WO2022092077A1 - 荷電粒子ビーム装置および試料観察方法 - Google Patents

荷電粒子ビーム装置および試料観察方法 Download PDF

Info

Publication number
WO2022092077A1
WO2022092077A1 PCT/JP2021/039460 JP2021039460W WO2022092077A1 WO 2022092077 A1 WO2022092077 A1 WO 2022092077A1 JP 2021039460 W JP2021039460 W JP 2021039460W WO 2022092077 A1 WO2022092077 A1 WO 2022092077A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
charged particle
detector
particle beam
detection
Prior art date
Application number
PCT/JP2021/039460
Other languages
English (en)
French (fr)
Inventor
真大 福田
智世 佐々木
誠 鈴木
正司 和田
寛 西濱
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US18/027,191 priority Critical patent/US20230343549A1/en
Priority to DE112021004532.6T priority patent/DE112021004532T5/de
Priority to KR1020237006888A priority patent/KR20230043199A/ko
Publication of WO2022092077A1 publication Critical patent/WO2022092077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2443Scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present disclosure relates to a charged particle beam device and a sample observation method using the charged particle beam device.
  • a scanning electron microscope can be mentioned as a scanning charged particle beam device.
  • SEM scanning electron microscope
  • the electrons extracted from the electron source are focused on the sample by a lens, and the amount of backscattered electrons generated near the surface of the sample or the amount of secondary electrons generated in the sample is detected, and the observation image of the sample.
  • Backscattered electrons and secondary electrons emitted from the sample are directly detected by an electron multiplying element or converted into light by a light emitting element (scintillator), and the converted light is converted into photomultiplier tubes, CCDs, and CMOS. It is detected by an optical detection element such as.
  • the magnitude of the scintillator emission amount for each electron beam irradiation position corresponds to the magnitude of the backscattered electron amount and the secondary electron amount, and it corresponds to the emission amount at each irradiation position in the two-dimensional plane.
  • An SEM image can be formed by determining the brightness of the pixels accordingly.
  • Patent Document 1 discloses an electron microscope that irradiates a sample with a pulsed electron beam.
  • Patent Document 2 describes a charged particle beam device that removes an output that is not caused by an irradiated charged particle beam, that is, noise by modulating the irradiation conditions of the charged particle beam at high speed and detecting only a signal that matches the modulation period. It has been disclosed.
  • Patent Document 3 backscattered electrons are generated by irradiating a sample with an electron beam by changing the incident electron energy and detecting and rectifying the output from the backscattered electron detector in synchronization with the change in the incident electron energy. It is disclosed that the change in quantity is taken out as a DC signal.
  • the SNR signal-to-noise ratio
  • the SNR can be improved by scanning the same location a plurality of times and integrating the signals obtained from each location.
  • scanning and integrating the same location multiple times in order to improve the SNR means reducing the throughput.
  • the method generally taken to reduce the number of integrations is to increase the amount of irradiation current, but as described above, damage or deformation to the finely divided pattern on the sample due to electron beam irradiation. May occur.
  • Examples of damage include heat and chemical reactions caused by irradiation of high-energy charged particles, and sample deformation and destruction due to charging.
  • increasing the irradiation current amount leads to a decrease in spatial resolution. This is because increasing the irradiation current amount increases the energy width of the charged particle beam due to the space charge effect, and increases the aberration due to deviation from the optimum conditions of the charged particle optical system due to the increase in the focusing angle of the charged particle beam.
  • Patent Document 1 The electron microscope disclosed in Patent Document 1 has something in common with one embodiment in the present disclosure in that it irradiates a sample with a pulsed electron beam.
  • Patent Document 1 aims to improve the accuracy of the potential contrast image of the sample, and as in the present disclosure, it is intended to improve the basic performance of three SEMs such as throughput, SNR, and spatial resolution at once. It is not the purpose.
  • Patent Document 2 and Patent Document 3 are common to the present disclosure in that noise is removed by applying synchronous detection.
  • the variation in the phase difference becomes noise. Therefore, the basic performance of the three SEMs cannot be sufficiently improved.
  • a charged particle beam device comprises a charged particle source, one or more lenses that focus the charged particle beam from the charged particle source onto the sample, and a deflection that scans the charged particle beam onto the sample.
  • a charged particle optical system including a device, a detection system including a detector for detecting a signal charged particle or an electromagnetic wave emitted by irradiating a sample with a charged particle beam, and a charged particle optical system by controlling the charged particle.
  • a detection signal from a detector output when a detector detects a charged particle or an electromagnetic wave.
  • the computer controls at least one of the charged particle optical system and the detection system so that the intensity of the signal charged particle or the electromagnetic wave detected by the detector is modulated at a predetermined frequency, and the irradiation position of the charged particle beam and the irradiation thereof.
  • An image or signal profile is generated by associating the detection signal from the detector at the position with the DC component of the signal obtained by performing synchronous detection with the reference signal having a predetermined frequency. Regardless of the irradiation position of the charged particle beam, the phase difference between the detection signal and the reference signal from the detector that performs synchronous detection is controlled to be constant.
  • a charged particle beam device scans a charged particle source, one or more lenses that focus the charged particle beam from the charged particle source onto the sample, and the charged particle beam onto the sample. Controlling a charged particle optical system with a deflector to make it, a detection system with a detector to detect a signal charged particle or electromagnetic wave emitted by irradiating a sample with a charged particle beam, and a charged particle optical system A signal emitted by scanning a charged particle beam on a sample and irradiating the charged particle beam at an irradiation position corresponding to one pixel. From a detector that is output by detecting a charged particle or an electromagnetic wave.
  • the computer controls at least one of the charged particle optical system and the detection system so that the intensity of the signal charged particle or the electromagnetic wave detected by the detector is modulated at a predetermined frequency, and the irradiation position of the charged particle beam and the irradiation thereof.
  • An image or signal profile is generated by associating the detection signal from the detector at the position with the DC component of the signal obtained by performing synchronous detection with the reference signal having a predetermined frequency.
  • the computer digitally converts the detection signal from the detector and captures it based on the sampling signal, and the frequency of the sampling signal is more than twice the modulation frequency of the signal charged particle or electromagnetic wave intensity detected by the detector.
  • the modulation of the intensity of the signal charged particles or electromagnetic waves detected by the detector and the sampling signal are controlled to synchronize with a predetermined phase difference.
  • An electron microscope (frequency modulation SEM) will be described as an example of the charged particle beam device of the present disclosure.
  • FIG. 1 shows the basic device configuration of the electron microscope (frequency modulation SEM) of this embodiment.
  • FIG. 1 discloses an electron optical system, a detection system, and a control system as a basic configuration of an electron microscope.
  • the electron optical system includes an electron emitting unit 1, an accelerating electrode 3, a focusing lens 4, 7, a diaphragm 5, a chopper 6, a deflector 8, an objective lens 9, and a signal generator 15.
  • the detection system includes a signal detector 12, an amplifier 13, a phase sensitive detector 14, a phase adjuster 16, and a low-pass filter 17.
  • the control system includes a computer 18.
  • the primary beam 2 emitted from the electron emitting unit 1 is accelerated by the accelerating electrode 3 and focused by the focusing lens 4.
  • the beam intensity per unit area on the sample is frequency-modulated by the chopper 6.
  • the primary beam 2 is modulated by the deflection voltage (control signal) of the rectangular wave from the signal generator 15.
  • the chopper 6 can be configured by using a blanking deflector having a diaphragm portion, and the beam intensity is modulated by controlling whether or not the primary beam 2 passes through the diaphragm portion according to the deflection amount of the deflector. (The primary beam 2 is pulsed).
  • the frequency-modulated primary beam 2 is then focused by the focusing lens 7, passes through the objective lens 9, and irradiates the sample 10. Further, a deflector 8 is arranged between the focusing lens 7 and the objective lens 9, and deflection is performed for scanning the primary beam 2 on the sample 10.
  • the sample 10 is not limited in size or material, and may be, for example, a semiconductor wafer.
  • the primary beam 2 irradiates the sample 10
  • signal electrons 11 are emitted by the interaction between the primary beam 2 and the sample 10.
  • the signal electron 11 is detected by the signal detector 12. Since the beam intensity of the primary beam 2 is frequency-modulated, the intensity of the signal electron 11 detected by the signal detector 12 is also frequency-modulated.
  • the detection signal from the signal detector 12 is amplified by the amplifier 13 and then input to the phase sensitive detector 14.
  • An example of the signal detector 12 is an ET detector.
  • the ET detector can efficiently detect signal electrons using a scintillator and a photomultiplier tube.
  • a reference signal having the same period as the deflection voltage for modulating the primary beam 2 is also input to the phase sensitive detector 14 from the signal generator 15.
  • This reference signal is transmitted from the signal generator 15, and after the phase is adjusted by the phase adjuster 16, it is input to the phase sensitive detector 14.
  • FIG. 1 shows an example in which the signal generator 15 is shared for beam intensity modulation and reference signal transmission, a plurality of signal generators 15 may be provided and used properly for beam intensity modulation and reference signal transmission, respectively. ..
  • FIG. 1 shows an example in which the primary beam 2 is modulated (pulsed) by a rectangular wave, but for the sake of simplicity of explanation, a case where the primary beam 2 is modulated by a sine wave will be described below as an example. do. Since the rectangular wave is expressed as a superposition of sine waves, the same applies to the rectangular wave.
  • the detection signal be Asin ( ⁇ s t + ⁇ s ), the reference signal be sin ( ⁇ r t + ⁇ r ), and the noise be N ( ⁇ ) sin ( ⁇ t).
  • the noise here is mainly noise superimposed on the detection signal in the signal detector 12 and the amplifier 13.
  • A is the amplitude of the detection signal when the amplitude of the reference signal is 1
  • ⁇ s is the frequency of the detection signal
  • ⁇ s is the phase of the detection signal
  • t is the time
  • ⁇ r is the frequency of the reference signal
  • ⁇ r is.
  • N ( ⁇ ) is the amplitude of the noise
  • is the frequency of the noise. Since the amplitude of noise is frequency-dependent, it is expressed as a function of frequency ⁇ .
  • the phase sensitive detector 14 multiplies the detection signal to which noise is added and the reference signal, and the output signal S of the phase sensitive detector 14 is represented by (Equation 1).
  • Equation 1 The product of the detected signal to which noise is added and the calculated signal can be transformed as shown in (Equation 1) by using the formula of trigonometric function.
  • the DC component S DC is taken out from the low-pass filter 17 and combined with the irradiation position (corresponding to the pixel position of the image or signal profile) of the primary beam 2 on the sample to form an SEM image or signal profile. Since the detection signal can be obtained with such a high SNR, the signal acquisition interval (sampling time) of the output signal of the low-pass filter 17 in the computer 18 may be set regardless of the modulation frequency of the signal generator 15, and one pixel point. Data acquisition may be performed once per time.
  • FIG. 2 shows the device configuration of an electron microscope using a photoexcited electron source as an electron emitting part.
  • a pulse laser 122 is added to the electron optical system in order to use a photoexcited electron source, and a photodetector 123 is added to the detection system.
  • the pulsed light output from the pulse laser 122 is incident on the photoexcited electron source 121 and emits the pulse primary beam 120.
  • the light from the pulse laser 122 is branched, and the photodetector 123 detects the branched light.
  • the light detection signal from the pulse laser 122 by the photodetector 123 can be used as a reference signal modulated at the same frequency as the modulation frequency of the pulse primary beam 120.
  • a photodetector or a photomultiplier tube may be used as the photodetector 123.
  • the detection signal of the signal electron 11 generated from the sample 10 by being irradiated with the pulse primary beam 120 is input to the phase sensitive detector 14, and the detection system performs the same processing as the apparatus configuration of FIG.
  • the pulse laser 122 that outputs pulsed light may be configured by using a signal generator that generates a frequency signal.
  • the frequency signal any waveform such as a rectangular wave or a sine wave may be used.
  • the phase adjuster 16 may be configured to input the frequency signal output from the signal generator as a reference signal.
  • FIG. 3 shows an example in which the high-pass filter 131 is arranged as a modified example of the apparatus configuration of FIG.
  • noise located in the low frequency band can be cut by arranging the high-pass filter 131 after the amplifier 13.
  • the noise superimposed on the detection signal in the signal detector 12 and the amplifier 13 is relatively large in the low frequency band.
  • the modulation of the primary beam 2 and therefore the signal electron 11 makes it possible to remove relatively large noise in the low frequency band without adversely affecting the signal components.
  • FIG. 4 shows time changes of the scanning signal 21, the primary beam intensity 22, the detection signal 25, and the reference signal 27 when the sample is scanned one-dimensionally (for example, in the X direction) by the primary beam 2 to obtain a signal profile. ..
  • the scanning signal 21 is a primary beam residence time TS per pixel, and the scanning voltage or scanning current (depending on the configuration of the deflector) is changed so as to move the irradiation position in the X direction.
  • the primary beam intensity 22 indicates a change in the beam intensity per unit area on the sample, and the detection signal 25 is also modulated with the modulation of the primary beam 2. Further, since the reference signal 27 has the same frequency as the modulation frequency of the primary beam 2, in FIG.
  • the primary beam intensity 22, the detection signal 25, and the reference signal 27 are all exemplified as signals modulated at the same frequency. Is shown. Although an example in which the primary beam 2 is modulated by a sine wave is shown here, the same applies when the primary beam 2 is modulated by another waveform such as a rectangular wave.
  • the detection signal 25 is input to the phase sensitive detector 14 with a detection delay DD from the modulation of the primary beam intensity 22.
  • a reference signal 27 is also input to the phase sensitive detector 14, but a phase difference ⁇ DR exists between the reference signal 27 and the detection signal 25.
  • the phase adjuster 16 delays the reference signal input to the phase sensitive detector 14, and causes the phase sensitive detector 14 to input the phase difference ⁇ DR between the detection signal and the reference signal to 0. Therefore, if the primary beam residence time TS is a positive integral multiple of the beam modulation period TM , the phase adjustment amount by the phase adjuster 16 at the irradiation position corresponding to each pixel can be made equal. Further, since the electron dose applied to each pixel can be unified, there is also an effect of suppressing the variation in the obtained signal amount and damage.
  • FIG. 5 shows the scanning signal and the time change of the primary beam intensity 22 when the sample is scanned two-dimensionally by the primary beam 2 to obtain an SEM image.
  • a raster scan in which scanning in the X direction (also referred to as a scanning line) is repeated while shifting the position in the Y direction orthogonal to the X direction will be described.
  • the raster scan method is an example, and the two-dimensional scan method is not limited to the one performed by the scan signal shown in FIG.
  • the primary beam residence time TS per pixel is longer than the beam modulation period TM on the sample.
  • the time from the start of X-direction scanning at one position to the start of X-direction scanning at the next position is defined as the X-direction scanning period TL .
  • X The X-direction scanning cycle TL of the directional scanning signal 31 is set to be a positive integral multiple of the beam modulation period TM .
  • the primary beam residence time TS per pixel is not set to a positive integral multiple of the beam modulation cycle TM, and the X-direction scanning cycle TL is set to a positive integer multiple of the beam modulation cycle TM . If not, the phase difference ⁇ DR between the detection signal 25 and the reference signal 27 will be different for each beam irradiation position. This means that even if the primary beam staying time TS to which the primary beam 2 is irradiated is constant, the irradiation position is irradiated within the staying period because the intensity of the primary beam 2 is modulated. The amount of probe current or the number of electrons will differ depending on the irradiation position.
  • phase difference ⁇ DR becomes a noise component, which leads to deterioration of the SEM image. Therefore, in order to improve the spatial resolution of the SEM image, it is desirable to control the scanning and modulation of the primary beam 2 so that the phase difference ⁇ DR is constant at all the irradiation positions of the primary beam 2. ..
  • the frequency modulation SEM of the present embodiment by modulating the primary beam at a frequency in the high frequency band where the noise of the detector is low, the signal component of the signal component is sufficiently larger than the noise component. Perform detection. Therefore, an image having a higher SNR than the conventional SEM image can be generated.
  • the SNR of the signal is significantly improved, so that the acquisition time of one image can be reduced and the throughput can be improved.
  • a conventional SEM in order to increase the SNR of an image, it is necessary to increase the number of integrated images, increase the primary beam residence time TS per pixel, or increase the probe current amount. rice field.
  • the detection signal in the frequency modulation SEM, can be obtained with a good SNR without integrating the images or lengthening the primary beam residence time TS . Shortening the image acquisition time for integration and the primary beam residence time TS leads to an improvement in throughput and a reduction in damage to the sample.
  • the spatial resolution does not deteriorate or charging occurs due to the increase in the probe current. That is, the trade-off between the three items of throughput, SNR, and spatial resolution can be eliminated.
  • the frequency modulation SEM disclosed in the present disclosure can be modified in various ways, and will be described below.
  • FIG. 6 shows a control example different from that in FIG. 5 for keeping the phase difference ⁇ DR between the detection signal 25 and the reference signal 27 constant when the primary beam 2 is two-dimensionally scanned.
  • FIG. 6 shows the scanning signal and the time change of the primary beam intensity 22 when the sample is two-dimensionally scanned by the primary beam 2 according to the control.
  • the primary beam residence time T S per pixel is longer than the beam modulation period T M on the sample, and the primary beam residence time T S is a positive beam modulation period T M. It is said to be an integral multiple.
  • the X-direction scanning signal 61 has an interval time TI which is a time from the end of the X -direction scanning at a certain position to the start of the next X-direction scanning.
  • the modulation of the primary beam intensity 22 is reset at the interval time TI, and the modulation is restarted so that the phases are the same at the timing of the start of scanning in the X direction.
  • the phase difference ⁇ DR between the detection signal 25 and the reference signal 27 can be made constant at all irradiation positions.
  • the computer 18 is configured to be able to control the phase of the reference signal input by the phase adjuster 16 to the phase sensitive detector 14.
  • the computer 18 monitors the output of the low-pass filter 17 by changing the phase of the reference signal from 0 ° to 360 ° by the phase adjuster 16. In the phase adjustment amount when the output of the low-pass filter 17 is the largest, the phase difference between the detection signal and the reference signal input to the phase sensitive detector 14 is 0.
  • the computer 18 sets the phase adjustment amount when the output of the low-pass filter 17 becomes maximum as the phase adjustment amount of the phase adjuster 16.
  • the timing for controlling the phase adjustment amount of the phase adjuster 16 is not particularly limited. For example, it is conceivable to adjust the phase adjustment amount of the phase adjuster 16 at the timing immediately before acquiring the image or the signal profile.
  • FIG. 8 shows an apparatus configuration using a sample hold circuit.
  • a sample hold circuit 81a for positive voltage detection and a sample hold circuit 81b for negative voltage detection are provided, and the output signal of the phase sensitive detector 14 is input to each.
  • the sampling timing in the sample hold circuit 81 is performed by the reference signal whose phase is adjusted by the phase adjuster 16.
  • the reference signal input to the sample hold circuit 81b for negative voltage detection the reference whose phase is changed by 90 ° by the phase adjuster 82 with respect to the reference signal input to the sample hold circuit 81a for positive voltage detection.
  • the signal held by the sample hold circuit 81 and output is input to the computer 18, and the computer 18 calculates the average value and the difference from the maximum value and the minimum value of the output signal of the phase sensitive detector 14.
  • This average value and difference value can be regarded as an output result when the low-pass filter 17 is used in a pseudo manner.
  • the SNR is not as good as the signal output from the low-pass filter 17, the SNR of the signal can be significantly improved as compared with the conventional SEM.
  • the frequency modulation SEM using the sample hold circuit 81 it is sufficient to obtain the maximum value and the minimum value in one cycle of the reference signal. Therefore, the primary beam residence time TS per pixel and the beam modulation cycle TM are equal to each other. can do. As a result, the residence time TS of the primary beam per pixel can be further shortened, so that higher throughput and lower damage can be achieved.
  • Modification example 4 As a configuration example of the frequency modulation SEM, it was shown that when the frequency modulation of the primary beams 2 and 120 is a rectangular wave, it can be realized by the chopper 6 or the photoexcited electron source 121. As already described, the intensity modulation of the primary beam 2 does not necessarily have to be a rectangular wave, but may be a sine wave.
  • FIG. 9 shows an apparatus configuration in which the frequency modulation of the primary beam 2 is a sine wave. When the frequency modulation is a sine wave, the lens intensity included in the electro-optical system of the frequency modulation SEM may be changed. The lens intensity can be modulated by current in the case of a magnetic field lens and by voltage in the case of an electric field lens. In the example of FIG.
  • the primary beam 2 is modulated by applying a modulation to the voltage applied to the acceleration electrode 111.
  • the irradiation conditions of the primary beam 2 to the sample 10 are modulated, and the intensity of the primary beam 2 per unit area is modulated. ..
  • the intensity of the emitted signal electron 11 is also modulated.
  • the voltage applied to the accelerating electrode 111 is not limited to the voltage applied to the deceleration electrode 112, the retarding voltage applied to the observation sample 10, the voltage applied to the electron emitting unit 1, or the focusing lenses 4 and 7.
  • the irradiation conditions of the primary beam 2 on the sample are also modulated, and the intensity of the primary beam 2 per unit area can be modulated.
  • FIG. 10A shows a device configuration in which the detection system is frequency-modulated and the detection signal is frequency-modulated.
  • the ET detector is a photomultiplier tube that converts the light emitted by the scintillator 91 and the scintillator 91 into an electric signal by colliding the signal electrons 11 with each other. It has a tube 92.
  • a voltage of several to several tens of kV is applied to the scintillator 91 in order to capture secondary electrons and backscattered electrons which are signal electrons 11. Therefore, in the modification 5, the signal generator 15 is provided in the detection system, and the voltage applied to the scintillator 91 generated by the signal generator 15 is frequency-modulated to modulate the intensity of the light generated by the scintillator 91. As a result, the detection signal from the signal detector 90 can be modulated.
  • the condition of the energy filter should be frequency-modulated. It is also possible to frequency-modulate the detection signal.
  • the frequency modulation SEM performs both modulation of the primary beam 2 and modulation of the detection system for detecting the signal electron 11.
  • the signal generator 15 is shared by the electro-optical system and the detection system, and the control signals from the signal generator 15 are input to the chopper 6 and the scintillator 91, respectively.
  • a phase adjuster or a delay circuit capable of adjusting the delay amount is provided in at least one of them so that the phase difference between the phase that modulates the electro-optical system and the phase that modulates the detection system can be adjusted.
  • a signal generator may be provided in each of the electro-optical system and the detection system, and the method for controlling the phase difference is not particularly limited.
  • FIG. 10B shows a virtual detection signal 101 output from the signal detector 90 when the detection system is not modulated, and a control voltage 103 to the scintillator 91 in the modification 5.
  • the control voltage 103 When the control voltage 103 is ON, the scintillator 91 receives the signal electron 11 and emits light, and when the control voltage 103 is OFF, the scintillator 91 receives the signal electron 11 but does not emit light.
  • the virtual detection signal 101 may take time to settle due to the modulation of the primary beam 2. Therefore, by adjusting the phase difference between the phase that modulates the electro-optical system and the phase that modulates the detection system, the detection signal output from the signal detector 90 is narrowed down to the statically determinate region 102 of the virtual detection signal 101. be able to.
  • the statically determinate of the signal is taken as an example, but noise at the rising edge of the signal can be handled in the same manner as in FIG. 10B.
  • the modulation frequency of the electro-optical system and the modulation frequency of the detection system are the same.
  • the phase that modulates the electron optics system and the phase that modulates the detection system match, the signal strength varies due to the influence of the unstable rising edge of the detection signal, whereas the opposite is true.
  • the detection signal is not output. Therefore, when the phase difference is changed from 0, the obtained image is initially slightly dark due to the influence of the unstable rising edge of the detection signal, and gradually becomes brighter as the influence of the rising edge becomes smaller. As the phase difference is further increased, the amount of the detected signal decreases, and the image obtained becomes dark again.
  • phase difference when the brightness is maximized is the phase difference that maximizes the SNR of the finally obtained image or signal profile.
  • This phase difference is also controlled to be constant at all irradiation positions.
  • the variation in the phase difference for each irradiation position results in the variation in luminance, and the SNR of the observed image decreases.
  • the primary beam residence time TS per pixel is not the same time at all beam irradiation positions, but the primary beam residence time TS per pixel for each location in the two-dimensional plane to be scanned, or It is also possible to change the beam modulation period TM . However, even after the change, the value is set so that the relationship that the primary beam residence time TS per pixel is a positive integer multiple of the beam modulation period TM is maintained. Further, even if the X-direction scanning cycle TL changes depending on the scanning line, the modulation is controlled so as to be a positive integer multiple of the beam modulation cycle TM , or the modulation is reset so that the phases are the same for each scanning line.
  • FIG. 12 shows an example of the operation screen.
  • the operation screen includes an acquired image display unit 141, a signal strength monitor 142, a condition setting unit 143, and a phase setting unit 144.
  • Various observation conditions, modulation conditions, and circuit conditions are input by the condition setting unit 143. Modulation conditions and circuit conditions can be set while looking at the signal strength monitor 142.
  • the value of SNR is also calculated and displayed in the condition setting unit 143. While confirming this value, the modulation frequency and the cutoff frequency of the high-pass filter or low-pass filter can be set so as to satisfy the desired SNR.
  • condition setting unit 143 shows an example in which the control value is directly input
  • the value may be selected by a pull-down method, and a plurality of preset optical modes are prepared and the condition setting unit 143 is used.
  • the operator may select the optical mode.
  • the phase adjustment amount by the phase adjuster 16 can be manually adjusted by the phase setting unit 144 while the scanner is looking at the signal strength monitor, or can be automatically adjusted as shown in the second modification. Is.
  • the phase amount may be adjusted by using the slider of the phase setting unit 144, or an arbitrary phase amount may be input numerically. Instead of setting each condition individually, the SEM image observed under various set conditions is displayed on the acquired image display unit 141.
  • FIG. 13 shows an example of an operation screen when setting the primary beam residence time TS per pixel and the beam modulation period TM, which are different for each region as shown in FIG. 11.
  • the area selection unit 151 divides the image acquisition area, and the condition setting unit 152 sets the primary beam residence time TS and the beam modulation period TM for each division area.
  • the image acquisition area may be divided and conditions for each divided area may be set in advance so that the operator can recall the settings from the condition setting unit 152.
  • Example 1 While the example of performing synchronous detection by a phase sensitive detector using an analog signal was disclosed as Example 1, it is also possible to perform synchronous detection using digital processing by a computer. As the second embodiment, a frequency modulation SEM using digital processing (hereinafter referred to as a digital frequency SEM) will be described.
  • a digital frequency SEM a frequency modulation SEM using digital processing
  • FIG. 14 shows the basic device configuration of the digital frequency modulation SEM.
  • FIG. 14 shows a configuration corresponding to the frequency modulation SEM shown in FIG. 1, and displays the digital processing executed by the computer 71 as a functional block. Not limited to the frequency modulation SEM shown in FIG. 1, the corresponding digital processing can be applied to each modification of the first embodiment.
  • the functional block related to the synchronous detection of the digital frequency modulation SEM includes an AD conversion unit 73, a synchronous detection unit 74, a signal generation unit 75, a phase adjustment unit 76, a low-pass filter 77, and a control unit 78.
  • the synchronous detection unit 74, the signal generation unit 75, the phase adjustment unit 76, the low-pass filter 77, and the control unit 78 are the phase sensitive detector 14, the signal generator 15, and the phase adjuster 16 of the frequency modulation SEM shown as the first embodiment, respectively.
  • a functional block corresponding to the low-pass filter 17 and the computer 18, and duplicated description will be omitted.
  • the output of the low pass filter 17 is converted into a digital signal and taken into the computer 18, whereas in the digital frequency modulation SEM, the output of the amplifier 13 is converted into a digital signal by the AD conversion unit 73 and digitized.
  • the detected signal is taken into the computer 71 based on the sampling signal.
  • FIG. 15 shows the acquisition flow of the detection signal in the digital frequency modulation SEM.
  • the detection signal from the signal detector 12 is amplified by the amplifier 13 and then digitized and sampled by the AD conversion unit 73 to obtain a digital signal. Is taken into the computer 71 (S02).
  • the intensity of the detection signal from the signal detector 12 is frequency-modulated because the beam intensity of the primary beam 2 is frequency-modulated.
  • the sampling frequency of the AD conversion unit 73 is higher than twice the modulation frequency of the primary beam 2 based on the sampling theorem.
  • the detection signal digitized by the AD conversion unit 73 is sampled by the sampling signal, and the synchronous detection process is performed by the synchronous detection unit 74. As shown in FIG. 16, since the detection signal 161 from the signal detector 12 may take time to settle due to the modulation of the primary beam 2 at the rising edge of the signal, the voltage of the detection signal 161 is settled. It is desirable to process the signal excluding the output voltage value outside the region 162.
  • the frequency of the sampling signal 163 that samples the detection signal converted into a digital signal by the AD conversion unit 73 is set to be at least twice the modulation frequency of the detection signal (here, the frequency of the modulation signal of the primary beam 2), and the detection signal ( Here, the modulation signal of the primary beam 2) and the sampling signal 163 are synchronized.
  • the frequency of the sampling signal 163 is set sufficiently high, and the frequency of the sampling signal 163 is set to be equal to or lower than the sampling frequency of the AD conversion unit 73.
  • FIG. 16 shows an example in which the frequency of the sampling signal 163 is double the frequency of the detection signal 161 and the phase difference between the two is adjusted so that the sampling period comes to the voltage static region 162 of the detection signal 161.
  • the phase difference that makes the obtained image brightest (maximum pixel value) while changing the phase difference between the modulated signal of the primary beam 2 and the sampling signal 163.
  • the SNR of the finally obtained image or signal profile can be improved.
  • FIG. 16 is an example in which the duty ratio of the sampling signal 163 for turning on / off sampling is set to 50%, but the duty ratio is not limited to this value.
  • the detection signal digitized by the AD conversion unit 73 under the condition satisfying the sampling theorem is further sampled by the sampling signal, so that AD conversion is performed at a constant sampling frequency regardless of the modulation frequency of the detection signal.
  • the sampling frequency of the AD conversion unit 73 may be controlled according to the modulation frequency of the detection signal.
  • the sampling frequency of the AD conversion unit 73 is synchronized with the modulation frequency of the detection signal, and the phase difference between the sampling cycle of the AD conversion unit 73 and the modulation cycle of the detection signal is adjusted so that the detection signal 161 cannot be detected. The influence of stable rise can be reduced.
  • the synchronous detection unit 74 multiplies the sampled digital signal by the reference signal output by the phase adjustment unit 76 (S04).
  • the reference signal may be a digital signal obtained by AD-converting an analog signal, or may be a digital signal generated inside the computer 71 or a fixed value. Further, the signal waveform of the reference signal may be a sine wave or a rectangular wave.
  • storage in a one-dimensional format means storing digital signals and reference signals captured based on sampling signals side by side in chronological order. What is arranged in chronological order may be a captured digital signal, or may be the result of processing the digital signal by filtering, arithmetic processing, or both.
  • the memory in the one-dimensional format may be stored only in the same irradiation point, or a plurality of irradiation points may be combined into one one-dimensional format data in chronological order.
  • Storage in two-dimensional format refers to storing a plurality of one-dimensional format data.
  • the one-dimensional format data may store the same data more than once, or may store different one-dimensional format data.
  • the low-pass filter 77 outputs a desired signal component from the value obtained by multiplying the reference signal and the digital signal (S05), and the control unit 78 images the output of the low-pass filter 77 (S06).
  • data for a certain period may be integrated, or mobile integration or the like may be used as an alternative to the low-pass filter 77.
  • the output data of the low-pass filter may be averaged to construct the data of one pixel.
  • the configuration may be simpler than the frequency modulation SEM shown in the first embodiment. can. Since no analog circuit is required, the circuit noise of the phase sensitive detector 14 and the like can be eliminated, and the shape and cutoff frequency of the filter can be freely adjusted, making it an optimal filter design for the observation target. Is possible. As described above, in the digital frequency modulation SEM, the SNR and the dynamic range of the observed image can be easily improved by the simple configuration.
  • the signal detection method of the present disclosure may be used for the detection signal by detecting an electromagnetic wave such as light or X-ray.
  • an optical or X-ray detector is used as a detector, and an optical mirror or an optical mirror is used in the microscope to detect the light or X-ray generated from the sample.
  • the condenser lens and the condenser mirror may be arranged at an appropriate position.
  • the sample 10 may be a biological sample. Since biological samples are much more affected by electron beams than inorganic materials, it can be said that the use of the frequency-modulated SEM of the present disclosure is a particularly effective observation target. When observing a biological sample, it is necessary to observe the sample in an environment that does not damage the biological sample, such as holding it in an underwater observation capsule or arranging the sample in a low vacuum environment.
  • the configuration and effect of the present disclosure are not limited to the application to the SEM, and the scanning transmission electron microscope (STEM) and the like can be used. It is also applicable to a device using an ion beam as a charged particle beam, and a device having a similar configuration having a function of irradiating a charged particle beam and detecting a signal associated therewith.
  • SEM scanning transmission electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

荷電粒子ビーム装置におけるスループット、SNR、及び空間分解能間のトレードオフを解消する。このため、コンピュータ(18)は、検出器(12)が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう、荷電粒子光学系および検出系の少なくともいずれか一方を設定し、荷電粒子光学系は、荷電粒子ビームを試料上で走査し、コンピュータ(18)は、荷電粒子ビームの照射位置と、当該照射位置における検出器からの検出信号と所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることにより画像もしくは信号プロファイルを生成する。

Description

荷電粒子ビーム装置および試料観察方法
 本開示は、荷電粒子ビーム装置およびそれを用いた試料観察方法に関する。
 走査型荷電粒子ビーム装置として走査型電子顕微鏡(Scanning Electron Microscope:SEM)が挙げられる。SEMでは電子源より引き出された電子をレンズにより試料上へ集束させ、試料表面近傍で発生する後方散乱電子の量、あるいは試料内にて発生する二次電子の量を検出し、試料の観察画像を生成する。試料から放出される後方散乱電子や二次電子は、電子増倍素子によって直接的に検出するか、発光素子(シンチレータ)により光に変換し、変換された光を光電子増倍管、CCD、CMOS等の光検出素子によって検出する。後者の検出方法の場合、電子線の照射位置ごとのシンチレータ発光量の大小が後方散乱電子量や二次電子量の大小に対応しており、2次元平面内の各照射位置での発光量に応じて画素の輝度を定めることによりSEM画像を形成できる。
 SEMの利用分野の1つに半導体パターンの欠陥検査や寸法管理があり、近年これらの分野に用いられるSEMの装置性能として、スループットが重要となっている。近年の半導体製造では極端紫外光(Extreme Ultraviolet:EUV)を用いた露光によってパターンサイズが数nmとなっており、単位面積あたりのパターン密度は年々大きくなってきている。このため、パターンの検査や計測点数が大きくなるため、従来の検査・計測速度では数日~数十日程度要するおそれがある。このため、SEMによる半導体パターンの検査および計測のスループットを飛躍的に大きくすることが望まれている。さらに、スループット向上に加え、電子線照射による試料へのダメージや変形を防止するためには、照射電流量をできる限り小さくすることが望まれる一方、微細パターンを観察するため空間分解能は現状の水準を維持する必要がある。
 特許文献1には、試料にパルス状の電子線を照射する電子顕微鏡が開示されている。特許文献2には、荷電粒子線の照射条件を高速に変調し、変調周期とマッチする信号のみを検出することにより、照射荷電粒子線に起因しない出力、すなわちノイズを除去する荷電粒子線装置が開示されている。特許文献3には、入射電子エネルギーを変化させて電子線を試料に照射し、後方散乱電子検出器からの出力を入射電子エネルギーの変化に同期させて検波、整流することにより、後方散乱電子発生量の変化分を直流信号として取り出すことが開示されている。
特開2018-137160号公報 特開2016-189332号公報 特開平5-275045号公報
 照射電流量を小さくすると、一般に画像の信号対雑音比(Signal-to-Noise Ratio:SNR)が低下し、不鮮明な画像しか得られない。この場合、一般的手法として、同一箇所を複数回走査し、各箇所から得られた信号を積算することによりSNRを向上させることができる。しかしながら、SNRを向上させるために同一箇所を複数回走査し積算することは、スループットを低下させることを意味している。これに対して、積算回数を減らすために一般的に取られる手法は照射電流量を大きくすることであるが、上述のように電子線照射によって試料上の微細化されたパターンへのダメージや変形を生じさせるおそれがある。ダメージの例としては高エネルギーの荷電粒子照射による熱や化学反応、及び帯電による試料変形や破壊といったものが挙げられる。加えて、照射電流量を大きくすることは、空間分解能の低下につながる。照射電流量を大きくすることで、空間電荷効果による荷電粒子ビームのエネルギー幅の増大、荷電粒子ビームの集束角増大による荷電粒子光学系の最適条件からの逸脱により収差が増大するためである。
 このように、スループット、SNR、及び空間分解能といった3つのSEMの基本的性能にはトレードオフの関係が存在しており、従来のSEMではこれら3つの性能を一度に向上させることは困難であった。
 特許文献1に開示される電子顕微鏡は、試料にパルス状の電子線を照射する点で、本開示における一実施態様と共通点を有する。しかしながら、特許文献1は試料の電位コントラスト像を高精度化することを目的としており、本開示のように、スループット、SNR、及び空間分解能といった3つのSEMの基本的性能を一度に向上させることを目的とするものではない。
 さらに、特許文献2、特許文献3は同期検波を適用してノイズを除去する点で、本開示と共通する。しかしながら、同期検波を行う信号同士の位相差、あるいは検出器からの検出信号をデジタルサンプリングする場合には検出信号とサンプリング信号との位相差にばらつきがあると、位相差のばらつきがノイズとなってしまい、3つのSEMの基本的性能を十分に向上させることができない。
 本開示における一実施の態様である荷電粒子ビーム装置は、荷電粒子源と、荷電粒子源からの荷電粒子ビームを試料上に集束させる1以上のレンズと、荷電粒子ビームを試料上で走査させる偏向器と、を備える荷電粒子光学系と、荷電粒子ビームを試料に照射することにより放出される信号荷電粒子または電磁波を検出する検出器を備える検出系と、荷電粒子光学系を制御して荷電粒子ビームを試料上で走査させ、荷電粒子ビームが1画素に相当する照射位置に照射されることによって放出される信号荷電粒子または電磁波を検出器が検出することにより出力される検出器からの検出信号に基づき画像もしくは信号プロファイルを生成するコンピュータと、を有し、
 コンピュータは、検出器が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう荷電粒子光学系および検出系の少なくともいずれか一方を制御し、荷電粒子ビームの照射位置と、当該照射位置における検出器からの検出信号と所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることにより画像もしくは信号プロファイルを生成し、
 荷電粒子ビームの照射位置にかかわらず、同期検波を行う検出器からの検出信号と参照信号との位相差は一定となるよう制御されている。
 本開示における他の一実施の態様である荷電粒子ビーム装置は、荷電粒子源と、荷電粒子源からの荷電粒子ビームを試料上に集束させる1以上のレンズと、荷電粒子ビームを試料上で走査させる偏向器と、を備える荷電粒子光学系と、荷電粒子ビームを試料に照射することにより放出される信号荷電粒子または電磁波を検出する検出器を備える検出系と、荷電粒子光学系を制御して荷電粒子ビームを試料上で走査させ、荷電粒子ビームが1画素に相当する照射位置に照射されることによって放出される信号荷電粒子または電磁波を検出器が検出することにより出力される検出器からの検出信号に基づき画像もしくは信号プロファイルを生成するコンピュータと、を有し、
 コンピュータは、検出器が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう荷電粒子光学系および検出系の少なくともいずれか一方を制御し、荷電粒子ビームの照射位置と、当該照射位置における検出器からの検出信号と所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることにより画像もしくは信号プロファイルを生成し、
 コンピュータは、検出器からの検出信号をデジタル変換してサンプリング信号に基づいて取り込み、サンプリング信号の周波数は、検出器が検出する信号荷電粒子または電磁波の強度の変調周波数の2倍以上であり、検出器が検出する信号荷電粒子または電磁波の強度の変調とサンプリング信号とは所定の位相差をもって同期するよう制御されている。
 荷電粒子ビーム装置におけるスループット、SNR、及び空間分解能間のトレードオフを解消する。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
周波数変調SEMの基本構成を示す図である。 光励起電子源を用いた周波数変調SEMの基本構成を示す図である。 ハイパスフィルターを搭載した周波数変調SEMの構成を示す図である。 1次元に走査する場合の、走査信号と1次ビーム強度の変調周期との関係を説明するための図である。 2次元に走査する場合の、走査信号と1次ビーム強度の変調周期との関係を説明するための図である。 2次元に走査する場合の、走査信号と1次ビーム強度の変調周期との関係を説明するための図である。 変形例2の周波数変調SEMの構成を示す図である。 変形例3の周波数変調SEMの構成を示す図である。 変形例4の周波数変調SEMの構成を示す図である。 変形例5の周波数変調SEMの構成を示す図である。 電子光学系の変調と検出系の変調との双方を行う場合の効果を説明するための図である。 領域によって1次ビーム滞在時間やビーム変調周期を異ならせて設定した場合の、走査信号と1次ビーム強度の変調周期との関係を説明するための図である。 操作画面の一例である。 操作画面の一例である。 デジタル式周波数変調SEMの基本構成を示す図である。 デジタル式周波数変調SEMにおける検出信号の取得フローを示す図である。 検出信号とサンプリング信号との関係を示す図である。
 本開示の荷電粒子ビーム装置の一例として、電子顕微鏡(周波数変調SEM)について説明する。
 図1に本実施例の電子顕微鏡(周波数変調SEM)の基本的な装置構成を示す。図1では電子顕微鏡の基本構成として電子光学系、検出系及び制御系を開示している。電子光学系は、電子放出部1、加速電極3、集束レンズ4,7、絞り5、チョッパー6、偏向器8、対物レンズ9、信号生成器15を含んでいる。検出系は、信号検出器12、増幅器13、位相敏感検出器14、位相調整器16、ローパスフィルター17を含んでいる。制御系はコンピュータ18を含んでいる。
 電子放出部1より放出された一次ビーム2は、加速電極3により加速され、集束レンズ4にて集束される。一次ビームは絞り5により電流量が調整された後、チョッパー6により試料上の単位面積あたりのビーム強度が周波数変調される。この例では、一次ビーム2を信号生成器15からの矩形波の偏向電圧(制御信号)によって変調している。チョッパー6は、絞り部を有するブランキング偏向器を用いて構成でき、偏向器の偏向量に応じて1次ビーム2が絞り部を通過するか否か制御されることでビーム強度が変調される(1次ビーム2がパルス化される)。なお、チョッパー6は、集束レンズ4による1次ビームのクロス位置(下段集束レンズ7の物点位置)に配置することで変調に起因するノイズを小さくすることができる。
 周波数変調された1次ビーム2は、その後、集束レンズ7により集束され、対物レンズ9を通過し、試料10へ照射される。また、集束レンズ7と対物レンズ9との間には偏向器8が配置され、1次ビーム2を試料10上で走査させるための偏向がなされる。試料10は大きさや材質に制限はなく、例えば、半導体ウェハでもよい。一次ビーム2が試料10へ照射されることにより、一次ビーム2と試料10との相互作用により信号電子11が放出される。この信号電子11を信号検出器12にて検出する。一次ビーム2のビーム強度が周波数変調されていることにより、信号検出器12にて検出される信号電子11の強度も周波数変調されている。信号検出器12からの検出信号は増幅器13にて増幅された後、位相敏感検出器14に入力される。信号検出器12の例としてはE-T検出器が挙げられる。E-T検出器ではシンチレータおよび光電子増倍管を使用して信号電子を効率よく検出できる。
 位相敏感検出器14には、一次ビーム2を変調させるための偏向電圧と同じ周期の参照信号も信号生成器15から入力される。この参照信号は、信号生成器15から発信され、位相調整器16にて位相が調整された後に位相敏感検出器14へと入力される。図1では信号生成器15をビーム強度変調用と参照信号発信用とで共用する例を示したが、信号生成器15を複数設け、それぞれビーム強度変調用と参照信号発信用に使い分けてもよい。
 位相敏感検出器14では信号検出器12からの検出信号と信号生成器15からの参照信号との2つの信号を用いて乗算処理(同期検波、位相検波)が行われる。同期検波を行うことにより、高いSNRで信号を検出することができる。図1では、矩形波で1次ビーム2を変調する(パルス化する)例を示しているが、以下では説明の簡単化のため、正弦波で1次ビーム2を変調させる場合を例に説明する。なお、矩形波は正弦波の重ね合わせとして表現されるため、矩形波の場合も同様である。
 検出信号をAsin(ωst+θs)、参照信号をsin(ωrt+θr)、ノイズをN(ω)sin(ωt)とする。ここでのノイズとは主に、信号検出器12や増幅器13において検出信号に重畳されるノイズである。なお、Aは参照信号の振幅を1としたときの検出信号の振幅、ωsは検出信号の周波数、θsは検出信号の位相、tは時間、ωrは参照信号の周波数、θrは参照信号の位相、N(ω)はノイズの振幅、ωはノイズの周波数である。ノイズの振幅は周波数依存性があるため、周波数ωの関数として表記している。
 位相敏感検出器14ではノイズが加算された検出信号と参照信号との乗算を行い、位相敏感検出器14の出力信号Sは(数1)にて表される。
Figure JPOXMLDOC01-appb-M000001
 ノイズが加算された検出信号と算出信号との積は、三角関数の公式を用いて(数1)のように変形できる。ここで、検出信号と参照信号の周波数は同一であるため、ωs=ωrと表せるので、(数1)はさらに(数2)に変形される。
Figure JPOXMLDOC01-appb-M000002
 また、(数2)における第3項は、同様に三角関数の公式を用いて(数3)のように変形できる。
Figure JPOXMLDOC01-appb-M000003
 位相敏感検出器14の出力信号Sはローパスフィルター17へ入力され、その直流成分SDCが取り出される。(数3)より、(数2)の第3項における直流成分はω=ωrの場合となるため、dωをバンド幅とすると、直流成分SDCは(数4)で表される。
Figure JPOXMLDOC01-appb-M000004
 (数4)より、検出信号の位相θsと参照信号の位相θrを一致させた場合、第1項はA/2となり、第2項として残るノイズは周波数ωrのノイズ成分のみである。したがって、参照信号の周波数ωr、したがって1次ビーム2の変調周波数をノイズの低い周波数帯域(例えば、E-T検出器であれば高周波帯域)に設定し、位相調整器16にて検出信号の位相θsと参照信号の位相θrとを一致させるよう、位相を調整した参照信号を位相敏感検出器14に入力することにより、高いSNRで検出信号の振幅Aを求めることができる。
 コンピュータ18では、ローパスフィルター17から直流成分SDCを取り出し、1次ビーム2の試料上の照射位置(画像もしくは信号プロファイルの画素位置に相当する)とあわせてSEM像もしくは信号プロファイルを形成する。このように高いSNRで検出信号が得られるため、コンピュータ18におけるローパスフィルター17の出力信号の信号取得間隔(サンプリングタイム)は信号生成器15の変調周波数とは無関係に設定してよく、画素1点あたり1回のデータ取得でも構わない。
 図2に電子放出部として光励起電子源を用いた電子顕微鏡の装置構成を示す。図1の構成と同じ構成要素については同じ符号で示し、重複する説明は省略する。なお、本構成では光励起電子源を用いるために電子光学系にパルスレーザー122が加わり、検出系には光検出器123が加わっている。パルスレーザー122から出力されたパルス光は光励起電子源121に入射され、パルス1次ビーム120を放出する。一方、パルスレーザー122からの光は分岐され、光検出器123は分岐された光を検出する。以上の構成により、光検出器123によるパルスレーザー122からの光の検出信号を、パルス1次ビーム120の変調周波数と同じ周波数で変調された参照信号として用いることができる。光検出器123としてはフォトディテクタや光電子増倍管を用いればよい。
 パルス1次ビーム120が照射されることにより試料10から発生した信号電子11の検出信号は位相敏感検出器14に入力され、検出系にて図1の装置構成と同様の処理がなされる。なお、パルス光を出力するパルスレーザー122を、周波数信号を生成する信号生成器を用いて構成してもよい。周波数信号は、矩形波、正弦波など、任意の波形を用いてよい。この場合、図1の構成と同様に、位相調整器16に信号生成器から出力される周波数信号を参照信号として入力するように構成してもよい。
 図3には、図1の装置構成の変形例としてハイパスフィルター131を配置した例を示す。検出系において、増幅器13の後段にハイパスフィルター131を配置することによって低周波帯域に位置するノイズをカットすることができる。信号検出器12や増幅器13において検出信号に重畳されるノイズは低周波帯域において比較的大きい。本実施例においては1次ビーム2、したがって信号電子11が変調されていることにより、信号成分に悪影響を与えることなく、低周波帯域の比較的大きなノイズを除去することが可能になる。
 図4に、1次ビーム2により試料を1次元(例えばX方向)に走査して信号プロファイルを得るときの走査信号21、1次ビーム強度22、検出信号25、参照信号27の時間変化を示す。走査信号21は1画素あたりの1次ビーム滞在時間TSで、照射位置をX方向に移動させるよう走査電圧または走査電流(偏向器の構成による)を変化させている。1次ビーム強度22は試料上での単位面積あたりのビーム強度の変化を示しており、1次ビーム2の変調に伴って検出信号25も変調される。また、参照信号27は、1次ビーム2の変調周波数と同じ周波数をもつため、図4では、1次ビーム強度22、検出信号25、参照信号27をいずれも同じ周波数で変調された信号として模式的に示している。なお、ここでは1次ビーム2を正弦波で変調した例を示しているが、矩形波などの他の波形で変調した場合も同様である。
 1次ビーム強度22に示される試料上でのビーム変調周期TMは、1画素あたりの1次ビーム滞在時間TSよりも短くなるように、ビーム変調周期TMおよび1次ビーム滞在時間TSは調整される。
 検出信号25は1次ビーム強度22の変調からの検出遅れDDがある状態にて位相敏感検出器14へと入力される。位相敏感検出器14には参照信号27も入力されるが、参照信号27と検出信号25との間には位相差θD-Rが存在している。位相調整器16は、位相敏感検出器14に入力される参照信号を遅延させ、検出信号と参照信号との間の位相差θD-Rを0にした状態で位相敏感検出器14に入力させる。したがって、1次ビーム滞在時間TSがビーム変調周期TMの正の整数倍とされていると、各画素に対応する照射位置での位相調整器16による位相調整量を等しくできる。また、各画素に照射される電子線量を統一できるため、得られる信号量やダメージに対するばらつきを抑制する効果もある。
 図5に1次ビーム2により試料を2次元に走査してSEM像を得るときの走査信号と1次ビーム強度22の時間変化を示す。ここでは、X方向の走査(走査線ともいう)を、X方向に直交するY方向に位置をずらしながら繰り返し行うラスタースキャンにて試料を2次元に走査する例を説明する。なお、ラスタースキャン方式は一例であり、2次元走査方式は図5に示す走査信号で行うものに限定するものではない。
 1次ビーム2を2次元に走査する場合、拡大図30として示すように、1画素あたりの1次ビーム滞在時間TSは試料上でのビーム変調周期TMよりも長くされている。図4に示した1次元走査の場合と同様の理由で、ある位置でのX方向走査開始から次の位置でのX方向走査開始までの時間をX方向走査周期TLと定義するとき、X方向走査信号31のX方向走査周期TLをビーム変調周期TMの正の整数倍とする。こうすることで、X方向走査開始位置における検出信号と参照信号の位相差θD-RをY方向の位置にかかわらず、一定に保つことができる。
 以上説明したように、1画素あたりの1次ビーム滞在時間TSをビーム変調周期TMの正の整数倍としない、及びX方向走査周期TLをビーム変調周期TMの正の整数倍としない場合には、検出信号25と参照信号27の位相差θD-Rがビーム照射位置ごとに異なることになる。このことは、1次ビーム2が照射される1次ビーム滞在時間TSが一定であっても、1次ビーム2の強度が変調されていることにより、滞在期間内に当該照射位置に照射されるプローブ電流量、あるいは電子数は照射位置ごとに異なることになる。このように、位相差θD-Rのばらつきはノイズ成分となり、SEM画像の劣化につながる。したがって、SEM像の空間分解能を高めるためには、全ての1次ビーム2の照射位置にて位相差θD-Rが一定となるように、1次ビーム2の走査と変調とを制御することが望ましい。
 このように、本実施例の周波数変調SEMでは、1次ビームを検出器のノイズの低い高周波帯域の周波数で変調させることにより、ノイズ成分よりも信号成分が十分に大きくなる変調周波数において信号成分の検出を行う。したがって、従来のSEM画像よりも高SNRの画像が生成できる。
 本実施例の周波数変調SEMでは信号のSNRが大幅に向上するため、画像1枚の取得時間を減らすことができ、スループット向上に寄与できる。例えば、従来のSEMでは、画像のSNRを大きくするために、積算枚数を多くする、1画素あたりの1次ビーム滞在時間TSを長くする、もしくは、プローブ電流量を大きくすることが必要であった。これに対して、周波数変調SEMでは画像を積算したり、1次ビーム滞在時間TSを長くしたりしなくても良好なSNRで検出信号を得ることができる。積算用の画像取得時間や1次ビーム滞在時間TSの短縮は、スループットの向上と試料へのダメージを小さくすることにつながる。また、プローブ電流を大きくする必要もないため、プローブ電流の増大に伴う空間分解能の劣化や帯電も発生しない利点がある。すなわち、スループット、SNR、空間分解能の3項目のトレードオフを解消できる。
 特に半導体ウェハの計測や検査においては、試料のチャージアップやダメージ、また1次ビーム照射に伴うカーボンコンタミネーションが問題となる。1照射箇所当たりの照射電子数が減らせることは、チャージアップ、シュリンクなどのダメージや変形、カーボンコンタミネーションの付着などを大幅に低減できるため、より正確な寸法計測や欠陥の発見率向上をもたらす。
 本開示の周波数変調SEMは様々な変形が可能であり、以下、説明する。
 (変形例1)
 図6は、1次ビーム2を2次元走査する場合の、検出信号25と参照信号27の位相差θD-Rを一定に保持させるための図5とは異なる制御例を示す。図6に、当該制御にしたがって1次ビーム2により試料を2次元に走査するときの走査信号と1次ビーム強度22の時間変化を示す。拡大図60として示すように、1画素あたりの1次ビーム滞在時間TSは試料上でのビーム変調周期TMよりも長くされ、1次ビーム滞在時間TSはビーム変調周期TMの正の整数倍とされている。また、X方向走査信号61はある位置でのX方向走査終了から次のX方向走査開始までの時間であるインターバル時間TIを有している。図6に示す制御では、インターバル時間TIにおいて1次ビーム強度22の変調をリセットし、X方向走査開始のタイミングにおいて同じ位相となるように、変調をリスタートする。このような制御によっても、検出信号25と参照信号27の位相差θD-Rを全ての照射位置で一定とすることができる。
 (変形例2)
 図4、図5、図6に例示したような制御方式により、位相差θD-Rが全ての1次ビーム2の照射点にて同一となるように設定しても、環境変動等に起因する信号伝達遅れや微小なノイズにより検出信号25と参照信号27との間に位相ずれが生じることは起こりうる。本変形例は、このような位相差θD-RのずれがSEM像の劣化につながらないよう、位相調整器16の位相調整量を調整する構成である。
 変形例2では、画素に対応する照射位置での位相差θD-Rが位相敏感検出器14において正しく0とされるよう、自動で位相調整器16の位相調整量を制御することを可能とする。図7に示す装置構成では、コンピュータ18は、位相調整器16が位相敏感検出器14に入力する参照信号の位相を制御可能に構成されている。コンピュータ18は、位相調整器16により参照信号の位相を0 °から360 °まで変更させて、ローパスフィルター17の出力をモニタリングする。ローパスフィルター17の出力が最も大きいときの位相調整量において、位相敏感検出器14に入力される検出信号と参照信号との位相差が0となっている。コンピュータ18は、ローパスフィルター17の出力が最大になったときの位相調整量を位相調整器16の位相調整量として設定する。この位相調整器16の位相調整量を制御するタイミングは特に限定しない。例えば、画像あるいは信号プロファイルを取得する直前のタイミングで位相調整器16の位相調整量を調整することが考えられる。
 (変形例3)
 より高速に位相敏感検出器14の出力信号から直流成分SDCを取り出すため、ローパスフィルター17に代えてサンプルホールド回路81を用いて構成してもよい。図8にサンプルホールド回路を用いた装置構成を示す。正電圧検出用サンプルホールド回路81aと負電圧検出用サンプルホールド回路81bとを備え、それぞれに位相敏感検出器14の出力信号が入力される。サンプルホールド回路81におけるサンプリングタイミングは、位相調整器16にて位相が調整された参照信号により行われる。ここでは、負電圧検出用サンプルホールド回路81bに入力される参照信号として、正電圧検出用サンプルホールド回路81aに入力される参照信号に対して位相調整器82によって位相が90 °変化させられた参照信号が入力されるよう、構成されている。サンプルホールド回路81にてホールドされ、出力された信号はコンピュータ18に入力され、コンピュータ18は位相敏感検出器14の出力信号の最大値及び最小値から、平均値や差分を算出する。この平均値や差分値は疑似的にローパスフィルター17を用いた場合の出力結果とみなせる。
 ローパスフィルター17から出力される信号ほどSNRはよくないものの、従来のSEMに比べれば格段に信号のSNRを向上させられる。サンプルホールド回路81を用いた周波数変調SEMでは参照信号の1周期における最大値と最小値とが得られればよいため、1画素あたりの1次ビーム滞在時間TSとビーム変調周期TMとを等しくすることができる。これにより、1画素あたりの1次ビームの滞在時間TSをさらに短時間化することが可能となるため、さらに高スループット、低ダメージ化が達成される。
 サンプルホールド回路81を用いて位相敏感検出器14の出力信号から直流成分SDCを取り出す方法について説明したが、コンピュータ18に位相敏感検出器14の出力信号を直接入力し、デジタル化してピークを検出する方法によっても同様の処理が可能である。
 (変形例4)
 周波数変調SEMの構成例として1次ビーム2,120の周波数変調を矩形波とするとき、チョッパー6あるいは光励起電子源121により実現できることを示した。既に述べたように、1次ビーム2の強度変調は必ずしも矩形波である必要はなく、正弦波でもよい。図9に1次ビーム2に対して周波数変調を正弦波とする装置構成を示す。周波数変調を正弦波とする場合には、周波数変調SEMの電子光学系に含まれるレンズ強度を変化させればよい。レンズ強度は磁界レンズの場合は電流で、電界レンズの場合は電圧により変調させることができる。図9の例では、加速電極111に印加する電圧に変調をかけることにより、1次ビーム2の変調を行っている。図に示すように加速電極111に印加する電圧に対して周波数変調をかけることにより、試料10への一次ビーム2の照射条件が変調され、単位面積あたりの1次ビーム2の強度が変調される。その結果、放出される信号電子11の強度も変調される。
 なお、加速電極111に印加される電圧に限られず、減速電極112に印加される電圧、観察試料10に印加するリターディング電圧、電子放出部1に印加される電圧、あるいは集束レンズ4,7、対物レンズ9への電流などを周波数変調することによっても、試料上での1次ビーム2の照射条件が変調され、単位面積あたりの一次ビーム2の強度を変調することが可能である。
 (変形例5)
 以上の実施例あるいは変形例では、1次ビーム2を変調することにより、放出される信号電子11の強度を周波数変調している。これに対して、電子光学系ではなく、信号電子11を検出する検出系に対して周波数変調を施すことによってもSNRを向上させることが可能となる。図10Aに検出系に周波数変調を施し、検出信号を周波数変調する装置構成を示す。例えば、信号検出器90として、E-T検出器を用いる場合、E-T検出器は、信号電子11を衝突させて光に変換するシンチレータ91とシンチレータ91の発光を電気信号に変える光電子増倍管92を有している。シンチレータ91には信号電子11である二次電子や後方散乱電子を捕捉するため、数~数十 kVの電圧が印加されている。そこで、変形例5では、検出系に信号生成器15を設け、信号生成器15が生成するシンチレータ91への印加電圧を周波数変調することにより、シンチレータ91にて発生する光の強度が変調され、その結果として信号検出器90からの検出信号を変調することができる。
 この構成において、シンチレータ91に高速応答するシンチレータを使用すると、走査を高速化することが可能となる。シンチレータの応答速度、すなわち消光時間と発光強度とはトレードオフの関係にある。したがって、従来のSEMにおいて高速撮像するために応答速度の速いシンチレータを用いて1次ビームの走査速度を上げようとしても、応答速度が速いシンチレータは発光強度が弱くSNRが悪いため、走査速度を十分上げることはできない、あるいは画像積算数を増加させることが必要となり、結果として撮像時間を短縮するには限界があった。これに対して、周波数変調SEMでは周波数変調によりSNRを向上させることができるため、信号検出器90に高速応答するシンチレータ(例えば、消光時間が10 ns以下のシンチレータ)を使用することが可能になる。これにより、更なるスループット向上に加え、低帯電観察、低コンタミネーション観察が可能となる。
 なお、シンチレータ91へ印加電圧の周波数変調に限られず、信号検出器90の前に信号電子の捕集効率を変えるためのエネルギーフィルター等が配置されている場合、エネルギーフィルターの条件を周波数変調することによっても、検出信号を周波数変調することが可能である。
 変形例5を他の実施態様と組み合わせることも可能である。この場合、周波数変調SEMは、一次ビーム2の変調と信号電子11を検出する検出系の変調との双方を行う。例えば、信号生成器15を電子光学系と検出系とで共用し、信号生成器15からの制御信号がそれぞれチョッパー6とシンチレータ91に入力されるように構成する。ここで、電子光学系を変調する位相と検出系を変調する位相との位相差を調整できるよう、例えば少なくともいずれか一方に位相調整器、あるいは遅延量を調整可能な遅延回路を設けておく。電子光学系と検出系のそれぞれに信号生成器を設けてもよく、位相差の制御方法については特に限定しない。
 図10Bに検出系の変調を行わないとした場合に信号検出器90から出力される仮想検出信号101と変形例5におけるシンチレータ91への制御電圧103とを示す。制御電圧103がONのとき、シンチレータ91は信号電子11を受けて発光し、制御電圧103がOFFのとき、シンチレータ91は信号電子11を受けても発光しない。仮想検出信号101には、一次ビーム2の変調に起因して信号静定に時間を要することがある。このため、電子光学系を変調する位相と検出系を変調する位相との位相差を調整することにより、信号検出器90から出力される検出信号を仮想検出信号101の電圧静定領域102に絞り込むことができる。ここでは信号静定を例としたが、信号立ち上がり時のノイズなども図10B同様に扱うことができる。
 図10Bの例では、電子光学系の変調周波数と検出系の変調周波数は同じである。このとき、電子光学系を変調する位相と検出系を変調する位相とが一致している場合には、検出信号の不安定な立ち上がりの影響による信号強度のばらつきが生じ、これに対して、逆位相の場合には検出信号が出力されなくなる。したがって、位相差を0から変化させていくと、得られる画像は、最初のうちは検出信号の不安定な立ち上がりの影響を受けてやや暗く、立ち上がりの影響が小さくなることで次第に明るくなる。さらに位相差を大きくしていくと検出信号量が低下していくことで得られる画像は再度暗くなっていく。この明るさが最大になるときの位相差が、最終的に得られる画像や信号プロファイルのSNRを最大とする位相差である。この位相差についても、全ての照射位置で一定となるように制御する。照射位置ごとの位相差のばらつきは輝度のばらつきとなり、観察画像のSNRが低下する。
 (変形例6)
 1画素あたりの1次ビーム滞在時間TSは全てのビーム照射位置にて同一時間とするのではなく、走査する2次元平面内の場所ごとに1画素あたりの1次ビーム滞在時間TS、あるいはビーム変調周期TMを変更することも可能である。ただし、変更後においても、1画素あたりの1次ビーム滞在時間TSがビーム変調周期TMの正の整数倍になっている関係が維持されるように値を設定する。また、X方向走査周期TLが走査線によって変化しても、ビーム変調周期TMの正の整数倍となるよう制御する、もしくは、走査線ごとに同じ位相になるように変調をリセットする。
 図11に、試料観察画像を領域A~Cに分割し、それぞれの領域について1次ビーム滞在時間TS、あるいはビーム変調周期TMを設定した例を示す。領域Aで設定されている1次ビーム滞在時間TSA、及びビーム変調周期TMAを基準として比較すると、領域BではTSA=TSBであるが、TMA>TMBとされ、領域Cでは、TMA=TMCであるが、TSC>TSAとされている。このように、1画素あたりの1次ビーム滞在時間TS及び/またはビーム変調周期TMについて、照射位置や試料の材質などによって制御値を変えてもよい。
 図12に操作画面の一例を示す。操作画面は、取得画像表示部141、信号強度モニタ142、条件設定部143、および位相設定部144を備える。条件設定部143にて各種の観察条件および変調条件、回路条件を入力する。変調条件や回路条件は信号強度モニタ142を見ながら設定できる。条件設定部143にはSNRの値も計算されて、表示されるようになっている。この値を確認しながら、所望のSNRを満たすように、変調周波数やハイパスフィルターやローパスフィルターの遮断周波数を設定できる。条件設定部143では、制御値を直接入力する例を示しているが、プルダウン方式で値を選択できるようにしてもよく、あらかじめ設定した光学モードを複数用意しておき、条件設定部143にて操作者が光学モードを選択する方式でもよい。位相調整器16による位相調整量は、走査者が信号強度モニタを見ながら、位相設定部144により手動で調整することも、また、変形例2として示したように、自動で調整することも可能である。手動入力の場合、位相設定部144のスライダを用いて位相量を調節してもよく、任意の位相量を数値入力してもよい。各条件を個別に設定するのではなく、設定した各種条件にて観察したSEM画像が取得画像表示部141に表示される。
 図13に、図11に示したように領域ごとに異なる1画素あたりの1次ビーム滞在時間TSやビーム変調周期TMを設定する場合の操作画面例を示す。領域選択部151にて画像取得領域を分割し、条件設定部152にて分割領域ごとに1次ビーム滞在時間TSやビーム変調周期TMを設定する。あらかじめ画像取得領域の分割、及び分割領域ごとの条件を設定しておき、条件設定部152から操作者が設定を呼び出すようにしてもよい。
 実施例1として位相敏感検出器による同期検波をアナログ信号により行う例を開示したのに対し、コンピュータによるデジタル処理を用いて同期検波を行うことも可能である。実施例2として、デジタル処理を使用する周波数変調SEM(以下、デジタル式周波数SEM)について説明する。
 図14にデジタル式周波数変調SEMの基本的な装置構成を示す。図14では、図1に示した周波数変調SEMに対応する構成を示し、コンピュータ71が実行するデジタル処理を機能ブロックとして表示している。なお、図1に示した周波数変調SEMに限定されることなく、実施例1の各変形例についても、対応するデジタル処理の適用が可能である。
 デジタル式周波数変調SEMの同期検波に関わる機能ブロックには、AD変換部73、同期検波部74、信号生成部75、位相調整部76、ローパスフィルター77、制御部78を含んでいる。同期検波部74、信号生成部75、位相調整部76、ローパスフィルター77、制御部78は、それぞれ実施例1として示した周波数変調SEMの位相敏感検出器14、信号生成器15、位相調整器16、ローパスフィルター17、コンピュータ18に対応する機能ブロックであり、重複する説明は省略する。周波数変調SEMではローパスフィルター17の出力がデジタル信号に変換されてコンピュータ18に取り込まれるのに対し、デジタル式周波数変調SEMでは増幅器13の出力がAD変換部73によりデジタル信号に変換され、デジタル化された検出信号がサンプリング信号に基づきコンピュータ71に取り込まれる。
 図15にデジタル式周波数変調SEMにおける検出信号の取得フローを示す。信号電子11が信号検出器で検出される(S01)と、信号検出器12からの検出信号は増幅器13にて増幅された後、AD変換部73にてデジタル化とサンプリングがされて、デジタル信号としてコンピュータ71に取り込まれる(S02)。ここで、信号検出器12からの検出信号の強度は一次ビーム2のビーム強度が周波数変調されていることにより、周波数変調されている。検出信号(アナログ信号)の連続波形を再現するため、サンプリング定理に基づき、AD変換部73のサンプリング周波数は一次ビーム2の変調周波数の2倍よりも高いという関係を満たしている必要がある。この点は、ローパスフィルター17の出力信号を取り込む実施例1とは異なる。ローパスフィルター17の出力信号は直流成分であるので、一次ビーム2の変調周波数に対して、AD変換部のサンプリング周波数との関係に基づく制約を付する必要はないためである。
 AD変換部73でデジタル化された検出信号は、サンプリング信号によりサンプリングされ、同期検波部74による同期検波処理がなされる。図16に示すように、信号検出器12からの検出信号161は信号の立ち上がり時に一次ビーム2の変調に起因して信号静定までに時間を要することがあるため、検出信号161の電圧静定領域162以外での出力電圧値は除いて信号処理することが望ましい。このため、AD変換部73がデジタル信号に変換した検出信号をサンプリングするサンプリング信号163の周波数は検出信号の変調周波数(ここでは一次ビーム2の変調信号の周波数)の2倍以上とし、検出信号(ここでは一次ビーム2の変調信号)とサンプリング信号163とを同期させる。サンプリング信号163の周波数を検出信号の変調周波数の2倍以上とすることで、一次ビーム2照射時の検出信号を確実に取得できる。また、AD変換部73のサンプリング周波数は十分高くとり、サンプリング信号163の周波数は、AD変換部73のサンプリング周波数以下とする。
 検出信号とAD変換部73のサンプリング信号163との位相差を調整することにより、検出信号161の不安定な立ち上がりの影響を低減させることができる。図16は、サンプリング信号163の周波数を検出信号161の周波数の2倍とし、サンプリング期間が検出信号161の電圧静定領域162に来るように、両者の位相差を調整した例である。最適な位相差は、一次ビーム2の変調信号とサンプリング信号163との位相差を変化させながら、得られる画像が最も明るくなる(画素値を最大とする)位相差を選択するとよい。これにより、最終的に得られる画像や信号プロファイルのSNRを向上させられる。
 一次ビーム2の変調信号とAD変換部73のサンプリング信号163とが同期していることにより、一次ビーム2の試料上の照射位置にかかわらず、ノイズの影響を等しくできる。なお、図16ではサンプリングをON/OFFするサンプリング信号163のデューティ比を50%とした例であるが、この値には限られない。
 また、以上の構成では、AD変換部73でサンプリング定理を満たす条件でデジタル化した検出信号をさらにサンプリング信号によりサンプリングすることで、検出信号の変調周波数にかかわらず、一定のサンプリング周波数でAD変換を行うことを可能にしているが、AD変換部73のサンプリング周波数を検出信号の変調周波数にあわせて制御するようにしてもよい。この場合には、AD変換部73のサンプリング周波数を検出信号の変調周波数と同期させ、AD変換部73のサンプリング周期と検出信号の変調周期との位相差を調整することにより、検出信号161の不安定な立ち上がりの影響を低減させることができる。
 入力されたデジタル信号に対してハイパスフィルターやローパスフィルターにより目的の周波数以外のノイズ成分を抑制することも有効である(S03)。次に、同期検波部74ではサンプリングしたデジタル信号に対して、位相調整部76が出力する参照信号を掛け合わせる(S04)。参照信号はアナログ信号をAD変換したデジタル信号でもよいし、コンピュータ71内部で生成したデジタル信号や固定値でもよい。また、参照信号の信号波形は正弦波でもよいし、矩形波でもよい。
 サンプリングしたデジタル信号を逐次乗算するのではなく、コンピュータ71の記憶装置に一旦、一次元形式や二次元形式(画像形式など)で記憶し、記憶したデジタル信号に対して、同様に一次元形式や二次元形式とした参照信号を一括して掛け合わせてもよい。ここで、一次元形式での記憶とはサンプリング信号に基づいて取り込んだデジタル信号や参照信号を時系列で並べて記憶することをいう。時系列的に並べるものは取り込んだデジタル信号でもよいし、デジタル信号をフィルター処理や演算処理、またはその両方を処理した結果でも構わない。また、一次元形式での記憶は同一照射箇所のみとしてもよいし、複数の照射箇所を1つの一次元形式データに時系列でまとめても構わない。二次元形式での記憶とは、一次元形式データを複数個記憶することを指す。一次元形式データは同一のデータを複数個記憶してもよいし、異なる一次元形式データを記憶してもよい。
 その後、ローパスフィルター77は、参照信号とデジタル信号とを掛け合わせた値から所望の信号成分を出力し(S05)、制御部78はローパスフィルター77の出力を画像化する(S06)。このとき、例えばある期間のデータを積算する、もしくは、移動積算などをローパスフィルター77の代替として用いてもよい。また、ローパスフィルターの出力データを平均化して、1画素のデータを構築してもよい。
 デジタル式周波数変調SEMは、位相敏感検出器14、位相調整器16、ローパスフィルター17といったアナログ信号処理回路を必要としない分、実施例1に示した周波数変調SEMよりも簡易な構成とすることができる。アナログ回路を不要とするため、位相敏感検出器14などが持つ回路ノイズをなくすことができ、フィルターの形状やカットオフ周波数などを自由に調整することも容易になり、観察対象に最適なフィルター設計が可能となる。このように、デジタル式周波数変調SEMでは、簡易構成によって観察画像のSNRやダイナミックレンジを手軽に向上させることができる。
 以上、実施例、変形例を挙げて、本開示について説明した。本開示は、説明した実施例、変形例に限定されるものではなく、実施例、変形例に開示した構成の組み合わせ、あるいは一部の構成要素の変更、置換、削除なども可能である。
 また、信号電子11として二次電子、後方散乱電子を例示したが、他の電子、あるいは他の荷電粒子であってもよい。また、光やX線のような電磁波を検出して、その検出信号に対して、本開示の信号検出方法を用いてもよい。検出対象が光やX線のような電磁波である場合には、検出器として光やX線の検出器を用い、試料から発生した光やX線を検出するために、顕微鏡内に光学ミラーや集光レンズ、集光ミラーを適当な位置へ配置してもよい。
 また、試料10は生体試料であってもよい。生体試料は無機材料よりも電子線の影響をはるかに強く受けるため、本開示の周波数変調SEMの利用が特に有効な観察対象であるといえる。生体試料を観察する場合には、水中観察用カプセルにより保持したり、試料を低真空環境に配置したり、など、生体試料にダメージを与えない環境下で試料を観察することが必要になる。
 また、荷電粒子ビーム装置の例としてSEMを用いて説明したが、本開示の構成および効果はSEMへの適用に限定されるものではなく、走査型透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)や、荷電粒子ビームとしてイオンビームを用いる装置、荷電粒子ビームの照射とそれに伴う信号の検出機能を有する類似の構成を有する装置においても適用可能である。
1:電子放出部、2:1次ビーム、3:加速電極、4,7:集束レンズ、5:絞り、6:チョッパー、8:偏向器、9:対物レンズ、10:試料、11:信号電子、12,90:信号検出器、13:増幅器、14:位相敏感検出器、15:信号生成器、16:位相調整器、17,77:ローパスフィルター、18,71:コンピュータ、21:走査信号、22:1次ビーム強度、25:検出信号、27:参照信号、30,60:拡大図、31:X方向走査信号、32:Y方向走査信号、61:X方向走査信号、73:AD変換部、74:同期検波部、75:信号生成部、76:位相調整部、78:制御部、81:サンプルホールド回路、82:位相調整器、91:シンチレータ、92:光電子増倍管、101:仮想検出信号、102、162:電圧静定領域、103:制御電圧、111:加速電極、112:減速電極、120:パルス1次ビーム、121:光励起電子源、122:パルスレーザー、123:光検出器、131:ハイパスフィルター、141:取得画像表示部、142:信号強度モニタ、143:条件設定部、144:位相設定部、151:領域選択部、152:条件設定部、161:検出信号、163:サンプリング信号。

Claims (20)

  1.  荷電粒子源と、前記荷電粒子源からの荷電粒子ビームを試料上に集束させる1以上のレンズと、前記荷電粒子ビームを前記試料上で走査させる偏向器と、を備える荷電粒子光学系と、
     前記荷電粒子ビームを前記試料に照射することにより放出される信号荷電粒子または電磁波を検出する検出器を備える検出系と、
     前記荷電粒子光学系を制御して前記荷電粒子ビームを前記試料上で走査させ、前記荷電粒子ビームが1画素に相当する照射位置に照射されることによって放出される信号荷電粒子または電磁波を前記検出器が検出することにより出力される前記検出器からの検出信号に基づき画像もしくは信号プロファイルを生成するコンピュータと、を有し、
     前記コンピュータは、前記検出器が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう前記荷電粒子光学系および前記検出系の少なくともいずれか一方を制御し、前記荷電粒子ビームの照射位置と、当該照射位置における前記検出器からの検出信号と前記所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることにより前記画像もしくは前記信号プロファイルを生成し、
     前記荷電粒子ビームの照射位置にかかわらず、同期検波を行う前記検出器からの検出信号と前記参照信号との位相差は一定となるよう制御されている荷電粒子ビーム装置。
  2.  請求項1において、
     前記コンピュータは、前記荷電粒子ビームが1画素に相当する照射位置に照射される期間を、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周期の正の整数倍とする荷電粒子ビーム装置。
  3.  請求項1において、
     前記荷電粒子光学系は、前記荷電粒子ビームの第1の方向への走査を前記第1の方向と直交する方向に位置をずらしながら繰り返し行って前記試料を2次元に走査し、
     前記コンピュータは、ある位置での前記第1の方向への走査開始から次の位置での前記第1の方向への走査開始までの時間を、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周期の正の整数倍とする荷電粒子ビーム装置。
  4.  請求項1において、
     前記荷電粒子光学系は、前記荷電粒子ビームの第1の方向への走査を前記第1の方向と直交する方向に位置をずらしながら繰り返し行って前記試料を2次元に走査し、
     前記コンピュータは、前記第1の方向への走査開始のタイミングにおいて、前記検出器が検出する信号荷電粒子または電磁波の強度の変調が同じ位相となるよう、前記第1の方向への走査ごとに、前記検出器が検出する信号荷電粒子または電磁波の強度の変調をリセットする荷電粒子ビーム装置。
  5.  請求項1において、
     前記検出系は、前記検出器からの検出信号と前記参照信号とを入力し同期検波を行う位相敏感検出器と、前記位相敏感検出器の出力信号の直流成分を出力するローパスフィルターとを備える荷電粒子ビーム装置。
  6.  請求項5において、
     前記検出系は、前記位相敏感検出器に入力する前記参照信号の位相を調整する位相調整器を備え、
     前記コンピュータは、前記画像もしくは前記信号プロファイルの生成に先立って、前記位相調整器による前記参照信号の位相調整量を調整する荷電粒子ビーム装置。
  7.  請求項1において、
     前記荷電粒子光学系は、前記荷電粒子ビームの前記試料上での単位面積当たりの強度を前記所定の周波数で変調させる荷電粒子ビーム装置。
  8.  請求項7において、
     前記荷電粒子光学系は、前記所定の周波数を有する制御信号を生成する信号生成器と、前記信号生成器の生成する制御信号により制御されるチョッパーとを備え、
     前記荷電粒子ビームは、前記信号生成器の生成する制御信号の周期でパルス化される荷電粒子ビーム装置。
  9.  請求項7において、
     前記荷電粒子源は、光励起電子源であり、
     前記荷電粒子光学系は、前記所定の周波数を有する制御信号を生成する信号生成器と、前記信号生成器の生成する制御信号により制御されるパルスレーザーとを備え、
     前記荷電粒子ビームは、前記パルスレーザーから出力される、前記信号生成器の生成する制御信号の周期のパルス光が前記光励起電子源に照射されて放出されるパルス電子ビームである荷電粒子ビーム装置。
  10.  請求項1において、
     前記荷電粒子源は、光励起電子源であり、
     前記荷電粒子光学系は、パルス光を出力するパルスレーザーと光検出器とを備え、
     前記荷電粒子ビームは、前記パルスレーザーから出力されるパルス光が前記光励起電子源に照射されて放出されるパルス電子ビームであり、
     前記パルスレーザーから出力されるパルス光を前記光検出器が検出して出力する出力信号を前記参照信号とする荷電粒子ビーム装置。
  11.  請求項1において、
     前記検出系は、前記検出器が検出する信号荷電粒子または電磁波の強度を前記所定の周波数で変調させる荷電粒子ビーム装置。
  12.  請求項11において、
     前記検出器は、前記所定の周波数を有する制御信号を生成する信号生成器と、前記荷電粒子ビームを前記試料に照射することにより放出される電子を光に変換するシンチレータと変換された光を検出する光電子増倍管とを備え、
     前記検出系は、前記信号生成器の生成する制御信号により、前記シンチレータへの印加電圧を前記所定の周波数で変調させる荷電粒子ビーム装置。
  13.  請求項1において、
     前記検出系は、前記検出器からの検出信号を増幅する増幅器を備え、
     前記増幅器により増幅された前記検出器からの検出信号は、フィルター処理された後に前記参照信号との同期検波がなされる荷電粒子ビーム装置。
  14.  請求項1において、
     前記コンピュータは前記検出器からの検出信号をデジタル変換して取り込み、
     前記コンピュータが前記検出器からの検出信号をデジタル変換するときのサンプリング周波数は、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周波数の2倍以上である荷電粒子ビーム装置。
  15.  荷電粒子源、前記荷電粒子源からの荷電粒子ビームを試料上に集束させる1以上のレンズ、及び前記荷電粒子ビームを前記試料上で走査させる偏向器を備える荷電粒子光学系と、前記荷電粒子ビームを前記試料に照射することにより放出される信号荷電粒子または電磁波を検出する検出器を備える検出系と、コンピュータと、を有する荷電粒子ビーム装置を用いた試料観察方法であって、
     前記コンピュータは、前記検出器が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう、前記荷電粒子光学系および前記検出系の少なくともいずれか一方を設定し、
     前記荷電粒子光学系は、前記荷電粒子ビームを前記試料上で走査し、
     前記コンピュータは、前記荷電粒子ビームが1画素に相当する照射位置に照射されることによって放出される信号荷電粒子または電磁波を前記検出器が検出することにより出力される前記検出器からの検出信号に基づき画像もしくは信号プロファイルを生成し、
     前記画像もしくは前記信号プロファイルは、前記荷電粒子ビームの照射位置と、当該照射位置における前記検出器からの検出信号と前記所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることによって生成され、
     前記荷電粒子ビームの照射位置にかかわらず、同期検波を行う前記検出器からの検出信号と前記参照信号との位相差は一定となるよう制御されている試料観察方法。
  16.  請求項15において、
     前記コンピュータは、前記荷電粒子ビームが1画素に相当する照射位置に照射される期間を、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周期の正の整数倍に設定する試料観察方法。
  17.  請求項16において、
     前記コンピュータは、前記試料の領域ごとに、前記荷電粒子ビームが1画素に相当する照射位置に照射される期間が、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周期の異なる正の整数倍となるように設定する試料観察方法。
  18.  請求項15において、
     前記コンピュータは、前記画像もしくは前記信号プロファイルの生成に先立って、同期検波を行う前記検出器からの検出信号と前記参照信号との位相差を調整する試料観察方法。
  19.  荷電粒子源と、前記荷電粒子源からの荷電粒子ビームを試料上に集束させる1以上のレンズと、前記荷電粒子ビームを前記試料上で走査させる偏向器と、を備える荷電粒子光学系と、
     前記荷電粒子ビームを前記試料に照射することにより放出される信号荷電粒子または電磁波を検出する検出器を備える検出系と、
     前記荷電粒子光学系を制御して前記荷電粒子ビームを前記試料上で走査させ、前記荷電粒子ビームが1画素に相当する照射位置に照射されることによって放出される信号荷電粒子または電磁波を前記検出器が検出することにより出力される前記検出器からの検出信号に基づき画像もしくは信号プロファイルを生成するコンピュータと、を有し、
     前記コンピュータは、前記検出器が検出する信号荷電粒子または電磁波の強度が所定の周波数で変調されるよう前記荷電粒子光学系および前記検出系の少なくともいずれか一方を制御し、前記荷電粒子ビームの照射位置と、当該照射位置における前記検出器からの検出信号と前記所定の周波数を有する参照信号とで同期検波を行って得られる信号の直流成分とを対応付けることにより前記画像もしくは前記信号プロファイルを生成し、
     前記コンピュータは、前記検出器からの検出信号をデジタル変換してサンプリング信号に基づいて取り込み、前記サンプリング信号の周波数は、前記検出器が検出する信号荷電粒子または電磁波の強度の変調周波数の2倍以上であり、前記検出器が検出する信号荷電粒子または電磁波の強度の変調と前記サンプリング信号とは所定の位相差をもって同期するよう制御されている荷電粒子ビーム装置。
  20.  請求項19において、
     前記所定の位相差は、前記画像もしくは前記信号プロファイルの画素値を最大とするよう定められる荷電粒子ビーム装置。
PCT/JP2021/039460 2020-10-28 2021-10-26 荷電粒子ビーム装置および試料観察方法 WO2022092077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/027,191 US20230343549A1 (en) 2020-10-28 2021-10-26 Charged Particle Beam Device and Specimen Observation Method
DE112021004532.6T DE112021004532T5 (de) 2020-10-28 2021-10-26 Ladungsträgerstrahlvorrichtung und Probenbeobachtungsverfahren
KR1020237006888A KR20230043199A (ko) 2020-10-28 2021-10-26 하전 입자빔 장치 및 시료 관찰 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040350 WO2022091234A1 (ja) 2020-10-28 2020-10-28 荷電粒子ビーム装置および試料観察方法
JPPCT/JP2020/040350 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022092077A1 true WO2022092077A1 (ja) 2022-05-05

Family

ID=81382198

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/040350 WO2022091234A1 (ja) 2020-10-28 2020-10-28 荷電粒子ビーム装置および試料観察方法
PCT/JP2021/039460 WO2022092077A1 (ja) 2020-10-28 2021-10-26 荷電粒子ビーム装置および試料観察方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040350 WO2022091234A1 (ja) 2020-10-28 2020-10-28 荷電粒子ビーム装置および試料観察方法

Country Status (4)

Country Link
US (1) US20230343549A1 (ja)
KR (1) KR20230043199A (ja)
DE (1) DE112021004532T5 (ja)
WO (2) WO2022091234A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808192B (zh) * 2022-11-23 2024-04-26 中国科学院西安光学精密机械研究所 极微弱近红外信号探测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968653A (ja) * 1972-11-06 1974-07-03
JPS4984360A (ja) * 1972-12-18 1974-08-13
JPS5996759U (ja) * 1982-12-21 1984-06-30 日本電子株式会社 分析装置
JPS6031112A (ja) * 1983-08-01 1985-02-16 Hitachi Ltd 走査光子顕微鏡
JPS6327033A (ja) * 1986-07-18 1988-02-04 Nippon Telegr & Teleph Corp <Ntt> 電子デバイスの試験装置およびその使用方法
WO2015186202A1 (ja) * 2014-06-04 2015-12-10 株式会社日立製作所 走査型電子顕微鏡装置
WO2017130364A1 (ja) * 2016-01-29 2017-08-03 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
WO2019131410A1 (ja) * 2017-12-27 2019-07-04 株式会社Photo electron Soul 試料検査装置、および、試料検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275045A (ja) * 1992-03-27 1993-10-22 Elionix Kk 後方散乱電子を利用した表面分析方法およびその装置
JP6014688B2 (ja) * 2013-01-31 2016-10-25 株式会社日立ハイテクノロジーズ 複合荷電粒子線装置
US9464998B2 (en) * 2014-06-20 2016-10-11 California Institute Of Technology Method and system for electron microscope with multiple cathodes
JP6736498B2 (ja) 2017-02-23 2020-08-05 株式会社日立ハイテク 計測装置及び観測条件の設定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968653A (ja) * 1972-11-06 1974-07-03
JPS4984360A (ja) * 1972-12-18 1974-08-13
JPS5996759U (ja) * 1982-12-21 1984-06-30 日本電子株式会社 分析装置
JPS6031112A (ja) * 1983-08-01 1985-02-16 Hitachi Ltd 走査光子顕微鏡
JPS6327033A (ja) * 1986-07-18 1988-02-04 Nippon Telegr & Teleph Corp <Ntt> 電子デバイスの試験装置およびその使用方法
WO2015186202A1 (ja) * 2014-06-04 2015-12-10 株式会社日立製作所 走査型電子顕微鏡装置
WO2017130364A1 (ja) * 2016-01-29 2017-08-03 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
WO2019131410A1 (ja) * 2017-12-27 2019-07-04 株式会社Photo electron Soul 試料検査装置、および、試料検査方法

Also Published As

Publication number Publication date
WO2022091234A1 (ja) 2022-05-05
KR20230043199A (ko) 2023-03-30
US20230343549A1 (en) 2023-10-26
DE112021004532T5 (de) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6294280B2 (ja) 特殊な絞り板を備える荷電粒子顕微鏡
JP6437020B2 (ja) 荷電粒子顕微鏡を使用する方法及び荷電粒子顕微鏡
US20050263703A1 (en) Pattern inspection method and apparatus using electron beam
WO2012039206A1 (ja) 荷電粒子ビーム顕微鏡
JP6586525B2 (ja) 荷電粒子線装置
JP3934461B2 (ja) 電子顕微鏡のチャージアップ防止方法および電子顕微鏡
US20170038321A1 (en) Analyzing an object using a particle beam apparatus
JP4512471B2 (ja) 走査型電子顕微鏡及び半導体検査システム
JP2018088393A (ja) 飛行時間型荷電粒子分光学
WO2019102603A1 (ja) 荷電粒子線装置およびそれを用いた試料観察方法
WO2016143467A1 (ja) 荷電粒子ビーム装置及びそれを用いた画像の形成方法
CN109411320B (zh) 透射带电粒子显微镜中的衍射图案检测
WO2022092077A1 (ja) 荷電粒子ビーム装置および試料観察方法
JP4106755B2 (ja) 写像型観察方法及び写像型荷電粒子線顕微鏡
US20100038534A1 (en) Method of generating particle beam images using a particle beam apparatus
JP5135115B2 (ja) 荷電粒子線を用いた検査方法および検査装置
JP6770482B2 (ja) 荷電粒子線装置および走査像の歪み補正方法
JP4469727B2 (ja) 試料観察装置、及び試料観察方法
US4929836A (en) Focusing in instruments, such as SEMs and CRTs
JPH1167138A (ja) 微小領域観察装置
JP2008282826A (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2016213054A (ja) 画像処理装置、電子顕微鏡、および画像処理方法
JP2023181757A (ja) 荷電粒子線装置および画像取得方法
JPH11283545A (ja) 電子画像観察装置
JPH0636726A (ja) 走査形顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006888

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21886195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP