WO2019114205A1 - Matériau composite mxene-métal et son procédé de préparation - Google Patents

Matériau composite mxene-métal et son procédé de préparation Download PDF

Info

Publication number
WO2019114205A1
WO2019114205A1 PCT/CN2018/089160 CN2018089160W WO2019114205A1 WO 2019114205 A1 WO2019114205 A1 WO 2019114205A1 CN 2018089160 W CN2018089160 W CN 2018089160W WO 2019114205 A1 WO2019114205 A1 WO 2019114205A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
metal composite
metal
alc
sic
Prior art date
Application number
PCT/CN2018/089160
Other languages
English (en)
Chinese (zh)
Inventor
冯金奎
费慧芳
段弘伟
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019114205A1 publication Critical patent/WO2019114205A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to an MXene-metal composite material and a preparation method thereof.
  • the anode material of lithium ion battery is mainly graphite electrode material, and its theoretical specific energy is only 372 mAh/g, which limits the improvement of the overall performance of lithium battery, and urgently needs to develop a new high specific energy negative electrode material system; and due to the embedded lithium battery of graphite The position is relatively low, which easily leads to decomposition of the electrolyte and precipitation of dendritic lithium, which causes a series of safety problems. Therefore, it is necessary to find a new negative electrode material which is higher in lithium insertion potential than carbon material, cheap and easy to obtain, safe and reliable.
  • MAX A main element
  • the MXene material has been reported as a negative electrode material for a lithium battery.
  • the patent CN106025236A discloses a preparation method of an S-SnO 2 /Ti 3 C 2 two-dimensional nano-particle ion battery anode material.
  • S-SnO 2 /Ti 3 C 2 was prepared by using Ti 3 AlC 2 , SnCl 4 ⁇ 5H 2 O and thioacetamide as raw materials, by hydrofluoric acid etching, ultrasonic mixing, rapid stirring, water washing and drying, etc.
  • the nanocomposite material effectively increases the capacitance, but the preparation process is complicated and the cost is high.
  • Patent CN106025200A discloses a preparation method of a nitrogen-doped MXene battery anode material, which adopts a nitrogen source such as Ti 3 AlC 2 and N 2 as a raw material, and is made of nitrogen-doped MXene by hydrofluoric acid etching and nitrogen source heat treatment. Battery anode material. This method makes the MXene surface have a large number of defects, and the capacity is further improved. Compared with the MXene material which is not doped with nitrogen, the specific capacity can be increased by 45%; but after a plurality of cycles, the specific capacity is only about 300 mAh/g. The cycle performance has yet to be further improved.
  • Patent CN107161999A discloses a preparation method of a battery electrode material based on Ti 2 C MXene, which is prepared by a process of hydrofluoric acid etching, stirring and drying, using an intercalation agent such as Ti 3 AlC 2 and ferric chloride.
  • the Ti 2 C MXene film material was obtained; however, the volume specific capacity after repeated cycles was only 290-315 mAh/g.
  • the metal elements Sb and Bi can also be used in lithium batteries, generally in the form of thin films or fine particles distributed in the anode material or to form intermetallic compounds or alloys into battery anode materials, because the two metal elements have potential charge and discharge characteristics.
  • the reversible capacity is ideal, the conductivity is excellent, and the lithium insertion ability is higher than that of graphite, which is beneficial to improve the safety performance of the battery.
  • the ⁇ / ⁇ is present in the above form, the problem of pulverization or agglomeration is easily caused, which affects the performance of the lithium battery.
  • an object of the present invention is to provide an MXene-metal composite material and a preparation method thereof, and the MXene-metal composite electrode material prepared by the invention has uniform dispersion, compared with the prior art.
  • the utility model has the advantages of high specific capacity, good cycle performance, good rate performance, simple process, high efficiency and low time consumption.
  • the invention uses hydrogen waste gas generated in the reaction process to reduce metal, and effectively utilizes hydrogen exhaust gas to reduce The production process and cost can better meet the needs of industrial production, achieve large-scale production, and have great application prospects.
  • One of the objects of the present invention is to provide a MXene-metal composite.
  • Another object of the present invention is to provide a method for preparing a MXene-metal composite.
  • a third object of the present invention is to provide the use of the above MXene-metal composite material and a preparation method thereof.
  • the present invention discloses an MXene-metal composite material composed of a MXene material and metal particles uniformly coated on the surface of the MXene material, the metal particles being a simple substance of Sb and/or Bi.
  • the present invention discloses a method for preparing a MXene-metal composite material. Specifically, the preparation method comprises the following steps:
  • reaction liquid in the step 1) is centrifuged, and the solid product obtained after centrifugation is washed and vacuum dried to obtain a MXene-metal composite material.
  • the metal salt particles are one or more of a phosphonium salt and a phosphonium salt.
  • the onium salt is one or more of barium chloride, barium nitrate, and barium fluoride.
  • the onium salt is one or more of barium chloride and barium nitrate.
  • the MAX powder comprises: Ti 3 AlC 2 , Ti 2 AlC, Ta 4 AlC 3 , TiNbAlC, (V 0.5 Cr 0.5 ) 3 AlC 2 , V 2 AlC, Nb 2 AlC, Nb 4 AlC 3 , Ti 3 AlCN, Ti 3 SiC 2 , Ti 2 SiC, Ta 4 SiC 3 , TiNbSiC, (V 0.5 Cr 0.5 ) 3 SiC 2 , V 2 SiC, Nb 2 SiC, Nb 4 SiC 3 , Ti 3 SiCN, or the like.
  • the MAX powder is Ti 3 AlC 2 , Ti 2 AlC, Ti 3 AlCN, Ti 2 SiC.
  • the hydrofluoric acid mass fraction is 30% to 48%.
  • the mass ratio of the metal salt to the MAX is 1:1 to 1:10.
  • the reaction temperature and time are respectively 15 to 40 ° C, 10-18 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • step 2) the vacuum drying time is 12-16 h.
  • the metal in the MXene-metal composite material is one or more of Sb and Bi.
  • the present invention discloses the use of MXene-metal composites prepared by the above methods, including in lithium batteries or other energy storage materials.
  • the soluble salt of Sb and Bi is mixed with hydrofluoric acid, and after the metal salt is dissolved, Sb 3+ and Bi 3+ are ionized, and then the MAX powder is added to the mixed solution, and Al in the MAX powder.
  • the Si element reacts with hydrofluoric acid to generate hydrogen gas.
  • the Sb 3+ and Bi 3+ attached to the MAX surface can be reduced in situ, so that Sb and Bi form a metal element, and finally
  • the obtained surface is covered with Sb, Bi MXene-metal composite material, and the metal element obtained by in-situ reduction can form a good bonding force with the MAX surface, and is not easy to fall off, and greatly improves the conductivity of MXene, due to Sb, Bi itself has the characteristics of accommodating a certain capacity, and can further increase the specific capacity of MXene. It can be seen that the present invention solves a plurality of technical problems by fully utilizing the hydrogen generated by the reaction of MAX powder and hydrofluoric acid, and A good technical effect has been achieved.
  • the MXene-metal composite described in the present invention is used as a negative electrode material for a lithium ion battery.
  • the electrolyte of the lithium ion battery is ethylene carbonate, dimethyl carbonate, ethylene carbonate, diethyl carbonate, biphenyl (BP), vinylene carbonate (VC), ethylene carbonate (VEC), fluorine.
  • Vinyl carbonate FEC
  • PS 1,3-propane sultone
  • BS 1,4-butane sultone
  • PST 1,3-(1-propene) sultone
  • Any one or more of vinyl sulfite (ESI), vinyl sulfate (ESA), cyclohexylbenzene (CHB), tert-butylbenzene (TBB), t-amylbenzene (TPB), and dicyandiyl (SN) A mixture of lithium salts.
  • the lithium salt may be a mixture of one or more of the following formulas: lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium bistrifluorosulfonamide (LiN(SO2CF3)2), difluorosulfonamide Lithium (LiFSI), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiSO3CF3), etc., and the concentration of the lithium salt is 0.5 to 2.5 mol/L.
  • the positive electrode is lithium cobaltate, lithium manganate, lithium iron phosphate, lithium nickel cobalt oxide, lithium nickel cobalt manganese oxide or the like.
  • the present invention achieves the following beneficial effects:
  • the invention fully utilizes the hydrogen exhaust gas in the process of preparing MXene by MAX, and obtains a negative electrode material of lithium ion battery with excellent performance while turning waste into treasure.
  • the MXene-metal composite prepared by the invention has the advantages of uniform dispersion, high specific energy, good cycleability and the like.
  • the surface of the MXene prepared by the invention is coated with a metal element, which further improves the electrical conductivity of the MXene.
  • the ruthenium and iridium metal coated on the surface of MXene itself have a property of accommodating a certain electric capacity, and coating it on the surface of MXene can further improve the specific energy of the MXene-metal composite prepared by the present invention.
  • Figure 1 is a graph showing the cycle efficiency of a sample prepared in Example 1 of the present invention.
  • the preparation of the existing MXene anode material also has the problems of complicated preparation method, high cost, low efficiency, poor performance, and lack of utilization of hydrogen exhaust gas. Therefore, the present invention proposes an MXene-metal composite material and The preparation method thereof will now be further described with reference to the examples.
  • the metal salt particles are dispersed in a hydrofluoric acid solution, and MAX is placed in the above solution and stirred.
  • reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.3 g of antimony trichloride.
  • step 1) the MAX used is 0.5 g Ti 3 AlC 2 .
  • step 1) the hydrofluoric acid mass fraction is 40%.
  • the reaction temperature and time are respectively: 20 ° C, 10 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • step 2) the vacuum drying time is 14 h, that is, a Ti 3 C 2 -Sb composite electrode material is obtained.
  • Step 1) Disperse the metal salt particles in a hydrofluoric acid solution, and place MAX in the above solution and stir.
  • Step 2) After the reaction is completed, the reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.4 g of antimony trichloride.
  • step 1) the MAX is 0.5 g Ti 2 AlC.
  • step 1) the hydrofluoric acid mass fraction is 30%.
  • step 1) the reaction temperature and time are: 15 ° C, 14 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time is 12 h, that is, a Ti 2 C-Bi composite electrode material is obtained.
  • Step 1) Disperse the metal salt particles in a hydrofluoric acid solution, and place MAX in the above solution and stir.
  • Step 2) After the reaction is completed, the reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.2 g of cesium fluoride.
  • MAX used was 0.5 g Ti 3 AlCN.
  • the hydrofluoric acid mass fraction is 48%.
  • the reaction temperature and time were respectively: 40 ° C, 16 h.
  • the vacuum drying temperature was 80 °C.
  • the vacuum drying time is 16 h, that is, the Ti 3 CN-Sb composite electrode material is obtained.
  • the metal salt particles are dispersed in a hydrofluoric acid solution, and MAX is placed in the above solution and stirred.
  • reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.5 g of antimony trichloride.
  • step 1) the MAX used is 0.5 g Ta 4 AlC 3 .
  • step 1) the hydrofluoric acid mass fraction is 40%.
  • the reaction temperature and time are respectively: 20 ° C, 10 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time was 14 h, that is, a Ta 4 C 3 -Sb composite electrode material was obtained.
  • Step 1) Disperse the metal salt particles in a hydrofluoric acid solution, and place MAX in the above solution and stir.
  • Step 2) After the reaction is completed, the reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.5 g of cerium nitrate.
  • step 1) the MAX is 5 g (V 0.5 Cr 0.5 ) 3 AlC 2 .
  • step 1) the hydrofluoric acid mass fraction is 30%.
  • the reaction temperature and time were respectively: 25 ° C, 18 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time is 12 h, that is, a (V 0.5 Cr 0.5 ) 3 C 2 -Bi composite electrode material is obtained.
  • Step 1) Disperse the metal salt particles in a hydrofluoric acid solution, and place MAX in the above solution and stir.
  • Step 2) After the reaction is completed, the reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.5 g of cerium nitrate.
  • step 1) the MAX is 5 g Ti 3 SiCN.
  • step 1) the hydrofluoric acid mass fraction is 30%.
  • the reaction temperature and time were respectively: 35 ° C, 15 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time is 12 h, that is, the Ti 3 CN-Bi composite electrode material is obtained.
  • the metal salt particles are dispersed in a hydrofluoric acid solution, and MAX is placed in the above solution and stirred.
  • reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.5 g of antimony trichloride.
  • step 1) the MAX used is 0.5 g TiNbSiC.
  • step 1) the hydrofluoric acid mass fraction is 40%.
  • the reaction temperature and time are respectively: 30 ° C, 10 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time is 14 h, that is, the TiNbC-Sb composite electrode material is obtained.
  • the metal salt particles are dispersed in a hydrofluoric acid solution, and MAX is placed in the above solution and stirred.
  • reaction liquid in the step 1) is centrifuged, and the solid obtained after centrifugation is washed and vacuum dried to obtain an MXene-metal composite electrode material.
  • the metal salt particles are 0.5 g of antimony trichloride and 0.5 g of antimony nitrate.
  • step 1) the MAX used is 1.5 g (V 0.5 Cr 0.5 ) 3 SiC 2 .
  • step 1) the hydrofluoric acid mass fraction is 40%.
  • the reaction temperature and time were respectively: 35 ° C, 17 h.
  • step 2) the vacuum drying temperature is 80 °C.
  • the vacuum drying time is 14 h, that is, a Bi-(V 0.5 Cr 0.5 ) 3 C 2 -Sb composite electrode material is obtained.
  • the Ti 3 C 2 -Sb composite electrode material obtained in Example 1 was made into a negative electrode of a lithium ion battery, and the above negative electrode was subjected to charge and discharge test at a rate of 0.5 C.
  • the result is shown in FIG. It can be seen that the specific discharge capacity of the first week reaches 711 mAh/g. After 22 weeks of cycle, the specific discharge capacity can still reach 497 mAh/g, compared with the electrochemical performance of the MXene anode material in the background section, regardless of the discharge specific capacity. It is also cyclical, which has been greatly improved. This shows that the use of hydrogen gas in the surface of MXene coated with metal element makes the electrochemical performance of MXene effectively improved.

Abstract

La présente invention concerne un matériau composite MXene-métal et son procédé de préparation. La solution technique mise en œuvre par la présente invention comprend : (1) le mélange de particules de sel métallique avec de l'acide fluorhydrique pour formuler une solution, puis l'introduction d'une matière première MAX dans la solution et son agitation ; et (2) après la fin d'une réaction, la centrifugation de la solution de réaction à l'étape 1), et le lavage et le séchage sous vide d'un solide résultant de la centrifugation pour obtenir un matériau d'électrode composite MXene-métal. La présente invention utilise pleinement l'hydrogène gazeux brûlé au cours de la préparation de MXene par l'utilisation de MAX, et le matériau d'électrode composite MXene-métal préparé a l'avantage de présenter une dispersion uniforme, une énergie spécifique élevée, une bonne circularité, un processus simple, etc. ; en outre, le gaz brûlé généré au cours de la réaction est efficacement utilisé, ce qui permet de réduire les techniques et les coûts de production, conduisant à un rendement de production élevé, ce qui permet de mieux répondre aux exigences de production industrielle et de réaliser une production à grande échelle, de sorte que cette dernière présente de grandes perspectives d'application.
PCT/CN2018/089160 2017-12-15 2018-05-31 Matériau composite mxene-métal et son procédé de préparation WO2019114205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711350122.3A CN108091862B (zh) 2017-12-15 2017-12-15 一种MXene-金属复合材料及其制备方法
CN201711350122.3 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019114205A1 true WO2019114205A1 (fr) 2019-06-20

Family

ID=62176704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089160 WO2019114205A1 (fr) 2017-12-15 2018-05-31 Matériau composite mxene-métal et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN108091862B (fr)
WO (1) WO2019114205A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180694A (zh) * 2019-12-31 2020-05-19 广东工业大学 一种MXene/金属硫化物复合材料、负极材料及制备与应用
CN111180695A (zh) * 2019-12-31 2020-05-19 广东工业大学 一种MXene/金属磷化物复合材料、负极材料及制备与应用
CN115159451A (zh) * 2022-08-04 2022-10-11 华北电力大学(保定) 一种氢化铝/硼氢化镁@MXene复合储氢材料的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091862B (zh) * 2017-12-15 2019-09-03 山东大学 一种MXene-金属复合材料及其制备方法
CN108467273A (zh) * 2018-05-31 2018-08-31 西南交通大学 三元层状Ti3AlCN陶瓷及其制备方法
CN108793167B (zh) * 2018-07-19 2022-02-25 陕西科技大学 一种利用三元MAX材料制备层状MXenes材料的方法
CN108987674B (zh) * 2018-07-25 2020-06-05 山东大学 一种柔性MXene自支撑膜/金属复合材料及其制备方法、应用
CN109686936B (zh) * 2018-12-17 2020-10-27 深圳先进技术研究院 钙离子电池负极活性材料、负极材料、钙离子电池负极、钙离子电池及其制备方法和应用
CN109712769B (zh) * 2019-01-30 2020-11-03 郑州大学 一种MXene-磁性金属复合材料及其制备方法
CN110600747A (zh) * 2019-10-09 2019-12-20 山东大学 一种柔性三维层状MXene@铟复合膜及其制备方法和应用
CN110803702B (zh) * 2019-11-01 2023-03-24 河北科技大学 用于超级电容器电极材料的MXene复合材料的制备方法及MXene复合材料
CN110931731B (zh) * 2019-11-08 2020-10-23 上海应用技术大学 二维碳化物晶体基硫化锑负极材料及其制备方法和应用
CN110890546A (zh) * 2019-11-30 2020-03-17 国网新疆电力有限公司电力科学研究院 高导电率液态金属包覆耐低温储能材料及其制备方法
CN111029531B (zh) * 2020-01-02 2021-03-30 北京航空航天大学 单原子分散的MXene材料及其用于锂电负极的用途
CN111498850B (zh) * 2020-04-26 2021-08-20 江南大学 一种二维过渡金属碳氮化物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944611A (zh) * 2010-05-25 2011-01-12 耿世达 一种锂离子电池高能钴锡锑钛/碳复合负极材料及生产工艺
WO2016049109A2 (fr) * 2014-09-25 2016-03-31 Drexel University Formes physiques de matériaux mxene présentant de nouvelles caractéristiques électriques et optiques
CN106025200A (zh) * 2016-05-24 2016-10-12 浙江大学 一种氮掺杂MXene电池负极材料的制备方法及其应用
CN108091862A (zh) * 2017-12-15 2018-05-29 山东大学 一种MXene-金属复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229488B (zh) * 2016-08-26 2019-01-08 浙江工业大学 一种氧化物柱撑MXene复合材料及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944611A (zh) * 2010-05-25 2011-01-12 耿世达 一种锂离子电池高能钴锡锑钛/碳复合负极材料及生产工艺
WO2016049109A2 (fr) * 2014-09-25 2016-03-31 Drexel University Formes physiques de matériaux mxene présentant de nouvelles caractéristiques électriques et optiques
CN106025200A (zh) * 2016-05-24 2016-10-12 浙江大学 一种氮掺杂MXene电池负极材料的制备方法及其应用
CN108091862A (zh) * 2017-12-15 2018-05-29 山东大学 一种MXene-金属复合材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180694A (zh) * 2019-12-31 2020-05-19 广东工业大学 一种MXene/金属硫化物复合材料、负极材料及制备与应用
CN111180695A (zh) * 2019-12-31 2020-05-19 广东工业大学 一种MXene/金属磷化物复合材料、负极材料及制备与应用
CN115159451A (zh) * 2022-08-04 2022-10-11 华北电力大学(保定) 一种氢化铝/硼氢化镁@MXene复合储氢材料的制备方法
CN115159451B (zh) * 2022-08-04 2023-04-07 华北电力大学(保定) 一种氢化铝/硼氢化镁@MXene复合储氢材料的制备方法

Also Published As

Publication number Publication date
CN108091862B (zh) 2019-09-03
CN108091862A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2019114205A1 (fr) Matériau composite mxene-métal et son procédé de préparation
CN109524652B (zh) 一种共价有机框架/石墨烯复合有机材料及制备方法和在锂/钠离子电池负极材料中的应用
CN103682274B (zh) 一种石墨烯/聚苯胺/硫复合材料及其制备方法
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
CN108598444B (zh) 锂离子电池复合负极材料三氧化二钒/石墨烯及制备方法
CN102386410A (zh) 磷酸钒锂/石墨烯复合材料及其制备方法
CN104852028A (zh) 一种锂离子电池用钛酸锂/石墨烯复合负极材料
WO2021004150A1 (fr) Procédé de préparation de matériau d'électrode négative sns/nd-cn de batterie au lithium-ion
CN104183832A (zh) 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用
CN102280617A (zh) 一种锂离子电池用碳材料改性锰酸锂复合正极材料及其制备方法
CN108511735A (zh) 一种改性钛酸锂复合材料及其制备方法与锂离子电池
CN111600006B (zh) 一种锂离子电池负极材料棒状锡锑合金的制备方法
CN108321378A (zh) 一种具有异质结界面效应的金属氧化物@金属复合物/石墨烯核壳半导体材料的制备方法
CN102195033B (zh) 一种低温制备锂电池正极材料锂锰复合氧化物的方法及锂离子二次电池
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN105047870A (zh) 一种掺氮碳包覆硅复合材料及其制备方法
CN107240685A (zh) 一种三氟化铁/六氟铁酸锂复合正极材料、制备及其应用
CN108281620B (zh) 一种钠离子电池负极材料二氧化钛的制备方法
CN102079517A (zh) 喷雾热解法制备锂离子电池正极材料氟化磷酸钒锂
CN113735174A (zh) 一种基于一价阳离子掺杂锰基化合物的水系锌离子电池正极材料及其制备方法和应用
CN103531809A (zh) 一种核壳结构颗粒与石墨烯复合材料的制备方法和应用
CN111994896A (zh) 一种碳复合负极材料及其制备方法、锂离子电池
CN102956890B (zh) 低温碳包覆复合材料、其制备方法及其应用
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN109244417B (zh) 一种纳米片层状结构锂硫电池复合正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887643

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18887643

Country of ref document: EP

Kind code of ref document: A1