TWI794375B - 樣品檢查裝置及樣品檢查方法 - Google Patents

樣品檢查裝置及樣品檢查方法 Download PDF

Info

Publication number
TWI794375B
TWI794375B TW107146282A TW107146282A TWI794375B TW I794375 B TWI794375 B TW I794375B TW 107146282 A TW107146282 A TW 107146282A TW 107146282 A TW107146282 A TW 107146282A TW I794375 B TWI794375 B TW I794375B
Authority
TW
Taiwan
Prior art keywords
sample
frequency
light
signal
inspection
Prior art date
Application number
TW107146282A
Other languages
English (en)
Other versions
TW201933411A (zh
Inventor
西谷智博
小泉淳
鹿野悠
Original Assignee
日商光電魂股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商光電魂股份有限公司 filed Critical 日商光電魂股份有限公司
Publication of TW201933411A publication Critical patent/TW201933411A/zh
Application granted granted Critical
Publication of TWI794375B publication Critical patent/TWI794375B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明的課題係提供一種自檢測訊號去除雜訊且所產生的電子束有效地活用於檢查之樣品檢查裝置及樣品檢查方法。樣品檢查裝置係具備用以發射頻率調變光之光源;依據頻率調變光的受光而釋放電子束之光電陰極;檢測自經電子束照射之樣品所釋放的電子,並產生檢測訊號之檢測器以及由檢測訊號中抽取對應於頻率調變光之調變頻率的頻率之訊號之訊號抽取器。

Description

樣品檢查裝置及樣品檢查方法
本發明係有關一種樣品檢查裝置及樣品檢查方法。特別係有關於一種使用由光電陰極(Photocathode)所釋放的電子束以檢查樣品之樣品檢查裝置及樣品檢查方法。
已知使用光或是電子射線(電子束)進行樣品的檢查之樣品檢查裝置。
作為相關技術的發明專利文獻1已揭示電子顯微鏡吸收電流像觀察裝置。發明專利文獻1所記載的觀察裝置具備藉由預定的頻率調變電子射線的手段、將該經調變的電子射線照射樣品的手段、測定藉由上述電子射線照射而由樣品激發之電流的調變頻率成分(Frequency Component)之手段。
在發明專利文獻1所記載的電子顯微鏡吸收電流像觀察裝置中,係對遮沒電極(Blanking Electrode)施加脈衝電壓(Pulsed Voltage)。一部分的電子射線係被施加脈衝電壓而可彎曲。經彎曲的電子射線無法通過遮沒光柵 (Blanking Slit)。其結果係使通過遮没光柵的電子射線變成脈衝電子射線。
在使用發明專利文獻1所記載的電子顯微鏡吸收電流像觀察裝置的情況下,會被樣品吸收的吸收電流訊號(Absorbed Current Signal)係成為以電子射線之遮没頻率為中心的訊號。接著,在發明專利文獻1所記載的電子顯微鏡吸收電流像觀察裝置中,因使用配合遮没頻率的帶通濾波器(Bandpass Filter)而得以減少雜訊。
又,發明專利文獻2揭示半導體元件檢查裝置。發明專利文獻2所記載的半導體元件檢查裝置具備發射光的雷射光源、用以檢測該光的半導體元件中的反射光並輸出檢測訊號之光感測器、對應檢測訊號以設定測定頻帶及參考頻帶之頻帶(Frequency Band)設定部、由測定頻帶及參考頻帶中的檢測訊號產生測定訊號及參考訊號之頻譜分析儀(Spectrum Analyzer)、藉由計算出測定訊號與參考訊號的差量而取得解析訊號之訊號取得部。再者,在發明專利文獻2所記載的半導體元件檢查裝置中,使用了鎖相法(Lock-In Method)(藉由取得對應訊號的脈衝流(Pulse Stream)而同步處理(Synchronized)的頻率之S/N提升手法)。
[先前技術文獻] [發明專利文獻]
[發明專利文獻1] 日本特開第2005-71775號公報。
[發明專利文獻2] 日本特開第2014-92514號公報。
在發明專利文獻1所記載的電子顯微鏡吸收電流像觀察裝置中,係藉由利用遮没電極積極地排除部分電子射線而形成脈衝電子射線。由此,會產生對樣品的檢查不具貢獻的無用之電子射線,且為產生該無用的電子射線還需要額外的裝置(遮没電極及遮没光柵等)。
發明專利文獻2所記載的半導體元件檢查裝置係將光照射於半導體元件而檢查半導體元件的裝置。使用光檢查樣品的情況與使用電子射線檢查樣品的情況相比,前者的檢查點徑(Spot Diameter)(光的點徑)會變大。由此便無法對細微結構進行充分的檢查。
本發明係有鑑於上述問題,以提供自檢測訊號去除雜訊且所產生的電子束有效地活用於檢查之樣品檢查裝置及樣品檢查方法為目的。本發明之其它任意附加的功效係於為實施發明之態樣中予以清楚呈現。
本發明係有關於如以下所述之樣品檢查裝置及樣品檢查方法。
(1)一種樣品檢查裝置,係具備用以發射頻率調變光之光源;依據該頻率調變光的受光而釋放電子束之光電陰極;檢測自經該電子束照射之樣品 所釋放的電子,並產生檢測訊號之檢測器;以及自該檢測訊號中抽取對應於該頻率調變光之調變頻率的頻率之訊號之訊號抽取器。
(2)如上述(1)所記載之樣品檢查裝置,其中該訊號抽取器係包括鎖相放大器,該鎖相放大器係接收該檢測訊號及參考訊號,且該鎖相放大器係自該檢測訊號中抽取對應於該參考訊號之頻率的頻率之訊號。
(3)如上述(1)或(2)所記載之樣品檢查裝置,其進一步具備依據控制參數值而控制該光源的動作之光源控制裝置,以及儲存該樣品的種類與該控制參數值產生關聯性的第1關聯資料之儲存裝置;該控制參數值係包括下列中的至少一者:該頻率調變光的振幅控制參數值或脈衝振幅控制參數值、界定該頻率調變光之兩個最大振幅間的時間間隔之控制參數值或脈衝寬度控制參數值、界定該頻率調變光之單位波形的參數值或界定單位脈衝波形的參數值,以及脈衝間隔控制參數值。
(4)如上述(1)或(2)所記載之樣品檢查裝置,其進一步具備控制該光源的動作之光源控制裝置;該光源控制裝置係可選擇性地執行第1控制模式及第2控制模式,其中該第1控制模式係使自該光源發射出的該頻率調變光之每一單位時間的光量產生變動,而該第2控制模式係使自該光源發射出的該頻率調變光之每一單位時間的光量維持一定。
(5)一種樣品檢查方法,其具備將頻率調變光照射於光電陰極之光照射步驟;將自該光電陰極所釋放的電子束照射於樣品之電子束照射步驟;藉由檢測器檢測自該樣品所釋放的電子之檢測步驟;以及自藉由該檢測器所產生的檢測訊號中,抽取對應於該頻率調變光之調變頻率的頻率之訊號之訊號抽取步驟。
(6)如上述(5)所記載之樣品檢查方法,其進一步包括依據該樣品的種類變更下列中的至少一者之步驟:該頻率調變光的振幅或該頻率調變光的脈衝振幅、該頻率調變光之兩個最大振幅間的時間間隔或該頻率調變光的脈衝寬度、該頻率調變光的單位波形,以及該頻率調變光的脈衝間隔。
(7)如上述(5)所記載之樣品檢查方法,其具備包括該光照射步驟、該電子束照射步驟、該檢測步驟及該訊號抽取步驟之樣品檢查步驟;以及於該樣品檢查步驟之前執行之耐久性檢查步驟;該耐久性檢查步驟係包括檢查該樣品對於該電子束之耐久性,亦或是檢查與該樣品同種類之樣品對於該電子束之耐久性;依據該耐久性檢查步驟的檢查結果,決定於該樣品檢查步驟中使用的光源之控制參數值。
(8)如上述(6)所記載之樣品檢查方法,其具備包括該光照射步驟、該電子束照射步驟、該檢測步驟及該訊號抽取步驟之樣品檢查步驟;以及於該樣品檢查步驟之前執行之耐久性檢查步驟;該耐久性檢查步驟係包括檢查該樣品對於該電子束之耐久性,亦或是檢查與該樣品同種類之樣品對於該電子束之耐久性;依據該耐久性檢查步驟的檢查結果,決定於該樣品檢查步驟中使用的光源之控制參數值。
(9)如上述(5)至(8)中之任一項所記載之樣品檢查方法,其具備檢查該樣品的第1層之第1層檢查步驟;以及於該第1層的上方層積第2層後,檢查該樣品的該第2層之第2層檢查步驟;該第1層檢查步驟及該第2層檢查步驟係各包括該光照射步驟、該電子束照射步驟、該檢測步驟及該訊號抽取步驟;於該第2層檢查步驟中,係以該電子束不觸及該第1層的方式而照射該電子束於該第2層。
藉由本發明,可提供一種自檢測訊號去除雜訊且所產生的電子束有效地活用於檢查之樣品檢查裝置及樣品檢查方法。
1、1A、1B:樣品檢查裝置
2:光源
3:光電陰極
4:陽極
5:光電陰極收納容器
5h:電子束通過孔
5m:處理材料
6:樣品台
7:檢測器
8:訊號抽取器
9:光源控制裝置
11:儲存裝置
12:顯示裝置
21:電光元件
31、61:驅動裝置
33:電子束偏向裝置
40:電源
42:電壓控制裝置
91:輸入裝置
B:電子束
CB:真空腔室
DA:第1關聯資料
e:電子
L:脈衝光
LA1:第1層
LA2:第2層
M:儲存裝置
PA:脈衝振幅
PI:脈衝間隔
PW:脈衝寬度
S1:檢測訊號
S2:參考訊號
SA:具有第1頻率之訊號
ST1:第1步驟
ST2:第2步驟
ST3:第3步驟
ST4:第4步驟
T、T’:樣品
T1:第1樣品
T2:第2樣品
VA1、VA2:脈衝振幅控制參數值
VW1、VW2:脈衝寬度控制參數值
VI1、VI2:脈衝間隔控制參數值
ZA:頻率調變光的振幅
ZW:頻率調變光之兩個最大振幅間的時間間隔
圖1係有關於實施態樣1之樣品檢查裝置的示意圖。
圖2係有關於自檢測訊號中抽取對應於參考訊號的頻率之頻率的訊號的示意圖。
圖3係有關於實施態樣2之樣品檢查裝置之一示例的示意圖。
圖4A係用以說明脈衝振幅、脈衝寬度、脈衝間隔之圖式。
圖4B係用以說明頻率調變光的振幅、頻率調變光之兩個最大振幅間的時間間隔之圖式。
圖5係有關於樣品的種類與複數個控制參數值產生關聯性並加以儲存的示意圖。
圖6係有關於光源控制裝置可選擇性地執行使自脈衝光源發射出的脈衝光之每一單位時間的光量產生變動的第1控制模式,以及使自脈衝光源發射出的脈衝光之每一單位時間的光量維持一定的第2控制模式之示意圖。
圖7係有關於實施態樣2之樣品檢查裝置的一示例之示意圖。
圖8係有關於實施態樣之樣品檢查方法的一示例之流程圖。
圖9係有關於層積體之樣品的檢查方法之示意圖。
以下將邊參考圖式,邊針對實施態樣之樣品檢查裝置1以及樣品檢查方法作詳細說明。順帶一提的是,在本說明書中,對於具有同種功能之構件係以相同或是類似的符號標記。然後,對於被標記上相同或是類似的符號之構件,會有省略重複說明的情況。
(實施態樣1)
參考圖1及圖2,並針對實施態樣1之樣品檢查裝置1A作說明。圖1係有關於實施態樣1之樣品檢查裝置1A的示意圖。圖2係有關於自檢測訊號S1中抽取對應於參考訊號S2的頻率之頻率的訊號的示意圖。
實施態樣1之樣品檢查裝置1A係具備光源2、光電陰極3、檢測器7以及訊號抽取器8。
光源2係發射出經調變頻率之頻率調變光的光源。以下係針對光源2為發射出頻率調變光的一種之脈衝光的脈衝光源之示例作說明。就替代性而言,光源2亦可為發射出脈衝光以外的頻率調變光之光源(例如發射出強度會變化成正弦波(Sine Wave)狀的頻率調變光之光源)。此情況下,在以下的說明中,脈衝光亦可改稱為頻率調變光。順帶一提的是,在本說明書中,頻率調變光係指光的強度會產生週期性變化的光。又,在本說明書中,脈衝光係指在頻率調變光之中,光的強度係週期性地存在有實質上變成零的期間的光。
在圖1所記載的示例中,光源2係發射脈衝光L的光源。較佳地,以獲得高強度的脈衝光之觀點來看,光源2係發射脈衝光L的雷射光源。光源2係發射例如高輸出(瓦特(watt)級)、高頻率(數百MHz)、短脈衝(數百毫微微(femto)秒)之雷射脈衝的光源。就替代性而言,光源2也可以是較便宜的雷射二極體(Laser Diode;LD)、發光二極體(Light-Emitting Diode;LED)等。在圖1所記載的示例中,光源2係配置於真空腔室CB外。就替代性而言,亦可將光源2配置於真空腔室CB內。
作為光源2,係可採用任意的結構。作為光源2的第1例,係可採用使用了Q-開關脈衝振盪(Q-Switched Pulse Oscillation)之脈衝光源。此情況下,例如藉由對光源2內所包括的電光元件21(Electrooptic Element)施加電壓,而使電光元件21的Q值產生變化。其結果係可在施加電壓的時間點獲得經同步處理的脈衝光。作為脈衝光源2的第2例,係可使用以機械光閘(Mechanical Shutter)(包括所謂的截光器(Light Chopper))對連續雷射的光束輸出進行ON/OFF的光源2。亦可取代機械光閘而使用液晶光閘(Liquid Crystal Shutter)、電光調變器(Electrooptic Modulator)、聲光調變器(Acousto-Optic Modulator;AOM),並自連續雷射光束產生脈衝光。作為光源2的第3例,可使用半導體雷射光源。此情況下,藉由對流動於半導體組件的電流進行ON/OFF,而可獲得脈衝光。作為光源2的第4例,可使用利用了鎖模(Mode-Locked)法的脈衝光源。
在圖1所記載的示例中,光電陰極3係配置於真空腔室CB內。光電陰極3(更具體而言為半導體光電陰極)係依據光源2發射出的脈衝光L之受光而釋放電子束B(更具體而言為脈衝狀的電子束)。更具體而言,光電陰極3中的電子係藉由脈衝光而激發,而被激發的電子由光電陰極3釋放出來。被釋放的電子係藉由透過陽極4與(包括光電陰極3之)陰極所產生的電場被加速而形成電子束。在圖1所記載的示例中,雖然脈衝光係從光電陰極3的正面側照射,就替代性而言,脈衝光也可以從光電陰極3的背面側照射。又,在圖1所記載的示例中,光電陰極3係配置於具備電子束通過孔5h的光電陰極收納容器5內。在光電陰極收納容器5內亦可配置有為了將光電陰極3進行EA表面處理(換言之,降低電子親和力的處理)之處理材料5m。
用以形成光電陰極3的光電陰極材料並不特別限制,可列舉如III-V族半導體材料、II-VI族半導體材料。具體而言,可列舉如AlN、Ce2Te、GaN、K2CsSb、AlAs、GaP、GaAs、GaSb、InAs等以及其等的混晶等。作為其它示例可列舉如金屬,而具體而言可列舉如Mg、Cu、Nb、LaB6、SeB6、Ag等。藉由將前述半導體光電陰極材料進行EA表面處理而可製作光電陰極3,且該光電陰極3不僅可在因應於半導體的隙能(Gap Energy)的近紫外-紅外波長區域選擇電子激發光,亦可透過半導體的材料或結構之選擇而實現因應於電子束的用途之電子束源性能(量子產率(Quantum Yield)、耐久性、單色性、時間反應性、自旋極化度(Degree of Spin Polarization))。
自光電陰極3所釋放的電子束B係入射至樣品T。在圖1所記載的示例 中,樣品T係由樣品台6所支撐。樣品T係晶圓(Wafer)、積體電路(Integrated Circuit)、NAND型快閃記憶體(NAND-Type Flash Memory)、動態隨機存取記憶體(Dynamic Random Access Memory;DRAM)、或是,此等的中間製品(半成品),亦或是任意的電子材料等。樣品T亦可為電池材料、LED、LD、生物樣本、有機物等易受到因電子射線照射所造成損害的樣品。在圖1所記載的示例中,樣品T及樣品台6係配置於真空腔室CB內。
被電子束B所照射的樣品T係釋放反射電子、二次電子、穿透電子(Transmission Electron)等電子。反射電子係指在電子束B中的電子中被樣品T所反射的電子。又,二次電子係指因電子束B對樣品T進行照射而自樣品T之內部所釋放的電子。再者,穿透電子係指在電子束B中的電子中穿透樣品T的電子。
檢測器7係對自樣品T所釋放出來的反射電子、二次電子、亦或是穿透電子等電子e進行檢測,並產生檢測訊號S1。檢測器7係包括例如閃爍器(Scintillator)、微通道板(Microchannel Plate;MCP)等任意的電子檢測器。在圖1所記載的示例中,檢測器7係配置於真空腔室CB內。亦可為,檢測器7之中的電子檢測部係配置於真空腔室CB內,而檢測器7之中的電子檢測部以外的任意結構元件係配置於真空腔室CB外。
訊號抽取器8係自透過檢測器7所產生的檢測訊號S1中,抽取對應於脈衝光L(自光源2發射出的脈衝光)的脈衝頻率之頻率的訊號。例如訊號抽取器 8係接收來自於檢測器7的檢測訊號S1,並接收對應於來自光源2的脈衝光L之脈衝波形的訊號(參考訊號S2)。接著,訊號抽取器8係從檢測器7所接收的檢測訊號S1之中,抽取對應於上述參考訊號S2的頻率之頻率的訊號。順帶一提的是,當自光源2所發射出的光為脈衝光以外的光時,上述「脈衝頻率」則改稱為「調變頻率」(換言之,頻率調變光的強度變化之頻率)。脈衝頻率亦為調變頻率的一種。
作為訊號抽取器8係可使用例如已知的鎖相放大器(Lock-In Amplifier)。鎖相放大器係接收檢測訊號S1以及參考訊號S2,並自檢測訊號S1抽取對應於參考訊號S2的頻率之頻率的訊號。就替代性而言,作為訊號抽取器8亦可是使用自透過檢測器7所產生的檢測訊號中,抽取對應於參考訊號的頻率之頻率的訊號之任意電子電路(例如濾頻器(Frequency Filter))。又就替代性而言,作為訊號抽取器8亦可使用電腦。此情況下,電腦係使用由包含雜訊的訊號抽取特定的頻率成分之任意的電腦程式,並自檢測訊號中抽取對應於參考訊號的頻率之頻率的訊號。例如,在電腦中輸入對應於透過檢測器7所產生的檢測訊號之訊號資料以及對應於參考訊號的頻率之頻率資料,而電腦係利用上述電腦程式將上述訊號資料變換為強調對應於參考訊號的頻率之頻率成分的資料而輸出。
使光源2動作的控制訊號(例如輸入至光源的電光元件21之電壓訊號、驅動光源的機械光閘之驅動訊號、輸入至半導體雷射之ON/OFF訊號等)係具有與脈衝光的脈衝頻率相同的頻率。藉此,作為輸入至訊號抽取器8的參考訊 號係可使用使光源2動作之控制訊號。此外,在以使用了被動Q開關(Passive Q-Switch)之雷射光源、使用了鎖模法之雷射光源等作為光源2的情況下,沒有必要將用於調變頻率的控制訊號傳送至光源2。此情況下,亦可以將由光源2所放射出的脈衝光之一部分以光二極體(Photodiode)受光,且使透過該受光而產生的電訊號作為輸入至訊號抽取器8的參考訊號而使用。
如圖2的示例所示,自檢測器7被傳送至訊號抽取器8之檢測訊號S1係包含各式各樣的雜訊。相對於此,在檢測訊號S1之中,對應於脈衝光L的脈衝頻率之頻率的訊號有很高的可能性是樣品T因接收脈衝狀的電子束B所產生的訊號。換言之,在檢測訊號S1之中,對應於脈衝光L的脈衝頻率之頻率的訊號係表現被脈衝狀的電子束所照射的區域(樣品T中的區域)之狀態(結構、形狀、材質等)的訊號,可以說是去除雜訊的訊號。
在實施態樣1中,沒有必要在光電陰極3與樣品T之間配置遮没電極以及遮没光柵。藉此,由光電陰極3釋放的電子束可有效地活用於檢查上。相對於此,當使用遮没光柵之時,亦有在通過該遮没光柵的前後電子的量大幅減少的缺點。進一步地,亦有在以高速控制遮没電極的同時,電子束的照射位置產生偏移的問題。
在上述功效之外,實施態樣1之樣品檢查裝置1A係相乘地發揮以下3個功效。
第1個功效為,相較於將光照射於樣品以檢查樣品的情況,藉由將電子束B照射於樣品T以檢查樣品係可使檢查點的點徑縮得更小。換言之,藉由將電子束B照射於樣品T以檢查樣品,係可檢查更細微的區域之狀態(結構、形狀、材質等)。
第2個功效為,作為電子束源,藉由使用光電陰極3,係可產生強度大的電子束B。例如假設利用電子束以掃描樣品T的情況。在實施態樣1中,由於可產生強度大的電子束,故即便在增加掃瞄速度的情況下,亦可檢測出樣品T之微小缺陷等。在為了檢查細微的區域而縮小電子束的點徑之情況下,使用該電子束掃描樣品T的時間會變長。相較於使用其它電子束源的情況,在使用光電陰極3作為電子束源的情況下,電子束的強度係增強數倍以上(例如10倍以上)。藉此,即使電子束的點徑小亦能夠以更短的時間進行樣品檢查。此外,相較於金屬光電陰極,由於半導體光電陰極具有較高的量子效率(Quantum Efficiency),故即便是像半導體雷射(或是LED)這般峰值功率(Peak Power)較低的光亦可被充分地激發。因此,當使用半導體光電陰極作為光電陰極3時,照射於光電陰極3的頻率調變光之單位波形的選擇之自由度係變高。例如相較於使用矩形波形之脈衝光的情況下,當利用正弦波形之頻率調變光作為頻率調變光時,會提高訊號抽取器8(例如鎖相放大器)之去除雜訊的特性。又,當使用半導體雷射(或是LED)作為光源2時,可自由地選擇頻率調變光的調變頻率。如此,藉由採用與已知雜訊頻率不同的頻率作為自光源2發射出的頻率調變光之調變頻率,可更加地提高訊號抽取器8(例如鎖相放大器)之去除雜訊的特性。此外,在使用鎖模雷射、被動Q 開關雷射作為光源2的情況下,難以自由地選擇頻率調變光的調變頻率。
第3個功效為,藉由從透過檢測器7所產生的檢測訊號中抽取對應於脈衝光L的脈衝頻率之頻率的訊號,可有效地去除檢測訊號所包含的雜訊成分。在以檢測訊號直接作為樣品的檢查結果使用的情況下,為了提升檢測訊號的S/N比,而不得不延長各檢查點的檢查時間(電子束的照射時間)。實施態樣1係具備自檢測訊號S1中抽取對應於脈衝光的脈衝頻率之頻率的訊號之訊號抽取器8。藉此,即便在顯示樣品的狀態(結構、形狀、材質等)之訊號相較於雜訊而較微弱的情況下,亦可有效地自雜訊中抽取顯示該樣品的狀態之訊號。因此,即便為了提升檢測訊號的S/N比,亦不須延長各檢查點的檢查時間,而可加速電子束的掃描速度。
在實施態樣1中,因電子束的點徑小所造成的問題係藉由透過使用光電陰極3之電子束強度的提升以及透過使用訊號抽取器8之雜訊的降低之相乘功效而得以解決,且因能夠達到樣品檢查的高速化而屬於前所未見的突破。
當檢查易受電子束B損害的樣品時,有必要控制電子束B的加速電壓(在陽極4與(包括光電陰極3之)陰極之間施加的電壓)。此情況下,因自樣品T釋放的二次電子之發生效率降低等原因而造成S/N比的降低。然而,在實施態樣1中,藉由從S/N比低的檢測訊號中抽取對應於脈衝光的頻率之頻率的訊號,而得以克服S/N比降低的問題。亦即,當使用實施態樣1之樣品檢查裝置1A時,即便在過去難以被電子束B所檢查的樣品,亦即易受電子束損害的 樣品,亦可進行高精度的檢查。
此外,從加速電子束B的掃描速度之觀點來看,自光源2發射的脈衝光L之脈衝頻率,較佳地係例如50MHz以上、100MHz以上,亦或是150MHz以上。藉由將脈衝頻率設定為高頻電波,則會在短時間有多數的脈衝狀電子束對樣品進行照射。其結果係使訊號抽取器8可自短時間所獲得的檢測訊號S1中抽取對應於參考訊號S2的頻率之頻率的訊號。在調變頻率的情況下,較佳地也是50MHz以上、100MHz以上,亦或是150MHz以上。
實施態樣1之樣品檢查裝置1A可為檢測樣品中缺陷的裝置,亦可為使樣品的細微結構可視化的顯微鏡。
(實施態樣2)
參考圖3至圖7,針對實施態樣2的樣品檢查裝置1B作說明。圖3係有關於實施態樣2之樣品檢查裝置1B之一示例的示意圖。圖4A係用以說明脈衝振幅PA、脈衝寬度PW、脈衝間隔PI之圖式。圖4B係用以說明頻率調變光的振幅ZA、頻率調變光之兩個最大振幅間的時間間隔ZW之圖式。圖5係有關於樣品的種類與複數個控制參數值產生關聯性並加以儲存的示意圖。圖6係有關於光源控制裝置9可選擇性地執行使自光源2發射出的脈衝光L之每一單位時間的光量產生變動的第1控制模式,以及使自光源2發射出的脈衝光L之每一單位時間的光量維持一定的第2控制模式之示意圖。圖7係有關於實施態樣2之樣品檢查裝置1B的一示例之示意圖。
實施態樣2之樣品檢查裝置1B係具備光源2、光電陰極3、檢測器7以及訊號抽取器8。實施態樣2之樣品檢查裝置1B亦可具備真空腔室CB、陽極4、光電陰極收納容器5以及樣品台6之中的至少一者。由於實施態樣2之光源2、光電陰極3、陽極4、光電陰極收納容器5、樣品台6、檢測器7、訊號抽取器8以及真空腔室CB係與實施態樣1之光源2、光電陰極3、陽極4、光電陰極收納容器5、樣品台6、檢測器7、訊號抽取器8以及真空腔室CB相同,故省略針對這些結構的重複說明。
在圖3所記載的示例中,樣品檢查裝置1B係具備控制光源2的動作之光源控制裝置9。
光源控制裝置9係對應控制參數值而控制光源2。控制參數值係包括脈衝振幅控制參數值、脈衝寬度控制參數值、界定單位脈衝波形的參數值(例如界定了矩形波、正弦波、鋸齒波(Saw-Tooth Wave)以及高斯波(Gaussian Wave)等之參數值),以及脈衝間隔控制參數值之中的至少一者。控制參數值亦可包括脈衝振幅控制參數值、脈衝寬度控制參數值、界定脈衝波形的參數值,以及脈衝間隔控制參數值之中的至少二者、三者或是全部。如圖4A所示,脈衝振幅PA(Pulse Amplitude)係指脈衝光之強度的最大值;脈衝寬度PW(Pulse Width)係指脈衝的ON時間(換言之,脈衝光的明亮狀態之持續時間);脈衝間隔PI(Pulse Interval)係指脈衝的OFF時間(換言之,脈衝光的非明亮狀態之持續時間)。
此外,當自光源2所發射的光為脈衝光以外的頻率調變光時,上述的「脈衝振幅控制參數值」、「脈衝寬度控制參數值」、「界定單位脈衝波形的參數值」係可各自改稱為「頻率調變光的振幅控制參數值」、「界定頻率調變光之兩個最大振幅間的時間間隔之控制參數值」、「界定頻率調變光之單位波形的參數值」。此外,在圖4B中係例示有「頻率調變光的振幅(ZA)」及「頻率調變光之兩個最大振幅間的時間間隔(ZW)」。
光源控制裝置9係藉由對應脈衝振幅控制參數值而控制光源2,使光源2發射具有期望的脈衝振幅之脈衝光。又,光源控制裝置9係藉由對應脈衝寬度控制參數值而控制光源2,使光源2發射具有期望的脈衝寬度之脈衝光。再者,光源控制裝置9係藉由對應脈衝間隔控制參數值而控制光源2,使光源2發射具有期望的脈衝間隔之脈衝光。
在實施態樣2中,當樣品檢查裝置1B具備光源控制裝置9時,可因應樣品T的種類而調整脈衝光L之波形(例如脈衝振幅、脈衝寬度、脈衝間隔、單位脈衝波形、脈衝頻率)等。
(調整脈衝光的波形之順序的第1例)
針對調整脈衝光的波形之順序的第1例作說明。在圖3所記載的示例中,樣品檢查裝置1B係具備儲存樣品T的種類與控制參數值產生關聯性之第1關聯資料DA之儲存裝置M(唯讀記憶體(Read Only Memory;ROM)、隨機存 取記憶體(Random Access Memory;RAM)、硬式磁碟機(Hard Disk)等)。在圖5所記載的示例中,儲存裝置M係使第1樣品T1與複數個控制參數值產生關聯性而儲存。更具體而言,儲存裝置M係使第1樣品T1與脈衝振幅控制參數值VA1、脈衝寬度控制參數值VW1、脈衝間隔控制參數值VI1產生關聯性而儲存。又,在圖5所記載的示例中,儲存裝置M係使第2樣品T2與複數個控制參數值產生關聯性並予以儲存。更具體而言,儲存裝置M係使第2樣品T2與脈衝振幅控制參數值VA2、脈衝寬度控制參數值VW2、脈衝間隔控制參數值VI2產生關聯性而儲存。
例如,假設在第1樣品T1為較第2樣品T2易受電子束損害之材料的情況。此情況下,只要將儲存裝置M所儲存的脈衝振幅控制參數值VA1設定為較儲存裝置M所儲存的脈衝振幅控制參數值VA2還小即可。就替代性而言,亦或是額外地,將儲存裝置M所儲存的脈衝寬度控制參數值VW1設定為較儲存裝置M所儲存的脈衝寬度控制參數值VW2還小即可。此情況下,在第1樣品T1的檢查時係使用較弱的脈衝光(以及較弱的電子束),而在第2樣品T2的檢查時係使用較強的脈衝光(以及較強的電子束)。
例如,假設在第1樣品T1為較第2樣品T2易受熱損害之材料的情況。此情況下,只要將儲存裝置M所儲存的脈衝寬度控制參數值VW1設定為較儲存裝置M所儲存的脈衝寬度控制參數值VW2還小即可。就替代性而言,亦或是額外地,將儲存裝置M所儲存的脈衝間隔控制參數值VI1設定為較儲存裝置M所儲存的脈衝間隔控制參數值VI2還大即可。此情況下,相較於在第 2樣品T2的檢查時,在第1樣品T1的檢查時較能抑制熱累積在樣品中。
此外,為了手動輸入樣品T的種類,較佳地,樣品檢查裝置1B係具備受理樣品的種類之輸入的輸入裝置91。使用者透過輸入裝置91而輸入樣品的種類時,光源控制裝置9係基於儲存在儲存裝置M的第1關聯資料,抽取對應於所輸入的樣品之種類的控制參數值。接著,光源控制裝置9係利用該控制參數值而控制光源2的動作。
就替代性而言,亦可自動地識別樣品T的種類。此情況下,樣品檢查裝置1B係具備識別樣品的種類之攝影機等樣品辨識裝置。光源控制裝置9係基於透過樣品辨識裝置所識別的樣品之種類相關的情報,及儲存在儲存裝置M的第1關聯資料,而抽取對應於經識別的樣品之種類的控制參數值。接著,光源控制裝置9係利用該控制參數值而控制光源2的動作。
(調整脈衝光的波形之順序的第2例)
針對調整脈衝光的波形之順序的第2例作說明。在圖6所記載的示例中,光源控制裝置9可選擇性地執行使自光源2發射的脈衝光L之每一單位時間的光量產生變動之第1控制模式,以及使自光源2發射的脈衝光L之每一單位時間的光量維持一定之第2控制模式。
在第1控制模式中,係可檢查樣品T對於電子束B之耐久性。在該耐久檢查中,係使用例如樣本樣品作為樣品T。
假設在第1控制模式中漸漸增加脈衝光之每一單位時間的光量之情況。第1控制模式中,脈衝光之每一單位時間的光量會增加到樣品T被電子束B損害為止。樣品T有無損害係藉由執行例如影像分析而得知。
測定的結果係設定為,當脈衝光之每一單位時間的光量在第1閾值Th1以下時樣品T未受損害,而當大於第2閾值Th2時則樣品T受到損害。
在上述的情況下,使用樣品檢查裝置1B檢查實際產品(例如實際販賣之產品)時,係以能達到上述第1閾值Th1以下的方式而設定脈衝光之每一單位時間的光量。此外,雖然第1閾值Th1與第2閾值Th2可為相同的數值,但當樣品T有無損害係存在有不明確的範圍時,第1閾值Th1與第2閾值Th2亦可互為不同的數值。
在第2控制模式中,係能夠不損害樣品T而進行樣品(例如實際產品)的檢查。
在第2控制模式中,脈衝光之每一單位時間的光量係維持一定。以抑制樣品T的損害之觀點來看,在第2控制模式中,係以能夠達到上述第1閾值Th1以下的方式而維持脈衝光之每一單位時間的光量。
此外,在上述的示例之第1控制模式中,係已針對漸漸增加脈衝光之每 一單位時間的光量之示例作說明。就替代性而言,在第1控制模式中,亦可漸漸減少脈衝光之每一單位時間的光量。又,在變動脈衝光之每一單位時間的光量時,脈衝光的脈衝振幅、脈衝光的脈衝寬度、脈衝光的脈衝間隔之中的至少一者會產生變化。
在實施態樣2中,當可調整脈衝光之波形時,可配合樣品之特性而選擇更適合的脈衝波形。例如,藉由選擇在不傷及樣品的範圍內的最大強度作為脈衝光的強度(換言之,電子束的強度),可加速樣品T的檢查速度。
(在陽極4與光電陰極3之間施加的電壓)
在圖3所記載的示例中,樣品檢查裝置1B係具備在陽極4與光電陰極3(更具體而言係包含光電陰極3的陰極)之間施加電壓的電源40,以及控制在陽極4與光電陰極3之間所施加的電壓之大小的電壓控制裝置42。
當在陽極4與光電陰極3之間所施加的電壓大的情況下,電子束B係可到達比樣品T還深的區域。換言之,係可檢查至比樣品T還深的區域。另一方面,當在陽極4與光電陰極3之間所施加的電壓小的情況下,係可重點式地檢查樣品的表層部分。
(透過電子束B掃描樣品的機制)
參考圖7並針對透過電子束B掃描樣品的機制之示例作說明。
如圖7所示,樣品檢查裝置1B亦可具備使樣品台6移動的驅動裝置61。此情況下,藉由使樣品台6移動而使電子束B掃描樣品T。此外,藉由驅動裝置61所移動的樣品台6之移動方向係例如與樣品T的檢查表面平行之方向。
就替代性而言,亦或是額外地,樣品檢查裝置1B亦可具備使光電陰極3移動的驅動裝置31。此情況下,藉由使光電陰極3移動而使電子束B掃描樣品T。此外,藉由驅動裝置31所移動的光電陰極3之移動方向係例如與樣品T的檢查表面平行之方向。
就替代性而言,亦或是額外地,樣品檢查裝置1B亦可具備彎曲自光電陰極3釋放的電子束之電子束偏向裝置33。此情況下,藉由使自光電陰極3釋放的電子束產生偏向而使電子束B掃描樣品T。電子束偏向裝置33係包括例如產生與電子束B的行進方向呈相交之方向的電場之偏向用電極。
(檢查結果的紀錄或顯示)
如圖3所示,樣品檢查裝置1B亦可具備紀錄透過訊號抽取器8所抽取的訊號之儲存裝置11及/或視覺性地顯示透過訊號抽取器8所抽取的訊號之顯示裝置12。儲存裝置11亦可以使樣品T中之電子束B的照射位置與透過訊號抽取器8所抽取的訊號產生關聯性並加以儲存。此情況下,藉由參考照射位置與透過訊號抽取器8所抽取的訊號之強度的關係,可識別樣品T中的缺陷位置。又,顯示裝置12亦可使樣品T中之電子束B的照射位置與透過訊號抽取器8所抽取的訊號產生關聯性並加以顯示。
(樣品檢查方法)
參考圖8並針對實施態樣之樣品檢查方法的一示例作說明。圖8係有關於實施態樣之樣品檢查方法的一示例之流程圖。
實施態樣之樣品檢查方法係可利用實施態樣1之樣品檢查裝置1A或是實施態樣2之樣品檢查裝置1B而執行,亦可利用其它的樣品檢查裝置而執行。
在第1步驟ST1中,脈衝光L係照射光電陰極3。換言之,第1步驟ST1係脈衝光照射步驟。
在第1步驟ST1之前,可因應欲檢查樣品T的種類而變更脈衝光L之脈衝頻率。亦可例如當樣品T為第1樣品T1時,脈衝光L的脈衝頻率係設定為第1頻率F1,而當樣品T為第2樣品T2時,脈衝光L的脈衝頻率係設定為與第1頻率F1不同之第2頻率F2。
又,在第1步驟ST1之前,亦可因應欲檢查樣品T的種類而變更為了控制光源2之動作的控制參數值(例如脈衝振幅控制參數值、脈衝寬度控制參數值、界定單位脈衝波形的參數值、脈衝間隔控制參數值之中的至少一者之控制參數值)。亦可例如當樣品T為第1樣品T1時,脈衝振幅控制參數值、脈衝寬度控制參數值、脈衝間隔控制參數值係各自設定為值VA1、值VW1、 值VI1,而當樣品T為第2樣品T2時,脈衝振幅控制參數值、脈衝寬度控制參數值、脈衝間隔控制參數值係各自設定為值VA2、值VW2、值VI2。
又,在第1步驟ST1之前,亦可因應欲檢查樣品T的種類而變更陽極4與光電陰極3(更具體而言係包括光電陰極3的陰極)之間所施加的電壓。亦可例如當樣品T為第1樣品T1時,陽極4與光電陰極3之間所施加的電壓係設定為電壓V1,而當樣品T為第2樣品T2時,陽極4與光電陰極3之間所施加的電壓係設定為與電壓V1不同之電壓V2。
在第2步驟ST2中,自光電陰極3所釋放的電子束B係照射樣品T。換言之,第2步驟ST2係電子束照射步驟。
第2步驟ST2之自光電陰極3的電子束B之釋放係因脈衝光照射光電陰極3而產生的現象。為此,當照射光電陰極3之脈衝光的脈衝頻率為第1頻率F1時,則電子束B會是電子的量之變動頻率為第1頻率F1之脈衝狀的電子束。
在第3步驟ST3中,係藉由檢測器7檢測自樣品T釋放的反射電子、二次電子、或穿透電子。換言之,第3步驟ST3係檢測電子的檢測步驟。當檢測自樣品T釋放的反射電子或二次電子時,檢測器7係相對於樣品T而配置在光電陰極3的相同側。又,當檢測自樣品T釋放的穿透電子時,檢測器7係相對於樣品T而配置在光電陰極3的相反側。
第3步驟ST3中之從樣品T的電子(反射電子、二次電子、或穿透電子)之釋放係因電子束B照射樣品T而產生的現象。為此,當照射樣品T之電子束B中的電子的量之變動頻率為第1頻率F1時,透過檢測器7所產生的檢測訊號之中,具有第1頻率F1之訊號SA(參考圖2)可說是因電子束B的照射所產生的訊號(非雜訊訊號)。
在第4步驟ST4中,係自透過檢測器7所產生的檢測訊號中抽取對應於脈衝光L的脈衝頻率之頻率的訊號。換言之,第4步驟ST4係訊號抽取步驟。
第4步驟ST4中之訊號的抽取係利用鎖相放大器等訊號抽取器8而執行。更具體而言,例如當光源2發射的脈衝光之脈衝頻率為第1頻率F1時,係自透過檢測器7所產生的檢測訊號S1中抽取具有第1頻率F1之訊號SA。
(耐久檢查步驟)
藉由上述的脈衝光照射步驟、電子束照射步驟、檢測步驟以及訊號抽取步驟而構成樣品檢查步驟。此外,亦可在樣品檢查步驟之前,執行對樣品T或與樣品T同種類的樣品之耐久性進行檢查的耐久檢查步驟。在耐久檢查步驟中,係檢查樣品T對於電子束(或與樣品T同種類的樣品T’)之耐久性。
針對耐久檢查步驟的一示例更具體地作說明。在耐久檢查步驟中,自光源2發射的脈衝光之每一單位時間的光量係產生變動。又,在耐久檢查步驟中,係決定自光源2發射的脈衝光L之每一單位時間的光量與樣品T(或與 樣品T同種類的樣品T’)之損害的關係。該關係係指例如當脈衝光之每一單位時間的光量在第1閾值Th1以下時,樣品T(或與樣品T同種類的樣品T’)未受損害,而當大於第2閾值Th2時則樣品T(或與樣品T同種類的樣品T’)受到損害等之關係。
因應耐久檢查步驟之檢查結果,決定樣品檢查步驟中所使用的光源2之控制參數值。例如以自光源2發射的脈衝光之每一單位時間的光量達到第1閾值Th1以下的方式而決定控制參數值(脈衝振幅控制參數值、脈衝寬度控制參數值、脈衝間隔控制參數值等)。此外,較佳地,係以自光源2發射的脈衝光之每一單位時間的光量達到第1閾值Th1以下,且與第1閾值Th1相近的值之方式而決定控制參數值。
當實施態樣之樣品檢查方法具備耐久檢查步驟時,因應樣品的耐久性而可使照射樣品之電子束的強度達到最佳化。
(層積體的檢查方法)
參考圖9並說明層積體之樣品T的檢查方法。在圖9所記載的示例中,係檢查樣品T的第1層LA1,其後再檢查層積於第1層LA1上之第2層LA2。
檢查樣品T之第1層LA1的第1層檢查步驟係包括上述的脈衝光照射步驟、電子束照射步驟、檢測步驟以及訊號抽取步驟。在第1層檢查步驟中之電子束照射步驟中,電子束B係照射第1層LA1。
在第1層檢查步驟之後,第2層LA2係層積於第1層LA1的上方。藉此,第1層LA1係被第2層LA2所覆蓋。順帶一提的是,在圖9所記載的示例中,雖然第2層LA2係直接層積在第1層LA1上,然而第2層LA2亦可透過其它層而層積在第1層LA1上。
檢查樣品T之第2層LA2的第2層檢查步驟係包括上述的脈衝光照射步驟、電子束照射步驟、檢測步驟以及訊號抽取步驟。在第2層檢查步驟中之電子束照射步驟中,以電子束B無法到達第1層LA1之方式,換言之,係以電子束B無法實質到達第1層LA1之方式,使電子束B照射第2層LA2。更具體而言,以電子束B無法到達第1層LA1之方式,例如設定施加在陽極4與光電陰極3(更具體而言係包括光電陰極3的陰極)之間的電壓。就替代性而言,亦或是額外地,當樣品檢查裝置為電子顯微鏡時,亦能夠以電子束B無法到達第1層LA1之方式,設定電子透鏡類的對焦(Focus)等。
當以電子束無法到達第1層之方式地使電子束照射第2層時,在第2層LA2的檢查時係抑制由第1層LA1釋放電子。藉此,可更正確地檢查第2層LA2的狀態。
本發明不限定於上述各實施態樣,顯然在本發明的技術思想之範圍內,可對各實施態樣進行適當地變形或變更。又,可將在各實施態樣所使用的任意結構元件組合至其它的實施態樣,再者亦可省略各實施態樣中之 任意的結構元件。
例如在上述的示例中已針對利用一個光源2以及一個光電陰極3將電子束照射樣品的示例作說明。就替代性而言,亦可準備複數個由光源2以及光電陰極3所組成之套組,並且使每一光源2的頻率調變光之頻率不同。例如具有第1頻率之頻率調變光係由第1光源照射第1光電陰極,且第1電子束係由第1光電陰極朝向樣品的第1部分照射。同時,具有第2頻率之頻率調變光係由第2光源照射第2光電陰極,且第2電子束係由第2光電陰極朝向樣品的第2部分照射。接著,係以檢測器7接收在第1部分所反射(或穿透第1部分)之電子,並以檢測器7接收在第2部分所反射(或穿透第2部分)之電子。其後,係以訊號抽取器8抽取對應於第1頻率的檢測訊號以及對應於第2頻率的檢測訊號。如此一來,係可同時檢查第1部分以及第2部分。藉由同時檢查第1部分及第2部分,而可縮短檢查樣品的時間。此外,不使每一光源2的頻率調變光之頻率不同,亦可使例如由第1及第2光源2照射的頻率調變光之頻率相同。此情況下,因由單一個檢測器7並無法區分並抽取對應於相同頻率的檢測訊號,只要設置與光源2相同數目的檢測器7即可。
再者,上述準備複數個由光源2以及光電陰極3所組成之套組的示例,亦可由一個的光電陰極3以及複數個的光源2之套組所取代。當光電陰極3接受由光源2所照射的頻率調變光時,則可發射電子束B。因此,藉由使接受由複數個光源2所照射的頻率調變光之光電陰極3的區域不同,即使只有一個光電陰極3,亦可獲得與上述準備複數個由光源2以及光電陰極3所組成之 套組的示例相同之功效。又,亦可準備複數組一個光電陰極3以及複數個光源2之套組。
【產業上的可利用性】
藉由使用本發明的樣品檢查裝置以及樣品檢查方法,可去除檢測訊號的雜訊,且所產生的電子束可有效地活用於檢查上。因此,對於製造樣品檢查裝置的業者、使用樣品檢查裝置以及樣品檢查方法而執行樣品的檢查之業者而言非常實用。
1、1A‧‧‧樣品檢查裝置
2‧‧‧光源
3‧‧‧光電陰極
4‧‧‧陽極
5‧‧‧光電陰極收納容器
5h‧‧‧電子束通過孔
5m‧‧‧處理材料
6‧‧‧樣品台
7‧‧‧檢測器
8‧‧‧訊號抽取器
21‧‧‧電光元件
B‧‧‧電子束
CB‧‧‧真空腔室
e‧‧‧電子
L‧‧‧脈衝光
S1‧‧‧檢測訊號
S2‧‧‧參考訊號
T‧‧‧樣品

Claims (9)

  1. 一種樣品檢查裝置,其具備:光源,係用以發射頻率調變光;光電陰極,係依據該頻率調變光的受光而釋放電子束;檢測器,係檢測自經該電子束照射之樣品所釋放的電子,並產生檢測訊號;以及訊號抽取器,係自該檢測訊號中抽取對應於該頻率調變光之調變頻率的頻率之訊號,藉此去除雜訊訊號,該雜訊訊號係非因樣品所產生的訊號。
  2. 如請求項1所記載之樣品檢查裝置,其中:該訊號抽取器係包括鎖相放大器;該鎖相放大器係接收該檢測訊號及參考訊號,該參考訊號係與頻率調變光之調變頻率相對應之頻率的訊號;該鎖相放大器係自該檢測訊號中抽取對應於該參考訊號之頻率的頻率之訊號。
  3. 如請求項1或2所記載之樣品檢查裝置,其進一步具備:光源控制裝置,係依據控制參數值而控制該光源的動作;以及儲存裝置,係儲存該樣品的種類與該控制參數值產生關聯性的第1關聯資料;該控制參數值係包括下列中的至少一者:該頻率調變光的振幅控制參數值或脈衝振幅控制參數值、界定該頻率調變光之兩個最大振幅間的時間間隔之控制參數值或脈衝寬度控制參數值、界定該頻率調變光 之單位波形的參數值或界定單位脈衝波形的參數值,以及脈衝間隔控制參數值。
  4. 如請求項1或2所記載之樣品檢查裝置,其進一步具備:光源控制裝置,係控制該光源的動作;該光源控制裝置係可選擇性地執行第1控制模式及第2控制模式,其中該第1控制模式係使自該光源發射出的該頻率調變光之每一單位時間的光量產生變動,而該第2控制模式係使自該光源發射出的該頻率調變光之每一單位時間的光量維持一定。
  5. 一種樣品檢查方法,其具備:光照射步驟,係將頻率調變光照射於光電陰極;電子束照射步驟,係將自該光電陰極所釋放的電子束照射於樣品;檢測步驟,係藉由檢測器檢測自該樣品所釋放的電子;以及訊號抽取步驟,係自藉由該檢測器所產生的檢測訊號中,抽取對應於該頻率調變光之調變頻率的頻率之訊號,藉此去除雜訊訊號,該雜訊訊號係非因樣品所產生的訊號。
  6. 如請求項5所記載之樣品檢查方法,其進一步包括依據該樣品的種類變更下列中的至少一者之步驟:該頻率調變光的振幅或該頻率調變光的脈衝振幅、該頻率調變光之兩個最大振幅間的時間間隔或該頻率調變光的脈衝寬度、該頻率調變光的單位波形,以及該頻率調變光的脈衝間隔。
  7. 如請求項5所記載之樣品檢查方法,其具備:樣品檢查步驟,係包括該光照射步驟、該電子束照射步驟、該檢測 步驟及該訊號抽取步驟;以及耐久性檢查步驟,係於該樣品檢查步驟之前執行;該耐久性檢查步驟係包括檢查該樣品對於該電子束之耐久性,亦或是檢查與該樣品同種類之樣品對於該電子束之耐久性;依據該耐久性檢查步驟的檢查結果,決定於該樣品檢查步驟中使用的光源之控制參數值。
  8. 如請求項6所記載之樣品檢查方法,其具備:樣品檢查步驟,係包括該光照射步驟、該電子束照射步驟、該檢測步驟及該訊號抽取步驟;以及耐久性檢查步驟,係於該樣品檢查步驟之前執行;該耐久性檢查步驟係包括檢查該樣品對於該電子束之耐久性,亦或是檢查與該樣品同種類之樣品對於該電子束之耐久性,依據該耐久性檢查步驟的檢查結果,決定於該樣品檢查步驟中使用的光源之控制參數值。
  9. 如請求項5至8中之任一項所記載之樣品檢查方法,其具備:第1層檢查步驟,係檢查該樣品的第1層;以及第2層檢查步驟,係於該第1層的上方層積第2層後,檢查該樣品的該第2層;該第1層檢查步驟及該第2層檢查步驟係各包括該光照射步驟、該電子束照射步驟、該檢測步驟及該訊號抽取步驟;於該第2層檢查步驟中,係以該電子束不觸及該第1層的方式而照射該電子束於該第2層。
TW107146282A 2017-12-27 2018-12-21 樣品檢查裝置及樣品檢查方法 TWI794375B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252709 2017-12-27
JP2017-252709 2017-12-27

Publications (2)

Publication Number Publication Date
TW201933411A TW201933411A (zh) 2019-08-16
TWI794375B true TWI794375B (zh) 2023-03-01

Family

ID=67063623

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146282A TWI794375B (zh) 2017-12-27 2018-12-21 樣品檢查裝置及樣品檢查方法

Country Status (8)

Country Link
US (1) US11150204B2 (zh)
EP (1) EP3734641A4 (zh)
JP (1) JP6604649B1 (zh)
KR (1) KR102238479B1 (zh)
CN (1) CN110582833B (zh)
IL (1) IL270143B2 (zh)
TW (1) TWI794375B (zh)
WO (1) WO2019131410A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291235B2 (ja) * 2019-10-31 2023-06-14 株式会社日立ハイテク 電子銃および電子線応用装置
JP6722958B1 (ja) * 2019-11-20 2020-07-15 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における電子ビームの射出方法
CN110890256B (zh) * 2019-11-26 2021-07-27 华中科技大学 一种会聚角可调无磁飞秒电子源装置
US11933668B2 (en) * 2020-02-03 2024-03-19 Rohde & Schwarz Gmbh & Co. Kg Sampling assembly and testing instrument
WO2021213870A1 (en) * 2020-04-20 2021-10-28 Asml Netherlands B.V. An inspection tool, inspection tool operating method
WO2022091234A1 (ja) * 2020-10-28 2022-05-05 株式会社日立ハイテク 荷電粒子ビーム装置および試料観察方法
JP6968473B1 (ja) 2021-05-26 2021-11-17 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法
JP6968481B1 (ja) * 2021-09-07 2021-11-17 株式会社Photo electron Soul 電子線適用装置における検出データの作成方法および照射対象の画像合成方法、プログラム、記録媒体、並びに、電子線適用装置
JP7054281B1 (ja) * 2021-10-19 2022-04-13 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における検出データの作成方法
CN117928722A (zh) * 2023-12-08 2024-04-26 江苏省环境监测中心 基于自主网的噪声监测装置及噪声溯源优化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260648A (en) * 1989-05-29 1993-11-09 Brust Hans Detlef Process and system for rapid analysis of the spectrum of a signal at one or several points of measuring
US5281909A (en) * 1987-11-12 1994-01-25 Brust Hans Detlef Process and system for measuring the course of a signal at a point of measurement on a sample
US20040232357A1 (en) * 2001-01-31 2004-11-25 Andres Fernadez Electron beam lithography system having improved electron gun
EP1511066A2 (en) * 2003-08-25 2005-03-02 Hitachi, Ltd. Absorption current image apparatus in electron microscope
US7068363B2 (en) * 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
US7250618B2 (en) * 2005-02-02 2007-07-31 Nikon Corporation Radiantly heated cathode for an electron gun and heating assembly
TW201428264A (zh) * 2012-11-06 2014-07-16 Hamamatsu Photonics Kk 半導體元件檢查裝置及半導體元件檢查方法
WO2017168554A1 (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクノロジーズ 電子顕微鏡

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908193A (en) * 1972-11-27 1975-09-23 Albert Macovski Color television encoding and decoding system
JPS61184445A (ja) * 1985-02-12 1986-08-18 Shimadzu Corp X線光電子分光装置
JPH0754687B2 (ja) 1987-04-24 1995-06-07 株式会社日立製作所 パターン検査方法およびその装置
JPS6475928A (en) * 1987-09-17 1989-03-22 Hamamatsu Photonics Kk Optical heterodyne detector
DE3839707A1 (de) * 1988-11-24 1990-05-31 Integrated Circuit Testing Verfahren zum betrieb eines elektronenstrahlmessgeraetes
JP2709135B2 (ja) * 1989-04-11 1998-02-04 浜松ホトニクス株式会社 光信号検出装置
US5179565A (en) * 1990-06-07 1993-01-12 Hamamatsu Photonics, K.K. Low noise pulsed light source utilizing laser diode and voltage detector device utilizing same low noise pulsed light source
US5270780A (en) * 1991-09-13 1993-12-14 Science Applications International Corporation Dual detector lidar system and method
US5684360A (en) * 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
JPH09298032A (ja) 1996-04-30 1997-11-18 Hamamatsu Photonics Kk 電子ビーム発生装置
JPH10334842A (ja) * 1997-05-28 1998-12-18 Shimadzu Corp 光走査型電子顕微鏡
US6724002B2 (en) * 2001-01-31 2004-04-20 Applied Materials, Inc. Multiple electron beam lithography system with multiple beam modulated laser illumination
JP2002313273A (ja) * 2001-04-17 2002-10-25 Hitachi Ltd 電子顕微鏡装置
US6946655B2 (en) * 2001-11-07 2005-09-20 Applied Materials, Inc. Spot grid array electron imaging system
JP2003303565A (ja) * 2002-04-10 2003-10-24 Hitachi High-Technologies Corp 電子線検査装置
US7446474B2 (en) * 2002-10-10 2008-11-04 Applied Materials, Inc. Hetero-junction electron emitter with Group III nitride and activated alkali halide
US6812461B1 (en) * 2002-11-07 2004-11-02 Kla-Tencor Technologies Corporation Photocathode source for e-beam inspection or review
JP5102580B2 (ja) 2007-10-18 2012-12-19 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
JP5610399B2 (ja) * 2011-08-02 2014-10-22 独立行政法人科学技術振興機構 ポンププローブ測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281909A (en) * 1987-11-12 1994-01-25 Brust Hans Detlef Process and system for measuring the course of a signal at a point of measurement on a sample
US5260648A (en) * 1989-05-29 1993-11-09 Brust Hans Detlef Process and system for rapid analysis of the spectrum of a signal at one or several points of measuring
US20040232357A1 (en) * 2001-01-31 2004-11-25 Andres Fernadez Electron beam lithography system having improved electron gun
US7068363B2 (en) * 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
EP1511066A2 (en) * 2003-08-25 2005-03-02 Hitachi, Ltd. Absorption current image apparatus in electron microscope
US7250618B2 (en) * 2005-02-02 2007-07-31 Nikon Corporation Radiantly heated cathode for an electron gun and heating assembly
TW201428264A (zh) * 2012-11-06 2014-07-16 Hamamatsu Photonics Kk 半導體元件檢查裝置及半導體元件檢查方法
WO2017168554A1 (ja) * 2016-03-29 2017-10-05 株式会社日立ハイテクノロジーズ 電子顕微鏡

Also Published As

Publication number Publication date
WO2019131410A1 (ja) 2019-07-04
CN110582833A (zh) 2019-12-17
US20200080949A1 (en) 2020-03-12
JPWO2019131410A1 (ja) 2020-01-16
IL270143B1 (en) 2023-07-01
EP3734641A1 (en) 2020-11-04
TW201933411A (zh) 2019-08-16
JP6604649B1 (ja) 2019-11-13
CN110582833B (zh) 2022-07-01
KR20190133231A (ko) 2019-12-02
US11150204B2 (en) 2021-10-19
KR102238479B1 (ko) 2021-04-09
IL270143A (zh) 2019-12-31
EP3734641A4 (en) 2021-04-07
IL270143B2 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
TWI794375B (zh) 樣品檢查裝置及樣品檢查方法
CN111060516B (zh) 光学元件亚表面缺陷的多通道原位检测装置及检测方法
WO2012008836A2 (en) Inspection apparatus and replaceable door for a vacuum chamber of such an inspection apparatus and a method for operating an inspection apparatus
CN114678244A (zh) 一种超快扫描电子显微镜系统及其应用方法
JP2006147848A (ja) 半導体試料の欠陥評価方法及び装置
WO2003100399A1 (fr) Système de mesure d'image de répartition de la durée de vie de fluorescence et procédé de mesure associé
JPH0670613B2 (ja) 光波形測定装置
WO2023038002A1 (ja) 電子線適用装置における検出データの作成方法および照射対象の画像合成方法、プログラム、記録媒体、並びに、電子線適用装置
JP7054281B1 (ja) 電子線適用装置および電子線適用装置における検出データの作成方法
JP4824527B2 (ja) 試料分析装置
KR102170357B1 (ko) 비파괴 결함 검출방법
JP2005175101A (ja) 半導体の製造方法及び装置
JP6309194B2 (ja) ノイズ低減電子ビーム装置および電子ビームノイズ低減方法
JPH0262806B2 (zh)
JPH02234051A (ja) 光波形測定装置
EP4446480A1 (en) Void defect forming method, device, and diamond manufacturing method
WO2021085049A1 (ja) 荷電粒子線装置
JP2656106B2 (ja) 光波形測定装置
JP5659902B2 (ja) カソードルミネッセンス特性の測定方法
JP5911351B2 (ja) 半導体基板の表面モニター方法
JP2014153322A (ja) 付着物分析装置
JP2008116247A (ja) 試料分析装置
JPH0670615B2 (ja) 光波形測定装置
JPS62223660A (ja) イオン励起オ−ジエ電子分光装置