” can be read as “modulation frequency” (in other words, the frequency of intensity change of the frequency modulation light).
  • the pulse frequency is also a type of modulation frequency.
  • the signal extractor 8 for example, a known lock-in amplifier can be used.
  • the lock-in amplifier receives the detection signal S1 and the reference signal S2, and extracts a signal of a frequency corresponding to the frequency of the reference signal S2 from the detection signal S1.
  • any electronic circuit for example, a frequency filter
  • a computer may be used as the signal extractor 8. In this case, the computer extracts a signal of a frequency corresponding to the frequency of the reference signal from among the detection signals, using any computer program that extracts a specific frequency component from the signal containing noise.
  • signal data corresponding to the detection signal generated by the detector 7 and frequency data corresponding to the frequency of the reference signal are input to the computer, and the computer uses the computer program described above to input the aforementioned signal.
  • the data is converted into data in which frequency components corresponding to the frequency of the reference signal are emphasized and output.
  • Control signals for operating the light source 2 (for example, voltage signals input to the electro-optical element 21 of the light source, drive signals for driving the mechanical shutter of the light source, ON / OFF signals input to the semiconductor laser, etc.) Have the same frequency as the pulse frequency of Therefore, it is possible to use a control signal for operating the light source 2 as a reference signal input to the signal extractor 8.
  • a control signal for operating the light source 2 as a reference signal input to the signal extractor 8.
  • a laser light source using a passive Q switch, a laser light source using a mode lock method, or the like is used as the light source 2, there is no need to send a control signal for frequency modulation to the light source 2.
  • a part of the pulsed light emitted from the light source 2 may be received by the photodiode, and an electrical signal generated by the received light may be used as a reference signal to be input to the signal extractor 8.
  • the detection signal S1 transmitted from the detector 7 to the signal extractor 8 contains various noises.
  • a signal having a frequency corresponding to the pulse frequency of the pulsed light L is highly likely to be a signal generated due to the sample T receiving the pulsed electron beam B.
  • the signal of the frequency corresponding to the pulse frequency of the pulsed light L is the state (structure, shape, material, etc.) of the region (region in the sample T) irradiated with the pulsed electron beam ) And it can be said that the signal is a signal from which noise has been removed.
  • the electron beam emitted from the photocathode 3 is effectively utilized for inspection.
  • a blanking slit there is also a disadvantage that the amount of electrons is significantly reduced before and after passing through the blanking slit.
  • positional deviation occurs in the irradiation position of the electron beam as the blanking electrode is controlled at high speed.
  • the sample inspection apparatus 1A in the first embodiment synergistically exhibits the following three effects.
  • the first effect is that by irradiating the sample T with the electron beam B and inspecting the sample, the diameter of the inspection spot can be made smaller compared to the case where the sample is irradiated with light and the sample is inspected. .
  • the sample T with an electron beam to inspect the sample it is possible to inspect the state (structure, shape, material, etc.) of a finer area.
  • the second effect is that by using the photocathode 3 as an electron beam source, an electron beam B with high intensity can be generated.
  • an electron beam B with high intensity can be generated.
  • the sample T is scanned using an electron beam.
  • the intensity of the electron beam is several times or more (for example, 10 times or more) as compared with the case where other electron beam sources are used.
  • the semiconductor photocathode has high quantum efficiency as compared to a metal photocathode, so that it can be sufficiently excited even by light having a relatively low peak power like a semiconductor laser (or LED). Therefore, when a semiconductor photocathode is used as the photocathode 3, the degree of freedom in selecting a unit waveform of the frequency modulation light irradiated to the photocathode 3 is increased. For example, when frequency modulated light of sine waveform is used as frequency modulated light, noise removal characteristics in the signal extractor 8 (for example, lock-in amplifier) are improved as compared with the case of using pulsed light of rectangular waveform. .
  • the modulation frequency of the frequency modulation light can be freely selected. Therefore, by adopting a frequency different from the known noise frequency as the modulation frequency of the frequency modulated light emitted from the light source 2, the noise removal characteristic in the signal extractor 8 (for example, lock-in amplifier) is further improved. Can. When a mode-locked laser or a passive Q-switched laser is used as the light source 2, it is difficult to freely select the modulation frequency of the frequency modulated light.
  • the third effect is that noise components included in the detection signal can be effectively removed by extracting a signal of a frequency corresponding to the pulse frequency of the pulsed light L from the detection signal generated by the detector 7 It is.
  • the inspection time irradiation time of the electron beam
  • the first embodiment includes a signal extractor 8 that extracts a signal of a frequency corresponding to the pulse frequency of pulsed light from the detection signal S1. Therefore, even when the signal indicating the state of the sample (structure, shape, material, etc.) is weak compared to the noise, the signal indicating the state of the sample is effectively extracted from the noise. be able to. Therefore, in order to improve the S / N ratio of the detection signal, it is not necessary to lengthen the inspection time at each inspection spot, and the scanning speed of the electron beam can be increased.
  • the problems caused by the small spot diameter of the electron beam are the improvement of the intensity of the electron beam by using the photocathode 3 and the reduction of noise by using the signal extractor 8. It is an epoch-making point in that it can be solved by synergetic effects and speeding up of sample inspection can be achieved.
  • the S / N ratio decreases due to the decrease in the generation efficiency of the secondary electrons emitted from the sample T, and the like.
  • the problem of the decrease in the S / N ratio is overcome by extracting the signal of the frequency corresponding to the frequency of the pulsed light from the detection signal having the low S / N ratio. it can. That is, when the sample inspection apparatus 1A in the first embodiment is used, it is possible to inspect with high precision even a sample which has conventionally been difficult to inspect by the electron beam B, that is, a sample which is easily damaged by the electron beam. It becomes.
  • the pulse frequency of the pulsed light L emitted from the light source 2 is preferably, for example, 50 MHz or more, 100 MHz or more, or 150 MHz or more.
  • the pulse frequency is preferably 50 MHz or more, 100 MHz or more, or 150 MHz or more.
  • the sample inspection apparatus 1A in the first embodiment may be an apparatus that detects a defect in a sample, or may be a microscope that visualizes the microstructure of the sample.
  • FIG. 3 is a view schematically showing an example of a sample inspection apparatus 1B in the second embodiment.
  • FIG. 4A is a diagram for describing the pulse amplitude PA, the pulse width PW, and the pulse interval PI.
  • FIG. 4B is a diagram for describing an amplitude ZA of frequency modulated light and a time interval ZW between two maximum amplitudes of frequency modulated light.
  • FIG. 5 is a diagram schematically showing how the type of sample and a plurality of control parameter values are associated and stored.
  • the light source control device 9 changes the light amount per unit time of the pulsed light L emitted from the light source 2 in the first control mode, and the light amount per unit time of the pulsed light emitted from the light source 2 is constant. It is a figure which shows typically a mode which can selectively perform the 2nd control mode maintained to.
  • FIG. 7 is a view schematically showing an example of a sample inspection apparatus 1B in the second embodiment.
  • the sample inspection apparatus 1B in the second embodiment includes a light source 2, a photocathode 3, a detector 7, and a signal extractor 8.
  • the sample inspection apparatus 1B in the second embodiment may include at least one of the vacuum chamber CB, the anode 4, the photocathode storage container 5, and the sample table 6.
  • the light source 2, the photocathode 3, the anode 4, the photocathode storage container 5, the sample stand 6, the detector 7, the signal extractor 8 and the vacuum chamber CB in the second embodiment are the light source 2 in the first embodiment, the photo The configuration is the same as the cathode 3, the anode 4, the photocathode storage container 5, the sample stage 6, the detector 7, the signal extractor 8, and the vacuum chamber CB, and thus the description thereof will not be repeated.
  • the sample inspection apparatus 1 ⁇ / b> B includes a light source control device 9 that controls the operation of the light source 2.
  • the light source control device 9 controls the light source 2 in accordance with the control parameter value.
  • the control parameter values include a pulse amplitude control parameter value, a pulse width control parameter value, a parameter value defining a unit pulse waveform (eg, a parameter value defining a rectangular wave, a sine wave, a sawtooth wave, a Gaussian waveform etc.), and At least one of the interval control parameter values is included.
  • the control parameter values may include at least two, three or all of pulse amplitude control parameter values, pulse width control parameter values, parameter values defining pulse waveforms, and pulse interval control parameter values. . As shown in FIG.
  • the pulse amplitude PA Pulse Amplitude
  • PW Pulse Width
  • Pulse duration PI pulse OFF time (in other words, duration of non-bright state of pulsed light).
  • the light source control device 9 controls the light source 2 according to the pulse amplitude control parameter value, whereby the light source 2 emits pulse light having a desired pulse amplitude. Further, the light source control device 9 controls the light source 2 in accordance with the pulse width control parameter value, whereby the light source 2 emits pulse light having a desired pulse width. Further, the light source control device 9 controls the light source 2 according to the pulse interval control parameter value, whereby the light source 2 emits pulse light having a desired pulse interval.
  • the waveform for example, pulse amplitude, pulse width, pulse interval, unit pulse
  • the waveform for example, pulse amplitude, pulse width, pulse interval, unit pulse
  • the sample inspection apparatus 1B includes a storage device M (ROM, RAM, hard disk, etc.) that stores first related data DA in which the type of the sample T and the control parameter value are associated.
  • the storage device M associates and stores the first sample T1 and a plurality of control parameter values. More specifically, the storage device M stores the first sample T1, the pulse amplitude control parameter value VA1, the pulse width control parameter value VW1, and the pulse interval control parameter value VI1 in association with each other. Further, in the example shown in FIG.
  • the storage device M stores the second sample T2 and a plurality of control parameter values in association with each other. More specifically, the storage device M stores the second sample T2, the pulse amplitude control parameter value VA2, the pulse width control parameter value VW2, and the pulse interval control parameter value VI2 in association with each other.
  • the pulse amplitude control parameter value VA1 stored in the storage device M may be smaller than the pulse amplitude control parameter value VA2 stored in the storage device M.
  • the pulse width control parameter value VW1 stored by the storage device M may be smaller than the pulse width control parameter value VW2 stored by the storage device M.
  • weaker pulsed light and weaker electron beam
  • stronger pulsed light and stronger electron beam
  • the pulse width control parameter value VW1 stored in the storage device M may be smaller than the pulse width control parameter value VW2 stored in the storage device M.
  • the pulse interval control parameter value VI1 stored in the storage device M may be larger than the pulse interval control parameter value VI2 stored in the storage device M.
  • the sample inspection apparatus 1B preferably includes an input device 91 that receives an input of the type of the sample.
  • the light source control device 9 controls the control parameter value corresponding to the input type of sample based on the first association data stored in the storage device M. Extract Then, the light source control device 9 controls the operation of the light source 2 using the control parameter value.
  • the type of sample T may be identified automatically.
  • the sample inspection apparatus 1B includes a sample recognition apparatus such as a camera that specifies the type of sample.
  • the light source control device 9 extracts a control parameter value corresponding to the specified sample type based on the information on the sample type specified by the sample recognition device and the first association data stored in the storage device M. . Then, the light source control device 9 controls the operation of the light source 2 using the control parameter value.
  • the light source control device 9 changes the light amount per unit time of the pulsed light L emitted from the light source 2 in a first control mode, and per unit time of pulsed light emitted from the light source 2. It is possible to selectively execute the second control mode in which the amount of light of the light source is maintained constant.
  • the durability of the sample T to the electron beam B can be inspected.
  • a sample sample is used as the sample T.
  • the light amount per unit time of the pulsed light is gradually increased.
  • the amount of light per unit time of the pulsed light is increased until the sample T is damaged by the electron beam B.
  • the presence or absence of damage to the sample T is determined, for example, by image analysis.
  • the sample T is not damaged when the light amount per unit time of the pulsed light is less than the first threshold Th1, and the sample T is damaged when it is larger than the second threshold Th2.
  • the light amount per unit time of the pulse light is equal to or less than the above-mentioned first threshold Th1. It is set.
  • the first threshold Th1 and the second threshold Th2 may be the same value, when there is a range in which the presence or absence of damage to the sample T is not clear, the first threshold Th1 and the second threshold Th2 are mutually different. It may be a different value.
  • the sample for example, a real product
  • the sample T can be inspected without damaging the sample T.
  • the amount of light per unit time of pulsed light is maintained constant. From the viewpoint of suppressing damage to the sample T, in the second control mode, the light amount per unit time of the pulsed light is maintained to be equal to or less than the above-described first threshold Th1.
  • the example in which the light amount per unit time of the pulsed light is gradually increased in the first control mode has been described.
  • the amount of light per unit time of pulsed light may be gradually decreased.
  • at least one of the pulse amplitude of the pulsed light, the pulse width of the pulsed light, and the pulse interval of the pulsed light is changed.
  • the inspection speed of the sample T can be increased.
  • the sample inspection apparatus 1B includes a power supply 40 for applying a voltage between the anode 4 and the photocathode 3 (more specifically, the cathode including the photocathode 3), the anode 4 and the photo. And a voltage controller 42 for controlling the magnitude of the voltage applied between the cathode 3 and the cathode 3.
  • the electron beam B can reach a deeper region of the sample T. In other words, deeper regions of the sample T can be inspected.
  • the voltage applied between the anode 4 and the photocathode 3 is small, the surface layer portion of the sample can be intensively inspected.
  • Mechanism to scan the sample by electron beam B An example of a mechanism for scanning the sample by the electron beam B will be described with reference to FIG.
  • the sample inspection apparatus 1 ⁇ / b> B may include a drive device 61 that moves the sample table 6.
  • the sample T is scanned by the electron beam B by moving the sample table 6.
  • the moving direction of the sample table 6 moved by the driving device 61 is, for example, a direction parallel to the inspection surface of the sample T.
  • the sample inspection apparatus 1B may include a driving device 31 for moving the photocathode 3.
  • the sample T is scanned by the electron beam B by moving the photocathode 3.
  • the moving direction of the photocathode 3 moved by the driving device 31 is, for example, a direction parallel to the inspection surface of the sample T.
  • the sample inspection apparatus 1B may include an electron beam deflector 33 that bends the electron beam emitted from the photocathode 3.
  • the sample T is scanned by the electron beam B by deflecting the electron beam B emitted from the photocathode 3.
  • the electron beam deflection device 33 includes, for example, a deflection electrode that generates an electric field in a direction intersecting the traveling direction of the electron beam B.
  • the sample inspection apparatus 1B is a storage unit 11 that records the signal extracted by the signal extractor 8 and / or a display that visually displays the signal extracted by the signal extractor 8.
  • An apparatus 12 may be provided.
  • the storage unit 11 may associate and record the irradiation position of the electron beam B in the sample T and the signal extracted by the signal extractor 8.
  • the defect position in the sample T can be identified by referring to the relationship between the irradiation position and the intensity of the signal extracted by the signal extractor 8.
  • the display device 12 may display the irradiation position of the electron beam B in the sample T in association with the signal extracted by the signal extractor 8.
  • FIG. 8 is a flowchart showing an example of the sample inspection method in the embodiment.
  • the sample inspection method in the embodiment may be performed using the sample inspection apparatus 1A in the first embodiment or the sample inspection apparatus 1B in the second embodiment, or may be performed using another sample inspection apparatus. It is also good.
  • the pulsed light L is emitted to the photocathode 3.
  • the first step ST1 is a pulsed light irradiation process.
  • the pulse frequency of the pulsed light L may be changed according to the type of the sample T to be inspected. For example, when the sample T is the first sample T1, the pulse frequency of the pulse light is the first frequency F1, and when the sample T is the second sample T2, the pulse frequency of the pulse light is different from the first frequency It may be set to two frequencies F2.
  • control parameter values for example, pulse amplitude control parameter value, pulse width control parameter value, unit pulse waveform
  • the specified parameter value, at least one control parameter value of the pulse interval control parameter value may be changed.
  • the pulse amplitude control parameter value, the pulse width control parameter value, and the pulse interval control parameter value are respectively set as the value VA1, the value VW1, and the value VI1.
  • the pulse amplitude control parameter value, the pulse width control parameter value, and the pulse interval control parameter value may be set to the value VA2, the value VW2, and the value VI2, respectively.
  • the voltage applied between the anode 4 and the photocathode 3 (more specifically, the cathode including the photocathode 3) is changed according to the type of the sample T to be inspected. May be For example, when the sample T is the first sample T1, the voltage applied between the anode 4 and the photocathode 3 is the voltage V1, and when the sample T is the second sample T2, the anode 4 and the photocathode 3 And the voltage applied between them may be a voltage V2 different from the voltage V1.
  • the sample T is irradiated with the electron beam B emitted from the photocathode 3.
  • the second step ST2 is an electron beam irradiation process.
  • the emission of the electron beam B from the photocathode 3 in the second step ST 2 is a phenomenon that occurs due to the pulsed light being irradiated to the photocathode 3. For this reason, when the pulse frequency of the pulsed light irradiated to the photocathode 3 is the first frequency F1, the electron beam B is a pulsed electron beam whose fluctuation frequency of the amount of electrons is the first frequency F1.
  • the third step ST3 is a detection step of detecting electrons.
  • the detector 7 is disposed on the same side as the photocathode 3 with respect to the sample T.
  • the detector 7 is disposed on the opposite side of the photocathode 3 to the sample T.
  • the emission of electrons (reflected electrons, secondary electrons, or transmitted electrons) from the sample T in the third step ST3 is a phenomenon that occurs due to the electron beam B being irradiated to the sample T. Therefore, when the fluctuation frequency of the amount of electrons in the electron beam B irradiated to the sample T is the first frequency F1, the signal SA having the first frequency F1 among the detection signals generated by the detector 7 ( 2) can be said to be a signal (non-noise signal) generated due to the irradiation of the electron beam B.
  • the fourth step ST4 a signal having a frequency corresponding to the pulse frequency of the pulsed light L is extracted from the detection signal generated by the detector 7.
  • the fourth step ST4 is a signal extraction step.
  • the signal extraction in the fourth step ST4 is performed using a signal extractor 8 such as a lock-in amplifier. More specifically, for example, when the pulse frequency of the pulsed light emitted from the light source 2 is the first frequency F1, the signal SA having the first frequency F1 is selected from among the detection signals S1 generated by the detector 7. It is extracted.
  • a signal extractor 8 such as a lock-in amplifier. More specifically, for example, when the pulse frequency of the pulsed light emitted from the light source 2 is the first frequency F1, the signal SA having the first frequency F1 is selected from among the detection signals S1 generated by the detector 7. It is extracted.
  • a sample inspection process is configured by the above-described pulse light irradiation process, the electron beam irradiation process, the detection process, and the signal extraction process.
  • a durability inspection step of inspecting the durability of the sample T or a sample of the same type as the sample T may be performed prior to the sample inspection step.
  • the durability of the sample T (or the sample T 'of the same type as the sample T) to the electron beam is inspected.
  • the endurance inspection step the amount of light per unit time of the pulsed light emitted from the light source 2 is varied.
  • the relationship between the light amount per unit time of the pulsed light L emitted from the light source 2 and the damage of the sample T (or the sample T 'of the same type as the sample T) is determined.
  • the relationship is such that, for example, when the light amount per unit time of the pulsed light is less than the first threshold Th1, the sample T (or the sample T ′ of the same type as the sample T) is not damaged and is larger than the second threshold Th2.
  • the relationship is such that the sample T (or the sample T ′ which is the same as the sample T) is damaged.
  • control parameter value of the light source 2 used in the sample inspection process is determined in accordance with the inspection result of the endurance inspection process.
  • control parameter values pulse amplitude control parameter value, pulse width control parameter value, pulse interval control parameter value, etc.
  • the control parameter is determined such that the amount of light per unit time of the pulsed light emitted from the light source 2 is equal to or less than the first threshold Th1 and close to the first threshold Th1.
  • the intensity of the electron beam irradiated to the sample can be optimized according to the durability of the sample.
  • the inspection method of the sample T which is a laminated body will be described with reference to FIG.
  • the first layer LA1 of the sample T is inspected, and then the second layer LA2 stacked on the first layer LA1 is inspected.
  • the first layer inspection step of inspecting the first layer LA1 of the sample T includes the above-described pulsed light irradiation step, the electron beam irradiation step, the detection step, and the signal extraction step.
  • the electron beam B is irradiated to the first layer LA1.
  • the second layer LA2 is stacked above the first layer LA1.
  • the first layer LA1 is covered by the second layer LA2.
  • the second layer LA2 is directly laminated on the first layer LA1, but the second layer LA2 is formed on the first layer LA1 through another layer. It may be laminated.
  • the second layer inspection step of inspecting the second layer LA2 of the sample T includes the above-described pulsed light irradiation step, the electron beam irradiation step, the detection step, and the signal extraction step.
  • the electron beam B does not reach the first layer LA1, that is, the electron beam B does not substantially reach the first layer LA1.
  • electron beam B is applied, for example, between anode 4 and photocathode 3 (more specifically, the cathode including photocathode 3) so as not to reach first layer LA1.
  • the voltage is set.
  • the focus of the electron lens system may be set so that the electron beam B does not reach the first layer LA1.
  • the emission of electrons from the first layer LA1 is suppressed when the second layer LA2 is inspected. Therefore, the state of the second layer LA2 can be inspected more accurately.
  • the second photocathode is irradiated with frequency-modulated light having a second frequency from the second light source, and the second electron beam is irradiated from the second photocathode toward the second portion of the sample.
  • the electrons reflected by the first portion are received by the detector 7 and the electrons reflected by the second portion (or transmitted through the second portion) are detected by the detector 7 To receive.
  • the signal extractor 8 extracts a detection signal corresponding to the first frequency and a detection signal corresponding to the second frequency.
  • the frequency of the frequency modulation light may not be different for each light source 2, for example, the frequency of the frequency modulation light irradiated from the first and second light sources 2 may be the same. In that case, since it is not possible to distinguish and extract detection signals corresponding to the same frequency from a single detector 7, the same number of detectors 7 as the light sources 2 may be provided.
  • one photocathode 3 and the plurality of light sources 2 may be set.
  • the photocathode 3 can emit an electron beam B when it receives the frequency modulated light emitted from the light source 2. Therefore, a set of the light source 2 and the photocathode 3 described above is provided even if the number of the photocathode 3 is one by making the regions of the photocathode 3 receiving the frequency modulated light emitted from the plurality of light sources 2 different. The same effect as the example of preparing a plurality of is obtained. Further, a plurality of sets of one photocathode 3 and a plurality of light sources 2 may be prepared.
  • the noise of the detection signal is removed, and the generated electron beam is effectively utilized for the inspection. Therefore, it is useful for the maker of a sample inspection apparatus and the maker who inspects a sample using a sample inspection apparatus and a sample inspection method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

検出信号からノイズが除去され、かつ、生成された電子ビームが検査に有効に活用される試料検査装置、および、試料検査方法を提供することを課題とする。 試料検査装置は、周波数変調光を射出する光源と、周波数変調光の受光に応じて、電子ビームを放出するフォトカソードと、電子ビームが照射された試料から放出される電子を検出し、検出信号を生成する検出器と、検出信号の中から、周波数変調光の変調周波数に対応する周波数の信号を抽出する信号抽出器とを具備する。

Description

試料検査装置、および、試料検査方法
 本発明は、試料検査装置、および、試料検査方法に関し、特に、フォトカソードから放出される電子ビームを用いて試料を検査する試料検査装置、および、試料検査方法に関する。
 光、または、電子線(電子ビーム)を用いて試料の検査を行う試料検査装置が知られている。
 関連する技術として、特許文献1には、電子顕微鏡吸収電流像観察装置が開示されている。特許文献1に記載の観察装置は、電子線を所定の周波数により変調する手段と、該変調された電子線を試料に照射する手段と、前記照射された電子線により試料に励起された電流の変調周波数成分を測定する手段とを備える。
 特許文献1に記載の電子顕微鏡吸収電流像観察装置では、ブランキング電極にパルス状の電圧を印加している。電子線の一部は、パルス状の電圧を受けて曲げられる。曲げられた電子線は、ブランキングスリットを通過することができない。その結果、ブランキングスリットを通過する電子線は、パルス電子線となる。
 特許文献1に記載の電子顕微鏡吸収電流像観察装置を用いた場合、試料によって吸収される吸収電流信号は、電子線のブランキング周波数を中心とした信号となる。そして、特許文献1に記載の電子顕微鏡吸収電流像観察装置では、ブランキング周波数に合わせたバンドパスフィルタを用いることで、ノイズの低減を図っている。
 また、特許文献2には、半導体デバイス検査装置が開示されている。特許文献2に記載の半導体デバイス検査装置は、光を出射するレーザ光源と、当該光の半導体デバイスでの反射光を検出し、検出信号を出力する光センサと、検出信号に対して測定周波数帯域及び参照周波数帯域を設定する周波数帯域設定部と、測定周波数帯域及び参照周波数帯域における検出信号から測定信号及び参照信号を生成するスペクトラムアナライザと、測定信号と参照信号との差分を算出することで、解析信号を取得する信号取得部と、を備える。また、特許文献2に記載の半導体デバイス検査装置では、ロックイン法(信号のパルス列に対して同期した周波数を取得することによるS/N向上手法)が用いられている。
特開2005-71775号公報 特開2014-92514号公報
 特許文献1に記載の電子顕微鏡吸収電流像観察装置では、ブランキング電極を用いて、電子線の一部を積極的に排除することにより、パルス電子線を形成している。このため、試料の検査に寄与しない無駄な電子線が生じ、かつ、当該無駄な電子線を生み出すための付加的な装置(ブランキング電極およびブランキングスリット等)が必要となる。
 特許文献2に記載の半導体デバイス検査装置は、半導体デバイスに光を照射して半導体デバイスを検査する装置である。光を用いて試料を検査する場合、電子線を用いて試料を検査する場合と比較して、検査スポット径(光のスポット径)が大きくなる。このため、微細構造の検査を十分に行うことができない。
 そこで、本発明の目的は、検出信号からノイズが除去され、かつ、生成された電子ビームが検査に有効に活用される試料検査装置、および、試料検査方法を提供することにある。本発明のその他の任意付加的な効果は、発明を実施するための形態において明らかにされる。
 本発明は、以下に示す、試料検査装置、および、試料検査方法に関する。
(1)周波数変調光を射出する光源と、
 前記周波数変調光の受光に応じて、電子ビームを放出するフォトカソードと、
 前記電子ビームが照射された試料から放出される電子を検出し、検出信号を生成する検出器と、
 前記検出信号の中から、前記周波数変調光の変調周波数に対応する周波数の信号を抽出する信号抽出器と
 を具備する
 試料検査装置。
(2)前記信号抽出器は、ロックインアンプを含み、
  前記ロックインアンプは、前記検出信号および参照信号を受信し、
  前記ロックインアンプは、前記検出信号の中から、前記参照信号の周波数に対応する周波数の信号を抽出する
 上記(1)に記載の試料検査装置。
(3)制御パラメータ値に応じて前記光源の動作を制御する光源制御装置と、
 前記試料の種類と、前記制御パラメータ値とが関連付けられた第1関連データを記憶する記憶装置と
 を更に具備し、
 前記制御パラメータ値は、前記周波数変調光の振幅制御パラメータ値またはパルス振幅制御パラメータ値、前記周波数変調光の2つの最大振幅間の時間間隔を規定する制御パラメータ値またはパルス幅制御パラメータ値、前記周波数変調光の単位波形を規定するパラメータ値または単位パルス波形を規定するパラメータ値、および、パルス間隔制御パラメータ値のうちの少なくとも1つを含む
 上記(1)または(2)に記載の試料検査装置。
(4)前記光源の動作を制御する光源制御装置を更に具備し、
 前記光源制御装置は、前記光源から射出される前記周波数変調光の単位時間当たりの光量を変動させる第1制御モードと、前記光源から射出される前記周波数変調光の単位時間当たりの光量を一定に維持する第2制御モードとを選択的に実行可能である
 上記(1)または(2)に記載の試料検査装置。
(5)周波数変調光をフォトカソードに照射する光照射工程と、
 前記フォトカソードから放出された電子ビームを試料に照射する電子ビーム照射工程と、
 前記試料から放出された電子を、検出器によって検出する検出工程と、
 前記検出器によって生成された検出信号の中から、前記周波数変調光の変調周波数に対応する周波数の信号を抽出する信号抽出工程と
 を具備する試料検査方法。
(6)前記試料の種類に応じて、前記周波数変調光の振幅または前記周波数変調光のパルス振幅、前記周波数変調光の2つの最大振幅間の時間間隔または前記周波数変調光のパルス幅、前記周波数変調光の単位波形、および、前記周波数変調光のパルス間隔のうちの少なくとも一つを変更する工程を更に含む
 上記(5)に記載の試料検査方法。
(7)前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含む試料検査工程と、
 前記試料検査工程の前に実行される耐久検査工程と
 を具備し、
 前記耐久検査工程は、前記電子ビームに対する前記試料の耐久性を検査すること、または、前記電子ビームに対する前記試料と同種の試料の耐久性を検査することを含み、
 前記耐久検査工程の検査結果に応じて、前記試料検査工程において使用される光源の制御パラメータ値が決定される
 上記(5)に記載の試料検査方法。
(8)前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含む試料検査工程と、
 前記試料検査工程の前に実行される耐久検査工程と
 を具備し、
 前記耐久検査工程は、前記電子ビームに対する前記試料の耐久性を検査すること、または、前記電子ビームに対する前記試料と同種の試料の耐久性を検査することを含み、
 前記耐久検査工程の検査結果に応じて、前記試料検査工程において使用される光源の制御パラメータ値が決定される
 上記(6)に記載の試料検査方法。
(9)前記試料の第1層を検査する第1層検査工程と、
 前記第1層の上方に第2層が積層された後に、前記試料の前記第2層を検査する第2層検査工程と
 を具備し、
 前記第1層検査工程および前記第2層検査工程の各々は、前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含み、
 前記第2層検査工程では、前記電子ビームが前記第1層に達しないように、前記電子ビームが前記第2層に照射される
 上記(5)乃至(8)のいずれか一つに記載の試料検査方法。
 本発明により、検出信号からノイズが除去され、かつ、生成された電子ビームが検査に有効に活用される試料検査装置、および、試料検査方法を提供できる。
図1は、第1の実施形態における試料検査装置を模式的に示す図である。 図2は、検出信号の中から、参照信号の周波数に対応する周波数の信号が抽出される様子を模式的に示す図である。 図3は、第2の実施形態における試料検査装置の一例を模式的に示す図である。 図4Aは、パルス振幅、パルス幅、パルス間隔について説明するための図である。 図4Bは、周波数変調光の振幅、周波数変調光の2つの最大振幅間の時間間隔について説明するための図である。 図5は、試料の種類と、複数の制御パラメータ値とが関連付けられて記憶されている様子を模式的に示す図である。 図6は、光源制御装置が、パルス光源から射出されるパルス光の単位時間当たりの光量を変動させる第1制御モードと、パルス光源から射出されるパルス光の単位時間当たりの光量を一定に維持する第2制御モードとを選択的に実行可能な様子を模式的に示す図である。 図7は、第2の実施形態における試料検査装置の一例を模式的に示す図である。 図8は、実施形態における試料検査方法の一例を示すフローチャートである。 図9は、積層体である試料の検査方法を模式的に示す図である。
 以下、図面を参照しつつ、実施形態における試料検査装置1、および、試料検査方法について詳しく説明する。なお、本明細書において、同種の機能を有する部材には、同一または類似の符号が付されている。そして、同一または類似の符号の付された部材について、繰り返しとなる説明が省略される場合がある。
(第1の実施形態)
 図1および図2を参照して、第1の実施形態における試料検査装置1Aについて説明する。図1は、第1の実施形態における試料検査装置1Aを模式的に示す図である。図2は、検出信号S1の中から、参照信号S2の周波数に対応する周波数の信号が抽出される様子を模式的に示す図である。
 第1の実施形態における試料検査装置1Aは、光源2と、フォトカソード3と、検出器7と、信号抽出器8とを具備する。
 光源2は、周波数変調された周波数変調光を射出する光源である。以下において、光源2が、周波数変調光の一種であるパルス光を射出するパルス光源である例について説明される。代替的に、光源2は、パルス光以外の周波数変調光を射出する光源(例えば、強度がサイン波状に変化する周波数変調光を射出する光源)であってもよい。この場合、以下の説明において、パルス光は、周波数変調光に読み替えられる。なお、本明細書において、周波数変調光は、光の強度が周期的に変化する光を意味する。また、本明細書において、パルス光は、周波数変調光のうち、光の強度が実質的にゼロになる期間が周期的に存在する光を意味する。
 図1に記載の例において、光源2は、パルス光Lを射出する光源である。高強度のパルス光を得る観点から、光源2は、パルス光Lを射出するレーザー光源であることが好ましい。光源2は、例えば、高出力(ワット級)、高周波数(数百MHz)、短パルス(数百フェムト秒)のレーザーパルスを射出する光源である。代替的に、光源2は、比較的安価なレーザーダイオード、LED等であっても構わない。図1に記載の例では、光源2は、真空チャンバーCB外に配置されている。代替的に、光源2を真空チャンバーCB内に配置しても構わない。
 光源2としては、任意の構成を採用可能である。光源2の第1例として、Qスイッチパルス発振を用いたパルス光源を用いることが可能である。この場合、例えば、光源2内に含まれる電気光学素子21に電圧を印加することにより、電気光学素子のQ値が変化する。その結果、電圧印加のタイミングに同期したパルス光が得られる。パルス光源2の第2例として、連続レーザーのビーム出力を機械的シャッター(いわゆる、光チョッパーを含む)でON/OFFする光源2を用いることが可能である。機械的シャッターに代えて、液晶シャッター、電気光学変調器、音響光学変調器を用いて、連続レーザービームから、パルス光を生成してもよい。光源2の第3例として、半導体レーザー光源を用いることが可能である。この場合、半導体素子に流す電流をON/OFFすることにより、パルス光が得られる。光源2の第4例として、モードロック法を利用したパルス光源を用いることが可能である。
 図1に記載の例では、フォトカソード3は、真空チャンバーCB内に配置されている。フォトカソード3(より具体的には、半導体フォトカソード)は、光源2が射出するパルス光Lの受光に応じて、電子ビームB(より具体的には、パルス状の電子ビーム)を放出する。より具体的には、フォトカソード3中の電子は、パルス光によって励起され、励起された電子が、フォトカソード3から放出される。放出された電子は、アノード4と(フォトカソード3を含む)カソードとによって生成される電界によって加速され、電子ビームを形成する。図1に記載の例では、パルス光が、フォトカソード3の正面側から照射されているが、代替的に、パルス光が、フォトカソード3の背面側から照射されるようにしてもよい。また、図1に記載の例では、フォトカソード3は、電子ビーム通過孔5hを備えたフォトカソード収納容器5内に配置されている。フォトカソード収納容器5内には、フォトカソード3をEA表面処理(換言すれば、電子親和力の低下処理)するための処理材料5mが配置されていてもよい。
 フォトカソード3を形成するためのフォトカソード材料は、特に制限は無く、例えば、III-V族半導体材料、II-VI族半導体材料が挙げられる。具体的には、AlN、CeTe、GaN、KCsSb、AlAs、GaP、GaAs、GaSb、InAs等およびそれらの混晶等が挙げられる。その他の例としては金属が挙げられ、具体的には、Mg、Cu、Nb、LaB、SeB、Ag等が挙げられる。前記半導体フォトカソード材料をEA表面処理することでフォトカソード3を作製することができ、該フォトカソード3は、半導体のギャップエネルギーに応じた近紫外-赤外波長領域で電子励起光が選択可能となるのみでなく、電子ビームの用途に応じた電子ビーム源性能(量子収量、耐久性、単色性、時間応答性、スピン偏極度)が半導体の材料や構造の選択により可能となる。
 フォトカソード3から放出された電子ビームBは、試料Tに入射する。図1に記載の例では、試料Tは、試料台6によって支持されている。試料Tは、ウエハ、集積回路、NAND型フラッシュメモリ、DRAM、または、これらの中間製品(半製品)、あるいは、任意の電子材料等である。試料Tは、電池材料、LED、LD、生体サンプル、有機物等、電子線照射によるダメージを受けやすい試料であってもよい。図1に記載の例では、試料Tおよび試料台6は、真空チャンバーCB内に配置されている。
 電子ビームBが照射された試料Tからは、反射電子、二次電子、透過電子等の電子が放出される。反射電子は、電子ビームB中の電子のうち試料Tによって反射された電子である。また、二次電子は、電子ビームBが試料Tに照射されることに起因して、試料Tの内部から放出される電子である。また、透過電子は、電子ビームB中の電子のうち試料Tを透過した電子である。
 検出器7は、試料から放出される反射電子、二次電子、または、透過電子等の電子eを検出し、検出信号S1を生成する。検出器7は、例えば、シンチレータ、マイクロチャネルプレート等の任意の電子検出器を含む。図1に記載の例では、検出器7は、真空チャンバーCB内に配置されている。検出器7のうちの電子検出部が真空チャンバーCB内に配置され、検出器7のうちの電子検出部以外の任意の構成要素が真空チャンバー外に配置されてもよい。
 信号抽出器8は、検出器7によって生成される検出信号S1の中から、パルス光L(光源2から射出されるパルス光)のパルス周波数に対応する周波数の信号を抽出する。例えば、信号抽出器8は、検出器7から検出信号S1を受信するとともに、光源2からパルス光のパルス波形に対応する信号(参照信号S2)を受信する。そして、信号抽出器8は、検出器7から受信した検出信号S1のうち、上述の参照信号S2の周波数に対応する周波数の信号を抽出する。なお、光源2から射出される光がパルス光以外の光である場合には、上記「パルス周波数」は、「変調周波数」(換言すれば、周波数変調光の強度変化の周波数)に読み替えられる。パルス周波数も変調周波数の一種である。
 信号抽出器8としては、例えば、公知のロックインアンプ(lock-in amplifier)を使用することができる。ロックインアンプは、検出信号S1および参照信号S2を受信し、検出信号S1から、参照信号S2の周波数に対応する周波数の信号を抽出する。代替的に、信号抽出器8として、検出器7によって生成される検出信号の中から、参照信号の周波数に対応する周波数の信号を抽出する任意の電子回路(例えば、周波数フィルタ)が用いられてもよい。更に代替的に、信号抽出器8としてコンピュータが用いられてもよい。この場合、コンピュータは、ノイズを含む信号から特定の周波数成分を抽出する任意のコンピュータプログラムを用いて、検出信号の中から、参照信号の周波数に対応する周波数の信号を抽出する。例えば、コンピュータには、検出器7によって生成される検出信号に対応する信号データ、および、参照信号の周波数に対応する周波数データが入力され、コンピュータは、上述のコンピュータプログラムを用いて、上述の信号データを、参照信号の周波数に対応する周波数成分が強調されたデータに変換して出力する。
 光源2を作動させる制御信号(例えば、光源の電気光学素子21に入力される電圧信号、光源の機械的シャッターを駆動させる駆動信号、半導体レーザーに入力されるON/OFF信号等)は、パルス光のパルス周波数と同一の周波数を有する。このため、信号抽出器8に入力される参照信号として、光源2を作動させる制御信号を用いることが可能である。なお、パッシブQスイッチを用いたレーザー光源、モードロック法を用いたレーザー光源等を光源2として用いる場合、周波数変調のための制御信号を光源2に送る必要がない。この場合、光源2から射出されたパルス光の一部をフォトダイオードで受光し、当該受光によって生成される電気信号を、信号抽出器8に入力する参照信号として用いてもよい。
 図2に例示されるように、検出器7から信号抽出器8に送信される検出信号S1には、様々なノイズが含まれる。これに対し、検出信号S1のうち、パルス光Lのパルス周波数に対応する周波数の信号は、試料Tがパルス状の電子ビームBを受けることに起因して生成された信号である可能性が高い。換言すれば、検出信号S1のうち、パルス光Lのパルス周波数に対応する周波数の信号は、パルス状の電子ビームが照射された領域(試料T中の領域)の状態(構造、形状、材質等)を示す信号であり、ノイズが除去された信号であると言える。
 第1の実施形態では、フォトカソード3と試料Tとの間に、ブランキング電極およびブランキングスリットを配置する必要がない。このため、フォトカソード3から放出される電子ビームが検査に有効的に活用される。これに対し、ブランキングスリットを用いる場合には、当該ブランキングスリットを通過する前後で、電子の量が大幅に減少するというデメリットもある。さらに、高速で、ブランキング電極を制御することに伴い、電子ビームの照射位置に位置ずれが生じるとの問題もある。
 上記効果に加え、第1の実施形態における試料検査装置1Aは、以下の3つの効果を相乗的に奏する。
 第1の効果は、試料Tに電子ビームBを照射して試料を検査することにより、試料に光を照射して試料を検査する場合と比較して、検査スポットの径をより小さくできることである。換言すれば、試料Tに電子ビームを照射して試料を検査することにより、より微細な領域の状態(構造、形状、材質等)を検査することが可能となる。
 第2の効果は、電子ビーム源として、フォトカソード3を用いることにより、強度の大きな電子ビームBを生成できることである。例えば、電子ビームを用いて、試料Tを走査することを想定する。第1の実施形態では、強度の大きな電子ビームを生成することができるため、走査速度を上げた場合でも、試料Tの微小欠陥等を検出することができる。微細な領域を検査するために電子ビームのスポット径を小さくする場合、当該電子ビームを用いて試料Tを走査する時間が長くなる。電子ビーム源としてフォトカソード3を用いる場合、その他の電子ビーム源を用いる場合と比較して、電子ビームの強度が数倍以上(例えば、10倍以上)となる。このため、電子ビームのスポット径が小さいにも関わらず、より短時間での試料検査が可能となる。なお、半導体フォトカソードは、金属フォトカソードと比較して量子効率が高いため、半導体レーザー(または、LED)のように、ピークパワーが比較的低い光でも十分に励起される。よって、フォトカソード3として、半導体フォトカソードを用いる場合には、フォトカソード3に照射する周波数変調光の単位波形の選択の自由度が高くなる。例えば、周波数変調光としてサイン波形の周波数変調光を利用する場合には、矩形波形のパルス光を用いる場合と比較して、信号抽出器8(例えば、ロックインアンプ)におけるノイズ除去特性が向上する。また、半導体レーザー(または、LED)を光源2として用いる場合には、周波数変調光の変調周波数を自由に選択することができる。このため、光源2から射出される周波数変調光の変調周波数として、既知のノイズ周波数と異なる周波数を採用することにより、信号抽出器8(例えば、ロックインアンプ)におけるノイズ除去特性を更に向上させることができる。なお、光源2として、モードロックレーザー、パッシブQスイッチレーザーを用いた場合、周波数変調光の変調周波数を自由に選択することは困難である。
 第3の効果は、検出器7によって生成される検出信号の中から、パルス光Lのパルス周波数に対応する周波数の信号を抽出することにより、検出信号に含まれるノイズ成分を効果的に除去できることである。検出信号を試料の検査結果としてそのまま用いる場合、検出信号のS/N比を向上させるために、各検査スポットにおける検査時間(電子ビームの照射時間)を長くせざるを得ない。第1の実施形態は、検出信号S1の中から、パルス光のパルス周波数に対応する周波数の信号を抽出する信号抽出器8を備える。このため、試料の状態(構造、形状、材質等)を示す信号が、ノイズと比較して微弱である場合であっても、ノイズの中から当該試料の状態を示す信号を効果的に抽出することができる。よって、検出信号のS/N比を向上させるために、各検査スポットにおける検査時間を長くする必要がなく、電子ビームの走査速度を速くすることができる。
 第1の実施形態では、電子ビームのスポット径が小さいことに起因する問題点を、フォトカソード3を用いることによる電子ビームの強度の向上と、信号抽出器8を用いることによるノイズの低減との相乗効果により解決し、試料検査の高速化を図ることができる点で画期的である。
 電子ビームBによる損傷を受けやすい試料を検査する場合には、電子ビームBの加速電圧(アノード4と(フォトカソード3を含む)カソードとの間に印加される電圧)を抑制する必要がある。この場合、試料Tから放出される二次電子の発生効率の低下等に起因して、S/N比が低下する。しかし、第1の実施形態では、S/N比が低い検出信号の中から、パルス光の周波数に対応する周波数の信号を抽出することにより、S/N比の低下の問題を克服することができる。すなわち、第1の実施形態における試料検査装置1Aを用いると、従来、電子ビームBによる検査が困難であった試料、すなわち、電子ビームによって損傷を受けやすい試料についても高精度に検査することが可能となる。
 なお、電子ビームBの走査速度を速くする観点から、光源2から射出されるパルス光Lのパルス周波数は、例えば、50MHz以上、100MHz以上、あるいは、150MHz以上であることが好ましい。パルス周波数を、高周波とすることにより、短時間に多数のパルス状の電子ビームが試料に照射されることとなる。その結果、信号抽出器8は、短時間に取得された検出信号S1から、参照信号S2の周波数に対応した周波数の信号を抽出することが可能となる。変調周波数の場合も、50MHz以上、100MHz以上、あるいは、150MHz以上であることが好ましい。
 第1の実施形態における試料検査装置1Aは、試料中の欠陥を検出する装置であってもよいし、試料の微細構造を可視化する顕微鏡であってもよい。
(第2の実施形態)
 図3乃至図7を参照して、第2の実施形態における試料検査装置1Bについて説明する。図3は、第2の実施形態における試料検査装置1Bの一例を模式的に示す図である。図4Aは、パルス振幅PA、パルス幅PW、パルス間隔PIについて説明するための図である。図4Bは、周波数変調光の振幅ZA、周波数変調光の2つの最大振幅間の時間間隔ZWについて説明するための図である。図5は、試料の種類と、複数の制御パラメータ値とが関連付けられて記憶されている様子を模式的に示す図である。図6は、光源制御装置9が、光源2から射出されるパルス光Lの単位時間当たりの光量を変動させる第1制御モードと、光源2から射出されるパルス光の単位時間当たりの光量を一定に維持する第2制御モードとを選択的に実行可能な様子を模式的に示す図である。図7は、第2の実施形態における試料検査装置1Bの一例を模式的に示す図である。
 第2の実施形態における試料検査装置1Bは、光源2と、フォトカソード3と、検出器7と、信号抽出器8とを備える。第2の実施形態における試料検査装置1Bは、真空チャンバーCB、アノード4、フォトカソード収納容器5、試料台6のうちの少なくとも1つを備えていてもよい。第2の実施形態における光源2、フォトカソード3、アノード4、フォトカソード収納容器5、試料台6、検出器7、信号抽出器8、真空チャンバーCBは、第1の実施形態における光源2、フォトカソード3、アノード4、フォトカソード収納容器5、試料台6、検出器7、信号抽出器8、真空チャンバーCBと同様であるため、これらの構成についての繰り返しとなる説明は省略する。
 図3に記載の例では、試料検査装置1Bは、光源2の動作を制御する光源制御装置9を備える。
 光源制御装置9は、制御パラメータ値に応じて、光源2を制御する。制御パラメータ値は、パルス振幅制御パラメータ値、パルス幅制御パラメータ値、単位パルス波形を規定するパラメータ値(例えば、矩形波、サイン波、のこぎり波、ガウシアン波形等を規定するパラメータ値)、および、パルス間隔制御パラメータ値のうちの少なくとも1つを含む。制御パラメータ値は、パルス振幅制御パラメータ値、パルス幅制御パラメータ値、パルス波形を規定するパラメータ値、および、パルス間隔制御パラメータ値のうちの少なくとも2つ、3つ、または全てを含んでいてもよい。図4Aに示されるように、パルス振幅PA(Pulse Amplitude)は、パルス光の強度の最大値を意味し、パルス幅PW(Pulse Width)は、パルスのON時間(換言すれば、パルス光の光輝状態の継続時間)を意味し、パルス間隔PI(Pulse Interval)は、パルスのOFF時間(換言すれば、パルス光の非光輝状態の継続時間)を意味する。
 なお、光源2から射出される光がパルス光以外の周波数変調光である場合には、上述の「パルス振幅制御パラメータ値」、「パルス幅制御パラメータ値」、「単位パルス波形を規定するパラメータ値」は、それぞれ、「周波数変調光の振幅制御パラメータ値」、「周波数変調光の2つの最大振幅間の時間間隔を規定する制御パラメータ値」、「周波数変調光の単位波形を規定するパラメータ値」に読み替えられる。なお、図4Bには、「周波数変調光の振幅(ZA)」、「周波数変調光の2つの最大振幅間の時間間隔(ZW)」が例示されている。
 光源制御装置9が、パルス振幅制御パラメータ値に応じて、光源2を制御することにより、光源2は、所望のパルス振幅を有するパルス光を射出する。また、光源制御装置9が、パルス幅制御パラメータ値に応じて、光源2を制御することにより、光源2は、所望のパルス幅を有するパルス光を射出する。また、光源制御装置9が、パルス間隔制御パラメータ値に応じて、光源2を制御することにより、光源2は、所望のパルス間隔を有するパルス光を射出する。
 第2の実施形態において、試料検査装置1Bが、光源制御装置9を備える場合には、試料Tの種類に応じて、パルス光Lの波形(例えば、パルス振幅、パルス幅、パルス間隔、単位パルス波形、パルス周波数)等を調整することが可能である。
(パルス光の波形を調整する手順の第1例)
 パルス光の波形を調整する手順の第1例について説明する。図3に記載の例では、試料検査装置1Bは、試料Tの種類と、制御パラメータ値とが関連付けられた第1関連データDAを記憶する記憶装置M(ROM、RAM、ハードディスク等)を備える。図5に記載の例では、記憶装置Mは、第1試料T1と、複数の制御パラメータ値とを関連付けて記憶している。より具体的には、記憶装置Mは、第1試料T1と、パルス振幅制御パラメータ値VA1と、パルス幅制御パラメータ値VW1と、パルス間隔制御パラメータ値VI1とを関連付けて記憶している。また、図5に記載の例では、記憶装置Mは、第2試料T2と、複数の制御パラメータ値とを関連付けて記憶している。より具体的には、記憶装置Mは、第2試料T2と、パルス振幅制御パラメータ値VA2と、パルス幅制御パラメータ値VW2と、パルス間隔制御パラメータ値VI2とを関連付けて記憶している。
 例えば、第1試料T1が、第2試料T2よりも電子ビームによる損傷を受けやすい材料である場合を想定する。この場合、記憶装置Mが記憶するパルス振幅制御パラメータ値VA1を、記憶装置Mが記憶するパルス振幅制御パラメータ値VA2よりも小さくすればよい。代替的に、あるいは、付加的に、記憶装置Mが記憶するパルス幅制御パラメータ値VW1を、記憶装置Mが記憶するパルス幅制御パラメータ値VW2よりも小さくすればよい。この場合、第1試料T1の検査時には、より弱いパルス光(および、より弱い電子ビーム)が使用され、第2試料T2の検査時には、より強いパルス光(および、より強い電子ビーム)が使用される。
 例えば、第1試料T1が、第2試料T2よりも熱損傷を受けやすい材料である場合を想定する。この場合、記憶装置Mが記憶するパルス幅制御パラメータ値VW1を、記憶装置Mが記憶するパルス幅制御パラメータ値VW2よりも小さくすればよい。代替的に、あるいは、付加的に、記憶装置Mが記憶するパルス間隔制御パラメータ値VI1を、記憶装置Mが記憶するパルス間隔制御パラメータ値VI2よりも大きくすればよい。この場合、第1試料T1の検査時には、第2試料T2の検査時と比較して、試料に熱が蓄積されることが抑制される。
 なお、試料Tの種類を手動で入力するために、試料検査装置1Bは、試料の種類の入力を受け付ける入力装置91を備えることが好ましい。ユーザーが、入力装置91を介して、試料の種類を入力すると、光源制御装置9は、記憶装置Mに記憶された第1関連付けデータに基づいて、入力された試料の種類に対応する制御パラメータ値を抽出する。そして、光源制御装置9は、当該制御パラメータ値を用いて、光源2の動作を制御する。
 代替的に、試料Tの種類が自動的に特定されてもよい。この場合、試料検査装置1Bは、試料の種類を特定するカメラ等の試料認識装置を備える。光源制御装置9は、試料認識装置によって特定された試料の種類に関する情報と、記憶装置Mに記憶された第1関連付けデータに基づいて、特定された試料の種類に対応する制御パラメータ値を抽出する。そして、光源制御装置9は、当該制御パラメータ値を用いて、光源2の動作を制御する。
(パルス光の波形を調整する手順の第2例)
 パルス光の波形を調整する手順の第2例について説明する。図6に記載の例では、光源制御装置9は、光源2から射出されるパルス光Lの単位時間当たりの光量を変動させる第1制御モードと、光源2から射出されるパルス光の単位時間当たりの光量を一定に維持する第2制御モードとを選択的に実行可能である。
 第1制御モードでは、電子ビームBに対する試料Tの耐久性を検査することができる。当該耐久検査において、試料Tとしては、例えば、サンプル試料が用いられる。
 第1制御モードにおいて、パルス光の単位時間当たりの光量を徐々に増加させる場合を想定する。第1制御モードでは、電子ビームBによって試料Tが損傷を受けるまで、パルス光の単位時間当たりの光量が増加される。試料Tの損傷の有無は、例えば、画像解析によって行われる。
 判定の結果、パルス光の単位時間当たりの光量が、第1閾値Th1以下の時には、試料Tが損傷せず、第2閾値Th2より大きい時には、試料Tが損傷したとする。
 上記の場合、試料検査装置1Bを用いて、実製品(例えば、実際に販売される製品)を検査するに際して、パルス光の単位時間当たりの光量は、上述の第1閾値Th1以下となるように設定される。なお、第1閾値Th1と第2閾値Th2とは、同一の値でもよいが、試料Tの損傷の有無が明確でない範囲が存在する場合には、第1閾値Th1と第2閾値Th2とが互いに異なる値であってもよい。
 第2制御モードでは、試料Tを損傷させることなく試料(例えば、実製品)の検査をすることができる。
 第2制御モードにおいて、パルス光の単位時間当たりの光量は、一定に維持される。試料Tの損傷を抑制する観点から、第2制御モードにおいて、パルス光の単位時間当たりの光量は、上述の第1閾値Th1以下となるように維持される。
 なお、上述の例では、第1制御モードにおいて、パルス光の単位時間当たりの光量が徐々に増加される例について説明された。代替的に、第1制御モードにおいて、パルス光の単位時間当たりの光量が徐々に減少されてもよい。また、パルス光の単位時間当たりの光量を変動させるに際しては、パルス光のパルス振幅、パルス光のパルス幅、パルス光のパルス間隔のうちの少なくとも1つが変化される。
 第2の実施形態において、パルス光の波形を調整することが可能である場合には、試料の特性に合わせて、より適切なパルス波形を選択することが可能となる。例えば、パルス光の強度(換言すれば、電子ビームの強度)として、試料が損傷されない範囲内で最大の強度を選択することにより、試料Tの検査速度を速くすることができる。
(アノード4とフォトカソード3との間に印加される電圧)
 図3に記載の例において、試料検査装置1Bは、アノード4とフォトカソード3(より具体的には、フォトカソード3を含むカソード)との間に電圧を印加する電源40と、アノード4とフォトカソード3との間に印加される電圧の大きさを制御する電圧制御装置42とを備える。
 アノード4とフォトカソード3との間に印加される電圧が大きい場合、電子ビームBは、試料Tのより深い領域に達することができる。換言すれば、試料Tのより深い領域まで検査することができる。他方、アノード4とフォトカソード3との間に印加される電圧が小さい場合、試料の表層部分を重点的に検査することができる。
(試料を電子ビームBによって走査するメカニズム)
 図7を参照して、試料を電子ビームBによって走査するメカニズムの例について説明する。
 図7に示されるように、試料検査装置1Bは、試料台6を移動させる駆動装置61を備えていてもよい。この場合、試料台6を移動させることにより、試料Tが電子ビームBによって走査される。なお、駆動装置61によって移動される試料台6の移動方向は、例えば、試料Tの検査表面に平行な方向である。
 代替的に、あるいは、付加的に、試料検査装置1Bは、フォトカソード3を移動させる駆動装置31を備えていてもよい。この場合、フォトカソード3を移動させることにより、試料Tが電子ビームBによって走査される。なお、駆動装置31によって移動されるフォトカソード3の移動方向は、例えば、試料Tの検査表面に平行な方向である。
 代替的に、あるいは、付加的に、試料検査装置1Bは、フォトカソード3から放出される電子ビームを曲げる電子ビーム偏向装置33を備えていてもよい。この場合、フォトカソード3から放出される電子ビームBを偏向させることにより、試料Tが電子ビームBによって走査される。電子ビーム偏向装置33は、例えば、電子ビームBの進行方向と交差する方向の電界を生成する偏向用電極を含む。
(検査結果の記録または表示)
 図3に示されるように、試料検査装置1Bは、信号抽出器8によって抽出された信号を記録する記憶装置11、および/または、信号抽出器8によって抽出された信号を視覚的に表示する表示装置12を備えていてもよい。記憶装置11は、試料T中における電子ビームBの照射位置と、信号抽出器8によって抽出された信号とを関連付けて記録するようにしてもよい。この場合、照射位置と信号抽出器8によって抽出された信号の強度との関係を参照することにより、試料T中の欠陥位置を特定することができる。また、表示装置12は、試料T中における電子ビームBの照射位置と、信号抽出器8によって抽出された信号とを関連付けて表示してもよい。
(試料検査方法)
 図8を参照して、実施形態における試料検査方法の一例について説明する。図8は、実施形態における試料検査方法の一例を示すフローチャートである。
 実施形態における試料検査方法は、第1の実施形態における試料検査装置1Aまたは第2の実施形態における試料検査装置1Bを用いて実行されてもよいし、その他の試料検査装置を用いて実行されてもよい。
 第1ステップST1において、パルス光Lがフォトカソード3に照射される。換言すれば、第1ステップST1は、パルス光照射工程である。
 第1ステップST1に先立ち、検査する試料Tの種類に応じて、パルス光Lのパルス周波数が変更されてもよい。例えば、試料Tが第1試料T1であるとき、パルス光のパルス周波数が第1周波数F1とされ、試料Tが第2試料T2であるとき、パルス光のパルス周波数が第1周波数とは異なる第2周波数F2とされてもよい。
 また、第1ステップST1に先立ち、検査する試料Tの種類に応じて、光源2の動作を制御するための制御パラメータ値(例えば、パルス振幅制御パラメータ値、パルス幅制御パラメータ値、単位パルス波形を規定するパラメータ値、パルス間隔制御パラメータ値のうちの少なくとも1つの制御パラメータ値)が変更されてもよい。例えば、試料Tが第1試料T1であるとき、パルス振幅制御パラメータ値、パルス幅制御パラメータ値、パルス間隔制御パラメータ値が、それぞれ、値VA1、値VW1、値VI1とされ、試料Tが第2試料T2であるとき、パルス振幅制御パラメータ値、パルス幅制御パラメータ値、パルス間隔制御パラメータ値が、それぞれ、値VA2、値VW2、値VI2とされてもよい。
 また、第1ステップST1に先立ち、検査する試料Tの種類に応じて、アノード4とフォトカソード3(より具体的には、フォトカソード3を含むカソード)との間に印加される電圧が変更されてもよい。例えば、試料Tが第1試料T1であるとき、アノード4とフォトカソード3との間に印加される電圧が電圧V1とされ、試料Tが第2試料T2であるとき、アノード4とフォトカソード3との間に印加される電圧が電圧V1とは異なる電圧V2とされてもよい。
 第2ステップST2において、フォトカソード3から放出された電子ビームBが試料Tに照射される。換言すれば、第2ステップST2は、電子ビーム照射工程である。
 第2ステップST2におけるフォトカソード3からの電子ビームBの放出は、パルス光がフォトカソード3に照射されることに起因して発生する現象である。このため、フォトカソード3に照射されるパルス光のパルス周波数が第1周波数F1であるとき、電子ビームBは、電子の量の変動周波数が第1周波数F1であるパルス状の電子ビームとなる。
 第3ステップST3において、試料Tから放出される反射電子、二次電子、または、透過電子が、検出器7によって検出される。換言すれば、第3ステップST3は、電子を検出する検出工程である。試料Tから放出される反射電子または二次電子を検出する場合には、検出器7は、試料Tに対して、フォトカソード3と同じ側に配置される。また、試料Tから放出される透過電子を検出する場合には、検出器7は、試料Tに対して、フォトカソード3と反対側に配置される。
 第3ステップST3における試料Tからの電子(反射電子、二次電子、または、透過電子)の放出は、電子ビームBが試料Tに照射されることに起因して発生する現象である。このため、試料Tに照射される電子ビームB中の電子の量の変動周波数が第1周波数F1であるとき、検出器7によって生成された検出信号のうち、第1周波数F1を有する信号SA(図2を参照)は、電子ビームBの照射に起因して生成された信号(非ノイズ信号)であるといえる。
 第4ステップST4において、検出器7によって生成された検出信号の中から、パルス光Lのパルス周波数に対応する周波数の信号が抽出される。換言すれば、第4ステップST4は、信号抽出工程である。
 第4ステップST4における信号の抽出は、ロックインアンプ等の信号抽出器8を用いて行われる。より具体的には、例えば、光源2が射出するパルス光のパルス周波数が、第1周波数F1であるとき、検出器7によって生成された検出信号S1の中から第1周波数F1を有する信号SAが抽出される。
(耐久検査工程)
 上述のパルス光照射工程と、電子ビーム照射工程と、検出工程と、信号抽出工程とによって、試料検査工程が構成される。なお、試料検査工程に先立ち、試料Tまたは試料Tと同種の試料の耐久性を検査する耐久検査工程が実行されてもよい。耐久検査工程では、電子ビームに対する試料T(または、試料Tと同種の試料T’)の耐久性が検査される。
 耐久検査工程の一例についてより具体的に説明する。耐久検査工程では、光源2から射出されるパルス光の単位時間当たりの光量が変動される。また、耐久検査工程では、光源2から射出されるパルス光Lの単位時間当たりの光量と、試料T(または、試料Tと同種の試料T’)の損傷との関係が決定される。当該関係は、例えば、パルス光の単位時間当たりの光量が第1閾値Th1以下の時には、試料T(または、試料Tと同種の試料T’)が損傷されず、第2閾値Th2より大きい時には、試料T(または、試料Tと同種の試料T’)が損傷する等の関係である。
 耐久検査工程の検査結果に応じて、試料検査工程において使用される光源2の制御パラメータ値が決定される。例えば、光源2から射出されるパルス光の単位時間当たりの光量が第1閾値Th1以下となるように制御パラメータ値(パルス振幅制御パラメータ値、パルス幅制御パラメータ値、パルス間隔制御パラメータ値等)が決定される。なお、光源2から射出されるパルス光の単位時間当たりの光量が、第1閾値Th1以下で、かつ、第1閾値Th1に近い値となるように、制御パラメータが決定されることが好ましい。
 実施形態における試料検査方法が、耐久検査工程を備える場合には、試料の耐久性に応じて、試料に照射される電子ビームの強度を最適化することができる。
(積層体の検査方法)
 図9を参照して、積層体である試料Tの検査方法を説明する。図9に記載の例では、試料Tの第1層LA1が検査され、その後、第1層LA1上に積層された第2層LA2が検査される。
 試料Tの第1層LA1を検査する第1層検査工程は、上述のパルス光照射工程と、電子ビーム照射工程と、検出工程と、信号抽出工程とを含む。第1層検査工程における電子ビーム照射工程では、電子ビームBが、第1層LA1に照射される。
 第1層検査工程の後、第1層LA1の上方に第2層LA2が積層される。よって、第1層LA1は、第2層LA2によって覆われることとなる。なお、図9に記載の例では、第2層LA2が、第1層LA1上に直接的に積層されているが、第2層LA2は、他の層を介して、第1層LA1上に積層されてもよい。
 試料Tの第2層LA2を検査する第2層検査工程は、上述のパルス光照射工程と、電子ビーム照射工程と、検出工程と、信号抽出工程とを含む。第2層検査工程における電子ビーム照射工程では、電子ビームBが第1層LA1に達しないように、換言すれば、電子ビームBが実質的に第1層LA1に達しないように、電子ビームBが第2層LA2に照射される。より具体的には、電子ビームBが、第1層LA1に達しないように、例えば、アノード4とフォトカソード3(より具体的には、フォトカソード3を含むカソード)との間に印加される電圧が設定される。代替的に、あるいは、付加的に、試料検査装置が電子顕微鏡である場合には、電子ビームBが、第1層LA1に達しないように、電子レンズ系のフォーカス等が設定されてもよい。
 電子ビームが第1層に達しないように、電子ビームが第2層に照射される場合には、第2層LA2の検査時に、第1層LA1から電子が放出されることが抑制される。このため、第2層LA2の状態をより正確に検査することができる。
 本発明は上記各実施形態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変形または変更され得ることが明らかである。また、各実施形態で用いられる任意の構成要素を、他の実施形態に組み合わせることが可能であり、また、各実施形態において任意の構成要素を省略することも可能である。
 例えば、上述の例では、1つの光源2と1つのフォトカソード3を用いて電子ビームを試料に照射する例について説明された。代替的に、光源2とフォトカソード3とからなるセットを複数用意するとともに、光源2毎に周波数変調光の周波数を異ならせることも可能である。例えば、第1の光源から第1の周波数を有する周波数変調光を第1のフォトカソードに照射して、第1のフォトカソードから試料の第1部分に向けて第1の電子ビームを照射する。同時に、第2の光源から第2の周波数を有する周波数変調光を第2のフォトカソードに照射して、第2のフォトカソードから試料の第2部分に向けて第2の電子ビームを照射する。そして、第1部分で反射された(または第1部分を透過した)電子を検出器7で受信するとともに、第2部分で反射された(または第2部分を透過した)電子を検出器7で受信する。その後、信号抽出器8で、第1の周波数に対応する検出信号と、第2の周波数に対応する検出信号とを抽出する。こうして、第1部分と第2部分とを同時に検査することが可能となる。第1部分と第2部分とが同時に検査されることにより、試料を検査する時間を短縮することが可能である。なお、光源2毎に周波数変調光の周波数を異ならせない、例えば、第1および第2の光源2から照射する周波数変調光の周波数を同じにしてもよい。その場合、単一の検出器7からは、同じ周波数に対応する検出信号を区別して抽出できないので、光源2と同じ数の検出器7を設ければよい。
 また、上述した光源2とフォトカソード3とからなるセットを複数用意する例に代え、一つのフォトカソード3と複数の光源2をセットにしてもよい。フォトカソード3は、光源2から照射される周波数変調光を受光すると、電子ビームBを射出できる。したがって、複数の光源2から照射される周波数変調光を受光するフォトカソード3の領域を異ならせることで、フォトカソード3が一つであっても、上述した光源2とフォトカソード3とからなるセットを複数用意する例と同様の効果が得られる。また、一つのフォトカソード3と複数の光源2のセットを複数用意してもよい。
 本発明の試料検査装置、および、試料検査方法を用いると、検出信号のノイズが除去され、かつ、生成された電子ビームが検査に有効に活用される。したがって、試料検査装置を製造する業者、試料検査装置および試料検査方法を用いて試料の検査を行う業者にとって有用である。
1、1A、1B…試料検査装置、2…光源、3…フォトカソード、4…アノード、5…フォトカソード収納容器、5h…電子ビーム通過孔、5m…処理材料、6…試料台、7…検出器、8…信号抽出器、9…光源制御装置、11…記憶装置、12…表示装置、21…電気光学素子、31…駆動装置、33…電子ビーム偏向装置、40…電源、42…電圧制御装置、61…駆動装置、91…入力装置、B…電子ビーム、CB…真空チャンバー、DA…第1関連データ、L…パルス光、LA1…第1層、LA2…第2層、M…記憶装置、PA…パルス振幅、PI…パルス間隔、PW…パルス幅、S1…検出信号、S2…参照信号、SA…信号、T、T'…試料、T1…第1試料、T2…第2試料、VA1、VA2…パルス振幅制御パラメータ値、VI1、VI2…パルス間隔制御パラメータ値、VW1、VW2…パルス幅制御パラメータ値、ZA…周波数変調光の振幅、ZW…周波数変調光の2つの最大振幅間の時間間隔、e…電子

Claims (9)

  1.  周波数変調光を射出する光源と、
     前記周波数変調光の受光に応じて、電子ビームを放出するフォトカソードと、
     前記電子ビームが照射された試料から放出される電子を検出し、検出信号を生成する検出器と、
     前記検出信号の中から、前記周波数変調光の変調周波数に対応する周波数の信号を抽出する信号抽出器と
     を具備する
     試料検査装置。
  2.  前記信号抽出器は、ロックインアンプを含み、
      前記ロックインアンプは、前記検出信号および参照信号を受信し、
      前記ロックインアンプは、前記検出信号の中から、前記参照信号の周波数に対応する周波数の信号を抽出する
     請求項1に記載の試料検査装置。
  3.  制御パラメータ値に応じて前記光源の動作を制御する光源制御装置と、
     前記試料の種類と、前記制御パラメータ値とが関連付けられた第1関連データを記憶する記憶装置と
     を更に具備し、
     前記制御パラメータ値は、前記周波数変調光の振幅制御パラメータ値またはパルス振幅制御パラメータ値、前記周波数変調光の2つの最大振幅間の時間間隔を規定する制御パラメータ値またはパルス幅制御パラメータ値、前記周波数変調光の単位波形を規定するパラメータ値または単位パルス波形を規定するパラメータ値、および、パルス間隔制御パラメータ値のうちの少なくとも1つを含む
     請求項1または2に記載の試料検査装置。
  4.  前記光源の動作を制御する光源制御装置を更に具備し、
     前記光源制御装置は、前記光源から射出される前記周波数変調光の単位時間当たりの光量を変動させる第1制御モードと、前記光源から射出される前記周波数変調光の単位時間当たりの光量を一定に維持する第2制御モードとを選択的に実行可能である
     請求項1または2に記載の試料検査装置。
  5.  周波数変調光をフォトカソードに照射する光照射工程と、
     前記フォトカソードから放出された電子ビームを試料に照射する電子ビーム照射工程と、
     前記試料から放出された電子を、検出器によって検出する検出工程と、
     前記検出器によって生成された検出信号の中から、前記周波数変調光の変調周波数に対応する周波数の信号を抽出する信号抽出工程と
     を具備する試料検査方法。
  6.  前記試料の種類に応じて、前記周波数変調光の振幅または前記周波数変調光のパルス振幅、前記周波数変調光の2つの最大振幅間の時間間隔または前記周波数変調光のパルス幅、前記周波数変調光の単位波形、および、前記周波数変調光のパルス間隔のうちの少なくとも一つを変更する工程を更に含む
     請求項5に記載の試料検査方法。
  7.  前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含む試料検査工程と、
     前記試料検査工程の前に実行される耐久検査工程と
     を具備し、
     前記耐久検査工程は、前記電子ビームに対する前記試料の耐久性を検査すること、または、前記電子ビームに対する前記試料と同種の試料の耐久性を検査することを含み、
     前記耐久検査工程の検査結果に応じて、前記試料検査工程において使用される光源の制御パラメータ値が決定される
     請求項5に記載の試料検査方法。
  8.  前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含む試料検査工程と、
     前記試料検査工程の前に実行される耐久検査工程と
     を具備し、
     前記耐久検査工程は、前記電子ビームに対する前記試料の耐久性を検査すること、または、前記電子ビームに対する前記試料と同種の試料の耐久性を検査することを含み、
     前記耐久検査工程の検査結果に応じて、前記試料検査工程において使用される光源の制御パラメータ値が決定される
     請求項6に記載の試料検査方法。
  9.  前記試料の第1層を検査する第1層検査工程と、
     前記第1層の上方に第2層が積層された後に、前記試料の前記第2層を検査する第2層検査工程と
     を具備し、
     前記第1層検査工程および前記第2層検査工程の各々は、前記光照射工程と、前記電子ビーム照射工程と、前記検出工程と、前記信号抽出工程とを含み、
     前記第2層検査工程では、前記電子ビームが前記第1層に達しないように、前記電子ビームが前記第2層に照射される
     請求項5乃至8のいずれか一項に記載の試料検査方法。
PCT/JP2018/046926 2017-12-27 2018-12-20 試料検査装置、および、試料検査方法 WO2019131410A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IL270143A IL270143B2 (en) 2017-12-27 2018-12-20 Device and method for examining samples
EP18897698.9A EP3734641A4 (en) 2017-12-27 2018-12-20 SAMPLE INSPECTION DEVICE AND SAMPLE INSPECTION METHOD
CN201880028185.3A CN110582833B (zh) 2017-12-27 2018-12-20 试样检查装置及试样检查方法
JP2019531344A JP6604649B1 (ja) 2017-12-27 2018-12-20 試料検査装置、および、試料検査方法
KR1020197031879A KR102238479B1 (ko) 2017-12-27 2018-12-20 시료 검사 장치, 및, 시료 검사 방법
US16/609,728 US11150204B2 (en) 2017-12-27 2018-12-20 Sample inspection device and sample inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-252709 2017-12-27
JP2017252709 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131410A1 true WO2019131410A1 (ja) 2019-07-04

Family

ID=67063623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046926 WO2019131410A1 (ja) 2017-12-27 2018-12-20 試料検査装置、および、試料検査方法

Country Status (8)

Country Link
US (1) US11150204B2 (ja)
EP (1) EP3734641A4 (ja)
JP (1) JP6604649B1 (ja)
KR (1) KR102238479B1 (ja)
CN (1) CN110582833B (ja)
IL (1) IL270143B2 (ja)
TW (1) TWI794375B (ja)
WO (1) WO2019131410A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890256A (zh) * 2019-11-26 2020-03-17 华中科技大学 一种会聚角可调无磁飞秒电子源装置
JP6968473B1 (ja) * 2021-05-26 2021-11-17 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法
JP7054281B1 (ja) * 2021-10-19 2022-04-13 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における検出データの作成方法
WO2022092077A1 (ja) * 2020-10-28 2022-05-05 株式会社日立ハイテク 荷電粒子ビーム装置および試料観察方法
EP3951830A4 (en) * 2019-11-20 2022-07-27 Photo Electron Soul Inc. ELECTRON BEAM DELIVERY DEVICE AND ELECTRON BEAM DELIVERY DEVICE ELECTRON BEAM EMISSION METHOD

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11933668B2 (en) * 2020-02-03 2024-03-19 Rohde & Schwarz Gmbh & Co. Kg Sampling assembly and testing instrument
JP6968481B1 (ja) 2021-09-07 2021-11-17 株式会社Photo electron Soul 電子線適用装置における検出データの作成方法および照射対象の画像合成方法、プログラム、記録媒体、並びに、電子線適用装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184445A (ja) * 1985-02-12 1986-08-18 Shimadzu Corp X線光電子分光装置
JPS63266754A (ja) * 1987-04-24 1988-11-02 Hitachi Ltd パターン検査方法およびその装置
JPH09298032A (ja) * 1996-04-30 1997-11-18 Hamamatsu Photonics Kk 電子ビーム発生装置
JP2003303565A (ja) * 2002-04-10 2003-10-24 Hitachi High-Technologies Corp 電子線検査装置
JP2005071775A (ja) 2003-08-25 2005-03-17 Hitachi Ltd 電子顕微鏡吸収電流像観察装置
JP2014092514A (ja) 2012-11-06 2014-05-19 Hamamatsu Photonics Kk 半導体デバイス検査装置及び半導体デバイス検査方法
WO2017168554A1 (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクノロジーズ 電子顕微鏡

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908193A (en) * 1972-11-27 1975-09-23 Albert Macovski Color television encoding and decoding system
JPS6475928A (en) * 1987-09-17 1989-03-22 Hamamatsu Photonics Kk Optical heterodyne detector
DE3738453A1 (de) * 1987-11-12 1989-08-03 Brust Hans Detlef Verfahren und anordnung zur messung des signalverlaufs an einem messpunkt einer probe
DE3839707A1 (de) * 1988-11-24 1990-05-31 Integrated Circuit Testing Verfahren zum betrieb eines elektronenstrahlmessgeraetes
JP2709135B2 (ja) * 1989-04-11 1998-02-04 浜松ホトニクス株式会社 光信号検出装置
DE3917411A1 (de) * 1989-05-29 1990-12-06 Brust Hans Detlef Verfahren und anordnung zur schnellen spektralanalyse eines signals an einem oder mehreren messpunkten
US5179565A (en) * 1990-06-07 1993-01-12 Hamamatsu Photonics, K.K. Low noise pulsed light source utilizing laser diode and voltage detector device utilizing same low noise pulsed light source
US5270780A (en) * 1991-09-13 1993-12-14 Science Applications International Corporation Dual detector lidar system and method
US5684360A (en) 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
JPH10334842A (ja) * 1997-05-28 1998-12-18 Shimadzu Corp 光走査型電子顕微鏡
US6724002B2 (en) * 2001-01-31 2004-04-20 Applied Materials, Inc. Multiple electron beam lithography system with multiple beam modulated laser illumination
US20030048427A1 (en) * 2001-01-31 2003-03-13 Applied Materials, Inc. Electron beam lithography system having improved electron gun
JP2002313273A (ja) * 2001-04-17 2002-10-25 Hitachi Ltd 電子顕微鏡装置
US6946655B2 (en) * 2001-11-07 2005-09-20 Applied Materials, Inc. Spot grid array electron imaging system
US7446474B2 (en) * 2002-10-10 2008-11-04 Applied Materials, Inc. Hetero-junction electron emitter with Group III nitride and activated alkali halide
US6812461B1 (en) * 2002-11-07 2004-11-02 Kla-Tencor Technologies Corporation Photocathode source for e-beam inspection or review
US7068363B2 (en) * 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
US7250618B2 (en) * 2005-02-02 2007-07-31 Nikon Corporation Radiantly heated cathode for an electron gun and heating assembly
JP5102580B2 (ja) 2007-10-18 2012-12-19 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP5610399B2 (ja) * 2011-08-02 2014-10-22 独立行政法人科学技術振興機構 ポンププローブ測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184445A (ja) * 1985-02-12 1986-08-18 Shimadzu Corp X線光電子分光装置
JPS63266754A (ja) * 1987-04-24 1988-11-02 Hitachi Ltd パターン検査方法およびその装置
JPH09298032A (ja) * 1996-04-30 1997-11-18 Hamamatsu Photonics Kk 電子ビーム発生装置
JP2003303565A (ja) * 2002-04-10 2003-10-24 Hitachi High-Technologies Corp 電子線検査装置
JP2005071775A (ja) 2003-08-25 2005-03-17 Hitachi Ltd 電子顕微鏡吸収電流像観察装置
JP2014092514A (ja) 2012-11-06 2014-05-19 Hamamatsu Photonics Kk 半導体デバイス検査装置及び半導体デバイス検査方法
WO2017168554A1 (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクノロジーズ 電子顕微鏡

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951830A4 (en) * 2019-11-20 2022-07-27 Photo Electron Soul Inc. ELECTRON BEAM DELIVERY DEVICE AND ELECTRON BEAM DELIVERY DEVICE ELECTRON BEAM EMISSION METHOD
CN110890256A (zh) * 2019-11-26 2020-03-17 华中科技大学 一种会聚角可调无磁飞秒电子源装置
WO2022092077A1 (ja) * 2020-10-28 2022-05-05 株式会社日立ハイテク 荷電粒子ビーム装置および試料観察方法
JP6968473B1 (ja) * 2021-05-26 2021-11-17 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法
JP2022181343A (ja) * 2021-05-26 2022-12-08 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法
JP7054281B1 (ja) * 2021-10-19 2022-04-13 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における検出データの作成方法
WO2023068218A1 (ja) * 2021-10-19 2023-04-27 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における検出データの作成方法

Also Published As

Publication number Publication date
JP6604649B1 (ja) 2019-11-13
KR20190133231A (ko) 2019-12-02
TWI794375B (zh) 2023-03-01
US20200080949A1 (en) 2020-03-12
EP3734641A4 (en) 2021-04-07
KR102238479B1 (ko) 2021-04-09
TW201933411A (zh) 2019-08-16
IL270143B1 (en) 2023-07-01
IL270143B2 (en) 2023-11-01
CN110582833A (zh) 2019-12-17
EP3734641A1 (en) 2020-11-04
CN110582833B (zh) 2022-07-01
IL270143A (ja) 2019-12-31
JPWO2019131410A1 (ja) 2020-01-16
US11150204B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2019131410A1 (ja) 試料検査装置、および、試料検査方法
Meuret et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope
JP6578529B1 (ja) 電子銃、電子線適用装置、および、電子銃の制御方法
JP6957641B2 (ja) 荷電粒子線装置およびそれを用いた試料観察方法
JP4631704B2 (ja) 半導体デバイスの電界分布測定方法と装置
US20050157292A1 (en) Fluorescence lifetime distribution image measuring system and its measuring method
JPH02262038A (ja) 光波形測定装置
KR100790707B1 (ko) 분산조절 공초점 레이저 현미경
JP7054281B1 (ja) 電子線適用装置および電子線適用装置における検出データの作成方法
WO2023038002A1 (ja) 電子線適用装置における検出データの作成方法および照射対象の画像合成方法、プログラム、記録媒体、並びに、電子線適用装置
JP7218034B1 (ja) 局所観察方法、プログラム、記録媒体および電子線適用装置
JP2008170257A (ja) 蛍光寿命測定装置及び成膜装置
JPH02234051A (ja) 光波形測定装置
KR20230154973A (ko) 전자총, 전자선 적용 장치, 및, 전자 빔의 사출 방법
JP5659902B2 (ja) カソードルミネッセンス特性の測定方法
JP2656106B2 (ja) 光波形測定装置
CN112858966A (zh) 自旋共聚焦探测磁性系统及方法
KR20240089210A (ko) 전자선 적용 장치 및 전자선 적용 장치에 있어서의 검출 데이터의 작성 방법
CN114828377A (zh) 高电荷量的飞秒电子束产生系统及单电子束衍射成像系统
JPH05144403A (ja) 荷電粒子線顕微鏡
Ellis et al. Photocathode Optimization for a Dynamic Transmission Electron Microscope

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531344

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897698

Country of ref document: EP

Effective date: 20200727