WO2019116660A1 - 半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム - Google Patents

半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム Download PDF

Info

Publication number
WO2019116660A1
WO2019116660A1 PCT/JP2018/034924 JP2018034924W WO2019116660A1 WO 2019116660 A1 WO2019116660 A1 WO 2019116660A1 JP 2018034924 W JP2018034924 W JP 2018034924W WO 2019116660 A1 WO2019116660 A1 WO 2019116660A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor laser
control unit
temperature control
laser device
Prior art date
Application number
PCT/JP2018/034924
Other languages
English (en)
French (fr)
Inventor
悠介 粟根
克美 西村
享司 渋谷
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to CN201880065242.5A priority Critical patent/CN111201684B/zh
Priority to EP18887596.7A priority patent/EP3726675A4/en
Priority to US16/756,551 priority patent/US11764542B2/en
Priority to JP2019558913A priority patent/JP7165144B2/ja
Publication of WO2019116660A1 publication Critical patent/WO2019116660A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Definitions

  • the present invention relates to a semiconductor laser device, a method of driving a semiconductor laser device, and a driving program.
  • a gas analyzer that analyzes, for example, a component to be measured in exhaust gas using a semiconductor laser device (for example, Patent Document 1).
  • This gas analyzer has a semiconductor laser device that emits a laser beam having an oscillation wave number corresponding to the absorption wave number of the component to be measured, and the oscillation wave number is designed with an accuracy of absorption wave number ⁇ 1 cm -1 .
  • the semiconductor laser device since the oscillation wave number changes in accordance with the operating temperature of the semiconductor laser device, the semiconductor laser device is controlled in temperature to be controlled so that the fluctuation of the oscillation wave number of laser light is ⁇ 0.01 cm ⁇ 1. ing. In the case where the oscillation wave number of laser light is swept at a predetermined center wave number, the fluctuation of the center wave number is controlled so as to be ⁇ 0.01 cm ⁇ 1 .
  • a semiconductor laser device that emits laser light is mounted on a cooling module having a Peltier device. And the power supply to a Peltier device is controlled using the detection temperature of the temperature sensor mounted in the cooling module. Thereby, the operating temperature of the semiconductor laser element is adjusted, and the fluctuation of the oscillation wave number of the laser light is controlled to be ⁇ 0.01 cm ⁇ 1 .
  • the temperature of the semiconductor laser device is indirectly measured by the temperature sensor provided separately from the semiconductor laser device, the temperature of the semiconductor laser device is increased even if the temperature is controlled using the temperature detected by the temperature sensor. It does not necessarily become the same as the temperature detected by the temperature sensor. That is, even if the temperature sensor is temperature-controlled using a Peltier device, the temperature of the semiconductor laser device changes due to the change of the ambient temperature. As a result, the oscillation wave number of the laser beam fluctuates more than ⁇ 0.01 cm ⁇ 1 .
  • the present invention has been made to solve the above problems, and its main object is to suppress the oscillation wave number of the semiconductor laser device from being influenced by the ambient temperature and changing.
  • the semiconductor laser device includes a semiconductor laser device, a temperature control unit for controlling the temperature of the semiconductor laser device, a temperature sensor for detecting the temperature of the temperature control unit, and a detection temperature of the temperature sensor is predetermined. And a temperature control device for controlling a supply signal to the temperature control unit to achieve a target temperature, wherein the temperature control device controls the target temperature of the temperature control unit according to the supply signal to the temperature control unit. It is characterized by changing.
  • a supply signal to a temperature control part supply current to a temperature control part, supply voltage, or supply electric power can be considered.
  • the supply signal to the temperature control unit changes so that the temperature detected by the temperature sensor becomes the target temperature.
  • the temperature of the semiconductor laser element is different from the temperature detected by the temperature sensor, and the oscillation wave number changes.
  • the temperature control device since the temperature control device changes the target temperature of the temperature control unit according to the supply signal to the temperature control unit, the change of the temperature of the semiconductor laser device due to the change of the ambient temperature can be suppressed. It is possible to suppress the fluctuation of the oscillation wave number under the influence of the ambient temperature.
  • the temperature control device stores relationship data indicating a relationship between a supply signal to the temperature control unit and a target temperature of the temperature control unit; Acquiring a target temperature of the temperature control unit from the relationship data according to a supply signal acquisition unit that acquires a supply signal to the temperature control unit, and the acquired supply signal, so as to obtain the acquired target temperature It is desirable to have a supply control unit that controls a supply signal to the temperature control unit. With this configuration, it is possible to suppress the oscillation wave number of the semiconductor laser element from being influenced by the ambient temperature and fluctuating.
  • the supply control unit acquires the target temperature of the temperature control unit from the relationship data according to the acquired average value of the supply signal for each predetermined period. Further, it is preferable that the supply control unit does not change the target temperature of the temperature control unit when the change width of the acquired average value of the supply signals is smaller than a predetermined value.
  • the relation data storage unit supplies the signal supplied to the temperature control unit and the temperature adjustment unit for each oscillation wave number of the semiconductor laser. Relational data indicating the relation with the target temperature is stored.
  • the semiconductor laser device includes a semiconductor laser device, a temperature control unit for controlling the temperature of the semiconductor laser device, and a temperature sensor for detecting the temperature of the temperature control unit.
  • the semiconductor laser drive program further includes a semiconductor laser device, a temperature control unit for controlling the temperature of the semiconductor laser device, a temperature sensor for detecting the temperature of the temperature control unit, and a detection temperature of the temperature sensor.
  • the control device is caused to exhibit a function of changing a target temperature of the temperature control unit.
  • the oscillation wave number of the semiconductor laser device fluctuates under the influence of the ambient temperature. It can be suppressed.
  • FIG. 2 is an entire schematic view of the semiconductor laser device according to the same embodiment.
  • FIG. 5 is a cross-sectional view orthogonal to the light guiding direction of the semiconductor laser device portion according to the same embodiment.
  • FIG. 6 is a cross-sectional view of the semiconductor laser device portion according to the embodiment taken along line AA. It is a figure which shows the light emission principle of a quantum cascade laser. It is a functional block diagram of the semiconductor laser device concerning the embodiment. It is a schematic diagram which shows the operation
  • the semiconductor laser device 100 is used, for example, in a gas analyzer 10 that analyzes exhaust gas discharged from an internal combustion engine or an external combustion engine and components to be measured in the atmosphere.
  • the gas analyzer 10 detects the multiple reflection type measuring cell 11 into which exhaust gas is introduced, the semiconductor laser device 100 irradiating the measuring cell 11 with laser light, and light detecting the laser light that has passed through the measuring cell 11 It has a detector 12 and an analysis unit 13 that analyzes a component to be measured using a detection signal of the light detector 12.
  • the semiconductor laser device 100 emits a laser beam having an oscillation wave number of about ⁇ 1 cm ⁇ 1 with respect to the absorption wave number of the component to be measured, and as shown in FIG.
  • the semiconductor laser device 2 is, for example, a quantum cascade laser (QCL), and oscillates, for example, mid-infrared (4 ⁇ m to 10 ⁇ m) laser light.
  • the semiconductor laser element 2 is also capable of modulating (changing) the oscillation wave number (oscillation wavelength) by a given current (or voltage).
  • the laser controller 6 controls the current (or voltage) of the semiconductor laser element 2.
  • the semiconductor laser device 2 is, for example, a distributed feedback laser (DFB laser: Distributed Feedback Laser) as shown in FIG. 3 and FIG. 4 and comprises a cladding layer and a core layer provided on a semiconductor substrate 20.
  • Optical waveguide 2A In the optical waveguide 3A, light passes through the core layer due to the difference between the refractive index of the cladding layer and the refractive index of the core layer.
  • the buffer layer 21, the core layer 22, the upper cladding layer 23 and the cap layer 24 are formed in this order on the upper surface of the semiconductor substrate 20. Further, all of these layers 21 to 24 extend in the same direction, and the side surfaces in the width direction are covered with the protective film 25 to form an optical waveguide 2A extending in one direction.
  • the protective film 25 is an inorganic film, and may be, for example, SiO 2 or a combination of SiO 2 and Si 3 N 4 .
  • Both the buffer layer 21 and the upper cladding layer 23 are layers made of InP.
  • a lower cladding layer made of InP may be provided between the buffer layer 21 and the core layer 22, or the buffer layer 21 may function as a cladding layer.
  • the cap layer 24 is a layer made of InGaAs, and a part of the upper surface (both sides in the width direction) is covered with a protective layer 25. Further, the other portion (central portion in the width direction) of the upper surface of the cap layer 24 is covered by the upper electrode 26.
  • the core layer 22 has a lower guide layer 221 made of InGaAs, an active layer 222 that emits light when current is injected, and an upper guide layer 223 made of InGaAs.
  • the active layer 222 has a multiple quantum well structure having a plurality of well layers, and is configured by alternately laminating a predetermined number of semiconductor layers to be a light emitting region and a semiconductor layer to be an injection region.
  • the plurality of well layers may have different thicknesses.
  • the semiconductor layer to be the light emitting region is configured by alternately laminating InGaAs and InAlAs
  • the semiconductor layer to be the injection region is configured by alternately laminating InGaAs and InAlAs.
  • a plurality of well layers are connected in multiple stages, and a quantum cascade that emits light by optical transition between subbands formed in the quantum wells. It is a laser.
  • the semiconductor laser 2 may be a distributed reflection type laser (DBR laser).
  • a diffraction grating 2B is formed between the core layer 22 and the upper cladding layer 23, that is, on the upper guide layer 223 (see FIG. 4).
  • the diffraction grating 2 ⁇ / b> B is composed of recesses and protrusions formed alternately in the upper guide layer 223, and the recesses and protrusions extend in the width direction of the upper guide layer 223.
  • the light of a predetermined oscillation wave number is intensified and selectively amplified by this diffraction grating 2B.
  • the predetermined oscillation wave number is defined by the pitch of the diffraction grating 2B.
  • a lower electrode 37 is provided on the lower surface of the semiconductor substrate 20. Then, by applying a current (or a voltage) for laser oscillation to the upper electrode 26 and the lower electrode 27, laser light of a predetermined oscillation wave number defined by the diffraction grating 2B is emitted.
  • a current source (or voltage source) is connected to the upper electrode 26 and the lower electrode 27 for laser oscillation, and the laser control device 8 controls the current source (or voltage source).
  • the laser control device 6 controls the current source (or voltage source) of the semiconductor laser device 2 by outputting a current (or voltage) control signal. Specifically, the laser control device 6 controls the current source (or voltage source) of the semiconductor laser device 2 by outputting a current (or voltage) control signal to cause the semiconductor laser device 2 to continuously oscillate (CW) or , And can be oscillated (pulsed drive) in a pulse form.
  • the pulse driving also includes pseudo continuous oscillation (pseudo CW) in which the detection signal from the light detector becomes continuous.
  • the temperature control module 3 includes a substrate 31 mounted on the front surface of the semiconductor laser device 2 and a Peltier device 32 as a temperature control portion provided with the heat absorption surface in contact with the back surface of the substrate 31.
  • the Peltier element 32 is a semiconductor element capable of controlling heat generation and heat absorption by a current, and connects a plurality of alternately arranged N-type semiconductors and P-type semiconductors in series using metal electrodes, and connects these in a pair of ceramics It has the structure pinched
  • the temperature control module 3 may have a semiconductor laser element mounted on the heat absorption side ceramic substrate of the Peltier element 32 without having the substrate 31. Moreover, as a temperature control part, what used the compressor, what used the heating wire, what used the fan, the thing of a water cooling system etc. can be used.
  • the temperature sensor 4 is provided on the surface of the substrate 31 and detects the temperature of the substrate 31 on which the semiconductor laser device 2 is mounted.
  • the temperature sensor 4 is, for example, a thermistor.
  • the temperature sensor 4 is provided separately from the semiconductor laser device 2 but may be provided in contact with the semiconductor laser device 2.
  • the semiconductor laser device 2 and the cooling module 3 are accommodated in the airtight container 7.
  • a light lead-out portion 71 for leading the laser light to the outside is formed at a portion of the airtight container 7 facing the light emitting portion of the semiconductor laser element 2.
  • the optical window member 8 is provided in the light lead-out portion 71, and the optical window member 8 is slightly (for example, 2) so that the laser beam reflected by the optical window member 8 does not return the semiconductor laser element 2 again. Degrees) are inclined.
  • a light emitting module is constituted by the airtight container 7 accommodating the semiconductor laser element 2 and the cooling module 3 and the like.
  • the temperature control device 5 performs feedback control of the supply current, the supply voltage or the supply power to the Peltier element 32 based on the temperature detected by the temperature sensor 4. Specifically, the temperature control device 5 controls the current source (voltage source) of the Peltier device 32 by outputting a current (or voltage) control signal.
  • the temperature control device 5 is a general-purpose or dedicated computer having a CPU, a memory, an input / output interface, an AD converter, and the like as a structure. Then, the temperature control device 5 controls the power supplied to the Peltier element 32 by operating the CPU and its peripheral devices based on the drive program stored in the memory.
  • the temperature control device 5 indicates relationship data indicating the relationship between the target temperature of the temperature sensor 4 and the supplied power of the Peltier device 32 when the oscillation wave number of the semiconductor laser device 2 is constant.
  • the relationship data storage unit 51 stores relationship data indicating the relationship between the target temperature T of the temperature sensor 4 and the supplied power P of the Peltier device 32 when the oscillation wave number (oscillation wavelength ⁇ 1 ) of the semiconductor laser device 2 is fixed. doing.
  • the method of generating the related data is, for example, the following.
  • the light emitting module of the semiconductor laser device 100 which is a sample is accommodated in a constant temperature container (not shown), the ambient temperature (outside temperature) is changed from 5 ° C. to 45 ° C., for example, and the oscillation of the semiconductor laser device 2 at the ambient temperature
  • the Peltier element 32 is controlled so that the wavelength is constant ( ⁇ 1 ).
  • the supplied power detects the supplied current and the supplied voltage to the Peltier device 32, and calculates the supplied power from the supplied current and the supplied voltage.
  • the relationship between the target temperature and the supplied power when the ambient temperature changes can be known.
  • Relational data indicating this is stored in the relation data storage unit 51.
  • the relationship data indicates the relationship between the absolute value (T1, T2, T3, ...) of each target temperature and the absolute value (P1, P2, P3, ...) of each supplied power.
  • work as the above is performed.
  • the relation data is not limited to two, and relation data of each of a plurality of oscillation wavelengths may be provided.
  • the ambient temperature can be detected from the supplied power. That is, the Peltier device 32 can also be used as an ambient temperature sensor.
  • the supply data acquisition unit 52 acquires the supply current and the supply voltage supplied to the Peltier element 32 in a state where the Peltier element 32 is controlled such that the detected temperature of the temperature sensor 4 becomes a constant target temperature.
  • the supply power is calculated using the supply current and the supply voltage.
  • the supply current supplied to the Peltier device 32 is detected by the current sensor, and the supply voltage is detected by the voltage sensor.
  • the setting value of the current control can be used.
  • the setting value of the voltage control can be used.
  • the supply data acquisition unit 52 outputs the calculated supply power data to the supply control unit 53.
  • the supply control unit 53 receives the related data from the related data storage unit 51 and receives the supplied power data from the supply data acquisition unit 52. Then, the supply control unit 53 changes the target temperature of the temperature sensor 4 so that the oscillation wave number (oscillation wavelength) becomes constant from the supplied power data and the related data, and the detected temperature of the temperature sensor 4 changes the target
  • the power supplied to the Peltier device 32 is controlled to be a temperature.
  • the supply control unit 53 is configured not to change the target temperature of the Peltier element 32 when the acquired change width of the supplied power is less than the predetermined value.
  • the predetermined value means the change width of the supplied power generated when the Peltier device 32 is controlled to achieve the target temperature when the ambient temperature does not change, and the supplied power generated when the ambient temperature changes. And the change width of the threshold.
  • the semiconductor laser device 2 is oscillated in a state in which the Peltier device 32 is controlled such that the ambient temperature (outside air temperature) is 27 ° C. and the detection temperature of the temperature sensor 4 is 25.0 ° C. Do. At this time, it is assumed that the actual temperature of the semiconductor laser device 2 is 70.0 degrees, for example.
  • the laser control device 6 controls the current (or voltage) applied to the semiconductor laser device 2 to cause the semiconductor laser device 2 to emit laser light of a predetermined wave number (predetermined wavelength) (see FIG. 7 (1)). ).
  • the temperature control device 5 controls the Peltier element 32 so that the detection temperature of the temperature sensor 4 becomes 25 ° C.
  • the power supplied to the Peltier device 32 is increased due to the ambient temperature change, the semiconductor laser device 2 is excessively cooled, and the oscillation wave number (oscillation wavelength) fluctuates, for example, changing to 69.6 ° (FIG. See 2).
  • the supply data acquisition unit 52 of the temperature control device 5 acquires supply power data of the Peltier device 32. Then, the supply control unit 53 of the temperature control device 5 changes the target temperature so that the oscillation wave number (oscillation wavelength) of the semiconductor laser element 2 becomes constant, from the supplied power data and the related data. For example, the target temperature of the temperature sensor 4 is changed to 24.5.degree. Thus, the supply control unit 53 controls the supply power of the Peltier device 32 such that the temperature detected by the temperature sensor 4 is 24.5 ° C. (see FIG. 7 (3)).
  • the semiconductor laser device 100 of the present embodiment uses the relationship between the target temperature and the supplied power of the Peltier device 32 when the oscillation wave number (oscillation wavelength) of the semiconductor laser device 2 is constant. Since the target temperature is changed so that the oscillation wave number of the element 2 becomes constant, it is possible to suppress the oscillation wave number of the semiconductor laser element 2 from being influenced by the ambient temperature and fluctuating.
  • the semiconductor laser device 100 analyzes a component to be measured in the exhaust gas
  • the semiconductor laser device 2 is affected by the temperature of the exhaust gas as the sample gas and the temperature of the atmosphere in addition to the influence of the heat generated by the semiconductor laser device 2 itself.
  • the ambient temperature of the laser element 10 may fluctuate greatly.
  • the semiconductor laser device 100 to which the present invention is applied can suppress the fluctuation of the oscillation wave number of the semiconductor laser element 2 due to the influence of the ambient temperature, so that the exhaust gas can be analyzed with high accuracy. Further, when the semiconductor laser device 100 analyzes pollutants and the like in the air, for example, there is a possibility of analyzing continuously for several hours to several days outdoors, and is susceptible to the temperature of the air. The semiconductor laser device 100 to which the present invention is applied can suppress fluctuation of the oscillation wave number of the semiconductor laser element 2 due to the influence of the ambient temperature, and therefore can analyze contaminants in the air with high accuracy. .
  • the power control unit 53 of the temperature control device 5 changes the target temperature using the supplied power data and the related data
  • the supplied power may be adjusted using those data.
  • ⁇ WN corr is a correction amount of the oscillation wave number (reciprocal of oscillation wavelength)
  • P pel is the power supplied to the Peltier element 32.
  • the coefficients a and b are values included in the relational data or values obtained from the relational data.
  • the supply signal acquisition unit of the embodiment may acquire a supply signal indicating a supply current or a supply voltage to the temperature control unit.
  • the relationship data storage unit stores relationship data indicating the relationship between the target temperature and the supply current or the supply voltage of the temperature control unit when the oscillation wave number of the semiconductor laser element is constant. Then, the supply control unit changes the target temperature of the temperature sensor 4 so that the oscillation wave number (oscillation wavelength) becomes constant from the supply signal and the related data, and the detected temperature of the temperature sensor 4 changes to the target temperature after the change. Control the supply current or supply voltage of the temperature control unit.
  • semiconductor laser device having the quantum cascade laser device has been described in the above embodiment, another semiconductor laser device 2 may be provided.
  • the temperature control device 5 may monitor the change in the resistance value of the Peltier element from the current supplied and the voltage supplied to the Peltier element to determine the deterioration of the Peltier element or the lifetime.
  • the present invention it is possible to suppress the oscillation wave number of the semiconductor laser element from being influenced by the ambient temperature and fluctuating.

Abstract

本発明は、半導体レーザ素子の発振波数が周囲温度影響を受けて変動することを抑制するものであり、半導体レーザ素子2と、半導体レーザ素子2を温調する温調部32と、温調部32の温度を検出する温度センサ4と、温度センサ4の検出温度が所定の目標温度となるように温調部32への供給信号を制御する温度制御装置5とを備え、温度制御装置5は、温調部32への供給信号に応じて、温調部32の目標温度を変更する。

Description

半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム
 本発明は、半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラムに関するものである。
 従来、半導体レーザ装置を用いて、例えば排ガス中の測定対象成分の分析を行うガス分析装置がある(例えば特許文献1)。このガス分析装置は、測定対象成分の吸収波数に応じた発振波数のレーザ光を出射する半導体レーザ装置を有しており、その発振波数は、吸収波数±1cm-1の精度で設計されている。また、半導体レーザ装置は、その動作温度に応じて発振波数が変化するため、半導体レーザ装置を温調することによって、レーザ光の発振波数の変動が±0.01cm-1となるように制御されている。なお、所定の中心波数に対してレーザ光の発振波数の掃引を行うものでは、その中心波数の変動が±0.01cm-1となるように制御されている。
 上記の温調を行うため従来では、レーザ光を発する半導体レーザ素子を、ペルチェ素子を有する冷却モジュールに搭載している。そして、冷却モジュールに搭載された温度センサの検出温度を用いて、ペルチェ素子への供給電力を制御している。これにより、半導体レーザ素子の動作温度が調整されて、レーザ光の発振波数の変動が±0.01cm-1となるように制御されている。
 しかしながら、半導体レーザ素子とは別に設けられた温度センサにより半導体レーザ素子の温度を間接的に計測していることから、温度センサの検出温度を用いて温調したとしても、半導体レーザ素子の温度が温度センサの検出温度と同一になるとは限らない。つまり、ペルチェ素子を用いて温度センサを温調しているとしても、周囲温度の変化によって、半導体レーザ素子の温度が変化してしまう。その結果、レーザ光の発振波数に±0.01cm-1よりも大きい変動が生じてしまう。
特開2009-216385号公報
 そこで本発明は上記問題点を解決すべくなされたものであり、半導体レーザ素子の発振波数が周囲温度の影響を受けて変動することを抑制することをその主たる課題とするものである。
 すなわち本発明に係る半導体レーザ装置は、半導体レーザ素子と、前記半導体レーザ素子を温調する温調部と、前記温調部の温度を検出する温度センサと、前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する温度制御装置とを備え、前記温度制御装置は、前記温調部への供給信号に応じて、前記温調部の目標温度を変更することを特徴とする。なお、温調部への供給信号としては、温調部への供給電流、供給電圧又は供給電力が考えられる。
 周囲温度が変化した場合、温度センサの検出温度が目標温度となるように温調部への供給信号が変化する。このとき、半導体レーザ素子の温度は温度センサの検出温度とは異なっており、発振波数が変化することになる。本発明では、温度制御装置が温調部への供給信号に応じて温調部の目標温度を変更するので、周囲温度の変化による半導体レーザ素子の温度の変化を抑えることができ、半導体レーザ素子の発振波数が周囲温度の影響を受けて変動することを抑制することができる。
 温度制御装置の具体的な実施に態様としては、前記温度制御装置は、前記温調部への供給信号と前記温調部の目標温度との関係を示す関係データを格納する関係データ格納部と、前記温調部への供給信号を取得する供給信号取得部と、取得した前記供給信号に応じて、前記関係データから前記温調部の目標温度を取得し、当該取得した目標温度になるように前記温調部への供給信号を制御する供給制御部とを備えることが望ましい。この構成であれば、半導体レーザ素子の発振波数が周囲温度の影響を受けて変動することを抑制することができる。
 温調部を制御する場合には、その安定時においても供給信号が微小変動することが考えられる。この場合には、周囲温度が変化していないにもかかわらず、目標温度を変更してしまう恐れがある。このため、前記供給制御部は、取得した前記供給信号の所定期間毎の平均値に応じて、前記関係データから前記温調部の目標温度を取得することが望ましい。また、前記供給制御部は、取得した前記供給信号の平均値の変化幅が所定値未満の場合は、前記温調部の目標温度を変更しないことが望ましい。
 半導体レーザ素子の発振波数の設定値を変更して用いるような場合には、前記関係データ格納部は、前記半導体レーザの発振波数毎に、前記温調部への供給信号と前記温調部の目標温度との関係を示す関係データを格納する。
 また、本発明に係る半導体レーザ装置の駆動方法は、半導体レーザ素子と、前記半導体レーザ素子を温調する温調部と、前記温調部の温度を検出する温度センサとを有する半導体レーザ装置において、前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する駆動方法であって、前記温調部への供給信号に応じて、前記温調部の目標温度を変更することを特徴とする。
 さらに、本発明に係る半導体レーザの駆動プログラムは、半導体レーザ素子と、前記半導体レーザ素子を温調する温調部と、前記温調部の温度を検出する温度センサと、前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する制御装置とを備える半導体レーザ装置に用いられる駆動プログラムであって、前記温調部への供給信号に応じて、前記温調部の目標温度を変更する機能を前記制御装置に発揮させることを特徴とする。
 以上に述べた本発明によれば、温調部への供給信号に応じて、温調部の目標温度を変更するで、半導体レーザ素子の発振波数が周囲温度の影響を受けて変動することを抑制することができる。
本実施形態に係る半導体レーザ装置が用いられる排ガス分析装置の全体模式図である。 同実施形態に係る半導体レーザ装置の全体模式図である。 同実施形態に係る半導体レーザ素子部の光導波方向に直交する断面図である。 同実施形態に係る半導体レーザ素子部のA-A線断面図である。 量子カスケードレーザの発光原理を示す図である。 同実施形態に係る半導体レーザ装置の機能ブロック図である。 同実施形態に係る周囲温度変化時の動作内容を示す模式図である。
10 ・・・ガス分析装置
11 ・・・測定セル
12 ・・・光検出器
13 ・・・分析部
100・・・半導体レーザ装置
2  ・・・半導体レーザ素子
32 ・・・ペルチェ素子(温調部)
4  ・・・温度センサ
5  ・・・温度制御装置
51 ・・・関係データ格納部
52 ・・・供給信号取得部
53 ・・・供給制御部
 以下、本発明の一実施形態に係る半導体レーザ装置について、図面を参照しながら説明する。
 本実施形態の半導体レーザ装置100は、図1に示すように、例えば内燃機関又は外燃機関から排出される排ガスや大気中の測定対象成分を分析するガス分析装置10に用いられるものである。ここで、ガス分析装置10は、排ガスが導入される多重反射型の測定セル11と、測定セル11にレーザ光を照射する半導体レーザ装置100と、測定セル11を通過したレーザ光を検出する光検出器12と、光検出器12の検出信号を用いて測定対象成分を分析する分析部13とを有している。
 具体的に半導体レーザ装置100は、測定対象成分の吸収波数に対して±1cm-1程度の発振波数のレーザ光を射出するものであり、図2に示すように、半導体レーザ素子2と、当該半導体レーザ素子2を温調する温調モジュール3と、当該温調モジュール3に設けられた温度センサ4と、当該温度センサ4の検出温度に基づいて温調モジュール3を制御する温度制御装置5とを備えている。
 半導体レーザ素子2は、例えば量子カスケードレーザ素子(QCL:Quantum Cascade Laser)であり、例えば中赤外(4μm~10μm)のレーザ光を発振する。この半導体レーザ素子2は、与えられた電流(又は電圧)によって、発振波数(発振波長)を変調(変える)ことが可能なものでもある。半導体レーザ素子2は、レーザ制御装置6によってその電流(又は電圧)が制御される。
 半導体レーザ素子2は、例えば、図3及び図4に示すように、分布帰還型レーザ(DFBレーザ:Distributed Feedback Laser)であり、半導体基板20上に設けられたクラッド層とコア層とから構成される光導波路2Aを備えている。この光導波路3Aにおいてクラッド層の屈折率とコア層の屈折率との違いにより光がコア層を通過する。
 具体的に半導体レーザ素子2は、半導体基板20の上面にバッファ層21、コア層22、上部クラッド層23及びキャップ層24がこの順に形成されたものである。また、これらの層21~24はいずれも同一方向に延在しており、その幅方向の側面が保護膜25に覆われることによって一方向に延びる光導波路2Aが形成される。なお、保護膜25は無機膜であり、例えばSiOや、SiO及びSiの組み合わせであっても良い。
 バッファ層21及び上部クラッド層23はいずれもInPからなる層である。なお、バッファ層21とコア層22との間にInPからなる下部クラッド層を設けても良いし、バッファ層21をクラッド層として機能させてもよい。
 キャップ層24はInGaAsからなる層であり、その上面の一部(幅方向両側)は保護層25で覆われている。また、キャップ層24の上面の他の部分(幅方向中央部)は、上部電極26により覆われている。
 コア層22は、InGaAsからなる下部ガイド層221と、電流が注入されることにより光を発する活性層222と、InGaAsからなる上部ガイド層223とを有している。
 活性層222は、複数の井戸層を有する多重量子井戸構造からなるものであり、発光領域となる半導体層と、注入領域となる半導体層とが所定数交互に積層されて構成されている。なお、複数の井戸層は厚さが異なるものであってもよい。発光領域となる半導体層は、InGaAsとInAlAsとが交互に積層して構成されており、注入領域となる半導体層は、InGaAsとInAlAsとが交互に積層して構成されている。
 このように構成された半導体レーザ素子部は、図5に示すように、複数の井戸層が多段接続されており、それら量子井戸中に形成されるサブバンド間の光学遷移により光を発する量子カスケードレーザである。なお、半導体レーザ2は、分布反射型レーザ(DBRレーザ)であってもよい。
 この半導体レーザ素子2においてコア層22と上部クラッド層23との間、つまり、上部ガイド層223上に回折格子2Bが形成されている(図4参照)。この回折格子2Bは、上部ガイド層223に交互に形成された凹部及び凸部により構成されており、凹部及び凸部は上部ガイド層223の幅方向に延びている。この回折格子2Bにより所定の発振波数の光が強め合って選択的に増幅される。なお、所定の発振波数は、回折格子2Bのピッチにより規定される。
 半導体基板20の下面には下部電極37が設けられている。そして、上部電極26及び下部電極27にレーザ発振用の電流(又は電圧)を与えることによって、回折格子2Bにより規定された所定の発振波数のレーザ光が射出される。レーザ発振用の上部電極26及び下部電極27には電流源(又は電圧源)が接続されており、レーザ制御装置8がその電流源(又は電圧源)を制御する。
 レーザ制御装置6は、電流(又は電圧)制御信号を出力することによって半導体レーザ素子2の電流源(又は電圧源)を制御するものである。具体的にレーザ制御装置6は、電流(又は電圧)制御信号を出力することによって半導体レーザ素子2の電流源(又は電圧源)を制御して、半導体レーザ素子2を連続発振(CW)させたり、パルス状に発振(パルス駆動)させたりすることができる。なお、パルス駆動させるものには、光検出器での検出信号が連続的となる疑似連続発振(疑似CW)も含む。
 温調モジュール3は、半導体レーザ素子2が一方面である表面に搭載される基板31と、当該基板31の他方面である裏面に吸熱面が接触して設けられる温調部たるペルチェ素子32とを有している。ペルチェ素子32は、電流によって発熱及び吸熱の制御ができる半導体素子であり、交互に配列された複数のN型半導体とP型半導体とを金属電極を用いて直列に接続し、これらを一対のセラミック基板によって挟んだ構成を有している。なお、温調モジュール3は、基板31を有することなく、ペルチェ素子32の吸熱側のセラミック基板上に半導体レーザ素子が搭載されるものであってもよい。また、温調部としては、コンプレッサーを用いたもの、電熱線を用いたもの、ファンを用いたもの、水冷方式のもの等を用いることができる。
 温度センサ4は、前記基板31の表面に設けられており、半導体レーザ素子2が搭載された基板31の温度を検出するものである。この温度センサ4は、例えばサーミスタである。本実施形態において、温度センサ4は半導体レーザ素子2から離間して設けられているが、半導体レーザ素子2に接触して設けられていても良い。
 本実施形態では、半導体レーザ素子2及び冷却モジュール3は、気密容器7内に収容されている。この気密容器7において半導体レーザ素子2の光出射部に対向する部位には、レーザ光を外部に導出するための光導出部71が形成されている。当該光導出部71には、光学窓部材8が設けられており、当該光学窓部材8は、光学窓部材8で反射したレーザ光が再度半導体レーザ素子2を戻らないように、若干(例えば2度)傾斜している。この半導体レーザ素子2及び冷却モジュール3などを収容した気密容器7により発光モジュールが構成される。
 温度制御装置5は、温度センサ4の検出温度に基づいてペルチェ素子32への供給電流、供給電圧又は供給電力をフィードバック制御するものである。具体的に温度制御装置5は、電流(又は電圧)制御信号を出力することによってペルチェ素子32の電流源(電圧源)を制御するものである。
 この温度制御装置5は、構造としては、CPU、メモリ、入出力インターフェース、AD変換器などを有する汎用乃至専用のコンピュータである。そして、温度制御装置5は、メモリに格納された駆動プログラムに基づいて、CPU及びその周辺機器が作動することにより、ペルチェ素子32への供給電力を制御する。
 具体的に温度制御装置5は、図6に示すように、半導体レーザ素子2の発振波数を一定とした場合の温度センサ4の目標温度とペルチェ素子32の供給電力との関係を示す関係データを格納する関係データ格納部51と、ペルチェ素子32への供給電力を示す供給データを取得する供給データ取得部52と、ペルチェ素子32への供給電力をフィードバック制御する供給制御部53とを有している。
 関係データ格納部51は、半導体レーザ素子2の発振波数(発振波長λ)を一定とした場合の温度センサ4の目標温度Tとペルチェ素子32の供給電力Pとの関係を示す関係データを格納している。
 この関係データの生成方法は、例えば以下である。
 供試体である半導体レーザ装置100の発光モジュールを恒温容器(図示しない)に収容して、周囲温度(外気温度)を例えば5℃から45℃まで変更し、その周囲温度において半導体レーザ素子2の発振波長が一定(λ)となるように、ペルチェ素子32を制御する。
 各周囲温度において半導体レーザ素子2の発振波長が一定(λ)となったときのペルチェ素子32の検出温度とそのときの供給電力を記録する。この供給電力は、ペルチェ素子32に供給する供給電流及び供給電圧を検出し、これら供給電流及び供給電圧から供給電力を算出する。
 これにより、半導体レーザ素子2の発振波長を一定(λ)とした場合において、周囲温度が変化した際の目標温度と供給電力との関係が分かる。これを示す関係データを関係データ格納部51に格納する。ここで、関係データは、各目標温度の絶対値(T1、T2、T3、・・・)と各供給電力の絶対値(P1、P2、P3、・・・)との関係を示すものであってもよいし、基準となる目標温度(T1)に対する変化分(ΔT1(=T2-T1)、ΔT2(=T3-T1)、・・・)と、基準となる供給電力(P1)に対する変化分(ΔP1(=P2-P1)、ΔP2(=P3-P1)、・・・)との関係を示すものであってもよい。
 なお、1つの発振波長(λ)だけでなく、異なる発振波長(λ)の関係データを生成する場合には、上記と同じ作業を行う。なお、関係データは2つに限られず、複数の発振波長それぞれの関係データを持たせていてもよい。
 また、当該関係データに周囲温度も紐付けることによって、供給電力から周囲温度を検出することができる。つまり、ペルチェ素子32を周囲温度センサとして利用することもできる。
 供給データ取得部52は、温度センサ4の検出温度が一定の目標温度となるようにペルチェ素子32が制御されている状態で、当該ペルチェ素子32に供給される供給電流及び供給電圧を取得して、それら供給電流及び供給電圧を用いて供給電力を算出するものである。
 ここで、ペルチェ素子32に供給される供給電流は電流センサにより検出され、供給電圧は電圧センサにより検出される。なお、ペルチェ素子32が電流制御される場合には、当該電流制御の設定値を用いることができるし、ペルチェ素子32が電圧制御される場合には、当該電圧制御の設定値を用いることができる。供給データ取得部52は、算出した供給電力データを供給制御部53に出力する。
 供給制御部53は、関係データ格納部51から関係データを受け取るとともに、供給データ取得部52から供給電力データを受け取る。そして、供給制御部53は、供給電力データ及び関係データから、発振波数(発振波長)が一定となるように温度センサ4の目標温度を変更して、温度センサ4の検出温度が変更後の目標温度となるようにペルチェ素子32の供給電力を制御する。なお、供給制御部53は、取得した供給電力の変化幅が所定値未満の場合は、ペルチェ素子32の目標温度を変更しないように構成されている。ここで、所定値とは、周囲温度が変化しない場合に、目標温度となるようにペルチェ素子32が制御されている状態で生じる供給電力の変化幅と、周囲温度が変化した場合に生じる供給電力との変化幅とを区別するためのしきい値である。
<半導体レーザ装置100の動作>
 次に、半導体レーザ装置100の発振波数(発振波長)を一定にするための動作について図7を参照して説明する。なお、以下に示す温度は説明のためのものであり、実際の数値とは異なる。
 例えば、周囲温度(外気温度)が27℃であり、温度センサ4の検出温度が25.0度となるようにペルチェ素子32を制御している状態で、半導体レーザ素子2を発振させているとする。このとき、実際の半導体レーザ素子2の温度が例えば70.0度であるとする。
 この状態で、レーザ制御装置6は、半導体レーザ素子2に与える電流(又は電圧)を制御して、半導体レーザ素子2から所定波数(所定波長)のレーザ光を射出させる(図7(1)参照)。
 そして、周囲温度が27℃から30℃へ変化した場合には、温度制御装置5は、温度センサ4の検出温度が25℃となるようにペルチェ素子32を制御する。このとき、周囲温度変化によりペルチェ素子32への供給電力が増加し、半導体レーザ素子2が過度に冷却され、例えば69.6度に変化して発振波数(発振波長)が変動する(図7(2)参照)。
 温度制御装置5の供給データ取得部52は、ペルチェ素子32の供給電力データを取得する。そして、温度制御装置5の供給制御部53は、供給電力データ及び関係データから、半導体レーザ素子2の発振波数(発振波長)が一定となるように目標温度を変更する。例えば、温度センサ4の目標温度を24.5℃となるように変更する。これにより、供給制御部53は、温度センサ4の検出温度が24.5℃となるようにペルチェ素子32の供給電力を制御する(図7(3)参照)。
<本実施形態の効果>
 本実施形態の半導体レーザ装置100によれば、半導体レーザ素子2の発振波数(発振波長)を一定とした場合の、目標温度と、ペルチェ素子32の供供給電力との関係を用いて、半導体レーザ素子2の発振波数が一定となるように目標温度を変更するので、半導体レーザ素子2の発振波数が周囲温度の影響を受けて変動することを抑制することができる。
 例えば、半導体レーザ装置100が排ガス中の測定対象成分を分析する場合は、半導体レーザ素子2自身が発生する熱の影響に加えて、サンプルガスである排ガスの温度影響や、大気の温度影響により半導体レーザ素子10の周囲温度が大きく変動する可能性がある。本発明を適用した半導体レーザ装置100は、半導体レーザ素子2の発振波数が周囲温度の影響を受けて変動することを抑制することができるので、排ガスを精度良く分析することができる。また、半導体レーザ装置100が大気中の汚染物質などを分析する場合は、例えば野外で数時間から数日に渡って連続して分析する可能性があり、大気の温度影響を受けやすい。本発明を適用した半導体レーザ装置100は、半導体レーザ素子2の発振波数が周囲温度の影響を受けて変動することを抑制することができるので、大気中の汚染物質を精度良く分析することができる。
<その他の変形実施形態>
 なお、本発明は前記各実施形態に限られるものではない。
 例えば、温度制御装置5の電力制御部53が供給電力データ及び関係データを用いて目標温度を変更するものであったが、それらのデータを用いて供給電力を調整するものであっても良い。例えば電力制御部53は、ΔWNcorr=a×Ppel+bの関係を用いて供給電力を調整する。なお、ΔWNcorrは、発振波数(発振波長の逆数)の補正量であり、Ppelは、ペルチェ素子32への供給電力である。係数a、bは、関係データに含まれる値又は関係データから求まる値である。
 前記実施形態の供給信号取得部は、温調部への供給電流又は供給電圧を示す供給信号を取得するものであってもよい。この場合、関係データ格納部には、半導体レーザ素子の発振波数を一定とした場合の、目標温度と、温調部の供給電流又は供給電圧との関係を示す関係データが格納されている。そして、供給制御部は、供給信号及び関係データから、発振波数(発振波長)が一定となるように温度センサ4の目標温度を変更して、温度センサ4の検出温度が変更後の目標温度となるように温調部の供給電流又は供給電圧を制御する。
 前記実施形態では、量子カスケードレーザ素子を有する半導体レーザ装置について説明したが、その他の半導体レーザ素子2を有するものであっても良い。
 温度制御装置5は、ペルチェ素子への供給電流及び供給電圧からペルチェ素子の抵抗値の変化を監視して、ペルチェ素子の劣化判断や寿命判断を行うものであっても良い。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、半導体レーザ素子の発振波数が周囲温度影響を受けて変動することを抑制することができる。

Claims (10)

  1.  半導体レーザ素子と、
     前記半導体レーザ素子を温調する温調部と、
     前記温調部の温度を検出する温度センサと、
     前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する温度制御装置とを備え、
     前記温度制御装置は、前記温調部への供給信号に応じて、前記温調部の目標温度を変更する、半導体レーザ装置。
  2.  前記温度制御装置は、
     前記温調部への供給信号と前記温調部の目標温度との関係を示す関係データを格納する関係データ格納部と、
     前記温調部への供給信号を取得する供給信号取得部と、
     取得した前記供給信号に応じて、前記関係データから前記温調部の目標温度を取得し、当該取得した目標温度になるように前記温調部への供給信号を制御する供給制御部とを備える、請求項1記載の半導体レーザ装置。
  3.  前記供給制御部は、取得した前記供給信号の所定期間毎の平均値に応じて、前記関係データから前記温調部の目標温度を取得する、請求項2記載の半導体レーザ装置。
  4.  前記供給制御部は、取得した前記供給信号の平均値の変化幅が所定値未満の場合は、前記温調部の目標温度を変更しない、請求項1記載の半導体レーザ装置。
  5.  前記関係データ格納部は、前記半導体レーザの発振波数毎に、前記温調部への供給信号と前記温調部の目標温度との関係を示す関係データを格納する、請求項1記載の半導体レーザ装置。
  6.  前記半導体レーザ素子は、複数の井戸層が多段に接続された多重量子井戸構造からなり、その量子井戸中に形成されるサブバンド間の光遷移により光を発生させる、請求項1記載の半導体レーザ装置。
  7.  前記半導体レーザは、量子カスケードレーザである、請求項1記載の半導体レーザ装置。
  8.  ガスに含まれる測定対象成分を分析するガス分析装置であって、
     前記ガスが導入される測定セルと、
     前記測定セルにレーザ光を照射する請求項1記載の半導体レーザ装置と、
     前記測定セルを通過したレーザ光を検出する光検出器と、
     前記光検出器の検出信号を用いて前記測定対象成分を分析する分析部とを有する、ガス分析装置。
  9.  半導体レーザ素子と、前記半導体レーザ素子を温調する温調部と、前記温調部の温度を検出する温度センサとを有する半導体レーザ装置において、前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する駆動方法であって、
     前記温調部への供給信号に応じて、前記温調部の目標温度を変更する、半導体レーザ装置の駆動方法。
  10.  半導体レーザ素子と、前記半導体レーザ素子を温調する温調部と、前記温調部の温度を検出する温度センサと、前記温度センサの検出温度が所定の目標温度となるように前記温調部への供給信号を制御する制御装置とを備える半導体レーザ装置に用いられる駆動プログラムであって、
     前記温調部への供給信号に応じて、前記温調部の目標温度を変更する機能を前記制御装置に発揮させることを特徴とする駆動プログラム。
PCT/JP2018/034924 2017-12-15 2018-09-20 半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム WO2019116660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880065242.5A CN111201684B (zh) 2017-12-15 2018-09-20 半导体激光装置及其驱动方法、气体分析装置和存储介质
EP18887596.7A EP3726675A4 (en) 2017-12-15 2018-09-20 SEMICONDUCTOR LASER DEVICE, AND METHOD AND PROGRAM FOR CONTROL OF A SEMICONDUCTOR LASER DEVICE
US16/756,551 US11764542B2 (en) 2017-12-15 2018-09-20 Semiconductor laser device, and method and program for driving the same
JP2019558913A JP7165144B2 (ja) 2017-12-15 2018-09-20 半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240868 2017-12-15
JP2017-240868 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116660A1 true WO2019116660A1 (ja) 2019-06-20

Family

ID=66820873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034924 WO2019116660A1 (ja) 2017-12-15 2018-09-20 半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム

Country Status (5)

Country Link
US (1) US11764542B2 (ja)
EP (1) EP3726675A4 (ja)
JP (1) JP7165144B2 (ja)
CN (1) CN111201684B (ja)
WO (1) WO2019116660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124197A1 (ja) * 2020-12-09 2022-06-16 株式会社堀場製作所 半導体レーザ素子、半導体レーザ装置、半導体レーザ装置の製造方法及びガス分析装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969412B (zh) * 2020-08-17 2021-11-19 大连理工大学 一种半导体激光器主动波长稳定方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379094A (ja) * 1989-08-22 1991-04-04 Nec Corp レーザ装置発振周波数安定化方法およびこれに用いる装置
JPH07273393A (ja) * 1994-03-30 1995-10-20 Olympus Optical Co Ltd 波長安定化装置
JPH11233869A (ja) * 1998-02-10 1999-08-27 Yokogawa Electric Corp 周波数安定化半導体レーザ光源
JP2005085815A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp 波長安定化装置
JP2009216385A (ja) 2006-05-19 2009-09-24 Toyota Motor Corp ガス分析装置及びガス分析装置におけるレーザの波長掃引制御方法
JP2011108930A (ja) * 2009-11-19 2011-06-02 Shimadzu Corp 半導体レーザ素子を用いたレーザ式ガス分析装置
US20120033697A1 (en) * 2010-08-03 2012-02-09 President And Fellows Of Harvard College Wavelength beam combining of quantum cascade laser arrays
JP2013164315A (ja) * 2012-02-10 2013-08-22 Shimadzu Corp レーザ式ガス分析装置
JP2014078690A (ja) * 2012-09-19 2014-05-01 Japan Oclaro Inc 光モジュール及び光モジュールの制御方法
JP2014225583A (ja) * 2013-05-16 2014-12-04 富士通オプティカルコンポーネンツ株式会社 半導体レーザの温度制御方法、半導体レーザの温度制御装置、および半導体レーザの温度制御プログラム
US20160329681A1 (en) * 2015-05-05 2016-11-10 Boreal Laser Inc. Packaged laser thermal control system
JP2017101950A (ja) * 2015-11-30 2017-06-08 富士電機株式会社 レーザ式ガス分析計

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626259B2 (ja) * 1984-04-27 1994-04-06 松下電器産業株式会社 光伝送装置
JPH0728077B2 (ja) * 1986-04-16 1995-03-29 株式会社トプコン 半導体レ−ザ−の発振周波数・発振出力安定化装置
DE3706635A1 (de) * 1987-03-02 1988-09-15 Spindler & Hoyer Kg Verfahren zur stabilisierung der frequenz einer laserdiode unabhaengig vom diodenstrom
JP2532450B2 (ja) * 1987-03-27 1996-09-11 喜代治 上原 半導体レ−ザ−装置
JP2725012B2 (ja) * 1988-03-04 1998-03-09 富士通株式会社 半導体発光装置
JPH01233869A (ja) 1988-03-15 1989-09-19 Nippon Telegr & Teleph Corp <Ntt> 画像通信方式
US5019769A (en) * 1990-09-14 1991-05-28 Finisar Corporation Semiconductor laser diode controller and laser diode biasing control method
WO1992019014A1 (en) * 1991-04-15 1992-10-29 Honeywell Inc. Semiconductor light source temperature control
JPH05259988A (ja) * 1992-03-13 1993-10-08 Nec Corp 光出力監視回路
JP2669309B2 (ja) * 1993-11-05 1997-10-27 日本電気株式会社 デバイスモジュール
US5402433A (en) * 1994-01-05 1995-03-28 Alcatel Network Systems, Inc. Apparatus and method for laser bias and modulation control
JPH07249817A (ja) * 1994-03-09 1995-09-26 Toshiba Corp 波長安定化光源
DE4429582C2 (de) * 1994-08-19 1998-02-26 Draegerwerk Ag Strahlungsquelle für ein Meßsystem
EP0834206A1 (en) * 1995-06-23 1998-04-08 Coherent, Inc. Temperature correction circuit for wavelength stabilization in a laser diode
US5604758A (en) * 1995-09-08 1997-02-18 Xerox Corporation Microprocessor controlled thermoelectric cooler and laser power controller
KR100272403B1 (ko) * 1998-08-31 2000-12-01 강선모 반도체 레이저 다이오드의 안정화 구동장치
EP1233488A1 (en) * 2001-02-16 2002-08-21 Agilent Technologies, Inc. (a Delaware corporation) A light source
US6807206B2 (en) * 2001-04-16 2004-10-19 The Furukawa Electric Co., Ltd. Semiconductor laser device and drive control method for a semiconductor laser device
US6850398B2 (en) * 2001-06-07 2005-02-01 Xicor, Inc. Feed forward programmable current controller
GB2387961B (en) * 2002-04-25 2006-06-21 Bookham Technology Plc Frequency locker
JP4043844B2 (ja) * 2002-05-24 2008-02-06 フリースケール セミコンダクター インコーポレイテッド 発光素子駆動装置
US6931038B2 (en) * 2002-07-08 2005-08-16 Technology Asset Trust Wavelength locked semiconductor laser module
US7035300B2 (en) * 2002-11-05 2006-04-25 Finisar Corporation Calibration of a multi-channel optoelectronic module with integrated temperature control
WO2004042799A2 (en) * 2002-11-05 2004-05-21 Finisar Corporation Age compensation in optoelectronic modules with integrated temperature control
US7054343B1 (en) * 2002-11-26 2006-05-30 National Semiconductor Corporation Method of compensating for temperature changes and channel variations in a laser diode array to produce a substantially constant average optical power over temperature
US6880345B1 (en) * 2003-11-04 2005-04-19 Intel Corporation Cooling system for an electronic component
US7075047B2 (en) * 2004-03-10 2006-07-11 Matsushita Electric Industrial Co., Ltd. Temperature control apparatus
JP5148815B2 (ja) * 2005-01-20 2013-02-20 住友電気工業株式会社 光送信モジュール
US7242701B2 (en) * 2005-02-15 2007-07-10 Lucent Technologies Inc. Laser wavelength control arrangement and method
BRPI0608301A2 (pt) * 2005-03-09 2009-12-08 Sabeus Inc sistema de controle multivariável com realimentação no estado
EP2146408B1 (en) * 2005-03-16 2012-07-04 Nippon Telegraph and Telephone Corporation Optical communication light source unit and wavelength control method
TWI261959B (en) * 2005-06-24 2006-09-11 Leadlight Technology Inc Power control device of laser module and method thereof
US7975493B2 (en) * 2006-02-10 2011-07-12 Finisar Corporation Thermoelectric cooler with inrush current control
JP2007325189A (ja) * 2006-06-05 2007-12-13 Sumitomo Electric Ind Ltd 光送信器
JP5011914B2 (ja) * 2006-09-28 2012-08-29 住友電気工業株式会社 レーザダイオード制御装置及びatc回路の駆動方法
US7826509B2 (en) * 2006-12-15 2010-11-02 President And Fellows Of Harvard College Broadly tunable single-mode quantum cascade laser sources and sensors
US7512162B2 (en) * 2007-05-11 2009-03-31 Avanex Corporation Dynamic thermal management of laser devices
JP2008312038A (ja) * 2007-06-15 2008-12-25 Sumitomo Electric Ind Ltd 光送信機
JP4943255B2 (ja) 2007-07-20 2012-05-30 住友電工デバイス・イノベーション株式会社 半導体レーザの制御方法
JP2010123619A (ja) 2008-11-17 2010-06-03 Rohm Co Ltd 半導体レーザの駆動装置、表示装置および半導体レーザアレイ
JP2010232336A (ja) * 2009-03-26 2010-10-14 Fujitsu Optical Components Ltd 光源制御装置および光源装置
US20150146757A1 (en) * 2010-02-19 2015-05-28 Furukawa Electric Co., Ltd. Semiconductor laser module
US8605763B2 (en) * 2010-03-31 2013-12-10 Microsoft Corporation Temperature measurement and control for laser and light-emitting diodes
GB2484486A (en) * 2010-10-12 2012-04-18 Oclaro Technology Ltd Component Temperature Control
JP5919679B2 (ja) * 2011-08-19 2016-05-18 住友電気工業株式会社 光送信機
JP2013089754A (ja) * 2011-10-18 2013-05-13 Sumitomo Electric Ind Ltd 波長可変半導体レーザの制御方法
WO2013186834A1 (ja) 2012-06-11 2013-12-19 三菱電機株式会社 Olt光送信器およびolt光送信器の温度制御方法
JP6423997B2 (ja) * 2013-07-09 2018-11-14 オリンパス株式会社 光源用熱処理装置及び光源装置
CN103728270B (zh) 2013-12-29 2017-10-03 西藏民族学院 一种半导体激光器调制光谱多组份气体检测方法及装置
JP6381636B2 (ja) * 2014-04-21 2018-08-29 三菱電機株式会社 光送信器および半導体レーザ温度制御方法
US9438005B1 (en) * 2014-06-02 2016-09-06 Google Inc. Calibration of a tunable DBR laser
JP2016100380A (ja) * 2014-11-19 2016-05-30 富士通オプティカルコンポーネンツ株式会社 レーザ装置、及び、光送信機
KR101916849B1 (ko) * 2014-11-20 2018-11-08 오이솔루션 아메리카 인코퍼레이티드 가변 광학 디바이스, 및 서브어셈블리를 제어, 모니터링, 및 통신하기 위한 방법 및 장치
US9705280B2 (en) * 2015-02-24 2017-07-11 Lockheed Martin Corporation Systems and methods for adaptively controlling a thermoelectric cooler
JP6367900B2 (ja) * 2016-12-14 2018-08-01 ファナック株式会社 レーザ装置
WO2018150584A1 (ja) * 2017-02-20 2018-08-23 三菱電機株式会社 光送信器、温度制御装置および温度制御方法
CN108539574B (zh) * 2017-03-06 2021-05-14 苏州旭创科技有限公司 激光器工作温度的低功耗控制方法、控制装置以及光模块
CN110447151B (zh) * 2017-03-31 2021-10-08 三菱电机株式会社 光发送机
EP3399607A1 (en) * 2017-05-02 2018-11-07 Nokia Solutions and Networks Oy A method of wavelength tuning for an onu and an onu
CN110707513A (zh) * 2019-10-09 2020-01-17 深圳市欧深特信息技术有限公司 一种激光器的温度调节方法及系统、计算机可读存储介质
CN113328326A (zh) * 2021-08-03 2021-08-31 武汉联特科技股份有限公司 一种同轴eml tosa用于工温dwdm方案的实现方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379094A (ja) * 1989-08-22 1991-04-04 Nec Corp レーザ装置発振周波数安定化方法およびこれに用いる装置
JPH07273393A (ja) * 1994-03-30 1995-10-20 Olympus Optical Co Ltd 波長安定化装置
JPH11233869A (ja) * 1998-02-10 1999-08-27 Yokogawa Electric Corp 周波数安定化半導体レーザ光源
JP2005085815A (ja) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp 波長安定化装置
JP2009216385A (ja) 2006-05-19 2009-09-24 Toyota Motor Corp ガス分析装置及びガス分析装置におけるレーザの波長掃引制御方法
JP2011108930A (ja) * 2009-11-19 2011-06-02 Shimadzu Corp 半導体レーザ素子を用いたレーザ式ガス分析装置
US20120033697A1 (en) * 2010-08-03 2012-02-09 President And Fellows Of Harvard College Wavelength beam combining of quantum cascade laser arrays
JP2013164315A (ja) * 2012-02-10 2013-08-22 Shimadzu Corp レーザ式ガス分析装置
JP2014078690A (ja) * 2012-09-19 2014-05-01 Japan Oclaro Inc 光モジュール及び光モジュールの制御方法
JP2014225583A (ja) * 2013-05-16 2014-12-04 富士通オプティカルコンポーネンツ株式会社 半導体レーザの温度制御方法、半導体レーザの温度制御装置、および半導体レーザの温度制御プログラム
US20160329681A1 (en) * 2015-05-05 2016-11-10 Boreal Laser Inc. Packaged laser thermal control system
JP2017101950A (ja) * 2015-11-30 2017-06-08 富士電機株式会社 レーザ式ガス分析計

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124197A1 (ja) * 2020-12-09 2022-06-16 株式会社堀場製作所 半導体レーザ素子、半導体レーザ装置、半導体レーザ装置の製造方法及びガス分析装置

Also Published As

Publication number Publication date
EP3726675A1 (en) 2020-10-21
CN111201684B (zh) 2023-07-25
US11764542B2 (en) 2023-09-19
CN111201684A (zh) 2020-05-26
US20200295535A1 (en) 2020-09-17
EP3726675A4 (en) 2021-08-25
JPWO2019116660A1 (ja) 2020-10-22
JP7165144B2 (ja) 2022-11-02

Similar Documents

Publication Publication Date Title
US11469570B2 (en) Independent control of emission wavelength and output power of a semiconductor laser
Wysocki et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications
US20110184624A1 (en) Gas detection device
US20060187976A1 (en) Variable-wavelength semiconductor laser and gas sensor using same
WO2019116660A1 (ja) 半導体レーザ装置、半導体レーザ装置の駆動方法及び駆動プログラム
US9142937B2 (en) Wavelength referencing by monitoring a voltage across a laser diode
Romadhon et al. Longitudinal modes evolution of a GaN-based blue laser diode
JPWO2016047168A1 (ja) ガス分析装置及びガス処理装置
JP2015129653A (ja) ガス分析計
JP2019110164A (ja) 半導体レーザ装置及びその製造方法並びにガス分析装置
Grabherr et al. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750-to 1000-nm range
US9250130B2 (en) Quantum cascade laser with autonomously aligned external cavity and related methods
CN111344917B (zh) 半导体激光器、驱动控制装置和半导体激光器的控制方法
Evans et al. Gas Sensing Using Heterogeneously Integrated Quantum Cascade Lasers on Silicon
WO2015136744A1 (ja) 呼気診断装置
WO2022124197A1 (ja) 半導体レーザ素子、半導体レーザ装置、半導体レーザ装置の製造方法及びガス分析装置
Pushkarsky et al. Performance characteristics of a compact widely tunable external cavity quantum cascade laser
Al-Basheer et al. Evolution of blue laser diode spectral lines with applied current in the range 446-448 nm
JPH10111243A (ja) 分光分析装置
Vetter Effects of Varying Quantum Well Barrier Height and Quantum Well Number on the Intrinsic Frequency Response of InGaAsP/InP Multiple Quantum Well Semiconductor Lasers
Hvozdara et al. Gas absorption spectroscopy using GaAs/AlGaAs quantum cascade lasers and a hollow waveguide absorption cell
JPH01316983A (ja) 半導体レーザの利得測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887596

Country of ref document: EP

Effective date: 20200715