WO2019114215A1 - 蒸汽阀、盖板组件、烹饪电器及其功率控制方法 - Google Patents

蒸汽阀、盖板组件、烹饪电器及其功率控制方法 Download PDF

Info

Publication number
WO2019114215A1
WO2019114215A1 PCT/CN2018/090017 CN2018090017W WO2019114215A1 WO 2019114215 A1 WO2019114215 A1 WO 2019114215A1 CN 2018090017 W CN2018090017 W CN 2018090017W WO 2019114215 A1 WO2019114215 A1 WO 2019114215A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
hole
cooking
float
cooking appliance
Prior art date
Application number
PCT/CN2018/090017
Other languages
English (en)
French (fr)
Inventor
马利
刘化勇
罗飞龙
吴慧民
黄韦铭
梁志佳
邢胜华
羊小亮
瞿月红
黄宇华
Original Assignee
佛山市顺德区美的电热电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711322507.9A external-priority patent/CN109907643B/zh
Priority claimed from CN201721742770.9U external-priority patent/CN208822466U/zh
Priority claimed from CN201711319916.3A external-priority patent/CN109907650B/zh
Priority claimed from CN201721725046.5U external-priority patent/CN208822433U/zh
Priority claimed from CN201721725087.4U external-priority patent/CN208822306U/zh
Priority claimed from CN201721741321.2U external-priority patent/CN208822434U/zh
Application filed by 佛山市顺德区美的电热电器制造有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Publication of WO2019114215A1 publication Critical patent/WO2019114215A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/38Parts, details or accessories of cooking-vessels for withdrawing or condensing cooking vapors from cooking utensils

Definitions

  • the invention relates to the field of kitchen household appliances, in particular to a steam valve, a cover plate assembly, a cooking appliance and a power control method thereof.
  • the existing cooking appliances such as rice cookers are generally ordinary piezoelectric rice cookers, that is, a steam outlet is designed on the upper cover of the rice cooker, and the gas in the inner pot of the rice cooker is discharged for a long time, so that a large amount of aroma substances in the rice are taken away, and The rice phase will take away a lot of water in the rice. In the end, the scent of the rice will be lost too much, and the water in the rice will be lost too much, causing the rice to be unscented and dry.
  • micro-piezo rice cookers and high-voltage rice cookers and corresponding power control methods have emerged, but the pressure of micro-piezo rice cookers is only a few hundred Pascals, usually less than 600 Pa, and the power control method corresponding thereto Not only can it not match the micro-pressure structure to enhance the flavor of the rice and achieve the moisturizing effect of the lock, and even the effect of cooking the rice is worse.
  • High-voltage rice cookers are expensive and have great risks in the event of failure. Therefore, the current micro-piezo cookers and high-voltage rice cookers do not satisfactorily satisfy the user's demand for the aroma and taste of rice.
  • an aspect of the present invention provides a steam valve for a cooking appliance.
  • the steam valve includes a normally open exhaust system for discharging air in an inner pot of the cooking appliance, and a normally closed micro pressure system for closing the inner pot
  • the pressure in the exhaust system, the closing pressure threshold P1 of the exhaust system is less than the opening pressure threshold P2 of the micro pressure system.
  • the steam valve further includes a normally open return system for returning condensed water to the inner pot, the closing pressure threshold P3 of the return system being less than or equal to the exhaust system The pressure threshold P1 is turned off.
  • the closing pressure threshold P3 of the recirculation system, the closing pressure threshold P1 of the exhaust system, and the opening pressure threshold P2 of the micro pressure system are respectively: 0 ⁇ P3 ⁇ 100Pa, 100 ⁇ P1 ⁇ 600Pa, 800 ⁇ P2 ⁇ 3000Pa.
  • the steam valve further includes a valve body, the bottom of the valve body is provided with a first through hole and a second through hole;
  • the exhaust system includes a float and a float sealing ring disposed at a lower end of the float.
  • the float can move up and down in the first through hole, the float seal is used to seal the first through hole;
  • the micro pressure system includes a first valve seat, a valve core and a lower end of the valve core a spool seal, the first valve seat is formed in the valve body, the second through hole is located at a bottom of the first valve seat, and the valve core is located in the first valve seat, The spool seal abuts the second through hole.
  • the micro pressure system further includes an elastic member that resets the spool, the spool includes a spool body and a flange at a lower end of the spool body, and the spool seal is sleeved in the On the flange, one end of the elastic member is coupled to the flange, and the other end of the elastic member is coupled to an upper end of the first valve seat.
  • first through hole is also located at the bottom of the first valve seat, and the valve body is a hollow structure forming a steam passage, and an upper end of the float is movable up and down in the steam passage.
  • the steam valve further includes a normally open return system for returning condensed water to the inner pot, the closing pressure threshold P3 of the return system being less than or equal to the exhaust system Closing the pressure threshold P1;
  • the bottom of the valve body is further provided with a first mounting hole and a third through hole, the reflow system comprising a return body, a guiding portion disposed at an upper end of the returning body, and a lower portion disposed at a lower end of the returning body a sealing portion capable of moving up and down in the first mounting hole, the sealing portion for sealing the third through hole.
  • the spool sealing ring includes an annular sealing ring body and a lip disposed at a lower end surface of the sealing ring body, the lip forming a closed sealing area, and the sealing area sealing the second Through hole.
  • the lip includes an outer lip that protrudes downward from the entire outer circumference of the seal ring main body, and an inner lip that protrudes downward from the entire inner circumference of the seal ring main body.
  • the second through hole is distributed within a range covered by the sealing area.
  • the spool seal ring further includes a first boss protruding from an entire outer circumference of the seal ring main body at an upper end surface of the seal ring main body, the spool being inverted T-shaped, including a cylinder a spool body and an annular flange projecting outwardly from a lower end of the spool body; the spool seal is sleeved on an outer circumference of the flange, and an inner peripheral surface of the first boss The outer peripheral surface of the flange is fitted, and the lower end surface of the flange is in contact with the upper end surface of the seal ring main body.
  • each of the second bosses has a cross-sectional shape, and a horizontal portion thereof protrudes toward a center of the sealing ring body. a lower end surface of the horizontal portion is provided with a receiving cavity; a plurality of third bosses are spaced apart from the outer circumference of the flange, and the plurality of the third bosses are respectively spaced apart from the plurality of the second bosses Ground distribution, each of the third bosses is correspondingly placed in each of the receiving cavities.
  • the accommodating cavity is a through hole penetrating the upper end surface of the horizontal portion; an upper end surface of each of the third bosses is aligned with the upper end surface of the second boss through the through hole.
  • an upper end surface of the first boss is chamfered to form a first inclined portion that is inclined downward from a center of the sealing ring main body, and an upper end surface of each of the second bosses is beveled to form a second inclined portion that is inclined outwardly downward from a center of the seal ring main body; an upper end surface of the flange is chamfered to form a third inclined portion that is inclined outwardly downward from a center of the spool, each An upper end surface of the third boss is chamfered to form a fourth inclined portion that is inclined outward from the center of the spool; the first inclined portion is adjacent to the third inclined portion, the second The inclined portion is adjacent to the fourth inclined portion.
  • a first exhaust hole is formed between the float and the hole wall of the first through hole, and the up and down movement of the float in the first through hole is used to close or open the first exhaust hole.
  • the float is provided with a float cavity, an air inlet for allowing gas in the inner pot to enter the inner cavity of the float, and a gas for introducing the gas in the inner cavity of the float into the first row
  • An air outlet hole of the air hole; the upper baffle of the float is engaged with the first through hole, and the float seal ring abuts against a bottom outer surface of the first valve seat to close the first exhaust hole.
  • the air inlet hole is opened at a lower end of the inner cavity wall of the float, and the air outlet hole is opened in an upper end of the inner cavity wall of the float or in an upper baffle of the float.
  • the lower end portion of the float is further provided with an annular groove below the air inlet hole, and the float sealing ring is clamped to the lower end portion of the float through the annular groove.
  • the valve core is composed of a gravity block that moves up and down in the inner cavity of the first valve seat; when the gravity block makes the valve core sealing ring and the first valve seat When the bottom is in contact, the gravity block causes the valve core seal to completely close the second through hole; the gravity of the gravity block is equal to the pressure difference between the inner pot and the valve cavity and the first The product of the cross-sectional area of the passage; the pressure difference ranges from 0.1 KPa to 4 KPa.
  • the first valve seat further includes a guide seat forming the first through hole, the guide seat is located in a cavity of the first valve seat, and the gravity block is mounted on the guide seat The outer wall moves up and down along the outer wall of the guide seat.
  • the steam valve further includes a fixing cover installed at an upper end of the first valve seat, the fixing cover is provided with a second exhaust hole, the second exhaust hole is The valve chamber is connected.
  • the gravity block is composed of a metal or plastic wrap metal.
  • the pressure difference is from 0.5 KPa to 2 KPa.
  • the exhaust system includes an expansion body, a bottom plate connected to one end of the expansion body, and a top plate connected to the other end of the expansion body, in which a bottom air passage is formed in the top plate Forming a top air passage;
  • the expansion body is disposed in the first through hole and is in clearance with the first through hole, and an upper surface of the bottom plate is in contact with a lower end surface of the first through hole, A lower surface of the top plate is in contact with an upper end surface of the first through hole, and the bottom air passage communicates with the top air passage through the gap.
  • the expansion body includes an elastically deformable outer casing and an inner space surrounded by the outer casing, the inner space being filled with a thermally expandable material.
  • the outer casing is made of silicone.
  • the bottom plate, the top plate and the outer casing are integrally formed.
  • the bottom air passage is formed in an upper surface of the bottom plate, and the top plate includes a plurality of spaced positioning positioning bosses, and the top air passage is formed between the adjacent positioning bosses.
  • the upper surface of the top plate is formed with a guiding structure.
  • the cover assembly includes a movable plate assembly, a normally open exhaust system respectively disposed on the movable plate assembly, and a normally closed micro pressure system for discharging the inner pot of the cooking appliance
  • the air is used to close the pressure in the inner pot, and the closing pressure threshold P1 of the exhaust system is smaller than the opening pressure threshold P2 of the micro pressure system.
  • the movable plate assembly includes a bottom cover plate, and the bottom cover plate is provided with a second mounting hole;
  • the micro pressure system includes a second valve seat, a valve core, and a valve core disposed at a lower end of the valve core a sealing ring, the valve core includes a valve body and a flange at a lower end of the valve body, the valve core sealing sleeve is sleeved on the flange, and the valve body is a hollow structure forming a steam passage;
  • a fourth through hole and a fifth through hole are disposed at a bottom of the second valve seat, the second valve seat is mounted on the second mounting hole, and the valve core is located in the second valve seat, a spool seal abutting the fifth through hole;
  • the exhaust system includes a float and a float seal disposed at a lower end of the float, the float being movable up and down in the fourth through hole, the float A sealing ring is used to seal the fourth through hole.
  • the micro pressure system further includes an elastic member that resets the spool, one end of the elastic member is coupled to the flange, and the other end of the elastic member is coupled to an upper end of the second valve seat.
  • the cover assembly further includes a normally open return system disposed on the movable plate assembly for returning condensed water to the inner pot, a closing pressure threshold of the return system P3 is less than or equal to a closing pressure threshold P1 of the exhaust system;
  • the bottom cover is further provided with a third mounting hole and a sixth through hole, and the recirculation system comprises a returning body, and a guiding body disposed at an upper end of the returning body And a sealing portion disposed at a lower end of the return body, the return body being movable up and down in the third mounting hole, the sealing portion for sealing the sixth through hole.
  • the movable panel assembly includes a bottom cover plate, and the bottom cover plate is provided with a fourth mounting hole and a seventh through hole;
  • the exhaust system includes a float and a float sealing ring disposed at a lower end of the float.
  • the float is movable up and down in the seventh through hole, the float seal is for sealing the seventh through hole;
  • the micro pressure system includes a third valve seat, a valve core, and a valve core disposed at the valve core a spool seal ring at a lower end, the spool is located in the third valve seat, an eighth through hole is disposed at a bottom of the third valve seat, and the third valve seat is mounted on the fourth mounting hole The spool sealing ring abuts the eighth through hole.
  • the micro pressure system further includes an elastic member that resets the spool, the spool includes a spool body and a flange at a lower end of the spool body, and the spool seal is sleeved in the On the flange, one end of the elastic member is coupled to the flange, and the other end of the elastic member is coupled to an upper end of the third valve seat.
  • the cover assembly further includes a normally open return system disposed on the movable plate assembly for returning condensed water to the inner pot, a closing pressure threshold of the return system P3 is less than or equal to a closing pressure threshold P1 of the exhaust system;
  • the bottom cover is further provided with a fifth mounting hole and a ninth through hole, and the reflow system includes a returning body, and a guiding body disposed at an upper end of the returning body And a sealing portion disposed at a lower end of the return body, the return body being movable up and down in the fifth mounting hole, the sealing portion for sealing the ninth through hole.
  • Another aspect of the invention provides a cooking appliance comprising an upper cover having an exhaust outlet and a steam valve according to any one of claims 1-28, the steam valve being mounted to the upper A cover, the exhaust system and the micro-pressure system are in communication with the external environment through the exhaust outlet.
  • valve chamber communicating with the exhaust outlet is formed between the steam valve and the upper cover.
  • Another aspect of the present invention provides a power control method for a cooking appliance, the cooking appliance comprising a normally open exhaust system and a normally closed micro pressure system, the closing pressure of the exhaust system being less than that of the micro pressure system Turn on the pressure.
  • the power control method includes: determining a current cooking stage of the cooking appliance; and setting a power based on a closing pressure of the exhaust system and an opening pressure of the micro pressure system when the current cooking stage is a target cooking stage And adjusting the heating power corresponding to the current cooking stage.
  • the determining a current cooking stage of the cooking appliance includes: obtaining a top temperature and a bottom temperature of an inner pot of the current cooking appliance; according to a set temperature range of the inner pot of the cooking appliance and each cooking stage Corresponding relationship, determining a current cooking stage of the cooking appliance; the inner pot temperature difference ranges from a temperature difference between a bottom portion and a top portion of the inner pot.
  • the cooking stage of the cooking appliance includes a heating stage and a boiling stage;
  • the target cooking stage includes a late stage of the heating stage and/or a pre-stage of the boiling stage; the when the current cooking stage is a target cooking And adjusting the heating power corresponding to the current cooking stage based on the closing pressure of the exhaust system and the power of the opening pressure of the micro pressure system, including: determining that the current cooking stage is the heating stage In the later stage or in the early stage of the boiling phase, the corresponding heating power of the heating stage or the heating power corresponding to the previous stage of the boiling stage is adjusted to a set first power threshold, and the pressure of the cooking appliance is controlled. The difference is less than the closing pressure of the exhaust system.
  • the cooking stage of the cooking appliance includes a risotto stage; the target cooking stage includes the risotto stage; and when the current cooking stage is a target cooking stage, based on a closing pressure of the exhaust system Adjusting the heating power corresponding to the current cooking stage and the power of the opening pressure of the micro pressure system, comprising: when determining that the current cooking stage is the risotto stage, heating corresponding to the risotto stage The power is adjusted to a set second power threshold, and the pressure difference of the cooking appliance is controlled to be greater than a closing pressure of the exhaust system and less than an opening pressure of the micro pressure system.
  • the power control device includes a processing unit and an adjustment unit.
  • the processing unit is configured to determine a current cooking stage of the cooking appliance; the adjusting unit is configured to: when the current cooking stage is a target cooking stage, based on a closing pressure of the exhaust system and the micro pressure
  • the power of the system's opening pressure setting adjusts the heating power corresponding to the current cooking stage.
  • the processing unit is specifically configured to: obtain a top temperature and a bottom temperature of the inner pot of the cooking appliance; and determine a corresponding relationship between the inner pot temperature difference range of the cooking appliance and each cooking stage The current cooking stage of the cooking appliance; the inner pot temperature difference ranges from a temperature difference between the bottom and the top of the inner pot.
  • the cooking stage of the cooking appliance includes a heating stage and a boiling stage; the target cooking stage includes a late stage of the heating stage and/or a pre-stage of the boiling stage; the adjusting unit is specifically configured to: when determining When the current cooking stage is the later stage of the heating stage or the early stage of the boiling stage, the heating power corresponding to the later stage of the heating stage or the heating power corresponding to the previous stage of the boiling stage is adjusted to the set first power.
  • a threshold value that controls a pressure difference of the cooking appliance to be less than a closing pressure of the exhaust system.
  • the cooking stage of the cooking appliance includes a risotto stage; the target cooking stage includes the risotto stage; the adjusting unit is specifically configured to: when determining that the current cooking stage is the risotto stage, And adjusting a heating power corresponding to the risotto stage to a set second power threshold, and controlling a pressure difference of the cooking appliance to be greater than a closing pressure of the exhaust system and smaller than an opening pressure of the micro pressure system.
  • Another aspect of the present invention provides a computer storage medium having stored therein a computer program, wherein when the computer runs the computer program, the steps of the power control method of the cooking appliance as described above are implemented.
  • Figure 1 is a partial cross-sectional view of a steam valve in accordance with a first embodiment of the present invention
  • Figure 2 is a cross-sectional view of a cooking appliance including the steam valve of Figure 1;
  • Figure 3 is a plan view of a spool seal for the steam valve of Figure 1;
  • Figure 4 is a plan view of a spool for the steam valve of Figure 1;
  • Figure 5 is a cross-sectional view showing the assembly of the spool seal ring of Figure 3 and the spool of Figure 4;
  • Figure 6a is a cross-sectional view of an exemplary exhaust system for the steam valve of Figure 1;
  • Figure 6b is a cross-sectional view of another exemplary exhaust system for the steam valve of Figure 1;
  • FIG. 7 to 9 are partial cross-sectional views of a steam valve for the cooking appliance of Fig. 2, in accordance with a second embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a steam valve exhaust system in a pressureless state
  • Figure 8 is a schematic view showing the structure of a steam valve exhaust system under pressure
  • Figure 9 is a schematic view showing the structure of an exhaust system of another steam valve under no pressure
  • 10 and 12 are schematic views of an exhaust system and a steam valve for the cooking appliance of FIG. 2 in accordance with a third embodiment of the present invention
  • Figure 10 is a schematic perspective view of an exhaust system
  • Figure 11 is a partial cross-sectional view of a steam valve including the exhaust system of Figure 10;
  • Figure 12 is an enlarged view of A in Figure 11;
  • FIG. 13 and 14 are cross-sectional views of two cover assemblies for the cooking appliance of FIG. 2 in place of the steam valve of FIG. 1 in accordance with a fourth embodiment of the present invention
  • 15 is a schematic flow chart of a power control method of the cooking appliance of FIG. 2;
  • Figure 16 is a schematic structural view of a power control device of the cooking appliance of Figure 2;
  • 17 is a schematic diagram showing the hardware structure of another power control device of the cooking appliance of FIG. 2;
  • Figure 18 is a graphical illustration of the control relationship between pressure and power within the cooking appliance of Figure 2.
  • normally open in the present application means that the system is in an open state when the difference between the pressure of the steam in the cooking appliance and the pressure of the external environment does not reach the corresponding closing pressure threshold of the system; “normally closed” refers to the inside of the cooking appliance. The system is off when the difference between the pressure of the vapor pressure and the external environment does not reach the corresponding opening pressure threshold of the system.
  • System herein refers to an exhaust system, a micro pressure system, or a return system.
  • the steam valve of the cooking appliance comprises a normally open exhaust system for discharging air in the inner pot of the cooking appliance and a normally closed micro pressure system for closing the pressure in the inner pot.
  • the closing pressure threshold P1 of the exhaust system is less than the opening pressure threshold P2 of the micro pressure system.
  • a steam valve V according to a first embodiment of the present invention which is an assembled monolithic structure, will be described with reference to FIG.
  • the steam valve V includes a normally open exhaust system 1, a normally closed micro pressure system 2, and a normally open recirculation system 3 for discharging cold air in the inner pot of the cooking appliance and air containing the raw material of the cooking material.
  • the micro pressure system 2 is for closing the pressure in the inner pot of the cooking appliance, and the reflux system 3 is for returning the condensed water to the inner pot.
  • the closing pressure threshold P1 of the exhaust system 1 is smaller than the opening pressure threshold P2 of the micro pressure system 2,
  • the closing pressure threshold P3 of the return system 3 is less than or equal to the closing pressure threshold P1 of the exhaust system 1.
  • the closing pressure threshold value P3 of the recirculation system 3, the closing pressure threshold value P1 of the exhaust system 1 and the opening pressure threshold value P2 of the micro pressure system 2 are respectively: 0 ⁇ P3 ⁇ 100Pa, 100 ⁇ P1 ⁇ 600Pa, 800 ⁇ P2 ⁇ 3000 Pa.
  • P3 is based on the gravity of the recirculation system.
  • the gravity of the recirculation system needs to be made light when designing;
  • P1 is based on the gravity of the exhaust system, and can be determined according to the actual pressure parameters in the design.
  • the gravity of the gas system; P2 is derived from the gravity or force of the micro-pressure system.
  • the "force” here refers to other additional forces besides gravity, such as the elastic force of the elastic element.
  • the steam valve V further includes a valve body 5, and the bottom of the valve body 5 is provided with a first through hole 51 and a second through hole 52. As shown in FIG. 1, a cavity 53 and a valve chamber 54 communicating with the cavity 53 are formed in the valve body 5. The first through hole 51 and the second through hole 52 are vertically formed through the bottom of the cavity 53, and the second through hole 52 is distributed around the first through hole 51.
  • the exhaust system 1 includes a float 11 and a float seal 12 disposed at a lower end of the float 11, the float 11 being movable up and down in the first through hole 51, and the float seal 12 for sealing the first through hole 51.
  • the micro pressure system 2 includes a first valve seat 21, a valve body 22, and a valve core seal 23 disposed at a lower end of the valve body 22; a first valve seat 21 is formed in the valve body 5, a first through hole 51 and a second through hole 52 is located at the bottom of the first valve seat 21, the valve core 22 is located in the first valve seat 21, and the valve core sealing ring 23 abuts the second through hole 52.
  • the micro-pressure system 2 further includes a resilient member 24 for resetting the spool 22, the spool 22 including a spool body 221 and a flange 222 at the lower end of the spool body 221, the spool seal 23 being sleeved on the flange 222, resilient One end of the member 24 is coupled to the flange 222, and the other end of the elastic member 24 is coupled to the upper end of the first valve seat 21.
  • the spool body 221 is a hollow structure forming a steam passage that communicates with the first through hole 51 and the valve chamber 54, and the upper end of the float 11 is movable up and down in the steam passage.
  • the first valve seat 21 is located on one side of the cavity 53 and is at least partially integral with the cavity 53, that is, the bottom of the first valve seat 21 forms a part of the bottom of the cavity 53.
  • a valve seat boss 211 is formed at the center of the bottom of the first valve seat 21, the first through hole 51 is vertically formed through the central portion of the valve seat boss 211, and the second through hole 52 is evenly distributed on the valve seat boss 211. around.
  • the upper baffle 111 of the float 11 is placed on the upper surface of the valve seat boss 211.
  • the steam passage of the spool body 221 of the spool 22 is sleeved on the valve seat boss 211 such that the steam passage communicates with the first through hole 51, and the spool seal ring 23 is sleeved around the valve seat boss 211 at the spool 22
  • the lower end flange 222 is disposed to surround the first through hole 51 and seal the second through hole 52.
  • the spool 22 and the spool seal 23 are in clearance engagement with the valve seat boss 211, so that the spool 22 and the spool seal 23 can move up and down.
  • the elastic member 24 is a spring having one end sleeved on the outer periphery of the spool body 221 and connected to the upper surface of the flange 222, and the other end of the spring is coupled to the fixed cover 25 of the first valve seat 21.
  • the spring 24 and the fixed cover 25 together limit the movement of the spool 22 and the spool seal 23.
  • the bottom of the valve body 5 is further provided with a first mounting hole 55 and a third through hole 56.
  • the reflow system 3 includes a reflow body 31, a guide portion 32 disposed at an upper end of the reflow body 31, and a sealing portion 33 disposed at a lower end of the reflow body 31, the reflow body 31 being movable up and down in the first mounting hole 55, and the sealing portion 33 for sealing The third through hole 56.
  • the recirculation system 3 is disposed beside the first valve seat 21.
  • the third through holes 56 are distributed around the first mounting holes 55.
  • the shape of the guiding portion 32 is similar to the circular vertebral body, and the diameter of the bottom surface circle of the cone is slightly larger than the diameter of the first mounting hole 55, so that the reflow system 3 can be installed into the first mounting hole 55 through the guiding portion 32 from the bottom to the top,
  • the bottom surface of the cone of the guide portion 32 is placed on the inner surface of the bottom portion of the cavity 53 of the valve body 5, thereby supporting the recirculation system 3 in a normally open state.
  • the steam valve V of the first embodiment described above assembles the exhaust system 1, the micro pressure system 2 and the return system 3 on the valve body 5 to form a one-piece steam valve, which facilitates the independent manufacture of the steam valve and then is integrally assembled to the cooking appliance.
  • the mounting hole of the upper cover 4 improves assembly efficiency and facilitates overall replacement during maintenance.
  • FIG. 2 shows an embodiment of the cooking appliance of the present invention, where the cooking appliance is exemplified by a micro-piezo cooker comprising the steam valve V of the first embodiment described above, the upper cover 4 having the exhaust outlet 41, and the mounting. Go to the movable panel assembly 6 of the upper cover 4.
  • the exhaust system 1 and the micro pressure system 2 communicate with the external environment through a valve chamber 54 and an exhaust outlet 41 that communicates with the valve chamber 54.
  • the micro-piezo cooker further includes a cartridge 100, a power board 200, a control board 300, an inner pot 400, a temperature measuring element 500, and a heat generating element 600.
  • the inner pot 400 is placed in the cavity in the body 100, and the upper cover 4 and the movable plate assembly 6 are fastened on the body 100.
  • the power board 200, the temperature measuring component 500 and the heating element 600 are all located in the body 100.
  • the control board 300 is disposed in the upper cover 4.
  • the electric heating element 600 is used to heat the rice or the foodstuff in the inner pot 400.
  • the temperature measuring element 500 measures the temperature of the rice or the foodstuff and feeds back the measurement result to the control board 300 for program control. Since the body 100, the power board 200, the control board 300, the inner pot 400, the temperature measuring element 500, and the heating element 600 are common elements, they are not described herein again.
  • FIG. 3 and 4 show the spool seal 23 and the spool 22 of the steam valve V, respectively, and FIG. 5 shows a detailed sectional view of the spool seal 23 and the spool 22.
  • the axial direction refers to the direction from top to bottom or bottom to top in Fig. 5, radial Refers to the direction from left to right or right to left in Figure 5.
  • the spool seal ring 23 includes an annular seal ring body 231 and a lip disposed at a lower end surface of the seal ring body 231, the lip forming a closed annular seal region R and being realized in the bottom portion of the first valve seat 21 The line of the surface is in contact with the seal.
  • the lip includes an outer lip 232 that protrudes downward from the entire outer circumference of the seal ring main body 231 and an inner lip 233 that protrudes downward from the entire inner circumference of the seal ring main body 231, and the outer lip 232 and the inner lip 233 are both
  • the inner bore 234 of the seal ring projects downwardly in a full circle (the above-mentioned valve seat boss 211 passes through the inner bore 234 of the seal to support the up and down movement of the spool seal 23).
  • the outer lip 232 and the inner lip 233 project vertically downward at the same height, and the outer lip 232 and the inner lip 233 have the same cross-sectional shape, and their cross sections are similar to the bullet shape.
  • the outer circumference of the outer lip 232 is aligned with the outer circumference of the seal ring main body 231, and the inner circumference of the inner lip 233 is aligned with the inner circumference of the seal ring main body 231 (i.e., the inner ring hole 234 of the seal ring). Therefore, the annular seal region R is formed between the seal ring main body 231, the outer lip 232, and the inner lip 233. Since the inner lip 233 is aligned with the inner circumference of the seal main body 231, the length of the inner hole 234 of the seal ring is extended. When the spool seal 23 is attached to the spool 22 of the steam valve V, the length of the bore 223 is increased correspondingly, so that the inner lip 233 serves as a guide.
  • the spool seal ring 23 further includes a first boss 235 that protrudes upward from the entire outer circumference of the seal ring main body 231 at the upper end surface of the seal ring main body 231.
  • the first boss 235 is also annular. The outer circumference of the first boss 235 is aligned with the outer circumference of the seal ring main body 231.
  • the second bosses 236 are spaced apart from each other on the first boss 235.
  • Each of the second bosses 236 has a cross-sectional shape in a meander shape, and a horizontal portion thereof protrudes toward the center of the seal ring main body 231, and a lower end surface of the horizontal portion is disposed.
  • the receiving chamber 2361 is for mounting the spool seal 23 to the spool 22.
  • accommodating chamber 2361 is a through hole penetrating the upper end surface of the horizontal portion of the second boss 236 to better mount the spool seal ring 23 to the spool 22.
  • the upper end surface of the first boss 235 is chamfered to form a first inclined portion 2351 which is inclined downward from the center of the seal ring main body 231. It may be chamfered at any angle with respect to the upper end surface at any position of the upper end surface of the first boss 235 as long as the condensed water on the first boss 235 can be dropped.
  • the first inclined portion 2351 and the upper end surface and the outer circumference of the first boss 235 may transition in a circular arc.
  • each of the second bosses 236 is chamfered to form a second inclined portion 2362 which is inclined downward from the center of the seal ring main body 231. It may be chamfered at any angle with respect to the upper end surface at any position of the upper end surface of the second boss 236 as long as the condensed water on the second boss 236 can be dropped.
  • the second inclined portion 2362 and the upper end surface and the outer circumference of the second boss 236 may transition in a circular arc.
  • valve core seal 23 shown in FIG. 5 is first cut from the center of one second boss 236 in FIG. 3 toward the center of the seal ring main body 231, and then from the seal ring main body 231.
  • the center is obtained by cutting at any position between the other two second bosses 236 in FIG.
  • the spool 22 has an inverted T-shaped cross section, and includes a cylindrical valve body 221 and an annular flange 222 projecting outward from a lower end portion of the spool body 221.
  • the valve core seal ring 23 is sleeved on the outer circumference of the flange 222, the inner circumferential surface of the first boss 235 is fitted to the outer circumferential surface of the flange 222, and the lower end surface of the flange 222 is in contact with the upper end surface of the seal ring main body 231.
  • the spool inner bore 223 and the seal inner bore 234 have the same diameter (the above-mentioned valve seat boss 211 also extends into the spool inner bore 223 to support the up and down movement of the spool 22), and when the spool seal 23 When sleeved on the outer circumference of the flange 222, the spool inner bore 223 and the seal inner bore 234 are aligned with each other.
  • the outer diameter of the flange 222 may be slightly larger than the inner diameter of the first boss 235 such that the inner circumferential surface of the first boss 235 is in an interference fit with the outer circumferential surface of the flange 222, so that the valve core 22 is more firmly placed on the sealing ring.
  • a plurality of third bosses 224 are disposed at intervals on the outer circumference of the flange 222.
  • the plurality of third bosses 224 are respectively spaced apart from the plurality of second bosses 236, and each of the third bosses 224 is correspondingly disposed.
  • Each of the third bosses 224 protrudes vertically upward and has a height that is the same as the depth of the accommodating chamber 2361, such that when each of the third bosses 224 is correspondingly placed in each of the accommodating cavities 2361, the upper end surface of the flange 222 The lower end surface of the second boss 236 is contacted to prevent condensed water from accumulating between the upper end surface of the flange 222 and the lower end surface of the second boss 236.
  • the width of each of the third bosses 224 may be slightly larger than the width of the receiving cavity 2361 such that the third boss 224 is interference fit with the receiving cavity 2361 such that the spool 22 is more securely placed on the sealing ring body 231.
  • each of the third bosses 224 is formed corresponding to each of the through holes 2361 and placed in each of the through holes 2361, The upper end surface of each of the third bosses 224 is aligned with the upper end surface of the second boss 236 through the through hole 2361, and the upper end surface of the flange 222 is in contact with the lower end surface of the second boss 236.
  • the upper end surface of the flange 222 is chamfered to form a third inclined portion 225 which is inclined outwardly downward from the center of the spool 22. It may be chamfered at any angle with respect to the upper end surface at any position of the upper end surface of the flange 222 as long as the condensed water on the flange 222 can fall.
  • each of the third bosses 224 is chamfered to form a fourth inclined portion 226 which is inclined outwardly downward from the center of the spool 22. It may be chamfered at any angle with respect to the upper end surface at any position of the upper end surface of the third boss 224 as long as the condensed water on the third boss 224 can be dropped.
  • the first inclined portion 2351 is adjacent to the third inclined portion 225
  • the second inclined portion 2362 is adjacent to the fourth inclined portion 226.
  • the chamfering angle of the third inclined portion 225 causes the condensed water to fall from the third inclined portion 225 through the first inclined portion 2351 without remaining between the flange 222 and the first boss 235.
  • the bevel angle of the fourth inclined portion 226 causes the condensed water to fall from the fourth inclined portion 226 through the second inclined portion 2362 without being retained between the third boss 224 and the second boss 236. It should be noted that this is the case where the accommodating cavity 2361 is a through hole. If the accommodating chamber 2361 is not a through hole, the condensed water falls directly from the second inclined portion 2362.
  • the cross section of the spool 22 shown in FIG. 5 is first cut from the center of a third boss 224 in FIG. 4 toward the center of the spool 22, and then from the center of the spool 22 toward FIG. The position between the other two third bosses 224 in the middle is cut.
  • the exhaust system 1 includes a float 11 and a float seal 12 disposed at a lower end of the float 11, and a first exhaust hole 511 is formed between the float 11 and the hole wall of the first through hole 51, and the float 11 is in the first through hole 51.
  • the up and down motion is used to close or open the first venting opening 511.
  • the float 11 is provided with a float inner chamber 110, an air inlet hole 113 for allowing gas in the cooking appliance to enter the float inner chamber 110, and an air outlet hole 112 for allowing gas in the float inner chamber 110 to enter the above-mentioned steam passage.
  • the intake hole 113 communicates with the inner pot 400.
  • the upper baffle 111 of the float 11 is clamped on the valve seat boss 211 by forming a stepped surface, and the float 11 drives the float seal ring 12 to move up and down, so that the float seal ring 12 abuts against the bottom outer surface of the first valve seat 21
  • the first exhaust hole 511 is closed.
  • the air inlet hole 113 is opened at the lower end of the inner cavity wall of the float 11 to facilitate the entry of gas in the cooking appliance into the float cavity 110.
  • the air outlet 112 is opened at the upper end of the inner wall of the float 11 to facilitate the entry of gas in the inner cavity 110 into the steam passage mentioned above.
  • FIG. 6b Another exemplary exhaust system 1 of the steam valve V is shown in detail in Figure 6b.
  • the air outlet 112 can also be opened in the upper baffle 111 of the float 11.
  • the outer diameter of the lower end portion of the float 11 is smaller than the diameter of the first through hole 51, so that the lower end of the float 11 passes through the first through hole 51 at the time of installation, and the float seal ring 12 is disposed at the lower end portion of the float 11;
  • the outer diameter of the upper baffle 111 of the float 11 and the outer diameter of the float seal ring 12 are both larger than the diameter of the first through hole 51, so that the float 11 does not disengage from the first through hole 51 during the up and down movement, and
  • the lower end portion of the float 11 is further provided with an annular groove 114, and the float sealing ring 12 is held by the annular groove 114 to the float 11 The lower end.
  • the float seal ring 12 may be made of a material such as rubber or plastic; when the lower end portion of the float 11 abuts against the bottom outer surface of the first valve seat 21, when the float seal ring 12 abuts against the bottom outer surface of the first valve seat 21 With a better sealing effect. Furthermore, the float seal 12 can also be a lip seal with an annular lip, the annular lip of the lip seal facing the first through opening 51.
  • FIGS. 7 to 9 are steam valves according to a second embodiment of the present invention.
  • FIGS. 7 to 9 are steam valves according to a second embodiment of the present invention.
  • FIGS. 7 to 9 are steam valves according to a second embodiment of the present invention.
  • the spool 22 of Figure 1 is constructed of or replaced by a weight block 22' so that no resilient member 24 is present.
  • the first valve seat 21 further includes a guide seat 7 forming a first through hole 51, the guide seat 7 being located in the inner cavity of the first valve seat 21, and the spool seal ring 23' being located at the lower end of the gravity block 22'.
  • the gravity block 22' is mounted on the outer wall of the guide seat 7 and moves up and down along the outer wall of the guide seat 7, or the guide seat 7 passes through the inner hole of the gravity block 22' and the spool seal ring 23' to support the gravity block 22 'And the up and down movement of the spool seal 23'.
  • the steam valve further includes a fixed cover 25', the fixed cover 25' is mounted on the upper end of the first valve seat 21, and the second exhaust hole 251 is disposed on the fixed cover 25', and the second exhaust hole 251 connects the valve cavity 54 and the first The inner cavity of a valve seat 21 is in communication.
  • FIG. 7 shows a state different from Fig. 8 in that the first through hole 51 is fully opened while the second through hole 52 is completely closed.
  • the structure and connection relationship of the spool 22 and the spool seal 23 of the steam valve V can be applied to the structure and connection relationship of the gravity block 22' and the spool seal ring 23', and will not be described herein.
  • the cross-sectional area, ⁇ P is the difference in pressure between the inner pot of the cooking appliance and the inner cavity of the first valve seat 21. The pressure difference ranges from 0.1 KPa to 4 KPa, preferably from 0.5 KPa to 2 KPa.
  • the gravity G of the block 22' is 2N, and the weight of the gravity block 22' can be obtained by conversion to be about 0.2 kg.
  • the steam valve may omit the first valve seat 21 and the fixed cover 25' in Figs. 7 and 8.
  • the guide seat 7 of the steam valve is directly fixed to the partition wall 50' between the valve chamber 54 and the cavity 53, and the other structure is the same as the steam valve in Figs. 7 and 8, no longer here. Narration.
  • FIGS. 10 to 12 show an exhaust system and a steam valve according to a third embodiment of the present invention.
  • FIGS. 10 to 12 show an exhaust system and a steam valve according to a third embodiment of the present invention.
  • FIGS. 10 to 12 show only some of the components and components different from the steam valve V according to the first embodiment of the present invention.
  • the exhaust system 8 includes an expansion body 81, a bottom plate 82 connected to one end of the expansion body 81, and a top plate 83 connected to the other end of the expansion body 81, in which a bottom air passage 821 is formed, and a top portion is formed in the top plate 83. Air passage 831.
  • the expansion body 81 is formed as a cylinder, the bottom plate 82 is formed as a circular plate, and the top plate 83 is formed as a frustoconical plate. Further, one end of the expansion body 81 is connected to a central portion of the bottom plate 82, and the other end of the expansion body 81 is connected to a central portion of the top plate 83. Both the bottom air passage 821 and the top air passage 831 are formed around the expansion body 81.
  • the expansion body 81 includes an elastically deformable outer casing 811 and an inner space surrounded by the outer casing 811, which is filled with a thermal expansion material 812. 11 and 12 show the expansion body 81 in an undeformed original state, at which time the first venting opening 511 is opened to discharge the cold air inside the cooking appliance.
  • the outer casing 811 is made of silicone, and the thermal expansion material 812 fills the inner space.
  • the thermal expansion material 812 may be a thermal bimetal in which one element layer has a low coefficient of thermal expansion and is a passive layer; the other element layer has a high coefficient of thermal expansion and is an active layer.
  • the passive layer is made of an Invar type alloy containing 34 to 50% of Ni; the active layer is made of brass, nickel, Fe-Ni-Cr, Fe-Ni-Mn, and Mn-Ni-Cu alloy.
  • the volume of the thermally expandable material 812 is increased, thereby causing the outer casing 811 to expand outwardly to close the first exhaust hole 511.
  • the bottom plate 82, the top plate 83, and the outer casing 811 may be integrally formed to facilitate the manufacture of the exhaust system 8.
  • a bottom air passage 821 is formed in the upper surface of the bottom plate 82, and the top plate 83 includes a plurality of spaced apart positioning bosses 832, and a top air passage 831 as described above is formed between the adjacent positioning bosses 832.
  • the bottom air passage 821 is recessed from the upper surface of the bottom plate 82 to a certain depth in the bottom plate 82, and includes a plurality of air passages that form a radial shape around the outer casing 811, for example, four air passages that form a cross shape around the outer casing 811.
  • Each air passage of the bottom air passage 821 is opened from the outer casing 811 to the outer circumferential surface of the bottom plate 82.
  • the 10 shows four pairs of positioning bosses 832 and top air passages 831.
  • the four positioning bosses 832 and the four top air passages 831 each form a cross shape around the outer casing 811, and each of the top air passages 831 is from the top plate 83.
  • the lower surface is open to the upper surface of the top plate 83 and aligned or staggered with the corresponding cross-shaped air passages of the bottom air passage 821.
  • the upper surface of the top plate 83 is formed with a guiding structure, as shown in FIG. 10, which is specifically a guiding circular table 833 or a guiding cone formed at the center of the upper surface of the top plate 83, and each positioning boss 832 is formed with a guide.
  • a slope 834 is provided to facilitate the installation of the exhaust system 8 in the first through hole 51.
  • the top plate 83 may also be designed as a circular plate having a guiding structure on the upper surface and a radial top air passage 831 on the lower surface.
  • the exhaust system 8 as described above is used for a steam valve.
  • the exhaust system 8 passes through the first through hole 51 through a guiding structure such as a circular table 833 or a guiding cone, so that the expansion body 81 is placed in the first through hole 51 and is in clearance fit with the first through hole 51 (similar to the presence of FIG. 1 a vent hole 511), an upper surface of the bottom plate 82 is in contact with a lower end surface of the first through hole 51, a lower surface of the top plate 83 is in contact with an upper end surface of the first through hole 51, and a bottom air passage 821 passes through the gap
  • the top air passages 831 are in communication, and the clearance range of the gaps is 0.25 to 0.8 mm.
  • the upper layer of cold air in the crucible passes between the bottom air passage 821, the first through hole 51 and the expansion body 81 under the action of the pressure difference between the air pressure in the crucible and the air pressure in the external environment.
  • the gap, the top air passage 831, is discharged outside the chamber.
  • the micro-piezo cooker enters the heating phase and the boiling phase.
  • the temperature inside the crucible rises rapidly from 60 ° C, causing the exhaust system 8 to be heated. Therefore, the volume of the thermally expandable material 812 increases as the temperature rises, causing the outer casing 811 to expand outwardly, abutting against the first through hole 51 to seal the first through hole 51, thereby preventing gas leakage. Then, the air pressure in the crucible continues to rise.
  • the micro-piezo rice cooker enters the glutinous rice stage and completes the heat preservation after cooking.
  • the pressure inside the crucible gradually decreases.
  • the spring force of the spring 24 causes the spool seal 23 and the spool 22 to move downward to seal the second through hole 52.
  • the exhaust system 8 is still heated. Therefore, the thermally expandable material 812 still elastically deforms the outer casing 811 to abut the first through hole 51 to seal the first through hole 51, thereby preventing gas leakage. This maintains the pressure in the crucible (ie, the exhaust system 8 acts as a micro-pressure control) and prevents moisture loss in the crucible.
  • FIGS. 13 and 14 respectively show two cover plate assemblies V' and V" for the cooking appliance of Figure 2 in place of the steam valve of Figure 1 in accordance with a fourth embodiment of the present invention.
  • FIGS. 13 and 14 only members different from the steam valve V according to the first embodiment of the present invention are indicated in FIGS. 13 and 14, and only these different members will be described below.
  • the cover plate assembly V' includes a movable plate assembly 6' and an exhaust system 1', a micro pressure system 2', and a reflow system 3' which are respectively disposed on the movable plate assembly 6'.
  • the cover plate assembly V' does not include the valve body, but the exhaust system 1', the micro pressure system 2' and the recirculation system 3' are dispersedly mounted in the movable plate assembly 6' such that The installation space can be fully utilized and the layout of components in the upper cover 4 can be optimized.
  • the cover plate assembly V' includes a movable plate assembly 6' and a normally open exhaust system 1' respectively disposed on the movable plate assembly 6', a normally closed micro pressure system 2' and a normally open return system 3'; a movable plate
  • the assembly 6' includes a bottom cover 61', and the bottom cover 61' is provided with a second mounting hole 611'.
  • the micro pressure system 2' includes a second valve seat 21', a valve core 202', and a valve core sealing ring 203' disposed at a lower end of the valve body 202'.
  • the valve core 202' includes a valve body 221' and a valve body 221'
  • the lower end flange 222', the spool seal ring 203' is sleeved on the flange 222', and the spool body 221' is a hollow structure forming a steam passage.
  • the bottom of the second valve seat 21' is provided with a fourth through hole 51' and a fifth through hole 52', the second valve seat 21' is mounted on the second mounting hole 611', and the valve core 202' is located at the second valve seat 21 'Inside, the spool seal ring 203' abuts the fifth through hole 52'.
  • the exhaust system 1' includes a float 11' and a float seal 12' disposed at a lower end of the float 11', the float 11' can be moved up and down in the fourth through hole 51', and the float seal 12' is used to seal the fourth through hole 51'.
  • the micro-pressure system 2' further includes an elastic member 24' that resets the valve body 202', one end of which is coupled to the flange 222', and the other end of the elastic member 24' is coupled to the upper end of the second valve seat 21'.
  • the elastic member 24' is a spring, one end of the spring is sleeved on the outer circumference of the valve body 221' and connected to the upper surface of the flange 222', and the other end of the spring is connected to the second valve seat 21'.
  • the cover 205' is fixed. The spring 24' and the fixed cover 205' together limit the movement of the spool 202' and the spool seal 203'.
  • the bottom cover 61' is further provided with a third mounting hole 55' and a sixth through hole 56'.
  • the reflow system 3' includes a reflow body 31', a guide portion 32' placed at the upper end of the reflow body 31', and a reflow body 31.
  • the lower end sealing portion 33', the return body 31' is movable up and down in the third mounting hole 55', and the sealing portion 33' is for sealing the sixth through hole 56'.
  • the cover plate assembly V" includes a movable plate assembly 6" and an exhaust system 1", a micro pressure system 2", and a reflow system 3" which are separately disposed on the movable plate assembly 6".
  • the exhaust system 1", the micro-pressure system 2" and the recirculation system 3" of the cover plate assembly V" are separately disposed in the movable plate assembly 6", and are also flexible Use the installation space to optimize the layout of the components in the upper cover 4.
  • the cover plate assembly V" includes a movable plate assembly 6" and a normally open exhaust system 1", a normally closed micro pressure system 2" and a normally open recirculation system 3", respectively, which are independently disposed on the movable plate assembly 6";
  • the board assembly 6" includes a bottom cover 61" on which a fourth mounting hole 611" and a seventh through hole 51" are provided.
  • the exhaust system 1" includes a float 11" and is disposed at a lower end of the float 11" The float seal 12", the float 11” can move up and down in the seventh through hole 51", and the float seal 12" is used to seal the seventh through hole 51".
  • the micro pressure system 2" includes the third valve seat 21", the valve The core 202" and a spool seal 203" disposed at the lower end of the spool 202".
  • the valve core 202" is located in the third valve seat 21"
  • the third valve seat 21" is provided with an eighth through hole 52" at the bottom
  • the third valve seat 21" is mounted on the fourth mounting hole 611
  • the valve core sealing ring 203 "Abuts the eighth through hole 52".
  • the micro-pressure system 2" also includes a resilient member 24" that resets the spool 202
  • the spool 202" includes a spool body 221" and a flange 222" at the lower end of the spool body 221”
  • the spool seal 203" sleeve Provided on the flange 222"
  • one end of the elastic member 24" is coupled to the flange 222
  • the other end of the elastic member 24" is coupled to the upper end of the third valve seat 21".
  • the elastic member 24" is a spring, which is One end of the spring is sleeved on the outer circumference of the spool body 221" and is connected to the flange 222", and the other end of the spring is connected to the fixing cover 205" of the second valve seat 21".
  • the spring 24" and the fixed cover 205" together limit the movement of the spool 202" and the spool seal 203".
  • the bottom cover 6" is further provided with a fifth mounting hole 55" and a ninth through hole 56", and the reflow system 3" includes a reflow body 31", a guide portion 32" placed at the upper end of the reflow body 31", and a reflow body 31.
  • the lower end sealing portion 33", the return body 31" can be moved up and down in the fifth mounting hole 55", and the sealing portion 33" is used to seal the ninth through hole 56".
  • cover assemblies V' and V" shown in FIGS. 7 to 9 can be used for the micro-piezo cooker shown in FIG. 2 instead of the steam valve V of FIG. 13 and the cover plate assemblies V' and V" shown in Fig. 14 can be used for the micro-piezo cooker shown in Fig. 2 instead of the steam valve V of Fig. 1.
  • the opening pressure threshold value P2 of (2', 2") ranges from 0 ⁇ P3 ⁇ 100Pa, 100 ⁇ P1 ⁇ 600Pa, and 800 ⁇ P2 ⁇ 3000Pa.
  • the pressure design and the value range of P1, P2, and P3 refer to P1, P2, and P3 corresponding to the steam valve V of the first embodiment.
  • the power control method of the cooking appliance is described below with reference to FIGS. 15 to 18 with the micro-piezo cooker including the steam valve V of FIG. 2; the power control method is also applicable to the cover plate assembly V' or includes a cover plate. Cooking appliance for component V".
  • the cooking appliance includes a normally open exhaust system and a normally closed micro pressure system, the closing pressure of the exhaust system being less than an opening pressure of the micro pressure system; the power control method comprising the following steps:
  • Step 101 Determine a current cooking stage of the cooking appliance
  • the cooking appliance obtains the top temperature and the bottom temperature of the inner pot 400 of the current cooking appliance; determining the current cooking stage of the cooking appliance according to the correspondence between the set inner temperature difference range of the cooking appliance and each cooking stage;
  • the pot temperature difference ranges from the temperature difference between the bottom and the top of the inner pot 400.
  • the cooking appliance performs a corresponding cooking operation according to the cooking function selected by the user on the control panel 300.
  • the cooking appliance may include a plurality of sequentially arranged cooking stages during the cooking process, such as shown in FIG. a water absorption stage, a heating stage, a boiling stage, a risotto stage, a heat preservation stage, etc.; at different cooking stages, there is a difference in temperature at the top and/or bottom of the inner pot 400 of the cooking appliance; for example, the inner pot 400 of the cooking appliance is boiling
  • the top temperature of the stage will be greater than the top temperature of the heating stage, the bottom temperature of the inner pot 400 of the cooking appliance will also be greater than the bottom temperature of the heating stage, and the temperature of the top of the inner pot 400 of the cooking appliance will be less than the top of the boiling stage.
  • the bottom temperature of the inner pot 400 The bottom temperature of the inner pot 400.
  • the heating power of the cooking appliance is different at different cooking stages.
  • the heating power of the cooking appliance in the heating phase is greater than the heating power of the risotto phase. Therefore, the correspondence between the inner pot temperature difference range of the cooking appliance and each cooking stage can be preset to determine the current cooking stage of the cooking appliance according to the top temperature and the bottom temperature of the inner pot 400 of the current cooking appliance. For example, suppose that the inner pot 400 of the cooking appliance has a top temperature range of 50 ° C to 90 ° C in the heating stage, and the bottom temperature range is 60 ° C to 130 ° C, that is, the inner pot temperature difference of the cooking appliance in the heating stage is 10 ° C. ⁇ 40 ° C. If it is detected that the inner pot temperature difference of the current cooking appliance is 30 ° C, it can be determined that the current cooking stage of the cooking appliance is the heating phase.
  • determining the current cooking stage of the cooking appliance according to the corresponding relationship between the range of the inner pot temperature difference of the cooking appliance and each cooking stage may further include: combining the current heating power of the cooking appliance, or the current cooking appliance The current cooking stage of the cooking appliance is determined by factors such as the top or bottom temperature of the inner pot 400, or the name of the previous cooking stage and the heating power.
  • the distribution of the inner pot temperature difference of the cooking appliance is approximately normal distribution, that is, the same inner pot temperature difference may exist in different cooking stages; therefore, in addition to the inner pot temperature difference according to the current cooking appliance, It is also desirable to determine the current cooking stage of the cooking appliance in conjunction with factors such as the current heating power of the cooking appliance, or the top or bottom temperature of the inner pot 400 of the current cooking appliance, or the name and heating power of the previous cooking stage.
  • the temperature difference of the inner pot of the cooking appliance ranges from 10 ° C to 40 ° C during the heating phase, and the temperature difference of the inner pot of the cooking appliance ranges from 30 ° C to 60 ° C during the risotto phase
  • the current cooking stage is the water absorption stage.
  • the current cooking stage can be determined. It is a heating stage; if the top temperature of the inner pot 400 of the cooking appliance is also set at the time of the risotto stage, the temperature ranges from 60 ° C to 95 ° C. If the previous cooking stage is the boiling stage, the current cooking stage is determined to be risotto. stage.
  • the cooking phase can also be divided into pre- and post-stages based on the top and/or bottom temperature range of the inner pot 400 at each cooking stage.
  • a temperature threshold may be selected from the top temperature range, and a phase greater than the temperature threshold may be divided into a later stage and less than or equal to The stage of the temperature threshold is divided into the previous period. For example, when the top temperature of the inner pot 400 is greater than the corresponding temperature threshold in the heating stage, the current stage is the late stage of the heating stage; and when the top temperature of the inner pot 400 is less than or equal to the corresponding temperature threshold in the heating stage, Indicates that the current phase is the early stage of the heating phase.
  • the top temperature of the inner pot 400 of the cooking appliance can be obtained by, for example, a temperature sensor disposed on the upper cover 4 to obtain the top temperature of the inner pot 400 in real time.
  • the top temperature of the inner pot 400 can also be considered as the steam temperature in the inner pot 400. In the present embodiment, the same temperature is obtained from different positions on the top of the inner pot 400.
  • the bottom temperature of the inner pot 400 of the cooking appliance can be measured by directly contacting the temperature measuring element 500 to the bottom of the inner pot 400.
  • the standard cooking curve specifies cooking parameters such as heating power and heating time required for each cooking stage, which can be obtained based on the standard cooking curve.
  • the amount of water in the inner pot 400 of the cooking appliance and the target cooking curve corresponding to the amount of rice, and the current cooking stage of the cooking appliance is determined according to the target cooking curve. For example, suppose the standard cooking curve is set on the basis of cooking one liter of rice, and for each additional liter of rice added to the reference meter, the target cooking curve will be extended for the heating phase compared to the standard cooking curve.
  • the maintenance time of the minute and boiling phases will be extended by 2 minutes; if the amount of rice in the inner pot 400 of the current cooking appliance is three liters, the target cooking curve will be extended by 6 minutes and the boiling phase with respect to the standard cooking curve. The maintenance time will be extended by 4 minutes.
  • the above standard cooking curve includes five cooking stages, such as a water absorption stage, a heating stage, a boiling stage, a risotto stage, and a heat preservation stage, and the heating stage is from the second minute to the eighth minute from the start of cooking, and the boiling stage From the 9th minute to the 20th minute from the start of cooking, the 21st minute to the 28th minute from the start of cooking, and the 29th minute to the 35th minute from the start of cooking;
  • the amount of rice in the pot 400 is three liters
  • the heating stage in the target cooking curve is from the second minute to the 14th minute from the start of cooking
  • the boiling stage is from the 15th minute to the 30th minute from the start of cooking
  • the risotto stage From the 31st minute to the 38th minute from the start of cooking
  • the heat preservation phase is from the 39th minute to the 45th minute from the start of cooking; at this time, if the cooking time starts from the start of the cooking to the 17th minute,
  • the current cooking phase of the appliance is in the boiling phase.
  • the amount of water and the amount of rice in the inner pot 400 can be calculated based on parameters such as the total height of rice and water in the inner pot 400 of the cooking appliance and the temperature rise rate of the rice and water.
  • X represents the volume of rice
  • Y represents the volume of water
  • p 1 and p 2 represent the density of rice and the density of water, respectively
  • c 1 and c 2 represent the specific heat capacity of rice and the specific heat capacity of water, respectively
  • Quantity ⁇ t represents time, ⁇ T/ ⁇ t represents temperature rise rate
  • H represents the total height of rice and water
  • d represents the inner diameter of the inner pot 400
  • C represents the endothermic constant of the rice cooker itself
  • Q represents the heat of the rice cooker per unit time.
  • the total height of the rice and water can refer to the total height of the rice and water before the heating phase or during the heating phase, which can be measured by a distance sensor.
  • the cooking phase can also be divided into pre- and post-production based on the length of time each cooking phase is maintained.
  • the division can be performed according to the intermediate time point of the maintenance time of the cooking stage.
  • the phase corresponding to the first half of the boiling phase is referred to as the early phase of the boiling phase
  • the phase corresponding to the latter half of the boiling phase is referred to as the later phase of the boiling phase; for example, the above from the start of cooking to the current time For the 17th minute, it is the early stage of the boiling phase.
  • Step 102 When the current cooking stage is the target cooking stage, the heating power corresponding to the current cooking stage is adjusted based on the closing pressure of the exhaust system 1 and the power set by the opening pressure of the micro pressure system 2.
  • the heating power corresponding to the current cooking stage is adjusted based on the closing pressure of the exhaust system 1 and the power set by the opening pressure of the micro pressure system 2
  • the pressure difference of the cooking appliance can meet the setting requirement under the target cooking stage, that is, the exhaust system 1 and the micro pressure system 2 are controlled to operate in the set open or closed state.
  • whether the current cooking stage is the target cooking stage may be determined according to the top temperature and/or the bottom temperature of the inner pot 400 of the current cooking appliance; the heating power corresponding to the current cooking stage, or the name of the previous cooking stage may be further combined. Factors such as heating power are determined.
  • the top temperature of the inner pot 400 of the cooking appliance has been set at the heating stage is 70 ° C to 90 ° C, and when the top temperature of the inner pot 400 is greater than 80 ° C, it is the late stage of the heating stage, if the current cooking is detected
  • the top temperature of the inner pot 400 of the electric appliance is 75 ° C, then it can be determined that the current cooking stage is the heating stage and belongs to the early stage of the heating stage; if the top temperature of the inner pot 400 of the current cooking appliance is detected to be 82 ° C, the current cooking can be determined
  • the stage is the later stage of the heating stage.
  • top temperature of the inner pot 400 of the cooking appliance is set to 60 ° C to 95 ° C at the time of the risotto stage, when the top temperature of the inner pot 400 of the current cooking appliance is detected to be 75 ° C, if the previous cooking The stage is the boiling phase, and it can be determined that the current cooking stage is the risotto stage.
  • the float 11 and the float seal 12 of the exhaust system 1 are not jacked up to open the first exhaust hole 511, the micro-pressure system 2
  • the spool 22 and the spool seal 23 are not jacked up to close the second through hole 52; when the pressure difference of the cooking appliance is greater than the closing pressure of the exhaust system 1 and less than the opening pressure of the micro pressure system 2, the float 11 and the float
  • the sealing ring 12 is jacked up to close the first exhaust hole 511, and the valve core 22 and the spool sealing ring 23 are not jacked up to close the second through hole 52; when the pressure difference of the cooking appliance is greater than the opening pressure of the micro pressure system 2
  • the float 11 and the float seal 12 continue to be lifted up to close the first exhaust hole 511, and the spool 22 and the spool seal 23 are lifted up to open the second through hole 52.
  • the exhaust system 1 and the micro-pressure system 2 can be operated in the set open or closed state.
  • the pressure difference of the cooking appliance is the pressure difference between the gas inside the cooking appliance and the outside atmosphere.
  • the target cooking stage includes a late stage of the heating stage and/or a pre-stage of the boiling stage
  • the current cooking stage is the target cooking stage, based on the closing pressure and the micro pressure system of the exhaust system 1
  • the power of the opening pressure setting of 2 adjusts the heating power corresponding to the current cooking stage, including:
  • the heating power corresponding to the previous stage of the boiling stage is adjusted to the set first power threshold, and the pressure difference of the cooking appliance is controlled to be smaller than the closing pressure of the exhaust system 1.
  • Adjusting to the set first power threshold may be understood as increasing to a set first power threshold or increasing a set first power threshold; the first power threshold may be based on a duration of a heating phase or a boiling phase, or The heating power corresponding to the heating stage or the boiling stage, or the pressure difference of the cooking appliance, or the amount of rice in the inner pot 400 of the cooking appliance may be set, or may be a set fixed value; the heating power corresponding to the heating stage may be It is understood as the heating power of the cooking appliance during the heating phase.
  • the heating power corresponding to the boiling phase can be understood as the heating power of the cooking appliance during the boiling phase; in general, the heating power of the cooking appliance in different cooking stages is based on its own built-in standard cooking curve.
  • the standard cooking curve contains the heating power of the cooking appliance at different cooking stages. Therefore, in order to bring the cooking appliance to a specific cooking stage, it is necessary to heat the cooking appliance with the power corresponding to the specific cooking stage during the maintenance time of the specific cooking stage, that is, pre-establishing each cooking stage and heating.
  • the correspondence between the powers is stored in a standard cooking curve, and the cooking appliance is heated and controlled according to the standard cooking curve during cooking.
  • the specific principle may be: assuming a standard The heating power corresponding to each cooking stage in the cooking curve is set based on cooking one liter of rice, and the target cooking curve is compared with the standard cooking curve for each additional liter of meter on the reference meter amount, and the heating stage is The corresponding heating power in the later stage will increase the first set value and/or the heating power corresponding to the previous stage of the boiling phase will increase the first set value; if the amount of rice in the inner pot 400 of the current cooking appliance is three liters, then It is necessary to increase the heating power corresponding to the later stage of the heating stage by a factor of two from the first set value and/or to increase the heating power corresponding to the previous stage of the boiling stage by a factor of two, based on the standard cooking curve, The first set value is twice the first power threshold.
  • constant power heating is also applied to each cooking stage (also shown in FIG. 18 for convenient comparison), for example, constant power heating is applied to the heating stage,
  • constant power heating is applied to the heating stage
  • the target cooking stage includes the risotto stage
  • the current cooking stage is set based on the closing pressure of the exhaust system 1 and the opening pressure of the micro pressure system 2
  • the heating power corresponding to the cooking stage including:
  • the heating power corresponding to the risotto stage is adjusted to the set second power threshold, and the pressure difference of the control cooking appliance is greater than the closing pressure of the exhaust system 1 and less than the micro pressure system 2 Turn on the pressure.
  • Adjusting to the set second power threshold may be understood as increasing to a set second power threshold or increasing a set second power threshold, the second power threshold may be based on the length of the risotto phase, or risotto
  • the heating power corresponding to the stage, or the pressure difference of the cooking appliance before the risotto stage, or the amount of rice in the inner pot 400 of the cooking appliance may be set, or may be a set fixed value; the heating corresponding to the risotto stage
  • the power can be understood as the heating power of the cooking appliance during the risotto phase; in general, the heating power of the cooking appliance in different cooking stages is determined based on its own built-in standard cooking curve, ie the standard cooking curve contains cooking appliances at different cooking stages.
  • Heating power Therefore, in order to bring the cooking appliance to a specific cooking stage, it is necessary to heat the cooking appliance with the power corresponding to the specific cooking stage during the maintenance time of the specific cooking stage, that is, pre-establishing each cooking stage and heating.
  • the correspondence between the powers is stored in a standard cooking curve, and the cooking appliance is heated and controlled according to the standard cooking curve during cooking.
  • the specific principle may be: assuming a standard The heating power corresponding to each cooking stage in the cooking curve is set based on cooking one liter of rice, and the target cooking curve is compared with the standard cooking curve for each increment of one meter of the reference meter. The corresponding heating power will increase the second set value; if the amount of rice in the inner pot 400 of the current cooking appliance is three liters, it is necessary to increase the corresponding heating power in the later stage of the heating phase on the basis of the standard cooking curve. Twice the second set value, at which time the second set value is the second power threshold.
  • constant power heating (also shown in FIG. 18 for convenient comparison) is adopted for each cooking stage, for example, constant low power heating is applied to the risotto stage.
  • the pressure difference of the cooking appliance is usually less than the closing pressure of the exhaust system 1 during the risotto phase, so that the float 11 and the float sealing ring 12 are not jacked up to open the first venting opening 511, facing the inside of the cooking appliance.
  • the problem that the steam will be discharged outward through the first exhaust hole 511; however, by increasing the heating power corresponding to the risotto phase, it is possible that the steam in the cooking appliance cannot pass through the first exhaust hole 511 and the second through hole 52. External discharge, to achieve a lock moisturizing, enhance the cooking effect of the ingredients.
  • the heating power may refer to the average heating power.
  • the heating of the cooking appliance may be controlled by a heating control cycle, which refers to the length of the cycle control of heating and stopping heating of the cooking appliance; for example, for the electric pressure cooker, the heating control cycle It may refer to a period of controlling the working time and working power of the heating element 600; the heating control period may be in units of seconds or minutes, generally can be divided into a normal heating time and a stopping heating time, and assuming that the heating control period is 5 minutes, The first 3 minutes is set as the normal heating time, and the last 2 minutes is set as the stop heating time; therefore, the heating power corresponding to a certain cooking stage in the embodiment may refer to the working power indicated in the heating control period in the cooking stage, The operating power can be adjusted by adjusting the operating voltage or operating current of the heating element 600 in a direct or indirect manner.
  • the present invention provides a power control apparatus for the cooking appliance of FIG.
  • the power control device 10 of the cooking appliance can be integrated in the control board 300 and includes a processing unit 120 and an adjustment unit 130, wherein the processing unit 120 is used to implement step 101 of the method shown in FIG. Sub-step, adjustment unit 130 is used to implement step 102 of the method shown in FIG. 15 and its sub-steps. I will not repeat them here.
  • the present invention also provides a power control device for the cooking appliance of FIG.
  • the power control device 10 of the cooking appliance can be integrated in the control board 300 and includes a processor 310 and a memory 320 for storing a method that can be run on the processor 310 to implement the method shown in FIG. Computer program of step 101, step 102 and its sub-steps.
  • the processor 310 is not used to refer to the number of processors, but is only used to refer to the positional relationship of the processor with respect to other devices. In practical applications, the processor 310 may be one or more; the memory 320 is also The same meaning, that is, is only used to refer to the positional relationship of the memory with respect to other devices.
  • the memory 320 may be one or more.
  • the power control device 10 of the cooking appliance also includes at least one user interface 330.
  • the various components in the power control device 10 of the cooking appliance are coupled together by a bus system 340.
  • bus system 340 is used to implement connection communication between these components.
  • the bus system 340 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 340 in FIG.
  • the present invention further provides a computer storage medium, which is any known or future developed computer storage medium, wherein the computer storage medium stores a computer program when the computer runs The computer program implements the steps of the above method.
  • the power control curve 1 in Fig. 18 is the power control curve of the existing cooking appliance, and the power control curve 2 is the power control curve of the cooking appliance of Fig. 2. In the same phase, the power control curve is located below the power control curve II. According to Fig. 18, the power control curve basically uses constant power heating in each cooking stage, but the heating power is different in each cooking stage, for example, the power in the heating stage is greater than the power in the water absorption stage and the power in the risotto stage.
  • the pressure difference of the inner pot 400 is gradually changed from P1 to P1 in the boiling stage, and the float 11 is changed from the floating state to the non-floating state, thereby being the first
  • the vent hole 511 is opened, and the steam in the pot is discharged outward through the first vent hole 511, causing steam to be lost; since the temperature rise rate by the constant power heating is slow in the heating stage, when the pressure difference P of the inner pot 400 rises to P1 At this time, the float 11 is changed from the non-floating state to the floating state, thereby closing the first vent hole 511, and at this time, the inside of the pot is left with cold air and air containing the taste of the food.
  • the power control curve 2 uses non-constant power heating in a specific cooking stage, and increases the heating power in some cooking stages according to the control demand.
  • the specific working process is as follows: low power heating in the water absorption stage At this time, the pressure of the inner pot 400 is equal to or greater than the atmospheric pressure P0, that is, the pressure difference of the inner pot 400 is equal to or greater than 0, smaller than the closing pressure P1 of the float 11, the first exhaust hole 511 is normally open; The inner pot 400 is heated for the power of the W2, and the water temperature in the pot is raised.
  • the power is increased by the high-power heating technique, that is, the power is added to the W2.
  • the set power threshold is, for example, 200 W, to generate a large amount of steam to quickly exhaust the cold air in the pot from the inner pot 400; because if the constant power heating of the size W2 is used at this time, the cold air in the pot cannot be completely discharged.
  • the pressure in the pot will rise to P1
  • the float 11 floats to close the first venting opening 511, and part of the cold air is enclosed in the pot, resulting in
  • the rice has a raw taste; in the boiling stage, the pressure difference in the pot is maintained at about P2 and continues to boil; in the risotto stage, the pressure difference in the pot is maintained between P1 and P2 by using a constant power risotto technique of size W1.
  • the first venting hole 511 and the second through hole 52 are closed, thereby preventing steam from escaping and achieving moisturizing of the lock.
  • the initial power of the boiling phase is increased by a set power threshold based on the W2 used in the heating phase, so that the pressure difference in the inner pot 400 rises to P1.
  • a large amount of steam is generated before the cold air in the pot is quickly discharged from the inner pot 400.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cookers (AREA)

Abstract

公开了一种蒸汽阀、盖板组件、烹饪电器及其功率控制方法。蒸汽阀包括常开的排气系统和常闭的微压系统,所述排气系统用于排放所述烹饪电器的内锅中的空气,所述微压系统用于封闭所述内锅中的压力,所述排气系统的关闭压力阈值P1小于所述微压系统的开启压力阈值P2。

Description

蒸汽阀、盖板组件、烹饪电器及其功率控制方法 技术领域
本发明涉及厨房家用小电器领域,具体涉及一种蒸汽阀、盖板组件、烹饪电器及其功率控制方法。
背景技术
现有的烹饪电器例如电饭煲一般为常压电饭煲,即在电饭煲的上盖上设计一个蒸汽出口,长时间排放电饭煲的内锅中的气体,这样会带走米饭中大量的香味物质,且在焖饭阶段会带走米饭中的大量水分,最后会让米饭的香味过多的流失,米饭中的水分过多流失,造成米饭不香且干。为了减缓香味流失率和水分流失率,逐渐出现了微压电饭煲和高压电饭煲以及对应的功率控制方法,但是微压电饭煲的压力才几百帕,通常低于600Pa,而且与之对应的功率控制方法不仅不能匹配微压结构以提高米饭的香味和实现锁香保湿,甚至还会使烹饪出的米饭的效果更差。而高压电饭煲成本昂贵,且在出现故障时,有很大的危险性。因此,目前的微压电饭煲和高压电饭煲不能很好地满足用户对米饭的香味和口感需求。
发明内容
有鉴于此,本发明的一方面提供一种烹饪电器的蒸汽阀。所述蒸汽阀包括常开的排气系统和常闭的微压系统,所述排气系统用于排放所述烹饪电器的内锅中的空气,所述微压系统用于封闭所述内锅中的压力,所述排气系统的关闭压力阈值P1小于所述微压系统的开启压力阈值P2。
进一步地,所述蒸汽阀还包括常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所 述排气系统的关闭压力阈值P1。
进一步地,所述回流系统的关闭压力阈值P3、所述排气系统的关闭压力阈值P1和所述微压系统的开启压力阈值P2的取值范围分别为:0<P3≤100Pa,100≤P1≤600Pa,800≤P2≤3000Pa。
进一步地,所述蒸汽阀还包括阀体,所述阀体的底部设置有第一通孔和第二通孔;所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第一通孔中上下运动,所述浮子密封圈用于密封所述第一通孔;所述微压系统包括第一阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述第一阀座形成在所述阀体中,所述第二通孔位于所述第一阀座底部,所述阀芯位于所述第一阀座内,所述阀芯密封圈抵接所述第二通孔。
进一步地,所述微压系统还包括使所述阀芯复位的弹性元件,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密封圈套设在所述凸缘上,所述弹性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第一阀座的上端。
进一步地,所述第一通孔也位于所述第一阀座底部,所述阀芯主体为形成蒸汽通道的中空结构,所述浮子的上端能够在所述蒸汽通道中上下运动。
进一步地,所述蒸汽阀还包括常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;所述阀体底部还设置有第一安装孔和第三通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第一安装孔中上下运动,所述密封部用于密封所述第三通孔。
进一步地,所述阀芯密封圈包括环状的密封圈主体和设置在所述密封 圈主体的下端面的唇边,所述唇边形成封闭的密封区域,所述密封区域密封所述第二通孔。
进一步地,所述唇边包括外唇和内唇,所述外唇从所述密封圈主体的整个外周向下突出,所述内唇从所述密封圈主体的整个内周向下突出,所述第二通孔分布在所述密封区域覆盖的范围内。
进一步地,所述阀芯密封圈还包括在所述密封圈主体的上端面、从所述密封圈主体的整个外周向上突出的第一凸台,所述阀芯呈倒T形,包括圆筒形的阀芯主体和从所述阀芯主体的下端部向外突出的环形的凸缘;所述阀芯密封圈套设在所述凸缘的外周,所述第一凸台的内周面与所述凸缘的外周面配合,所述凸缘的下端面与所述密封圈主体的上端面接触。
进一步地,在所述第一凸台上间隔地设置有多个第二凸台,每个所述第二凸台的剖面呈Γ形,其水平部分朝着所述密封圈主体的中心突出,所述水平部分的下端面设置有容纳腔;在所述凸缘的外周间隔地设置有多个第三凸台,多个所述第三凸台分别与多个所述第二凸台对应间隔地分布,每个所述第三凸台对应地置于每个所述容纳腔中。
进一步地,所述容纳腔为贯穿所述水平部分的上端面的通孔;每个所述第三凸台的上端面穿过所述通孔与所述第二凸台的上端面对齐。
进一步地,所述第一凸台的上端面被斜切形成从所述密封圈主体的中心向外朝下倾斜的第一倾斜部,每个所述第二凸台的上端面被斜切形成从所述密封圈主体的中心向外朝下倾斜的第二倾斜部;所述凸缘的上端面被斜切形成从所述阀芯的中心向外朝下倾斜的第三倾斜部,每个所述第三凸台的上端面被斜切形成从所述阀芯的中心向外朝下倾斜的第四倾斜部;所述第一倾斜部与所述第三倾斜部邻接,所述第二倾斜部与所述第四倾斜部邻接。
进一步地,所述浮子与所述第一通孔的孔壁之间形成第一排气孔,所 述浮子在所述第一通孔中的上下运动用于封闭或开启所述第一排气孔。
进一步地,所述浮子设置有浮子内腔、用于使所述内锅内的气体进入所述浮子内腔的进气孔和用于使所述浮子内腔内的气体进入所述第一排气孔的出气孔;所述浮子的上挡板卡持于所述第一通孔上,所述浮子密封圈与所述第一阀座的底部外表面抵接而封闭所述第一排气孔。
进一步地,所述进气孔开设在所述浮子的内腔壁的下端,所述出气孔开设在所述浮子的内腔壁的上端或所述浮子的上挡板中。
进一步地,所述浮子的下端部还设置有位于所述进气孔下方的环形凹槽,所述浮子密封圈通过所述环形凹槽卡持于所述浮子的下端部。
进一步地,所述阀芯由重力块构成,所述重力块在所述第一阀座的内腔中上下移动;当所述重力块使所述阀芯密封圈与所述第一阀座的底部相接触时,所述重力块使所述阀芯密封圈将所述第二通孔完全封闭;所述重力块的重力等于所述内锅与所述阀腔内的压强差与所述第二通过的横截面积的乘积;所述压强差的范围为0.1KPa~4KPa。
进一步地,所述第一阀座还包括形成了所述第一通孔的导向座,所述导向座位于所述第一阀座的内腔内,所述重力块安装在所述导向座的外壁上且沿着所述导向座的外壁上下移动。
进一步地,所述蒸汽阀还包括固定盖,所述固定盖安装在所述第一阀座的上端,所述固定盖上设有第二排气孔,所述第二排气孔与所述阀腔连通。
进一步地,所述重力块由金属或塑料包裹金属组成。
进一步地,所述压强差为0.5KPa~2KPa。
进一步地,所述排气系统包括膨胀体、连接到所述膨胀体的一端的底板以及连接到所述膨胀体的另一端的顶板,在所述底板中形成有底部气道,在所述顶板中形成有顶部气道;所述膨胀体置于所述第一通孔中并与所述 第一通孔间隙配合,所述底板的上表面与所述第一通孔的下端面相接,所述顶板的下表面与所述第一通孔的上端面相接,所述底部气道通过所述间隙与所述顶部气道连通。
进一步地,所述膨胀体包括可弹性变形的外壳和由所述外壳围成的内部空间,所述内部空间填充有热膨胀材料。
进一步地,所述外壳由硅胶制成。
进一步地,所述底板、所述顶板和所述外壳一体成型。
进一步地,所述底部气道形成在所述底板的上表面中,所述顶板包括多个间隔设置的定位凸台,在相邻的所述定位凸台之间形成所述顶部气道。
进一步地,所述顶板的上表面形成有导向结构。
本发明的另一方面提供一种烹饪电器的盖板组件。所述盖板组件包括活动板组件、分别设置在所述活动板组件上的常开的排气系统和常闭的微压系统,所述排气系统用于排放所述烹饪电器的内锅中的空气,所述微压系统用于封闭所述内锅中的压力,所述排气系统的关闭压力阈值P1小于所述微压系统的开启压力阈值P2。
进一步地,所述活动板组件包括底盖板,所述底盖板上设置有第二安装孔;所述微压系统包括第二阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密封圈套设在所述凸缘上,所述阀芯主体为形成蒸汽通道的中空结构;所述第二阀座底部设置有第四通孔和第五通孔,所述第二阀座安装在所述第二安装孔上,所述阀芯位于所述第二阀座内,所述阀芯密封圈抵接所述第五通孔;所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第四通孔中上下运动,所述浮子密封圈用于密封所述第四通孔。
进一步地,所述微压系统还包括使所述阀芯复位的弹性元件,所述弹 性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第二阀座的上端。
进一步地,所述盖板组件还包括设置在所述活动板组件上的常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;所述底盖板还设置有第三安装孔和第六通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第三安装孔中上下运动,所述密封部用于密封所述第六通孔。
进一步地,所述活动板组件包括底盖板,所述底盖板上设置有第四安装孔和第七通孔;所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第七通孔中上下运动,所述浮子密封圈用于密封所述第七通孔;所述微压系统包括第三阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述阀芯位于所述第三阀座内,所述第三阀座底部设置有第八通孔,所述第三阀座安装在所述第四安装孔上,所述阀芯密封圈抵接所述第八通孔。
进一步地,所述微压系统还包括使所述阀芯复位的弹性元件,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密封圈套设在所述凸缘上,所述弹性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第三阀座的上端。
进一步地,所述盖板组件还包括设置在所述活动板组件上的常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;所述底盖板还设置有第五安装孔和第九通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第五安装孔中上下运动,所述密封部用于密封所述第九通孔。
本发明的另一方面提供一种烹饪电器,所述烹饪电器包括具有排气出口的上盖和根据权利要求1-28中任一项所述的蒸汽阀,所述蒸汽阀安装到所述上盖,所述排气系统和所述微压系统通过所述排气出口与外部环境连通。
进一步地,所述蒸汽阀与所述上盖之间形成有与所述排气出口连通的阀腔。
本发明的另一方面提供一种烹饪电器的功率控制方法,所述烹饪电器包括常开的排气系统和常闭的微压系统,所述排气系统的封闭压力小于所述微压系统的开启压力。所述功率控制方法包括:确定所述烹饪电器的当前烹饪阶段;当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率。
进一步地,所述确定所述烹饪电器的当前烹饪阶段,包括:获取当前所述烹饪电器的内锅的顶部温度和底部温度;根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定所述烹饪电器的当前烹饪阶段;所述内锅温差范围为所述内锅的底部与顶部之间的温差范围。
进一步地,所述烹饪电器的烹饪阶段包括加热阶段和沸腾阶段;所述目标烹饪阶段包括所述加热阶段的后期和/或所述沸腾阶段的前期;所述当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率,包括:当确定所述当前烹饪阶段为所述加热阶段的后期或所述沸腾阶段的前期时,将所述加热阶段的后期对应的加热功率或所述沸腾阶段的前期对应的加热功率调整至设定的第一功率阈值,控制所述烹饪电器的压力差小于所述排气系统的关闭压力。
进一步地,所述烹饪电器的烹饪阶段包括焖饭阶段;所述目标烹饪阶 段包括所述焖饭阶段;所述当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率,包括:当确定所述当前烹饪阶段为所述焖饭阶段时,将所述焖饭阶段对应的加热功率调整至设定的第二功率阈值,控制所述烹饪电器的压力差大于所述排气系统的关闭压力且小于所述微压系统的开启压力。
本发明的另一方面提供一种烹饪电器的功率控制装置,所述烹饪电器包括常开的排气系统和常闭的微压系统,所述排气系统的封闭压力小于所述微压系统的开启压力。所述功率控制装置包括处理单元和调整单元。所述处理单元,用于确定所述烹饪电器的当前烹饪阶段;所述调整单元,用于当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率。
进一步地,所述处理单元具体用于:获取当前所述烹饪电器的内锅的顶部温度和底部温度;根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定所述烹饪电器的当前烹饪阶段;所述内锅温差范围为所述内锅的底部与顶部之间的温差范围。
进一步地,所述烹饪电器的烹饪阶段包括加热阶段和沸腾阶段;所述目标烹饪阶段包括所述加热阶段的后期和/或所述沸腾阶段的前期;所述调整单元具体用于:当确定所述当前烹饪阶段为所述加热阶段的后期或所述沸腾阶段的前期时,将所述加热阶段的后期对应的加热功率或所述沸腾阶段的前期对应的加热功率调整至设定的第一功率阈值,控制所述烹饪电器的压力差小于所述排气系统的关闭压力。
进一步地,所述烹饪电器的烹饪阶段包括焖饭阶段;所述目标烹饪阶段包括所述焖饭阶段;所述调整单元具体用于:当确定所述当前烹饪阶段 为所述焖饭阶段时,将所述焖饭阶段对应的加热功率调整至设定的第二功率阈值,控制所述烹饪电器的压力差大于所述排气系统的关闭压力且小于所述微压系统的开启压力。
本发明的另一方面提供一种计算机存储介质,所述计算机存储介质中存储有计算机程序,其中,当计算机运行所述计算机程序时,实现如上所述的烹饪电器的功率控制方法的步骤。
本发明的另一方面提供一种烹饪电器的功率控制装置,所述功率控制装置包括处理器和用于存储能够在所述处理器上运行的计算机程序的存储器;其中,当所述处理器运行所述计算机程序时,实现根据权利要求38至41任一项所述的烹饪电器的功率控制方法的步骤。
附图说明
下面参照附图描述根据本发明的烹饪电器的蒸汽阀、盖板组件和包括蒸汽阀的烹饪电器及其功率控制方法、装置和计算机存储介质,在附图中:
图1是根据本发明的第一实施例的蒸汽阀的局部剖视图;
图2是包括图1的蒸汽阀的烹饪电器的剖视图;
图3是用于图1的蒸汽阀的阀芯密封圈的俯视图;
图4是用于图1的蒸汽阀的阀芯的俯视图;
图5是图3中的阀芯密封圈和图4中的阀芯的装配剖视图;
图6a是用于图1的蒸汽阀的一种示例性的排气系统的剖视图;
图6b是用于图1的蒸汽阀的另一种示例性的排气系统的剖视图;
图7至图9是根据本发明的第二实施例的、用于图2的烹饪电器的蒸汽阀的局部剖视图;其中,
图7是一种蒸汽阀的排气系统在无压力状态下的结构示意图;
图8是一种蒸汽阀的排气系统在有压力状态下的结构示意图;
图9是另一种蒸汽阀的排气系统在无压力状态下的结构示意图;
图10和图12示出了根据本发明的第三实施例的、用于图2的烹饪电器的排气系统及蒸汽阀的示意图;其中
图10是一种排气系统的示意性立体图;
图11是包括图10中的排气系统的蒸汽阀的局部剖视图;
图12是图11中的A处的放大视图;
图13和图14是根据本发明的第四实施例的、用于图2的烹饪电器的、用于替代图1的蒸汽阀的两种盖板组件的剖视图;
图15是图2的烹饪电器的功率控制方法的流程示意图;
图16是图2的烹饪电器的功率控制装置的结构示意图;
图17是图2的烹饪电器的另一种功率控制装置的硬件结构示意图;
图18是图2的烹饪电器内的压力与功率之间的控制关系示意图。
具体实施方式
本申请中的方位词“上”、“下”、“竖直”、“水平”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本申请中的术语“常开”是指烹饪电器内的蒸汽压力与外部环境的压力之差未达到系统相应的关闭压力阈值时,该系统处于开启状态;“常闭”是指烹饪电器内的蒸汽压力与外部环境的压力之差未达到系统相应的开启压力阈值时,该系统处于关闭状态。此处“系统”指的是排气系统、微压系统或回流系统。
根据本发明,烹饪电器的蒸汽阀包括常开的排气系统和常闭的微压系统,排气系统用于排放烹饪电器的内锅中的空气,微压系统用于封闭内锅中的压力,排气系统的关闭压力阈值P1小于微压系统的开启压力阈值P2。
下面参照图1描述根据本发明的第一实施例的蒸汽阀V,该蒸汽阀为 组装整体式结构。
蒸汽阀V包括常开的排气系统1、常闭的微压系统2和常开的回流系统3,排气系统1用于排放烹饪电器的内锅中的冷气和含食材生味的空气,微压系统2用于封闭烹饪电器的内锅中的压力,回流系统3用于使冷凝水回流到内锅中,排气系统1的关闭压力阈值P1小于微压系统2的开启压力阈值P2,回流系统3的关闭压力阈值P3小于或等于排气系统1的关闭压力阈值P1。
进一步地,回流系统3的关闭压力阈值P3、排气系统1的关闭压力阈值P1和微压系统2的开启压力阈值P2的取值范围分别为:0<P3≤100Pa,100≤P1≤600Pa,800≤P2≤3000Pa。其中,P3是根据回流系统的重力得出,设计时需要将回流系统的重力做的很轻;P1是根据排气系统的重力得出,设计时可根据煲内实际的压力参数的需要确定排气系统的重力;P2是根据微压系统的重力或作用力得出,此处的“作用力”是指除重力外还存在其他的附加力,例如弹性元件的弹力。考虑到烹饪过程回流系统上可能积存水,由于P2与P3之间存在较大的压力差值,所以当烹饪电器的煲内压力差达到P2时,由于回流系统很轻,使得回流系统在压力P2的作用下始终封闭,这样就给回流系统上能够承纳足够蒸馏水提供空间。由于在煲内压力大于3000Pa之后将可能出现上盖被顶开的“飞盖”问题,故将P2的上限值设计为3000Pa,以保证使用安全。
蒸汽阀V还包括阀体5,阀体5的底部设置有第一通孔51和第二通孔52。如图1所示,在阀体5中形成有凹腔53和与凹腔53连通的阀腔54。第一通孔51和第二通孔52竖直地贯穿凹腔53的底部形成,第二通孔52分布在第一通孔51周围。
排气系统1包括浮子11和设置在浮子11下端的浮子密封圈12,浮子11能够在第一通孔51中上下运动,浮子密封圈12用于密封第一通孔51。
微压系统2包括第一阀座21、阀芯22和设置在阀芯22下端的阀芯密封圈23;第一阀座21形成在阀体5中,第一通孔51和第二通孔52均位于第一阀座21底部,阀芯22位于第一阀座21内,阀芯密封圈23抵接第二通孔52。
微压系统2还包括使阀芯22复位的弹性元件24,阀芯22包括阀芯主体221和位于阀芯主体221下端的凸缘222,阀芯密封圈23套设在凸缘222上,弹性元件24的一端连接凸缘222,弹性元件24的另一端连接第一阀座21的上端。阀芯主体221为形成蒸汽通道的中空结构,该蒸汽通道与第一通孔51和阀腔54连通,浮子11的上端能够在该蒸汽通道中上下运动。
如图1所示,第一阀座21位于凹腔53的一侧并至少部分与凹腔53成一体,即第一阀座21的底部形成凹腔53的底部的一部分。在第一阀座21的底部中央形成阀座凸台211,第一通孔51竖直地贯穿阀座凸台211的中央部位而形成,第二通孔52均匀地分布在阀座凸台211周围。浮子11的上挡板111置于阀座凸台211的上表面上。阀芯22的阀芯主体221的蒸汽通道套设在阀座凸台211上,使得该蒸汽通道与第一通孔51连通,阀芯密封圈23围绕阀座凸台211套设在阀芯22下端的凸缘222上,以包围第一通孔51并密封第二通孔52。阀芯22和阀芯密封圈23与阀座凸台211是间隙配合,因此阀芯22和阀芯密封圈23能够上下运动。在图1中,弹性元件24是弹簧,该弹簧的一端套设在阀芯主体221的外周并连接凸缘222的上表面,该弹簧的另一端连接第一阀座21的固定盖25。弹簧24和固定盖25一起限制阀芯22和阀芯密封圈23的移动。
进一步地,阀体5的底部还设置有第一安装孔55和第三通孔56。回流系统3包括回流本体31、置于回流本体31上端的导向部32和置于回流本体31下端的密封部33,回流本体31能够在第一安装孔55中上下运动,密封部33用于密封第三通孔56。如图1所示,在凹腔53内,回流系统3布 置在第一阀座21旁边。第三通孔56分布在第一安装孔55周围。导向部32的形状类似于圆椎体,圆锥体的底面圆的直径稍大于第一安装孔55的直径,以使回流系统3经导向部32能够从下至上安装到第一安装孔55中,并使导向部32的圆锥体的底面置于阀体5的凹腔53底部内表面,从而支撑回流系统3处于常开状态。
上述第一实施例的蒸汽阀V,将排气系统1、微压系统2和回流系统3组装在阀体5上,形成一个整体式的蒸汽阀,便于独立制造蒸汽阀然后整体装配至烹饪电器的上盖4(参见图2)的安装孔中,提高装配效率、方便维修时整体更换。
图2示出了本发明的烹饪电器的实施例,此处烹饪电器以微压电饭煲为例,微压电饭煲包括上述第一实施例的蒸汽阀V、具有排气出口41的上盖4和安装到上盖4的活动板组件6。排气系统1和微压系统2通过阀腔54、与阀腔54连通的排气出口41而与外部环境连通。
另外,微压电饭煲还包括煲体100、电源板200、控制板300、内锅400、测温元件500和发热元件600。其中,内锅400置于煲体100内的凹腔中,上盖4和活动板组件6扣合在煲体100上,电源板200、测温元件500和发热元件600均位于煲体100内。控制板300设置于上盖4内。电发热元件600用于对内锅400中的米饭或食材进行加热。测温元件500测量米饭或食材的温度并将测量结果反馈给控制板300以进行程序控制。由于煲体100、电源板200、控制板300、内锅400、测温元件500、发热元件600是常见的元件,在此不再赘述。
图3和图4分别详细示出了蒸汽阀V的阀芯密封圈23和阀芯22,图5详细示出了阀芯密封圈23和阀芯22的装配剖视图。除了如上定义的方向词“上”、“下”、“竖直”、“水平”之外,例如,轴向指的是在图5中从上到下或者从下到上的方向,径向指的是在图5中从左到右或者从右到左的 方向。
阀芯密封圈23包括环状的密封圈主体231和设置在密封圈主体231的下端面的唇边,该唇边形成封闭的环形的密封区域R并实现了与第一阀座21的底部内表面的线接触密封。
唇边包括外唇232和内唇233,外唇232从密封圈主体231的整个外周向下突出,内唇233从密封圈主体231的整个内周向下突出,外唇232和内唇233均环绕密封圈内孔234一整圈地向下突出(上面提到的阀座凸台211穿过密封圈内孔234以支持阀芯密封圈23的上下运动)。外唇232和内唇233竖直向下突出相同的高度,而且外唇232和内唇233的剖面形状相同,二者的剖面类似于子弹头形状。外唇232的外周与密封圈主体231的外周对齐,内唇233的内周与密封圈主体231的内周(即密封圈内孔234)对齐。因此,环形的密封区域R形成在密封圈主体231、外唇232和内唇233之间。由于内唇233与密封圈主体231的内周对齐,所以延长了密封圈内孔234的长度。当阀芯密封圈23安装到蒸汽阀V的阀芯22时,相当于增加了阀芯内孔223的长度,因而内唇233起着导向作用。
阀芯密封圈23还包括在密封圈主体231的上端面、从密封圈主体231的整个外周向上突出的第一凸台235。参照图3和图5,第一凸台235也是环状的。第一凸台235的外周与密封圈主体231的外周对齐。
在第一凸台235上间隔地设置有第二凸台236,每个第二凸台236的剖面呈Γ形,其水平部分朝着密封圈主体231的中心突出,该水平部分的下端面设置有容纳腔2361。参照图3,3个第二凸台236以彼此间隔120度的方式均匀地分布在第一凸台235上,每个第二凸台236的竖直部分的外周与第一凸台235的外周对齐。容纳腔2361用于将阀芯密封圈23安装到阀芯22。
进一步地,容纳腔2361为贯穿第二凸台236的水平部分的上端面的通 孔,以便于更好地将阀芯密封圈23安装到阀芯22。
在图3和图5中可以看到,第一凸台235的上端面被斜切形成从密封圈主体231的中心向外朝下倾斜的第一倾斜部2351。可以在第一凸台235的上端面的任何位置以相对于该上端面倾斜任何角度来斜切,只要第一凸台235上的冷凝水能落下即可。第一倾斜部2351与第一凸台235的上端面和外周可以以圆弧过渡。
另外,在图3和图5中可以看到,每个第二凸台236的上端面被斜切形成从密封圈主体231的中心向外朝下倾斜的第二倾斜部2362。可以在第二凸台236的上端面的任何位置以相对于该上端面倾斜任何角度来斜切,只要第二凸台236上的冷凝水能落下即可。第二倾斜部2362与第二凸台236的上端面和外周可以以圆弧过渡。
需要注意的是,图5中所示的阀芯密封圈23的剖面是先从图3中的一个第二凸台236的中央朝向密封圈主体231的中心剖切,再从密封圈主体231的中心朝向图3中的另外两个第二凸台236之间的任何位置剖切而得到。
阀芯22的剖面呈倒T形,包括圆筒形的阀芯主体221和从阀芯主体221的下端部向外突出的环形的凸缘222。阀芯密封圈23套设在凸缘222的外周,第一凸台235的内周面与凸缘222的外周面配合,凸缘222的下端面与密封圈主体231的上端面接触。阀芯内孔223和密封圈内孔234具有相同的直径(上面提到的阀座凸台211还伸入阀芯内孔223以支持阀芯22的上下运动),且当阀芯密封圈23套设在凸缘222的外周时,阀芯内孔223和密封圈内孔234彼此对齐。凸缘222的外直径可以略大约第一凸台235的内直径,使得第一凸台235的内周面与凸缘222的外周面过盈配合,这样阀芯22更牢固地放置在密封圈主体231上。
在凸缘222的外周间隔地设置有多个第三凸台224,多个第三凸台224 分别与多个第二凸台236对应间隔地分布,每个第三凸台224对应地置于每个容纳腔2361中。参照图4,3个第三凸台224以与3个第二凸台236对应的方式彼此间隔120度、均匀地分布在凸缘222的外周上。每个第三凸台224的外周与凸缘222的外周对齐。每个第三凸台224竖直向上突出且突出的高度与容纳腔2361的深度相同,这样当每个第三凸台224对应地置于每个容纳腔2361中时,凸缘222的上端面接触第二凸台236的下端面,从而阻止冷凝水积聚在凸缘222的上端面与第二凸台236的下端面之间。每个第三凸台224的宽度可以略大于容纳腔2361的宽度,使得第三凸台224与容纳腔2361过盈配合,这样阀芯22更牢固地放置在密封圈主体231上。
在容纳腔2361为贯穿第二凸台236的水平部分的上端面的通孔的情况下,每个第三凸台224与每个通孔2361对应地形成且置于每个通孔2361中,使得每个第三凸台224的上端面穿过通孔2361与第二凸台236的上端面对齐,以及凸缘222的上端面接触第二凸台236的下端面。
在图4和图5中可以看到,凸缘222的上端面被斜切形成从阀芯22的中心向外朝下倾斜的第三倾斜部225。可以在凸缘222的上端面的任何位置以相对于该上端面倾斜任何角度来斜切,只要凸缘222上的冷凝水能落下即可。
另外,在图4和图5中可以看到,每个第三凸台224的上端面被斜切形成从阀芯22的中心向外朝下倾斜的第四倾斜部226。可以在第三凸台224的上端面的任何位置以相对于该上端面倾斜任何角度来斜切,只要第三凸台224上的冷凝水能落下即可。
参照图5,第一倾斜部2351与第三倾斜部225邻接,第二倾斜部2362与第四倾斜部226邻接。进一步地,第三倾斜部225的斜切角度使得冷凝水从第三倾斜部225经过第一倾斜部2351落下,而不会滞留在凸缘222和第一凸台235之间。类似地,第四倾斜部226的斜切角度使得冷凝水从第 四倾斜部226经过第二倾斜部2362落下,而不会滞留在第三凸台224和第二凸台236之间。需要说明的是,这是针对容纳腔2361是通孔的情况。如果容纳腔2361不是通孔,则冷凝水直接从第二倾斜部2362落下。
需要注意的是,图5中所示的阀芯22的剖面是先从图4中的一个第三凸台224的中央朝向阀芯22的中心剖切,再从阀芯22的中心朝向图4中的另外两个第三凸台224之间的任何位置剖切而得到。
图6a详细示出了蒸汽阀V的一种示例性的排气系统1。排气系统1包括浮子11和设置在浮子11下端部的浮子密封圈12,浮子11与第一通孔51的孔壁之间形成第一排气孔511,浮子11在第一通孔51中的上下运动用于封闭或开启第一排气孔511。浮子11设置有浮子内腔110、用于使烹饪电器内的气体进入浮子内腔110的进气孔113和用于使浮子内腔110内的气体进入上面提到的蒸汽通道的出气孔112。在图1所示的状态下,进气孔113与内锅400连通。浮子11的上挡板111通过形成台阶面而卡持于阀座凸台211上,浮子11带动浮子密封圈12上下运动,使得浮子密封圈12与第一阀座21的底部外表面抵接而封闭第一排气孔511。即当烹饪电器的压力差大于或等于浮子11和浮子密封圈12形成的封闭压力时,浮子11和浮子密封圈12朝着第一阀座21的顶部的方向运动,致使浮子密封圈12与第一阀座21的底部外表面抵接而封闭第一排气孔511;当烹饪电器的压力差从大于或等于浮子11和浮子密封圈12形成的封闭压力变为小于浮子11和浮子密封圈12形成的封闭压力时,浮子11和浮子密封圈12朝着第一阀座21的底部的方向运动,使第一排气孔511从封闭状态逐渐变为开启状态。
进气孔113开设在浮子11的内腔壁的下端,以方便烹饪电器内的气体进入浮子内腔110。出气孔112开设在浮子11的内腔壁的上端,以方便浮子内腔110内的气体进入上面提到的蒸汽通道。
图6b详细示出了蒸汽阀V的另一种示例性的排气系统1。如图6b所 示,为了使浮子内腔110内的气体方便进入蒸汽通道,出气孔112也可开设在浮子11的上挡板111中。此外,浮子11的下端部的外廓直径小于第一通孔51的直径,以便在安装时浮子11的下端穿过第一通孔51,再将浮子密封圈12设置在浮子11的下端部;浮子11的上挡板111的外廓直径和浮子密封圈12的外廓直径均大于第一通孔51的直径,以使浮子11在上下运动过程中不会脱离第一通孔51,并在烹饪电器的压力差等于或大于浮子11和浮子密封圈12形成的封闭压力时,能够封闭第一排气孔511。
进一步地,为了使与第一阀座21的底部外表面之间的密封效果更好,浮子11的下端部还设置有环形凹槽114,浮子密封圈12通过环形凹槽114卡持于浮子11的下端部。
浮子密封圈12可由橡胶、塑料等材料制成;与浮子11的下端部抵接第一阀座21的底部外表面相比,当浮子密封圈12与第一阀座21的底部外表面抵接时,具有更好的密封效果。此外,浮子密封圈12也可以是带有环形唇边的唇边密封圈,唇边密封圈的环形唇边朝向第一通孔51。
图7至图9是根据本发明的第二实施例的蒸汽阀。为了清楚起见,在图7至图9中仅标示了部分构件及与根据本发明的第一实施例的蒸汽阀V不同的构件,且下面仅描述这些不同的构件及其连接关系。
如图7和图8所示,图1的阀芯22由重力块22’构成或者被重力块22’替代,因此不存在弹性元件24。第一阀座21还包括形成了第一通孔51的导向座7,导向座7位于第一阀座21的内腔内,阀芯密封圈23’位于重力块22’的下端。重力块22’安装在导向座7的外壁上且沿着导向座7的外壁上下移动,或者说,导向座7穿过重力块22’和阀芯密封圈23’的内孔以支持重力块22’和阀芯密封圈23’的上下运动。蒸汽阀还包括固定盖25’,固定盖25’安装在第一阀座21的上端,在固定盖25’上设有第二排气孔251,第二排气孔251将阀腔54与第一阀座21的内腔连通。
当烹饪电器的压力差推动重力块22’和阀芯密封圈23’向上运动、浮子密封圈12向上运动而与第一阀座21的底部外表面相接触时,第二通孔52完全打开同时第一通孔51完全封闭,由此通过第二通孔52、第一阀座21的内腔以及第二排气孔251形成如图8所示的排气路径。图7示出了与图8不同的状态,即第一通孔51完全打开同时第二通孔52完全封闭。
蒸汽阀V的阀芯22和阀芯密封圈23的结构和连接关系可以适用于重力块22’和阀芯密封圈23’的结构和连接关系,在此不再赘述。
重力块22’由金属或塑料包裹金属组成。忽略重力块22’上下受力面积的差异,重力块22’的重力根据下述公式确定:G=ΔP×S,其中,G为重力块22’的重力,S为第二通孔52的横截面积,ΔP为烹饪电器的内锅与第一阀座21的内腔内的压强差。该压强差的范围为0.1KPa~4KPa,优选地,0.5KPa~2KPa。在本实施例中,设定内锅与内腔内的压强差ΔP为1KPa,第二通孔52的横截面积S为20×10 -4m 2,则根据公式G=ΔP×S可知重力块22’的重力G为2N,根据换算可以得到重力块22’的重量约为0.2Kg。
在其他另一实施方式中,蒸汽阀可以省略图7和图8中的第一阀座21和固定盖25’。如图9所示,该蒸汽阀的导向座7直接固定在阀腔54与凹腔53之间的分隔壁50’上,其它结构与图7和图8中的蒸汽阀相同,在此不再赘述。
图10至图12示出了根据本发明的第三实施例的排气系统及蒸汽阀。为了清楚起见,在图10至图12中仅标示了部分构件及与根据本发明的第一实施例的蒸汽阀V不同的构件,且下面仅描述这些不同的构件及其连接关系。
排气系统8包括膨胀体81、连接到膨胀体81的一端的底板82以及连接到膨胀体81的另一端的顶板83,在底板82中形成有底部气道821,在顶板83中形成有顶部气道831。
膨胀体81形成为圆柱体,底板82形成为圆板,顶板83形成为截头圆锥形板。另外,膨胀体81的一端连接到底板82的中央区域,膨胀体81的另一端连接到顶板83的中央区域。底部气道821和顶部气道831均围绕膨胀体81形成。
膨胀体81包括可弹性变形的外壳811和由外壳811围成的内部空间,该内部空间填充有热膨胀材料812。图11和图12示出了处于未变形的原始状态的膨胀体81,此时第一排气孔511打开以排出烹饪电器内的冷气。外壳811由硅胶制成,热膨胀材料812充满该内部空间。热膨胀材料812可采用热双金属,热双金属中的一组元层具有低的热膨胀系数、为被动层;另一组元层具有高的热膨胀系数、为主动层。进一步地,被动层采用含Ni34~50%的因瓦型合金;主动层则采用黄铜、镍、Fe-Ni-Cr、Fe-Ni-Mn和Mn-Ni-Cu合金等。在受热时,热膨胀材料812的体积增大,因此使外壳811向外扩张而封闭第一排气孔511。另外,底板82、顶板83和外壳811可以一体成型,以方便排气系统8的制造。
底部气道821形成在底板82的上表面中,顶板83包括多个间隔设置的定位凸台832,在相邻的定位凸台832之间形成如上所述的顶部气道831。如图10所示,底部气道821从底板82的上表面凹入底板82中一定深度,并包括多个围绕外壳811形成放射状的气道,例如为四个围绕外壳811形成十字形的气道,底部气道821的每个气道从外壳811一直开通到底板82的外周表面。另外,图10示出了四对定位凸台832和顶部气道831,这四个定位凸台832和四个顶部气道831均围绕外壳811形成十字形,每个顶部气道831从顶板83的下表面一直开通到顶板83的上表面并与底部气道821的相应的十字形气道对齐或交错。此外,顶板83的上表面形成有导向结构,如图10所示,该导向结构具体为在顶板83的上表面中心位置形成的导向圆台833或导向锥,每个定位凸台832上形成有导向斜面834,以方 便排气系统8安装在第一通孔51中。在其他实施方式中,顶板83也可以设计为圆板,圆板的上表面带有导向结构,下表面设置有放射状的顶部气道831。
参见图11,如上所述的排气系统8用于蒸汽阀。排气系统8通过导向结构如圆台833或导向锥穿过第一通孔51,使膨胀体81置于第一通孔51中并与第一通孔51间隙配合(类似于存在图1的第一排气孔511),底板82的上表面与第一通孔51的下端面相接,顶板83的下表面与第一通孔51的上端面相接,底部气道821通过所述间隙与顶部气道831连通,所述间隙的配合范围为0.25~0.8mm。
结合图18的各阶段,排气系统8的工作原理如下:
1)微压电饭煲刚进入吸水阶段。煲内的温度处于常温,例如外部环境的温度。排气系统8处于原始状态,即,膨胀体81与第一通孔51间隙配合。然后,内锅400中的米水混合物会加热到60℃左右的温度,而煲内的气体的温度也会上升。根据克拉伯龙方程:pV=nRT(p是气体的压强,V是气体的体积,n是气体物质的量,T是气体的热力学温度,R是气体常数),煲内的气压随着温度的上升而上升。因此,如图12的箭头所示,煲内的上层冷气在煲内的气压与外部环境的气压之间的压力差的作用下经过底部气道821、第一通孔51与膨胀体81之间的间隙、顶部气道831而排出煲外。
2)微压电饭煲进入加热阶段和沸腾阶段。在该两阶段,煲内的温度从60℃迅速上升,使得排气系统8受热。因此,热膨胀材料812的体积随着温度的上升而增大,促使外壳811向外扩张,紧贴第一通孔51以密封第一通孔51,因而防止气体泄漏。然后,煲内的气压继续上升。当煲内的压力达到设定值(由阀芯密封圈23和阀芯22的重力与弹簧24的弹力之和确定)时,该压力会顶开阀芯密封圈23和阀芯22并使弹簧24压缩,以打开 第二通孔52,使得煲内的气体从第二通孔52和上面提及的蒸汽通道排出到外部环境。
3)微压电饭煲进入焖饭阶段,完成煮饭后保温。在该阶段,煲内的压力逐渐降低。当煲内的压力低于如上所述的设定值时,弹簧24的弹力促使阀芯密封圈23和阀芯22向下运动以密封第二通孔52。在此过程中,排气系统8仍然受热。因此,热膨胀材料812仍然使外壳811弹性地变形,紧贴第一通孔51以密封第一通孔51,因而防止气体泄漏。这样既能维持煲内的压力(即,排气系统8起到微压控制的作用)又能防止煲内的水分流失。
图13和图14分别示出了根据本发明的第四实施例的、用于图2的烹饪电器的、用于替代图1的蒸汽阀的两种盖板组件V’和V”。为了清楚起见,在图13和图14中仅标示了与根据本发明的第一实施例的蒸汽阀V不同的构件,且下面仅描述这些不同的构件。
如图13所示,盖板组件V’包括活动板组件6’和分别设置在活动板组件6’上的排气系统1’、微压系统2’和回流系统3’。与图1的蒸汽阀V相比,盖板组件V’不包括阀体,而是将排气系统1’、微压系统2’和回流系统3’分散安装在活动板组件6’中,这样可以充分利用安装空间、优化上盖4中的元器件布局。
盖板组件V’包括活动板组件6’和分别设置在活动板组件6’上的常开的排气系统1’、常闭的微压系统2’和常开的回流系统3’;活动板组件6’包括底盖板61’,底盖板61’上设置有第二安装孔611’。微压系统2’包括第二阀座21’、阀芯202’和设置在阀芯202’下端的阀芯密封圈203’,阀芯202’包括阀芯主体221’和位于阀芯主体221’下端的凸缘222’,阀芯密封圈203’套设在凸缘222’上,阀芯主体221’为形成蒸汽通道的中空结构。第二阀座21’的底部设置有第四通孔51’和第五通孔52’,第二阀座21’安装在第二安装孔611’上,阀芯202’位于第二阀座21’内,阀芯密封圈203’抵接第五通孔52’。 排气系统1’包括浮子11’和设置在浮子11’下端的浮子密封圈12’,浮子11’能够在第四通孔51’中上下运动,浮子密封圈12’用于密封第四通孔51’。
微压系统2’还包括使阀芯202’复位的弹性元件24’,弹性元件24’的一端连接凸缘222’,弹性元件24’的另一端连接第二阀座21’的上端。在图3中,弹性元件24’是弹簧,该弹簧的一端套设在阀芯主体221’的外周并连接到凸缘222’的上表面,该弹簧的另一端连接第二阀座21’的固定盖205’。弹簧24’和固定盖205’一起限制阀芯202’和阀芯密封圈203’的移动。
底盖板61’还设置有第三安装孔55’和第六通孔56’,回流系统3’包括回流本体31’、置于回流本体31’上端的导向部32’和置于回流本体31’下端的密封部33’,回流本体31’能够在第三安装孔55’中上下运动,密封部33’用于密封第六通孔56’。
蒸汽阀V的排气系统1、微压系统2和回流系统3的各个组成元件的结构和连接关系可以适用于盖板组件V’的排气系统1’、微压系统2’和回流系统3’的各个组成元件的结构和连接关系,在此不再赘述。
如图14所示,盖板组件V”包括活动板组件6”和分别独立设置在活动板组件6”上的排气系统1”、微压系统2”和回流系统3”。与图13的盖板组件V’相比,盖板组件V”的排气系统1”、微压系统2”和回流系统3”均分开地布置在活动板组件6”中,同样可以灵活地利用安装空间、优化上盖4中的元器件布局。
盖板组件V”包括活动板组件6”和分别独立设置在活动板组件6”上的常开的排气系统1”、常闭的微压系统2”和常开的回流系统3”;活动板组件6”包括底盖板61”,底盖板61”上设置有第四安装孔611”和第七通孔51”。排气系统1”包括浮子11”和设置在浮子11”下端的浮子密封圈12”,浮子11”能够在第七通孔51”中上下运动,浮子密封圈12”用于密封第七通孔51”。微压系统2”包括第三阀座21”、阀芯202”和设置在阀芯202”下端 的阀芯密封圈203”。阀芯202”位于第三阀座21”内,第三阀座21”底部设置有第八通孔52”,第三阀座21”安装在第四安装孔611”上,阀芯密封圈203”抵接第八通孔52”。
微压系统2”还包括使阀芯202”复位的弹性元件24”,阀芯202”包括阀芯主体221”和位于阀芯主体221”下端的凸缘222”,阀芯密封圈203”套设在凸缘222”上,弹性元件24”的一端连接凸缘222”,弹性元件24”的另一端连接第三阀座21”的上端。在图14中,弹性元件24”是弹簧,该弹簧的一端套设在阀芯主体221”的外周并连接凸缘222”,该弹簧的另一端连接到第二阀座21”的固定盖205”。弹簧24”和固定盖205”一起限制阀芯202”和阀芯密封圈203”的移动。
底盖板6”还设置有第五安装孔55”和第九通孔56”,回流系统3”包括回流本体31”、置于回流本体31”上端的导向部32”和置于回流本体31”下端的密封部33”,回流本体31”能够在第五安装孔55”中上下运动,密封部33”用于密封第九通孔56”。
蒸汽阀V’的排气系统1’、微压系统2’和回流系统3’的各个组成元件的结构和连接关系可以适用于盖板组件V”的排气系统1”、微压系统2”和回流系统3”的各个组成元件的结构和连接关系,在此不再赘述。
可以理解的是,通过简单地更改上盖4,图7至图9所示的盖板组件V’和V”可以代替图1的蒸汽阀V而用于图2所示的微压电饭煲,图13和图14所示的盖板组件V’和V”可以代替图1的蒸汽阀V而用于图2所示的微压电饭煲。
在上述的盖板组件V’或盖板组件V”中,回流系统(3’、3”)的关闭压力阈值P3、排气系统(1’、1”)的关闭压力阈值P1和微压系统(2’、2”)的开启压力阈值P2的取值范围分别为:0<P3≤100Pa,100≤P1≤600Pa,800≤P2≤3000Pa。其中,P1、P2、P3的压力设计及取值范围参照上述第 一实施例的蒸汽阀V相应的P1、P2、P3。
为了简化描述,下面参照图15至图18以图2的包括蒸汽阀V的微压电饭煲为例说明烹饪电器的功率控制方法;该功率控制方法同样适用于包括盖板组件V’或包括盖板组件V”的烹饪电器。
所述烹饪电器包括常开的排气系统和常闭的微压系统,所述排气系统的封闭压力小于所述微压系统的开启压力;该功率控制方法包括以下步骤:
步骤101:确定烹饪电器的当前烹饪阶段;
具体地,烹饪电器获取当前烹饪电器的内锅400的顶部温度和底部温度;根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定烹饪电器的当前烹饪阶段;内锅温差范围为内锅400的底部与顶部之间的温差范围。
在烹饪处理过程中,烹饪电器会根据用户在控制板300上选择的烹饪功能而执行相应的烹饪操作,烹饪电器在烹饪过程中可包含多个依序排列的烹饪阶段,例如图18所示的吸水阶段、加热阶段、沸腾阶段、焖饭阶段、保温阶段等;在不同的烹饪阶段,烹饪电器的内锅400的顶部和/或底部温度都存在差异;例如,烹饪电器的内锅400在沸腾阶段的顶部温度会大于在加热阶段的顶部温度,烹饪电器的内锅400在沸腾阶段的底部温度也会大于在加热阶段的底部温度,且烹饪电器的内锅400在沸腾阶段的顶部温度会小于内锅400的底部温度。此外,烹饪电器在不同烹饪阶段的加热功率也不相同,例如,烹饪电器在加热阶段的加热功率大于焖饭阶段的加热功率。因此,可预先设定烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,以便根据当前烹饪电器的内锅400的顶部温度和底部温度确定烹饪电器的当前烹饪阶段。例如,假设已设定烹饪电器的内锅400在加热阶段的顶部温度范围为50℃~90℃,底部温度范围为60℃~130℃,即在加热阶段烹饪电器的内锅温差范围为10℃~40℃。如果检测到当前烹饪电器的内 锅温差为30℃,则可确定烹饪电器的当前烹饪阶段为加热阶段。
可以理解的是,根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定烹饪电器的当前烹饪阶段,还可以包括:结合烹饪电器的当前加热功率、或者当前烹饪电器的内锅400的顶部温度或底部温度、或者前一个烹饪阶段的名称和加热功率等因素而确定烹饪电器的当前烹饪阶段。因为在烹饪过程中,烹饪电器的内锅温差的分布近似于呈正态分布,即在不同烹饪阶段可能会存在相同的内锅温差;因此,除了根据当前烹饪电器的内锅温差之外,可能还需要结合烹饪电器的当前加热功率、或者当前烹饪电器的内锅400的顶部温度或底部温度、或者前一个烹饪阶段的名称和加热功率等因素而确定烹饪电器的当前烹饪阶段。例如,假设在加热阶段时烹饪电器的内锅温差范围为10℃~40℃,在焖饭阶段时烹饪电器的内锅温差范围为30℃~60℃,如果检测到当前烹饪电器的内锅温差为30℃,则还需要结合前一个烹饪阶段的名称或加热功率确定烹饪电器的当前烹饪阶段;如果前一个烹饪阶段为沸腾阶段,则当前烹饪阶段为焖饭阶段;如果前一个烹饪阶段的加热功率小于当前烹饪阶段的加热功率,由于沸腾阶段的加热功率大于焖饭阶段的加热功率,则当前烹饪阶段为吸水阶段。例如,假设已设定在加热阶段时烹饪电器的内锅400的顶部温度范围为50℃~90℃,如果检测到当前烹饪电器的内锅400的顶部温度为75℃,则可确定当前烹饪阶段为加热阶段;如果此时还设定在焖饭阶段时烹饪电器的内锅400的顶部温度范围为60℃~95℃,如果前一个烹饪阶段为沸腾阶段,则可确定当前烹饪阶段为焖饭阶段。还可根据在每个烹饪阶段时内锅400的顶部和/或底部温度范围,将烹饪阶段划分为前期和后期。当根据烹饪电器的内锅400的顶部温度范围进行烹饪阶段的前期和后期划分操作时,可从该顶部温度范围中选择一个温度阈值,将大于该温度阈值的阶段划分为后期,而小于或等于该温度阈值的阶段划分为前期。例如,当在加热阶段时内锅 400的顶部温度大于对应的温度阈值时,说明当前阶段为加热阶段的后期;而当在加热阶段时内锅400的顶部温度小于或等于对应的温度阈值时,说明当前阶段为加热阶段的前期。
在实际应用中,烹饪电器的内锅400的顶部温度可通过例如设置于上盖4上的温度传感器获取,以可实时获取内锅400的顶部温度。内锅400的顶部温度也可认为是内锅400内的蒸汽温度。本实施例中,以从内锅400的顶部不同位置处获取的温度相同为例。烹饪电器的内锅400的底部温度可通过测温元件500直接接触内锅400的底部而测量得到。
此外,如果烹饪电器已内置有针对烹饪基准米量的标准烹饪曲线,该标准烹饪曲线规定了各烹饪阶段所需的加热功率和加热时间等烹饪参数,则可以以该标准烹饪曲线为基础,获取当前烹饪电器的内锅400中的水量和米量对应的目标烹饪曲线,并根据该目标烹饪曲线确定烹饪电器的当前烹饪阶段。例如,假设标准烹饪曲线是以烹饪一升米为基准而设置的,并设置在基准米量上每增加一升米,则目标烹饪曲线相对标准烹饪曲线而言,加热阶段的维持时间将延长3分钟和沸腾阶段的维持时间将延长2分钟;如果当前烹饪电器的内锅400中的米量为三升,则目标烹饪曲线相对标准烹饪曲线而言,加热阶段的维持时间将延长6分钟和沸腾阶段的维持时间将延长4分钟。基于上述思想,假设上述标准烹饪曲线包含吸水阶段、加热阶段、沸腾阶段、焖饭阶段和保温阶段等五个烹饪阶段,且加热阶段为从煮饭开始的第2分钟至第8分钟、沸腾阶段为从煮饭开始的第9分钟至第20分钟、焖饭阶段为从煮饭开始的第21分钟至第28分钟、保温阶段为从煮饭开始的第29分钟至第35分钟;如果当前内锅400中的米量为三升,则目标烹饪曲线中的加热阶段为从煮饭开始的第2分钟至第14分钟、沸腾阶段为从煮饭开始的第15分钟至第30分钟、焖饭阶段为从煮饭开始的第31分钟至第38分钟、保温阶段为从煮饭开始的第39分钟至第45分钟;此 时,如果从煮饭开始至当前的时间为第17分钟,则确定烹饪电器的当前烹饪阶段为沸腾阶段。在烹饪过程中例如在加热阶段,根据烹饪电器的内锅400中米和水的总高度以及米和水的温度上升速度等参数,可计算出内锅400中的水量和米量。在实际应用中,烹饪电器的内锅400中的水量和米量可以根据公式X+Y=Hπd 2/4和(Xp 1c 1+Yp 2c 2+C)△T/△t=Q进行计算;其中,X表示米的体积,Y表示水的体积,p 1、p 2分别表示米的密度和水的密度,c 1、c 2分别表示米的比热容和水的比热容;△T表示升温量,△t表示时间,△T/△t表示温升速度;H表示米和水的总高度,d表示内锅400的内径,C表示电饭煲本身的吸热常量,Q表示单位时间电饭煲的发热元件600的发热量。米和水的总高度可以是指米和水在加热阶段前或在加热阶段的总高度,可以通过距离传感器进行测量。还可根据每个烹饪阶段的维持时间长短将烹饪阶段划分为前期和后期。当根据每个烹饪阶段的维持时间长短将烹饪阶段划分为前期和后期时,可根据烹饪阶段的维持时间的中间时间点进行划分。例如,将沸腾阶段的前一半维持时间对应的阶段称为沸腾阶段的前期,而将沸腾阶段的后一半维持时间对应的阶段称为沸腾阶段的后期;例如,上述从煮饭开始至当前的时间为第17分钟则属于沸腾阶段的前期。
步骤102:当当前烹饪阶段为目标烹饪阶段时,基于排气系统1的关闭压力和微压系统2的开启压力设置的功率,调整当前烹饪阶段对应的加热功率。
具体地,当在步骤101中确定的烹饪电器的当前烹饪阶段为目标烹饪阶段时,基于排气系统1的关闭压力和微压系统2的开启压力设置的功率,调整当前烹饪阶段对应的加热功率,使烹饪电器的压力差在目标烹饪阶段下能够满足设定要求,即控制排气系统1和微压系统2工作在设定的开启或闭合状态。
这里,可以根据当前烹饪电器的内锅400的顶部温度和/或底部温度, 确定当前烹饪阶段是否为目标烹饪阶段;还可以进一步结合当前烹饪阶段对应的加热功率、或者前一个烹饪阶段的名称和加热功率等因素进行确定。例如,假设已设定在加热阶段时烹饪电器的内锅400的顶部温度范围为70℃~90℃,且当内锅400的顶部温度大于80℃时为加热阶段的后期,如果检测到当前烹饪电器的内锅400的顶部温度为75℃,则可确定当前烹饪阶段为加热阶段且属于加热阶段的前期;如果检测到当前烹饪电器的内锅400的顶部温度为82℃,则可确定当前烹饪阶段为加热阶段的后期。如果此时还设定在焖饭阶段时烹饪电器的内锅400的顶部温度范围为60℃~95℃,当检测到当前烹饪电器的内锅400的顶部温度为75℃时,如果前一个烹饪阶段为沸腾阶段,则可确定当前烹饪阶段为焖饭阶段。
通常情况下,当烹饪电器的压力差小于排气系统1的关闭压力时,排气系统1的浮子11和浮子密封圈12未被顶起而打开第一排气孔511,微压系统2的阀芯22和阀芯密封圈23未被顶起而封闭第二通孔52;当烹饪电器的压力差大于排气系统1的关闭压力且小于微压系统2的开启压力时,浮子11和浮子密封圈12被顶起而封闭第一排气孔511,阀芯22和阀芯密封圈23未被顶起而封闭第二通孔52;当烹饪电器的压力差大于微压系统2的开启压力时,浮子11和浮子密封圈12继续被顶起而封闭第一排气孔511,阀芯22和阀芯密封圈23被顶起而打开第二通孔52。因此,通过调整烹饪电器在不同烹饪阶段的加热功率,以相应地改变烹饪电器的压力差,从而可使排气系统1和微压系统2工作在设定的开启或闭合状态。烹饪电器的压力差为烹饪电器内部的气体与外界大气之间的压强差。
当烹饪电器的烹饪阶段包括加热阶段和沸腾阶段,目标烹饪阶段包括加热阶段的后期和/或沸腾阶段的前期,当前烹饪阶段为目标烹饪阶段时,基于排气系统1的关闭压力和微压系统2的开启压力设置的功率,调整当前烹饪阶段对应的加热功率,包括:
确定当前烹饪阶段为加热阶段的后期时,将加热阶段的后期对应的加热功率调整至设定的第一功率阈值,控制烹饪电器的压力差小于排气系统1的关闭压力;和/或,
确定当前烹饪阶段为沸腾阶段的前期时,将沸腾阶段的前期对应的加热功率调整至设定的第一功率阈值,控制烹饪电器的压力差小于排气系统1的关闭压力。
调整至设定的第一功率阈值可以理解为增大至设定的第一功率阈值或增大设定的第一功率阈值;第一功率阈值可根据加热阶段或沸腾阶段的维持时间长短、或者加热阶段或沸腾阶段对应的加热功率、或者烹饪电器的压力差、或者烹饪电器的内锅400中的米量等因素进行设置,也可以是一个设定的固定值;加热阶段对应的加热功率可以理解为烹饪电器在加热阶段的加热功率,沸腾阶段对应的加热功率可以理解为烹饪电器在沸腾阶段的加热功率;通常情况下,烹饪电器在不同烹饪阶段的加热功率是基于自身内置的标准烹饪曲线进行确定的,即标准烹饪曲线包含烹饪电器在不同烹饪阶段的加热功率。因此,为了使烹饪电器达到特定的烹饪阶段,需要在该特定的烹饪阶段的维持时间内,采用设置的与该特定的烹饪阶段对应的功率对烹饪电器进行加热,即预先建立各烹饪阶段与加热功率之间的对应关系并存储在标准烹饪曲线中,烹饪电器在烹饪过程中根据该标准烹饪曲线进行加热控制。当调整至设定的第一功率阈值为增大设定的第一功率阈值,且第一功率阈值是根据烹饪电器的内锅400中的米量进行设置的时,具体原理可以是:假设标准烹饪曲线中每个烹饪阶段对应的加热功率是以烹饪一升米为基准而设置的,并设置在基准米量上每增加一升米,则目标烹饪曲线相对标准烹饪曲线而言,加热阶段的后期对应的加热功率将增大第一设定值和/或沸腾阶段的前期对应的加热功率将增大第一设定值;如果当前烹饪电器的内锅400中的米量为三升时,则需要在标准烹饪曲线的基 础上,将加热阶段的后期对应的加热功率增大两倍第一设定值和/或将沸腾阶段的前期对应的加热功率增大两倍第一设定值,此时两倍第一设定值即为第一功率阈值。
因此,相比于现有的烹饪电器的功率控制方法中对每个烹饪阶段分别采用恒功率加热(也在图18中示出以方便比较)的方式,例如对加热阶段采用恒定功率加热,会使得当烹饪电器内的排气系统1关闭时,面临烹饪电器内还有冷气存在的问题;然而,根据本发明,通过增大加热阶段的后期对应的加热功率,可以实现将烹饪电器内的冷气和含食材生味的空气快速通过排气系统1向外排放。
当烹饪电器的烹饪阶段包括焖饭阶段,目标烹饪阶段包括焖饭阶段,当前烹饪阶段为目标烹饪阶段时,基于排气系统1的关闭压力和微压系统2的开启压力设置的功率,调整当前烹饪阶段对应的加热功率,包括:
当确定当前烹饪阶段为焖饭阶段时,将焖饭阶段对应的加热功率调整至设定的第二功率阈值,控制烹饪电器的压力差大于排气系统1的关闭压力且小于微压系统2的开启压力。
调整至设定的第二功率阈值可以理解为增大至设定的第二功率阈值或增大设定的第二功率阈值,第二功率阈值可根据焖饭阶段的维持时间长短、或者焖饭阶段对应的加热功率、或者在焖饭阶段之前烹饪电器的压力差、或者烹饪电器的内锅400中的米量等因素进行设置,也可以是一个设定的固定值;焖饭阶段对应的加热功率可以理解为烹饪电器在焖饭阶段的加热功率;通常情况下,烹饪电器在不同烹饪阶段的加热功率是基于自身内置的标准烹饪曲线进行确定的,即标准烹饪曲线包含烹饪电器在不同烹饪阶段的加热功率。因此,为了使烹饪电器达到特定的烹饪阶段,需要在该特定的烹饪阶段的维持时间内,采用设置的与该特定的烹饪阶段对应的功率对烹饪电器进行加热,即预先建立各烹饪阶段与加热功率之间的对应关系 并存储在标准烹饪曲线中,烹饪电器在烹饪过程中根据该标准烹饪曲线进行加热控制。当调整至设定的第二功率阈值为增大设定的第二功率阈值,且第二功率阈值是根据烹饪电器的内锅400中的米量进行设置的时,具体原理可以是:假设标准烹饪曲线中每个烹饪阶段对应的加热功率是以烹饪一升米为基准而设置的,并设置在基准米量上每增加一升米,则目标烹饪曲线相对标准烹饪曲线而言,焖饭阶段对应的加热功率将增大第二设定值;如果当前烹饪电器的内锅400中的米量为三升时,则需要在标准烹饪曲线的基础上,将加热阶段的后期对应的加热功率增大两倍第二设定值,此时两倍第二设定值即为第二功率阈值。
因此,相比于现有的烹饪电器的功率控制方法中对每个烹饪阶段分别采用恒功率加热(也在图18中示出以方便比较)的方式,例如对焖饭阶段采用恒定低功率加热,会使得烹饪电器的压力差在焖饭阶段下通常小于排气系统1的关闭压力,而使浮子11和浮子密封圈12未被顶起而打开第一排气孔511,面临烹饪电器内的蒸汽将通过第一排气孔511向外排放的问题;然而,通过增大焖饭阶段对应的加热功率,可以实现烹饪电器内的蒸汽无法通过第一排气孔511和第二通孔52向外排放,实现锁香保湿,提升食材的烹饪效果。
需要说明的是,加热功率可以是指平均加热功率。在实际应用中,烹饪电器进行加热可能采用的是以加热控制周期进行控制的方式,加热控制周期指烹饪电器的加热与停止加热的循环控制时间长短;例如,对于电压力锅而言,加热控制周期可以是指控制发热元件600的工作时间和工作功率的周期;加热控制周期可以以秒或分钟为单位,一般可分为正常加热时间和停止加热时间,假设加热控制周期为5分钟,则可将前3分钟设为正常加热时间,后2分钟设为停止加热时间;因此,本实施例中某一个烹饪阶段对应的加热功率可以是指该烹饪阶段下的加热控制周期中指示的工作 功率,该工作功率可以通过采用直接或间接的方式调节发热元件600的工作电压或工作电流而进行调整。
为了实现上述方法,本发明提供了一种图2的烹饪电器的功率控制装置。如图16所示,该烹饪电器的功率控制装置10可集成在控制板300中并包括处理单元120和调整单元130,其中,处理单元120用于实现图15所示的方法的步骤101及其子步骤,调整单元130用于实现图15所示的方法的步骤102及其子步骤。在此不再赘述。
可选地,为了实现上述方法,本发明还提供了一种图2的烹饪电器的功率控制装置。如图17所示,该烹饪电器的功率控制装置10可集成在控制板300中并包括处理器310和存储器320,存储器320用于存储能够在处理器310上运行以实现图15所示的方法的步骤101、步骤102及其子步骤的计算机程序。处理器310并非用于指代处理器的个数为一个,而是仅用于指代处理器相对其他器件的位置关系,在实际应用中,处理器310可以为一个或多个;存储器320也是同样的含义,即:仅用于指代存储器相对其他器件的位置关系,在实际应用中,存储器320可以为一个或多个。该烹饪电器的功率控制装置10还包括至少一个用户接口330。烹饪电器的功率控制装置10中的各个组件通过总线系统340耦合在一起。可理解,总线系统340用于实现这些组件之间的连接通信。总线系统340除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图17中将各种总线都标为总线系统340。
可选地,为了实现上述方法,本发明还提供了一种计算机存储介质,该计算机存储介质是任何已知的或将来开发的计算机存储介质,该计算机存储介质中存储有计算机程序,当计算机运行该计算机程序时,实现上述方法的步骤。
图18中的功率控制曲线一为现有烹饪电器的功率控制曲线,而功率控 制曲线二为图2的烹饪电器的功率控制曲线。在同一个阶段,功率控制曲线一相对于功率控制曲线二位于下方。根据图18可知,功率控制曲线一在每个烹饪阶段基本都是采用恒功率加热,只是在每个烹饪阶段的加热功率大小不同,例如加热阶段的功率大于吸水阶段的功率和焖饭阶段的功率;但是由于在焖饭阶段采用小功率加热,会使得内锅400的压力差从沸腾阶段的大于P1而逐渐变为小于P1,浮子11从浮起状态变为不浮起状态,从而将第一排气孔511打开,锅内的蒸汽通过第一排气孔511向外排出,导致蒸汽流失;由于在加热阶段采用恒定功率加热的升温速度较慢,当内锅400的压力差P上升到P1时,浮子11从不浮起状态变为浮起状态,从而将第一排气孔511关闭,而此时锅内还留有冷气和含食材生味的空气。
然而,与功率控制曲线一相比,功率控制曲线二在特定的烹饪阶段采用非恒功率加热,并根据控制需求在一些烹饪阶段增大加热功率,具体工作过程如下:在吸水阶段采用小功率加热,此时内锅400的压力等于或大于大气压P0,即内锅400的压力差等于或大于0、小于浮子11的封闭压力P1,第一排气孔511是常开的;在加热阶段采用大小为W2的功率对内锅400进行加热,锅内的水温升高,在加热后期水快沸腾时例如在加热阶段的最后三分钟内,采用大功率加热技术即功率在W2的基础上增加一设定的功率阈值例如200W,以产生大量蒸汽将锅内的冷气快速全部从内锅400排出;因为如果此时采用的是大小为W2的恒功率加热,就不能将锅内的冷气全部排出,而随着蒸汽的持续产生,锅内的压力会上升到P1,浮子11浮起而关闭第一排气孔511,部分冷气就会被封闭在锅内,导致米饭具有生味;在沸腾阶段使锅内的压力差维持在P2左右持续沸腾;在焖饭阶段通过采用大小为W1的恒功率焖饭技术,使锅内的压力差维持在P1至P2之间,实现关闭第一排气孔511和第二通孔52,从而阻止蒸汽流失、实现锁香保湿。
这里,也可以在沸腾阶段的初期采用大功率加热技术,即沸腾阶段的 初期的功率在加热阶段采用的W2的基础上增加一设定的功率阈值,以在内锅400的压力差上升到P1之前产生大量蒸汽将锅内的冷气快速全部从内锅400排出。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和范围之内所作的任何修改、等同替换和改进等,均包含在本发明的保护范围之内。

Claims (47)

  1. 一种烹饪电器的蒸汽阀,其特征在于,所述蒸汽阀包括常开的排气系统和常闭的微压系统,所述排气系统用于排放所述烹饪电器的内锅中的空气,所述微压系统用于封闭所述内锅中的压力,所述排气系统的关闭压力阈值P1小于所述微压系统的开启压力阈值P2。
  2. 根据权利要求1所述的蒸汽阀,其特征在于,所述蒸汽阀还包括常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1。
  3. 根据权利要求2所述的蒸汽阀,其特征在于,所述回流系统的关闭压力阈值P3、所述排气系统的关闭压力阈值P1和所述微压系统的开启压力阈值P2的取值范围分别为:0<P3≤100Pa,100≤P1≤600Pa,800≤P2≤3000Pa。
  4. 根据权利要求1所述的蒸汽阀,其特征在于,所述蒸汽阀还包括阀体,所述阀体的底部设置有第一通孔和第二通孔;
    所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第一通孔中上下运动,所述浮子密封圈用于密封所述第一通孔;
    所述微压系统包括第一阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述第一阀座形成在所述阀体中,所述第二通孔位于所述第一阀座底部,所述阀芯位于所述第一阀座内,所述阀芯密封圈抵接所述第二通孔。
  5. 根据权利要求4所述的蒸汽阀,其特征在于,所述微压系统还包括使所述阀芯复位的弹性元件,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密封圈套设在所述凸缘上,所述弹性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第一阀座的上端。
  6. 根据权利要求5所述的蒸汽阀,其特征在于,所述第一通孔也位于 所述第一阀座底部,所述阀芯主体为形成蒸汽通道的中空结构,所述浮子的上端能够在所述蒸汽通道中上下运动。
  7. 根据权利要求4-6中任一项所述的蒸汽阀,其特征在于,所述蒸汽阀还包括常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;
    所述阀体底部还设置有第一安装孔和第三通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第一安装孔中上下运动,所述密封部用于密封所述第三通孔。
  8. 根据权利要求4所述的蒸汽阀,其特征在于,所述阀芯密封圈包括环状的密封圈主体和设置在所述密封圈主体的下端面的唇边,所述唇边形成封闭的密封区域,所述密封区域密封所述第二通孔。
  9. 根据权利要求8所述的蒸汽阀,其特征在于,所述唇边包括外唇和内唇,所述外唇从所述密封圈主体的整个外周向下突出,所述内唇从所述密封圈主体的整个内周向下突出,所述第二通孔分布在所述密封区域覆盖的范围内。
  10. 根据权利要求9所述的蒸汽阀,其特征在于,所述阀芯密封圈还包括在所述密封圈主体的上端面、从所述密封圈主体的整个外周向上突出的第一凸台,所述阀芯呈倒T形,包括圆筒形的阀芯主体和从所述阀芯主体的下端部向外突出的环形的凸缘;所述阀芯密封圈套设在所述凸缘的外周,所述第一凸台的内周面与所述凸缘的外周面配合,所述凸缘的下端面与所述密封圈主体的上端面接触。
  11. 根据权利要求10所述的蒸汽阀,其特征在于,在所述第一凸台上间隔地设置有多个第二凸台,每个所述第二凸台的剖面呈Γ形,其水平部分 朝着所述密封圈主体的中心突出,所述水平部分的下端面设置有容纳腔;
    在所述凸缘的外周间隔地设置有多个第三凸台,多个所述第三凸台分别与多个所述第二凸台对应间隔地分布,每个所述第三凸台对应地置于每个所述容纳腔中。
  12. 根据权利要求11所述的蒸汽阀,其特征在于,所述容纳腔为贯穿所述水平部分的上端面的通孔;每个所述第三凸台的上端面穿过所述通孔与所述第二凸台的上端面对齐。
  13. 根据权利要求12所述的蒸汽阀,其特征在于,所述第一凸台的上端面被斜切形成从所述密封圈主体的中心向外朝下倾斜的第一倾斜部,每个所述第二凸台的上端面被斜切形成从所述密封圈主体的中心向外朝下倾斜的第二倾斜部;
    所述凸缘的上端面被斜切形成从所述阀芯的中心向外朝下倾斜的第三倾斜部,每个所述第三凸台的上端面被斜切形成从所述阀芯的中心向外朝下倾斜的第四倾斜部;
    所述第一倾斜部与所述第三倾斜部邻接,所述第二倾斜部与所述第四倾斜部邻接。
  14. 根据权利要求4所述的蒸汽阀,其特征在于,所述浮子与所述第一通孔的孔壁之间形成第一排气孔,所述浮子在所述第一通孔中的上下运动用于封闭或开启所述第一排气孔。
  15. 根据权利要求14所述的蒸汽阀,其特征在于,所述浮子设置有浮子内腔、用于使所述内锅内的气体进入所述浮子内腔的进气孔和用于使所述浮子内腔内的气体进入所述第一排气孔的出气孔;
    所述浮子的上挡板卡持于所述第一通孔上,所述浮子密封圈与所述第一阀座的底部外表面抵接而封闭所述第一排气孔。
  16. 根据权利要求15所述的蒸汽阀,其特征在于,所述进气孔开设在 所述浮子的内腔壁的下端,所述出气孔开设在所述浮子的内腔壁的上端或所述浮子的上挡板中。
  17. 根据权利要求16所述的蒸汽阀,其特征在于,所述浮子的下端部还设置有位于所述进气孔下方的环形凹槽,所述浮子密封圈通过所述环形凹槽卡持于所述浮子的下端部。
  18. 根据权利要求4所述的蒸汽阀,其特征在于,所述阀芯由重力块构成,
    所述重力块在所述第一阀座的内腔中上下移动;当所述重力块使所述阀芯密封圈与所述第一阀座的底部相接触时,所述重力块使所述阀芯密封圈将所述第二通孔完全封闭;
    所述重力块的重力等于所述内锅与所述阀腔内的压强差与所述第二通过的横截面积的乘积;所述压强差的范围为0.1KPa~4KPa。
  19. 根据权利要求18所述的蒸汽阀,其特征在于,所述第一阀座还包括形成了所述第一通孔的导向座,所述导向座位于所述第一阀座的内腔内,所述重力块安装在所述导向座的外壁上且沿着所述导向座的外壁上下移动。
  20. 根据权利要求19所述的蒸汽阀,其特征在于,所述蒸汽阀还包括固定盖,所述固定盖安装在所述第一阀座的上端,所述固定盖上设有第二排气孔,所述第二排气孔与所述阀腔连通。
  21. 根据权利要求18所述的蒸汽阀,其特征在于,所述重力块由金属或塑料包裹金属组成。
  22. 根据权利要求18所述的蒸汽阀,其特征在于,所述压强差为0.5KPa~2KPa。
  23. 根据权利要求4所述的蒸汽阀,其特征在于,所述排气系统包括膨胀体、连接到所述膨胀体的一端的底板以及连接到所述膨胀体的另一端 的顶板,在所述底板中形成有底部气道,在所述顶板中形成有顶部气道;
    所述膨胀体置于所述第一通孔中并与所述第一通孔间隙配合,所述底板的上表面与所述第一通孔的下端面相接,所述顶板的下表面与所述第一通孔的上端面相接,所述底部气道通过所述间隙与所述顶部气道连通。
  24. 根据权利要求23所述的蒸汽阀,其特征在于,所述膨胀体包括可弹性变形的外壳和由所述外壳围成的内部空间,所述内部空间填充有热膨胀材料。
  25. 根据权利要求24所述的蒸汽阀,其特征在于,所述外壳由硅胶制成。
  26. 根据权利要求25所述的蒸汽阀,其特征在于,所述底板、所述顶板和所述外壳一体成型。
  27. 根据权利要求23所述的蒸汽阀,其特征在于,所述底部气道形成在所述底板的上表面中,所述顶板包括多个间隔设置的定位凸台,在相邻的所述定位凸台之间形成所述顶部气道。
  28. 根据权利要求23所述的蒸汽阀,其特征在于,所述顶板的上表面形成有导向结构。
  29. 一种烹饪电器的盖板组件,其特征在于,所述盖板组件包括活动板组件、分别设置在所述活动板组件上的常开的排气系统和常闭的微压系统,所述排气系统用于排放所述烹饪电器的内锅中的空气,所述微压系统用于封闭所述内锅中的压力,所述排气系统的关闭压力阈值P1小于所述微压系统的开启压力阈值P2。
  30. 根据权利要求29所述的盖板组件,其特征在于,所述活动板组件包括底盖板,所述底盖板上设置有第二安装孔;
    所述微压系统包括第二阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密 封圈套设在所述凸缘上,所述阀芯主体为形成蒸汽通道的中空结构;
    所述第二阀座底部设置有第四通孔和第五通孔,所述第二阀座安装在所述第二安装孔上,所述阀芯位于所述第二阀座内,所述阀芯密封圈抵接所述第五通孔;
    所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第四通孔中上下运动,所述浮子密封圈用于密封所述第四通孔。
  31. 根据权利要求30所述的盖板组件,其特征在于,所述微压系统还包括使所述阀芯复位的弹性元件,所述弹性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第二阀座的上端。
  32. 根据权利要求30或31所述的盖板组件,其特征在于,所述盖板组件还包括设置在所述活动板组件上的常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;
    所述底盖板还设置有第三安装孔和第六通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第三安装孔中上下运动,所述密封部用于密封所述第六通孔。
  33. 根据权利要求29所述的盖板组件,其特征在于,所述活动板组件包括底盖板,所述底盖板上设置有第四安装孔和第七通孔;
    所述排气系统包括浮子和设置在所述浮子下端的浮子密封圈,所述浮子能够在所述第七通孔中上下运动,所述浮子密封圈用于密封所述第七通孔;
    所述微压系统包括第三阀座、阀芯和设置在所述阀芯下端的阀芯密封圈,所述阀芯位于所述第三阀座内,所述第三阀座底部设置有第八通孔, 所述第三阀座安装在所述第四安装孔上,所述阀芯密封圈抵接所述第八通孔。
  34. 根据权利要求33所述的盖板组件,其特征在于,所述微压系统还包括使所述阀芯复位的弹性元件,所述阀芯包括阀芯主体和位于所述阀芯主体下端的凸缘,所述阀芯密封圈套设在所述凸缘上,所述弹性元件的一端连接所述凸缘,所述弹性元件的另一端连接所述第三阀座的上端。
  35. 根据权利要求33或34所述的盖板组件,其特征在于,所述盖板组件还包括设置在所述活动板组件上的常开的回流系统,所述回流系统用于使冷凝水回流到所述内锅中,所述回流系统的关闭压力阈值P3小于或等于所述排气系统的关闭压力阈值P1;
    所述底盖板还设置有第五安装孔和第九通孔,所述回流系统包括回流本体、置于所述回流本体上端的导向部和置于所述回流本体下端的密封部,所述回流本体能够在所述第五安装孔中上下运动,所述密封部用于密封所述第九通孔。
  36. 一种烹饪电器,其特征在于,所述烹饪电器包括具有排气出口的上盖和根据权利要求1-28中任一项所述的蒸汽阀,所述蒸汽阀安装到所述上盖,所述排气系统和所述微压系统通过所述排气出口与外部环境连通。
  37. 根据权利要求36所述的烹饪电器,其特征在于,所述蒸汽阀与所述上盖之间形成有与所述排气出口连通的阀腔。
  38. 一种烹饪电器的功率控制方法,所述烹饪电器包括常开的排气系统和常闭的微压系统,所述排气系统的封闭压力小于所述微压系统的开启压力,其特征在于,所述功率控制方法包括:
    确定所述烹饪电器的当前烹饪阶段;
    当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的 加热功率。
  39. 根据权利要求38所述的功率控制方法,其特征在于,所述确定所述烹饪电器的当前烹饪阶段,包括:
    获取当前所述烹饪电器的内锅的顶部温度和底部温度;
    根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定所述烹饪电器的当前烹饪阶段;所述内锅温差范围为所述内锅的底部与顶部之间的温差范围。
  40. 根据权利要求38或39所述的功率控制方法,其特征在于,
    所述烹饪电器的烹饪阶段包括加热阶段和沸腾阶段;
    所述目标烹饪阶段包括所述加热阶段的后期和/或所述沸腾阶段的前期;
    所述当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率,包括:
    当确定所述当前烹饪阶段为所述加热阶段的后期或所述沸腾阶段的前期时,将所述加热阶段的后期对应的加热功率或所述沸腾阶段的前期对应的加热功率调整至设定的第一功率阈值,控制所述烹饪电器的压力差小于所述排气系统的关闭压力。
  41. 根据权利要求38或39所述的功率控制方法,其特征在于,
    所述烹饪电器的烹饪阶段包括焖饭阶段;
    所述目标烹饪阶段包括所述焖饭阶段;
    所述当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率,包括:
    当确定所述当前烹饪阶段为所述焖饭阶段时,将所述焖饭阶段对应的 加热功率调整至设定的第二功率阈值,控制所述烹饪电器的压力差大于所述排气系统的关闭压力且小于所述微压系统的开启压力。
  42. 一种烹饪电器的功率控制装置,所述烹饪电器包括常开的排气系统和常闭的微压系统,所述排气系统的封闭压力小于所述微压系统的开启压力;其特征在于,所述功率控制装置包括处理单元和调整单元,
    所述处理单元,用于确定所述烹饪电器的当前烹饪阶段;
    所述调整单元,用于当所述当前烹饪阶段为目标烹饪阶段时,基于所述排气系统的关闭压力和所述微压系统的开启压力设置的功率,调整所述当前烹饪阶段对应的加热功率。
  43. 根据权利要求42所述的功率控制装置,其特征在于,所述处理单元具体用于:
    获取当前所述烹饪电器的内锅的顶部温度和底部温度;
    根据设定的烹饪电器的内锅温差范围与各烹饪阶段之间的对应关系,确定所述烹饪电器的当前烹饪阶段;所述内锅温差范围为所述内锅的底部与顶部之间的温差范围。
  44. 根据权利要求41或42所述的功率控制装置,其特征在于,
    所述烹饪电器的烹饪阶段包括加热阶段和沸腾阶段;
    所述目标烹饪阶段包括所述加热阶段的后期和/或所述沸腾阶段的前期;
    所述调整单元具体用于:
    当确定所述当前烹饪阶段为所述加热阶段的后期或所述沸腾阶段的前期时,将所述加热阶段的后期对应的加热功率或所述沸腾阶段的前期对应的加热功率调整至设定的第一功率阈值,控制所述烹饪电器的压力差小于所述排气系统的关闭压力。
  45. 根据权利要求41或42所述的功率控制装置,其特征在于,
    所述烹饪电器的烹饪阶段包括焖饭阶段;
    所述目标烹饪阶段包括所述焖饭阶段;
    所述调整单元具体用于:
    当确定所述当前烹饪阶段为所述焖饭阶段时,将所述焖饭阶段对应的加热功率调整至设定的第二功率阈值,控制所述烹饪电器的压力差大于所述排气系统的关闭压力且小于所述微压系统的开启压力。
  46. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,其中,当计算机运行所述计算机程序时,实现根据权利要求38至41中任一项所述的烹饪电器的功率控制方法的步骤。
  47. 一种烹饪电器的功率控制装置,其特征在于,所述功率控制装置包括处理器和用于存储能够在所述处理器上运行的计算机程序的存储器;其中,当所述处理器运行所述计算机程序时,实现根据权利要求38至41任一项所述的烹饪电器的功率控制方法的步骤。
PCT/CN2018/090017 2017-12-12 2018-06-05 蒸汽阀、盖板组件、烹饪电器及其功率控制方法 WO2019114215A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201711322507.9A CN109907643B (zh) 2017-12-12 2017-12-12 烹饪电器的功率控制方法、装置、烹饪电器及存储介质
CN201721742770.9U CN208822466U (zh) 2017-12-12 2017-12-12 排气阀、用于烹饪电器的蒸汽阀和这种烹饪电器
CN201711319916.3A CN109907650B (zh) 2017-12-12 2017-12-12 蒸汽阀、盖板组件和包括该蒸汽阀或盖板组件的烹饪电器
CN201721725087.4 2017-12-12
CN201711322507.9 2017-12-12
CN201721742770.9 2017-12-12
CN201721725046.5U CN208822433U (zh) 2017-12-12 2017-12-12 一种烹饪电器的蒸汽阀及烹饪电器
CN201711319916.3 2017-12-12
CN201721725046.5 2017-12-12
CN201721741321.2 2017-12-12
CN201721725087.4U CN208822306U (zh) 2017-12-12 2017-12-12 一种烹饪电器的排冷气压力阀及烹饪电器
CN201721741321.2U CN208822434U (zh) 2017-12-12 2017-12-12 用于蒸汽阀的密封圈、用于烹饪电器的蒸汽阀和烹饪电器

Publications (1)

Publication Number Publication Date
WO2019114215A1 true WO2019114215A1 (zh) 2019-06-20

Family

ID=66819896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090017 WO2019114215A1 (zh) 2017-12-12 2018-06-05 蒸汽阀、盖板组件、烹饪电器及其功率控制方法

Country Status (1)

Country Link
WO (1) WO2019114215A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248712A (ja) * 1997-03-10 1998-09-22 Sanyo Electric Co Ltd 圧力式炊飯器
JP2000296054A (ja) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd 炊飯器
CN201316139Y (zh) * 2008-09-23 2009-09-30 湛江鸿智电器有限公司 一种电饭煲用的排气阀
CN102178443A (zh) * 2011-03-23 2011-09-14 广东伊立浦电器股份有限公司 微压锅具
CN202619421U (zh) * 2012-04-25 2012-12-26 浙江苏泊尔家电制造有限公司 一种电饭煲蒸汽阀
CN102846183A (zh) * 2012-09-18 2013-01-02 浙江苏泊尔家电制造有限公司 电饭煲
CN203195476U (zh) * 2013-03-30 2013-09-18 深圳市鑫汇科电子有限公司 电饭煲微压蒸汽阀及电饭煲
CN205923788U (zh) * 2016-05-31 2017-02-08 佛山市顺德区美的电热电器制造有限公司 电饭煲蒸汽阀及电饭煲

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248712A (ja) * 1997-03-10 1998-09-22 Sanyo Electric Co Ltd 圧力式炊飯器
JP2000296054A (ja) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd 炊飯器
CN201316139Y (zh) * 2008-09-23 2009-09-30 湛江鸿智电器有限公司 一种电饭煲用的排气阀
CN102178443A (zh) * 2011-03-23 2011-09-14 广东伊立浦电器股份有限公司 微压锅具
CN202619421U (zh) * 2012-04-25 2012-12-26 浙江苏泊尔家电制造有限公司 一种电饭煲蒸汽阀
CN102846183A (zh) * 2012-09-18 2013-01-02 浙江苏泊尔家电制造有限公司 电饭煲
CN203195476U (zh) * 2013-03-30 2013-09-18 深圳市鑫汇科电子有限公司 电饭煲微压蒸汽阀及电饭煲
CN205923788U (zh) * 2016-05-31 2017-02-08 佛山市顺德区美的电热电器制造有限公司 电饭煲蒸汽阀及电饭煲

Similar Documents

Publication Publication Date Title
JP6375336B2 (ja) 加熱調理器
US7867534B2 (en) Cooking appliance with steam generator
KR102291813B1 (ko) 조리기구 및 그 제어방법
KR101697898B1 (ko) 무선 전기 압력밥솥
CN108606627A (zh) 控压燃气压力锅
US6911626B2 (en) Overheated steam oven
KR20160063842A (ko) 스팀발생기 및 이를 포함한 조리기기
CN211212725U (zh) 一种带有高压煮食功能的空气炸锅
CN111297217A (zh) 一种蒸烤设备及其控制方法
KR101551216B1 (ko) 고효율 하이브리드 친환경 조리용기
CN111281130A (zh) 提升蒸汽烹饪效果的蒸汽饭煲
KR20110137500A (ko) 화학발열체용 이중 압력 용기
WO2019015373A1 (zh) 蒸汽内锅双腔式蒸汽锅
CN204274131U (zh) 蒸汽炉
CN111481051A (zh) 一种分体式模块化蒸炖锅
WO2019114215A1 (zh) 蒸汽阀、盖板组件、烹饪电器及其功率控制方法
WO2019015372A1 (zh) 蒸汽锅
CN208228845U (zh) 蒸汽阀组件、上盖组件及烹饪器具
JP2020522667A (ja) 蒸気発生器を備えた調理器
KR101725975B1 (ko) 발열팩을 이용하는 야외용 조리기구
CN212853237U (zh) 一种分体式模块化蒸炖锅
CN202179462U (zh) 一种煎烤机
CN111067344A (zh) 一种烹饪机
CN111603037A (zh) 蒸烤箱、蒸烤箱的控制方法及具有蒸烤箱的集成灶
KR20180124715A (ko) 솥, 솥 어셈블리 및 주방 기구

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18889851

Country of ref document: EP

Kind code of ref document: A1