WO2019108051A2 - Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado - Google Patents

Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado Download PDF

Info

Publication number
WO2019108051A2
WO2019108051A2 PCT/MX2018/000125 MX2018000125W WO2019108051A2 WO 2019108051 A2 WO2019108051 A2 WO 2019108051A2 MX 2018000125 W MX2018000125 W MX 2018000125W WO 2019108051 A2 WO2019108051 A2 WO 2019108051A2
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
folding
bicycle
folded
handlebar
Prior art date
Application number
PCT/MX2018/000125
Other languages
English (en)
French (fr)
Other versions
WO2019108051A3 (es
Inventor
Rafael Alejandro ALONSO ALVAREZ
Original Assignee
Alonso Alvarez Rafael Alejandro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alonso Alvarez Rafael Alejandro filed Critical Alonso Alvarez Rafael Alejandro
Priority to US16/766,733 priority Critical patent/US20200391818A1/en
Publication of WO2019108051A2 publication Critical patent/WO2019108051A2/es
Publication of WO2019108051A3 publication Critical patent/WO2019108051A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K15/00Collapsible or foldable cycles
    • B62K15/006Collapsible or foldable cycles the frame being foldable
    • B62K15/008Collapsible or foldable cycles the frame being foldable foldable about 2 or more axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/003Spoked wheels; Spokes thereof specially adapted for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/04Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group expansible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/02Segmented rims, e.g. with segments arranged in sections; Connecting equipment, e.g. hinges; Insertable flange rings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K15/00Collapsible or foldable cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K15/00Collapsible or foldable cycles
    • B62K15/006Collapsible or foldable cycles the frame being foldable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/12Handlebars; Handlebar stems
    • B62K21/16Handlebars; Handlebar stems having adjustable parts therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/18Connections between forks and handlebars or handlebar stems

Definitions

  • the present invention relates to the field of personal transport, specifically in the modality of folding bicycles.
  • a personal transport system which has the best relationship between the maximum volume deployed and the minimum volume folded; allowing the user a safe and comfortable transportation in its deployed state and a minimum storage in its folded state, the bicycle being in its folded state less than the wheel in its deployed state, being able to be stored inside a standard backpack.
  • Folding bicycles originated in the late 1800s, due to the interest of European armies to give soldiers the ability to increase their mobility through a means of autonomous locomotion that could be loaded in the same way as backpacks when they were not In use.
  • folding bicycles are conceived from the beginning of the design as such, so the dimensions of the same are reduced and fit the folding mechanics in relation to ordinary bicycles, so folding bicycles tend to be smaller than Normal bicycles in both the size of the frame the wheels and other components.
  • the bicycles of average folding what they do is to take a bicycle of regular dimensions and they add a mechanism of folding to reduce their dimensions of when at least to half for when it is not in use.
  • this folding system is a hinge in the center of the frame on the central axis, allowing the frame halves to rotate approximately 180 ° making the dimensions of the bicycle in the Sagittal plane (35) is subtracted in half and the front and rear wheels are placed side by side.
  • This method is very similar to the method of medium folding, using a hinge in the central axis to the middle of the frame, with the difference that the design and dimensions of the bicycle are conceived in a folding bicycle design so the diameter of the wheels and the size of the frame are reduced as well as allowing the possibility of folding the handlebar by means of a hinge that is in the base of the same allowing to turn it so that this is aligned with the two folded halves of the frame.
  • This method of folding changes the axis of the hinges of the frame in comparison to the previous methods, from a vertical axis (39), to a transversal axis (40), allowing that by means of two hinges in the frame (as opposed to a single the previous methods) generate a triangular figure.
  • the wheels remain side by side. Also most of the designs that use this method it is possible to fold the handlebar to place it next to the wheel.
  • this folding configuration of the bicycle frame is that it allows the reduction of the frame when folded, on a scale with respect to vertical folding, achieving in some cases that the dimensions of the frame when folded are similar or even smaller than the diameter of the wheels of the same.
  • This type of folding bikes do not really fold.
  • the strategy of this type of bicycle is as its name indicates to separate the components in individual pieces after storage in some type of backpack or container.
  • folding bicycles occupy elements of different types to solve particular problems, or take the best of each of them generating more favorable combinations, these are known as mixed type.
  • a bicycle that presents a vertical folding of the frame where the wheels or wheels are separated and consequently the latter require to be stored in special containers.
  • the current types of folding of bicycles allow the frame, handlebars, pedals, as well as other components of the bicycle, to be can fold up to very compact sizes.
  • the physical limit to reach the minimum folding dimension is the diameter of the wheel.
  • Regular or conventional wheels refers to the use of a type of bicycle wheel with a structure similar to those of bicycles that are not collapsible, with the only difference that they have a smaller diameter but retain their structure as well as the camera air or some type of cushioning in the wheel which have the disadvantage of not having diameters less than 40 cm.
  • this type of wheels have a solid bearing surface mostly, so they lack a cushion section as is the air chamber or other damping method, this drastically reduces the comfort of driving to the not have the ability to absorb vibrations as well as road obstacles.
  • the strategy of this type of bicycle is to completely separate the wheels from the structure of the frame, when it is folded.
  • the separation of the rim from the frame allows the latter to be folded and finally both are stored as separate elements, both the wheels and the frame.
  • the wheels vary in shape or size, which include but are not limited to, regular-sized (16-inch) wheels, supermarket-type wheels, folding wheels, or toroid-type wheels that do not have an axle. central.
  • the wheel can be separated from the structure of the frame allows different types of strategies to be used with respect to the wheels since at the time they are separated they do not have to coexist directly with the frame system and its form of folding .
  • folding bicycles that have folding frames, which also comprise folding wheels (CN 202243869), which lead to a lower configuration of its folded state, where its folding rotation occurs in the transverse plane, with at least two folding axes. Said folding bicycles keep their elements separate during the folding and unfolding process, focusing their objective in reducing the smaller size of their wheels, assuming the risk that these pieces may be lost.
  • folding bicycles with one or more folding elements, which can be folding wheels, folding box and folding handles, which in particular avoid containing all its elements formed as a unit while maintaining its integrity (CN 202243869).
  • the folding of the frame of the bicycle (CN 202243869) is carried out in a multitude of axes and planes that lead to a minor configuration in which one or more of its elements, mainly the rims, are separated from each other. said minimum configuration. This implies (the problems inherent in the separation of the elements) that the separated element can be lost and thereby lose the integrity of the bicycle, making it impossible to use it as a means of transport.
  • folding bicycles that in turn have developed folding wheels as is the case of the application CN1105053C where the frame and wheels are folding, reaching their minimum configuration, however these are separated from their structure and leads to problems of folding bicycles that have lost their integrity by containing separate pieces as mentioned above.
  • folding rim from a variety of models or alternatives of folding rims already recognized in the state of the art for example CN101678707B, fails to proportionally reduce its area in the sagittal plane, in such a way that by reducing its area on its anterior antero axis increases it on the vertical axis.
  • FIG. 1 Side view of the invention in its maximum deployed state.
  • FIG. 2 Side view of the invention in its minimum folded state.
  • FIG. 3 Side view of the front wheel (25) in its maximum deployed state.
  • Fig. 4 Perspective of the wheel in its minimum folded state.
  • FIG. 5 Perspective of the invention in its maximum deployed state (upper drawing) and minimum folding (lower drawing) in the sagittal plane (35). In this figure the width relation between the two states of the invention is observed.
  • FIG. 6 Perspective of the invention in its maximum deployed state (left side drawing) and minimum folded state (right side drawing) compared to its height based on the floor marked with the lower dotted line.
  • Fig. 7 Complete top view of the invention, comparing its maximum deployed state (left drawing) and minimum folded state (right drawing).
  • FIG. 8 Side view of the frame (3) of the invention, showing the travel of the rear scissor (19) from its maximum deployed state (left continuous line), to its minimum folded state (right continuous line), with an intermediate step as an example (central dotted line).
  • FIG. 9 Side view of the invention is its maximum deployed state showing in a continuous line the section formed by the rear (24) and front (25) wheels.
  • FIG. 10 Side view of the invention in its maximum deployed state showing in a continuous line the section of the frame (3).
  • FIG. 11 Side view of the invention in its maximum deployed state showing in a continuous line the section of the handle (1).
  • FIG. 12 Side view of the components of the frame (3) and the rear wheel (24) in its maximum deployed state, indicating the maximum distance (33) between the rear sprocket (20) and the front star (22).
  • FIG. 13 Side view of the invention in its minimum folded state, indicating the minimum distance (34) between the rear sprocket (20) and the front star (22).
  • FIG. 14 Side view of the invention in its maximum deployed state showing in dotted line the stroke of the seat (16) for folding and unfolding.
  • Fig. 15 Top left perspective of the bottom bracket (13) and the seat tube (15), the lower joint of the seat tube (14), the lower articulation of the extendable lower tube (12) and the extendable lower tube (11).
  • FIG. 16 Perspective of the range of motion of the articulated arm of the wheel (30) of the arc segment of the wheel (27) (a).
  • FIG. 17 Perspective of the displacement of the arc segment of the wheel (27) (a).
  • Fig. 18 Perspective of the rotation range of the wheel arc segment (27) (a).
  • FIG. 20 Perspective of the rotation range of the wheel toroid (26), of the arc segments of the wheel (27) (b, c, d).
  • FIG. 21 Perspective of the rotation of the wheel toroid (26), of the arc segments of the wheel (27) (b, c, d).
  • FIG. 22 Perspective of the range of motion of the articulated arm of the wheel (30) of the arc segment of the wheel (27) (b).
  • Fig. 23 Perspective of the displacement of the arc segment of the wheel (27) (b).
  • FIG. 24 Perspective of the range of rotation of the arc segment of the wheel (27) (b).
  • FIG. 27 Perspective of the toroid rotation of the wheel (26) of the wheel arc segments (27) (c, d).
  • FIG. 28 Perspective of the rotation range of the wheel arc segment (27) (c).
  • FIG. 30 Perspective of the range of motion of the articulated arm of the wheel (30) of the arc segment of the wheel (27) (d).
  • FIG. 31 Perspective of the displacement of the arc segment of the wheel (27) (d).
  • FIG. 32 Perspective of the rotation range of the wheel toroid (26) of the arc segment of the wheel (27) (d).
  • FIG. 33 Perspective of the toroid rotation of the wheel (26) of the wheel arc segment (27) (d).
  • FIG. 34 Perspective of the rotation range of the wheel arc segment (27) (d).
  • FIG. 36 Perspective of the range of rotation of the arc segments of the wheel (27) (a, b, c, d).
  • FIG. 37 Perspective of the rotation of the arc segments of the wheel (27) (a, b, c, d).
  • Fig. 38 Perspective of the front wheel (25) in its minimum folded state.
  • Fig. 39 Side view of the front wheel (25) in its minimum folded state.
  • Fig. 40 Perspective of the range of movement of the wheel arc segments (27).
  • FIG. 41 Perspective of the movement of the arc segments of the wheel (27).
  • Fig. 42 Perspective of the storage opening of the handlebar (1).
  • FIG. 43 Perspective of the rear wheel (24) is its minimum folded state.
  • Fig. 44 Side view of the invention with folded wheels.
  • Fig. 45 Side view of the folding displacement of the rear scissors (19).
  • Fig. 46 Side view of the displacement range of the seat (16).
  • Fig. 47 Side view of the displacement of the seat (16) for folding.
  • Fig. 48 Perspective of the handlebar folding rotation range (2).
  • FIG. 49 Perspective of the handlebar folding rotation (2).
  • Fig. 50 Perspective of the retraction range of the handlebar extension system (5).
  • FIG. 51 Perspective of the retraction of the handlebar extension system (5).
  • Fig. 52 Perspective of the rotation range of the handlebar (1).
  • Fig. 53 Perspective of the handlebar rotation (1).
  • Fig. 54 Side view of the retraction range of the extendable lower tube (11).
  • Fig. 55 Side view of the retraction of the extendable lower tube (11).
  • Fig. 56 Side view of the rotation range of the upper joint of the extendable lower tube (10).
  • Fig. 58 Side view of the rotation range of the lower joint of the extendable lower tube (12).
  • Fig. 64 Transverse plane (37), with the invention deployed.
  • FIG. 66 Anteroposterior axis (38), with the invention deployed.
  • Fig. 67 Anteroposterior axis (38), with the invention folded.
  • Fig. 68 Vertical axis (39), with the invention deployed.
  • Fig. 69 Vertical axis (39), with the invention folded.
  • Fig. 70 Transverse axis (40), with the invention deployed.
  • Fig. 72 Side view of the wheel toroid (26).
  • FIG. 73 Detail view of the node (41).
  • Fig. 74 Side view of the steering shaft (44) with respect to the axis of the handle (45).
  • Fig. 78 Rear view of the range of displacement of the arc segment of the wheel (27), through the action of the double articulation of the articulated arm of the wheel (30).
  • Fig. 79 Bottom perspective view of the front lock of the power transmission device (43), in the maximum deployed state.
  • Fig. 80 Bottom perspective view of the front lock of the power transmission device (43), in the minimum folded state.
  • Fig. 81 Perspective of the rear lock of the power transmission device (42), in its maximum deployed state.
  • Fig. 82 Perspective of the rear lock of the power transmission device (42), in its minimum folded state.
  • Fig. 83 Side view of the bicycle in its maximum deployed state (47) and its minimum folded state (48), compared to a human scale (46).
  • bicycle bicycle of the present invention, invention or other term referred to in the description to the bicycle of the application, is used interchangeably and refers to the folding bicycle object of the invention which is claimed in the present application.
  • state refers to the completed embodiments or steps of the folding bicycle of the present application, where the terms “condition” or “configuration” can be used interchangeably to denote the presentation of the bicycle either in the state deployed or maximum or in the minimum or folded state.
  • the bicycle has two forms of state or configurations, a maximum called “Unfolded” as shown in Fig. 1, which is the conformation where all the components of the frame (3), the handlebar (1), the front wheel (25) and the rear wheel (24) are deployed and is optimal for use as a means of transport.
  • a second state or minimal configuration called “Folded” Fig. 2, where all the components of the frame (3), the handlebar (1), the front wheel (25) and the rear wheel (24) are folded being its state optimal for storage.
  • Both states or configurations are described in fig. 83, which shows the relationship of these configurations with a human scale.
  • FIG. 83 shows the bicycle in its maximum deployed state (47) with respect to the folding ratio of the bicycle in its minimum folded state (48) and the relation of both with a human scale (46). Note that in its maximum deployed state (47) the bicycle is comfortable and safe; while in its minimum folded state (48) it comprises the smallest storage volume. An average human scale of around 170 cm in height is also shown, this relationship is an exemplary model of the present application and not limiting for it.
  • the folding systems of the frame (3), the rear wheel (24), front wheel (25), and the handle (1) of this invention allows that when it is completely folded the systems are aligned side by side vertically in the sagittal plane (35), as shown in Fig. 2. This allows its dimensions in the sagittal plane (35) to be smaller than the diameter of the wheel when it is deployed Fig. 5.
  • Fig. 6 you can see the bicycle area ratio between the maximum deployed state (left side drawing) and its minimum folded state (right side drawing), in this figure you can see that the bicycle when it is in its minimum state its height is the same as the wheel of the invention when it is in its maximum state.
  • the bicycle is formed by the exemplary sections called: rear wheel (24), the front wheel (25), the frame (3) and the handlebar (1).
  • the conformation of the toroid of the wheel (26) by means of discrete segments allows, by means of the combined action of the articulated arm of the wheel (30) and the node of the axis of the wheel (31) to displace the segments of the wheel arch ( 27) to its minimum folded state as shown in Fig. 4 (the folding and unfolding procedure of the wheel is described in detail from Fig. 16 to Fig. 43.
  • the articulated arm of the wheel (30) joins the arc node of the wheel (29) with the node of the wheel axis (31) and supports the compression and tension of the wheel. the wheels (24 and 25). This compression and tension occurs with the bicycle in its maximum deployed state and supporting the weight of the user.
  • the segment of the wheel arch (27) contains in its structure the bearing surface, the cushion surface and the structural surface, necessary for a safe and comfortable bearing by the user.
  • the construction of the wheel hub is given by aligning the segments of the wheel axle nodes (31), as shown in explosive in Fig. 75, allowing the wheel to have two types of rotation.
  • the first type of rotation as shown in Fig. 76 is performed when the wheel is in its maximum deployed state and all the components including the axle nodes are kept integrated to allow the rolling of the wheel.
  • the second type of rotation as shown in Fig. 77 is performed for the process of folding and unfolding of the wheels, in which each node of the wheel axis (31), rotate independently to allow us to position our in a vertical parallel in its minimum folded state as shown in Fig. 4, or in the same way by its independent rotation to move to its maximum deployed state as shown in Fig. 3.
  • the sections of the wheel arch (27) are attached to the nodes of the wheel axle (31) by means of articulated arms of the wheel (30) that allows them to change from their folded to unfolding and vice versa.
  • FIG. 10 shows the section of the frame (3) in solid line.
  • This section is made up of the components that provide the geometry, structure and traction of the bicycle when it is deployed. The joints and extensions of these components they allow the frame (3) to transition from the folded state to the deployed state and vice versa.
  • the section of the frame (3) is divided into the following elements: The rear scissors (19), the upper sheath (17) and the lower sheath (18), the seat tube (15), the seat (16), the bottom bracket (13), lower articulation of the seat tube (14), lower joint of the extendable lower tube (12), the power transmission device (21), the front star (22), the front lock of the power transmission device (43), the rear sprocket (20), rear lock of the power transmission device (42), the upper joint of the extendable lower tube (10), the extendable lower tube (11) and the pedals (23).
  • Fig. 11 the section of the handlebar (1), in a continuous line, which is formed by the handlebar (2), handlebar articulation (4), handlebar extension system (5), articulated base, can be seen. of the handlebar (6), power (7) and the power node (9).
  • the power node (9) allows rotation in the sagittal plane (35) for folding, as well as the direction of the front wheel in the transverse plane (37), when it is deployed for use as a transport.
  • Fig. 73 the two types of rotations described in the power node (9) are shown.
  • the axis of the handle (45) is the mechanical connection with the handle (1), which allows the user to dictate the direction of the invention when it works as a transport.
  • This axis of the handle (45) is eccentric to the axis of the steering (44), which is what allows the rotation of the handlebar system (1) and the front wheel (25). The detail of this sample eccentricity in Fig. 74.
  • the handlebar (1) is stored in the front wheel, between the segments of the wheel arch (27) (b, c) which generate a space shown in Fig. 42, which enables store the handle allowing it to be vertical in its minimum folded state as shown in Fig. 53.
  • the folding of the frame takes place in the sagittal plane (35) through a series of joints that connect the systems.
  • the seat tube (15) is the reference to a traditional element of the bicycle, which can be constituted of a plurality of geometries such as bars or tubes or a combination of these.
  • the extendable lower tube (11) refers to a known name of this bicycle component, this can be constituted by a plurality of geometries such as bars or tubes or a combination of these.
  • the folding bicycle of the present invention can be constructed in its entirety or in each of its elements by a single material or a combination of materials for each element, said materials can be metal alloys, composite materials such as glass fibers and fiber of carbon, polymers and natural materials such as wood, bamboo and leather.
  • the elements of the sections of the bicycle; the rear wheel (24), the front wheel (25), the frame (3) and the handle (1), are folded thanks to a series of joints that allows it to be folded and unfolded in these elements in the following sequence.
  • Step 1 of the folding as shown in Fig. 17.
  • Fig. 16 shows the range of movement of the segment of the wheel arch (27). The displacement of the arc segment of the wheel (27), between its unfolded and folded positions is possible thanks to the coordinated action of the articulated arm articulations of the wheel (30).
  • Fig. 18 shows the range of rotation of the arc of the wheel of the segment of the wheel arch (27) (a).
  • Step 3 of the folding as shown in Fig. 21, rotate 90 ° the toroid of the wheel (26), composed of the segments of the wheel arch (27) (b, c, d), aligning the segments of the arc of the wheel (27) (a, b), of the articulated arm of the wheel (30) that is kept in the same position as in the previous step.
  • Fig. 20 shows the range of rotation of the segments of the wheel arch (27) (b, c, d).
  • Step 4 of the folding as shown in Fig. 23, moves the segment of the wheel arch (27) (b), from its position aligned with the wheel toroid (26), to its minimum position.
  • Fig. 22 shows the range of movement of the wheel arc segment (27).
  • Step 5 of the folding as shown in Fig. 25 the segment of the wheel arch (27) (b), is rotated on the transverse axis (40), until the inner part of the arc segment of the wheel ( 27), makes contact with the node of the wheel axis (31).
  • Fig. 24 shows the range of rotation of the arc of the wheel of the segment of the wheel arch (27)
  • Step 6 of the folding as shown in Fig. 27 The wheel toroid (26), made up of the segments of the wheel arch (27) (c, d), is rotated 90 °, aligning the articulated arm of the wheel. wheel (30), of the segment of the wheel arch (27) (c), with the articulated arm of the wheel (30) of the segment of the wheel arch (27) (b, a), which are held in position vertical.
  • Fig. 20 shows the range of rotation of the segments of the wheel arch (27) (c, d).
  • Fig. 28 shows the range of rotation of the arc of the wheel of the segment of the wheel arch (27)
  • Step 8 of the folding as shown in Fig. 31, moves the segment of the arc of the wheel (27) (d), from its position aligned with the toroid of the wheel (26), to its storage position.
  • Fig. 30 the range of motion of the wheel arc segment (27) (d) is shown.
  • Step 9 of the folding as shown in Fig. 33 rotate 90 ° the wheel toroid (26), composed of the arc segment of the wheel (27) (d), aligning the articulated arm of the wheel ( 30), of the arc segment of the wheel (27) (d), with the arc segments of the wheel (27) (a, b), of the articulated arm of the wheel (30) that is kept in vertical position.
  • Fig. 32 shows the rotation range of the segment of the wheel arch (27) (d).
  • Step 10 of the folding as shown in Fig. 35 the segment of the arc of the wheel (27) (d), is rotated on the transverse axis (40), until the inner part of the arc segment of the wheel ( 27), makes contact with the node of the wheel axis (31).
  • Fig. 34 shows the range of rotation of the arc of the wheel of the segment of the wheel arch (27) (d).
  • Step 11 of the folding as shown in Fig. 37 the set of segments of the arc of the wheel (27), folded are rotated until they make contact with their corresponding scissors, being the front scissors (8) or the rear scissors (19)
  • Step 12 of the fold shown in Fig. 41 a space is generated between the arc sections (b, c).
  • Fig. 42 the space between the segments of the wheel arch (27) (b, c) is shown.
  • the function of this space is to contain the handlebar system (1) once folded as shown in Fig. 53, this step is performed only on the front wheel.
  • step 11 For the folding of the rear wheel (24) the same procedure is followed until step 11, with which the folding of the rear wheel ends, as shown in Fig. 43.
  • Fig. 42 the final result of the folding of the front wheel (25) is shown and in Fig. 43, the final result of folding the rear wheel (24) is shown.
  • Step 13 of the folding as shown in Fig. 45 the rear scissor (19) together with the rear wheel (24), moves from its unfolded position to its folded position.
  • the race of this step is achieved by the combined action of the pods. Individually, the upper sheath (17) dictates the separation between the rear scissors (19) and the seat tube (15), while the lower sheath (18) defines the angle of the rear scissors (19). The action of this race can be seen in more detail in Fig. 8.
  • the power transmission device (21) maintains its own integrity during the folding and unfolding process, as well as during its minimum folded state Fig. 2, thanks to the use of a flexible material as a band.
  • the power transmission device (21) remains fixed to the rear sprocket (20) and the front star (22) during the minimum state of the bicycle and the folding and unfolding transitions, thanks to the rear latch of the power transmission device (42), and to the front lock of the power transmission device (43), which prevent the power transmission device (21) from losing contact with the rear sprocket (20), and the front star (22) at the time that the power transmission device (21) loses its tension in the minimum state folding as well as during the folding and unfolding transitions.
  • This integrity could not be maintained by a metallic bicycle chain since the integrity of this type of chains is only achieved under tension, which is lost in the folded minimum state as well as in the folding transitions of the present invention.
  • Step 14 of the folding as shown in Fig. 47 the seat (16) moves from its maximum configuration deployed to its minimum folded configuration.
  • Fig.46 the range of withdrawal and deployment of the seat is shown.
  • Step 15 of the folding as shown in Fig. 49 the handlebar (2), is in the form of "T" in its deployed state, rotated 90 ° in the front plane (36). This action allows the handlebar to be aligned vertically to the extension system of the handlebar (5).
  • Fig. 48 the handlebar rotation range (2) is shown.
  • Step 16 of the folding as shown in Fig. 51 the extension system of the handlebar goes from its maximum extended extension, when retracted to its minimum folded extension.
  • Fig. 50 the extension range of the handlebar extension system (5) is shown.
  • Step 17 of the folding as shown in Fig. 53 the handlebar system (1), is rotated towards the front in the sagittal plane (35), until it is aligned parallel with the front scissors (8).
  • the handlebar system (1) is stored in the space generated between the segments of the wheel arch (27) (b, c), of the front wheel of the folding step 12 shown in Fig. 41 and Fig. 42
  • Fig. 52 the range of rotation of the articulated base of the handlebar (6) can be seen.
  • Step 18 of the folding as shown in Fig. 55 the extendable lower tube (11) is reduced from its maximum spread to the minimum folded.
  • Fig. 54 shows the extension range of the extendable lower tube (11).
  • Step 19 of the folding as shown in Fig. 57 the group of elements formed by the power node (9), the power (7), the front scissors (8), the front wheel (25) and the system of the handle (1), rotate thanks to the upper articulation of the extendable lower tube (10) backwards in the sagittal plane (35), until it is aligned parallel to the extendable lower tube (11).
  • Fig. 56 the rotation range is shown.
  • Step 20 of the folding as shown in Fig. 59 the group of elements formed by the extendable lower tube (11), the power node (9), the power (7), the front scissors (8), the wheel front (25) and the handle (1), rotate thanks to the bottom bracket (13) and the combined action of the lower articulation of the seat tube (14) and the lower joint of the extendable lower tube (12) as articulation knuckles, up to that said element group is aligned parallel with the seat tube (15), this is shown in detail in Fig. 15, (In this figure as reference the front wheel is on the left side and the rear wheel on the right side) .
  • Fig. 58 shows the rotation range of said group of elements.
  • step 1 In order for the folding bicycle of the invention to change from its minimum folded state to its maximum deployed state it is necessary to follow the same steps but in the opposite direction starting now in step 20 and continuing as such until step 1.
  • the folding systems of the frame (3), the handlebar (1), front wheels (25) and rear wheel (24), allow the folding bicycle of the present invention to have a maximum extension ratio when in the configuration unfolded, by a minimum ratio when it is in the folded configuration in addition to a human scale, as shown in Fig. 83.
  • the folding systems of the frame (3), the handlebar (1), front wheels (25) and rear wheel (24), allow the bicycle area in its folded configuration to be smaller than the area of the wheel when it is displayed as shown in Fig. 5, that is, the size of the bicycle in its folded configuration is less than the size of the wheel in its deployed configuration.
  • the front star (22) and the rear sprocket (20) maintain the regular distance between them, which allows to sustain the necessary tension required by the power distribution or traction device (21). ), to rotate the rear wheel by pedaling.
  • the rear scissor (19) runs a race that allows it to align with the seat tube (15), as shown in Fig. 8, this folding action allows also that the front star (22) and the rear sprocket (20), are facing each other, looking for a minimum volume of storage in the folded state of the bicycle.
  • Sagittal plane (35) It is the plane that divides the invention in right half and left half as shown in Fig. 60 bicycle deployed and Fig. 61 folded bicycle.
  • Front plane (36) Is the plane that divides the invention in the back and front half as shown in Fig. 62 unfolded bicycle and Fig. 63 folded bicycle.
  • Transverse plane (37) Is the plane that divides the invention into upper and lower part as shown in Fig. 64 unfolded bicycle and Fig. 65 folded bicycle.
  • Anteroposterior axis (38) Is the axis that goes forward or backward and is perpendicular to the frontal plane (36), as shown in Fig. 66 deployed bicycle and Fig. 67 folded bicycle.
  • Vertical axis (39) It is the axis that goes from top to bottom and is perpendicular to the horizontal plane as shown in Fig. 68 deployed bicycle and Fig. 69 folded bicycle.
  • Transverse axis (40) Is the axis that is directed from side to side and is perpendicular to the sagittal plane (35), as shown in Fig. 70 unfolded bicycle and Fig. 71 folded bicycle.
  • Toroid of the wheel (26) It is the geometry of toroid (donut shape), which acquires the wheel when it is fully assembled or deployed and ready for its bearing, as shown in Fig. 72. Applies in the same way in the front wheel (25) and rear wheel (24).
  • Node Refers to a piece that is the point of union between different pieces. As an example is shown in Fig. 73, the node (41), which functions as a point of union between the piece (e) and the piece (f).
  • Rotate refers to the rotation of a piece using an axis as the center of rotation, staying in a defined plane.
  • Race Refers to the distance of the defined course of a piece dictated by rails, telescopes or joints.
  • Articulation It refers to a connection between two solids that allows both to move or rotate because they converge on the same axis or point of support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

La presente invención se refiere a una bicicleta plegable la cual cuenta con una multitud de elementos plegables, los cuales se agrupan en elementos principales como el cuadro (3), el manubrio (1), la rueda delantera (25) y la rueda trasera (24), dichos elementos principales se conjuntan para constituir un elemento inseparable. La multitud de elementos plegables agrupados en elementos principales permite llevar a la bicicleta plegable de la presente invención a un volumen mínimo en su estado o configuración denominada plegada. La configuración plegada permite que esta sea fácilmente transportada o empacada en el volumen de una mochila estándar. La bicicleta plegable de la presente invención permite la conducción confortable y segura como una bicicleta de tamaño estándar en su configuración denominada desplegada o máxima. La bicicleta plegable de la presente invención mantiene la integridad de todos sus componentes o elementos que la conforman, tanto en la configuración plegada como en la configuración desplegada, así como en las transiciones entre ellas, lo que implica que no haya piezas sueltas y que todos los elementos que la constituyen permanezcan acoplados. El proceso de llevar la bicicleta plegable de la presente invención de la configuración plegada a desplegada o viceversa, es un proceso simple que no requiere de ningún elemento externo o herramienta adicional y es llevado a cabo de manera sencilla por pasos simples y con los propios medios del usuario.

Description

Título
Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado.
Campo técnico de la invención.
La presente invención se relaciona con el campo del transporte personal, específicamente en la modalidad de las bicicletas plegables.
Objeto de la invención.
Un sistema de transporte personal el cual presenta la mejor relación entre el volumen máximo desplegado y el volumen mínimo plegado; permitiendo al usuario una transportación segura y cómoda en su estado desplegado y un almacenaje mínimo en su estado plegado, siendo la bicicleta en su estado plegado menor a la rueda en su estado desplegado, siendo capaz de ser almacenado dentro de una mochila estándar.
Esto se logra gracias a que todos los elementos de la bicicleta son plegables, incluyendo el cuadro (3), el manillar (2) y las ruedas delantera (25) y rueda trasera (24).
Antecedentes.
Las bicicletas plegables tuvieron su origen a finales de los 1800s, debido al interés del los ejércitos europeos para darle a los soldados la capacidad de aumentar su movilidad mediante un medio de locomoción autónomo que pudieran cargar de la misma forma que las mochilas cuando no se encontraran en uso.
Durante esa época y principios del siglo 20 los conflictos armados como la primera y la segunda guerra mundial permitieron el desarrollo de las bicicletas plegables, disminuyendo su tamaño y plegado gracias a los avances de los métodos de producción, así como el uso de diferentes materiales. Sin embargo el crecimiento del mercado de las bicicletas plegables se disparo en el mercado civil durante la década de los 80s en una parte al surgimiento de marcas como Dahon y Brompton que gracias a sus diseño y esquemas de mercadeo lograron que la bicicleta se convirtiera en un artículo de transporte común.
Actualmente en la segunda década del siglo 21 las bicicletas plegables se han convertido en un artículo esencial de transporte personal debido a la saturación de las vías de comunicación de los automotores, así como medida para combatir el daño ecológico de los motores de combustión.
A partir de la información recopilada del estado de la técnica, se puede definir los tipos de bicicletas plegables y los métodos de plegado en las siguientes categorías.
Plegado medio.
Actualmente las bicicletas plegables se conciben desde el principio del diseño como tales, por lo que las dimensiones de las mismas se reducen y se adecúan a la mecánica plegable con relación a las bicicletas ordinarias, por lo que las bicicletas plegables suelen ser más pequeñas que las bicicletas normales tanto en el tamaño del cuadro las ruedas y otros componentes.
Las bicicletas de plegado medio lo que hacen es tomar una bicicleta de dimensiones regulares y les adicionan un mecanismo de plegado para reducir sus dimensiones de cuando al menos a la mitad para cuando no se encuentra en uso.
Por lo general este sistema de plegado es una bisagra en el centro del cuadro en el eje central permitiendo girar aproximadamente 180° las mitades del cuadro logrando que las dimensiones de la bicicleta en el plano sagital (35) se resta a la mitad y que las ruedas delantera y trasera se colocan una al lado de la otra.
Plegado vertical:
Este método es muy similar al método de plegado medio, utilizando una bisagra en el eje central a la mitad del cuadro, con la diferencia que el diseño y las dimensiones de la bicicleta se conciben en un diseño de bicicleta plegable por lo que el diámetro de las ruedas y el tamaño del cuadro se reducen así como permitir la posibilidad de plegar el manillar mediante una bisagra que se encuentra en la base del mismo permitiendo girarlo para que este quede alineado con las dos mitades plegadas del cuadro.
Bisagra triangular:
Este método de plegado cambia el eje de las bisagras del cuadro en comparación a los métodos anteriores, de un eje vertical (39), a un eje transversal (40), permitiendo que mediante dos bisagras en el cuadro (a diferencia de una sola en los métodos anteriores) genere una figura triangular. Al igual que los métodos anteriores las ruedas quedan una al lado de la otra. Igualmente la mayoría de los diseños que utilizan este método es posible plegar el manillar para colocarlo al lado de la rueda.
El uso de esta configuración de plegado del cuadro de la bicicleta es que permite la reducción del cuadro cuando se encuentra plegado, a una escala con respecto al plegado vertical, logrando en algunos casos que las dimensiones del cuadro cuando se encuentra plegado sean similares o incluso menores al diámetro de las ruedas de la misma.
Separadas:
Este tipo de bicicletas plegables realmente no se pliegan. La estrategia de este tipo de bicicletas es como su nombre lo indica separar los componentes en piezas individuales después guardarlas en algún tipo de mochila o contenedor.
En el momento que el usuario pretenda utilizar la bicicleta como medio de transporte, tiene que armar la bicicleta utilizando los componentes separados, repitiendo el mismo ciclo de armado y desarmado. La desventaja evidente de este método es que si las piezas separadas se pierden, lo que genera que la bicicleta no se arme otra vez hasta que se sustituya dicha pieza.
Durante el armado y desarmado de las bicicletas de este tipo se requieren herramientas especiales que en la mayoría de las ocasiones son externas por ejemplo llaves o desarmadores las cuales se localizan en contenedores especiales para su depósito así como de los componentes que han sido separados como es el caso de la bicicleta Gocycle, que viene con un tipo de maleta rígida que mediante un proceso de termoformado simula la forma de los componentes mayores como las ruedas y el cuadro para poder contener las dentro cuando se encuentra plegada y en partes separadas dentro de un maletín.
Mixtas:
Los tipos anteriormente mencionados son los más usados y conocidos en el diseño de las bicicletas plegables. Algunas bicicletas plegables ocupan elementos de distintos tipos para resolver problemas particulares, o toman lo mejor de cada uno de ellos generando combinaciones más favorables, estas son conocidas como los de tipo mixto.
Por ejemplo una bicicleta que presenta un plegado vertical del cuadro en donde las llantas o ruedas se encuentran separadas y en consecuencia estas últimas requieren ser almacenarlas en contenedores especiales.
Los tipos actuales de plegado de las bicicletas permiten que el cuadro, el manillar, los pedales, así como otros componentes de la bicicleta, se puedan plegar hasta tamaños muy compactos. Sin embargo, el límite físico que se tiene para alcanzar la dimensión mínima de plegado es el diámetro de la rueda.
Dada esta situación, mediante los tipos mencionados de plegado no se puede lograr un plegado menor al diámetro de las ruedas.
Las propuestas de plegado considerando la aproximación de las ruedas como límite para alcanzar el plegado mínimo se utilizan usualmente las siguientes estrategias:
Ruedas regulares:
Ruedas regulares o convencionales se refiere a que se utiliza un tipo de rueda de bicicleta con una estructura similar a las de las bicicletas que no son plegables, con la única diferencia de que cuentan con un diámetro menor pero conservan su estructura así como la cámara de aire o algún tipo de amortiguación en la rueda las cuales presentan la desventaja de no contar con diámetros inferiores a 40 cm.
La ventaja de este tipo de ruedas es que brinda a los usuarios una rodada estable y segura, así como confort debido a la superficie de amortiguación.
La desventaja es que pese a que se reduce el diámetro de las ruedas sigue siendo un límite de plegado considerable.
Ruedas tipo carrito de supermercado:
Como lo indica el nombre, algunas bicicletas plegables reducen dramáticamente el área del plegado al utilizar ruedas extraordinariamente pequeñas (entre 10 y 20 cm), siendo similares a las que se utilizan en carritos de supermercado o patines del diablo. Esto permite que el plegado de la bicicleta sea menor al tipo anterior, dado que el diámetro de la rueda es tan pequeño que no limita al plegado mínimo del cuadro de la bicicleta. Uno de los ejemplos más difundidos de este tipo de aproximación a las ruedas es la bicicleta "A-bike".
Así mismo el diámetro pequeño de este tipo de ruedas reduce su estabilidad haciendo difícil para el usuario mantener el equilibrio mientras rueda, disminuyendo así su habilidad de maniobrar en el camino, de la misma forma se vuelve más vulnerable a imperfecciones u obstáculos del camino como baches, banquetas, piedras, ramas, aumentando en consecuencia las probabilidades de sufrir daño.
Es de notar que este tipo de ruedas cuentan con una superficie de rodamiento sólida en su mayoría, por lo que carecen de una sección de amortiguación como lo es la cámara de aire u otro método de amortiguación, esto reduce drásticamente la comodidad de la conducción al no contar con la capacidad de absorber las vibraciones así como los obstáculos del camino.
Finalmente, debido al reducido diámetro de ruedas de este tipo de bicicletas, la relación entre el pedaleo del usuario y el número de revoluciones de la rueda será mucho menor con respecto a las ruedas con un diámetro mayor, requiriendo un pedaleo más intenso para lograr el avance requerido, lo cual generará un mayor desgaste del usuario, incrementándose en situaciones como pendientes de subida.
Ruedas separadas:
La estrategia de este tipo de bicicletas es separar completamente las ruedas de la estructura del cuadro, cuando esta se pliega. De manera habitual la separación de la llanta del cuadro permite que este último proceda a ser plegado y finalmente sean ambos almacenados como elementos separados, tanto las ruedas como el cuadro. En este tipo de aproximación las ruedas varían en forma o dimensión, las cuales incluyen pero no limitándose a, ruedas de tamaño regular (16 pulgadas) ruedas de tipo carrito de supermercado, ruedas plegables, o ruedas de tipo toroide que no cuentan con un eje central.
El hecho de que la rueda pueda ser separada de la estructura del cuadro permite que se utilicen distintos tipos de estrategias con respeto a las ruedas dado que en el momento que son separadas no tienen que coexistir directamente con el sistema del cuadro y su forma de plegado.
De la misma forma que las bicicletas de tipo separadas, la mayor desventaja de este tipo de ruedas es que, al mantenerse separados los componentes son susceptibles a que se pierdan o se encuentran distanciados en el momento que se le requiera armada para su uso.
Por otra parte es conocido en el estado de la técnica, bicicletas plegables que cuentan con cuadros plegables, que comprenden además ruedas plegables (CN 202243869), que llevan a una configuración inferior de su estado plegado, en donde su rotación de plegamiento se da en el plano transversal, con al menos dos ejes de plegamiento. Dichas bicicletas plegables mantiene sus elementos separados durante el proceso de plegado y desplegado, centrando su objetivo en reducir el menor tamaño de sus ruedas, asumiendo el riesgo de que estas piezas puedan ser extraviadas.
Existen además bicicletas plegables con uno o más elementos plegables, los cuales pueden ser ruedas plegables, cuadro plegable y manubrios plegables, que de manera particular evitan contener todos sus elementos conformados como una unidad manteniendo su integridad (CN 202243869).
El plegamiento del cuadro de la bicicleta (CN 202243869) se realiza en una multitud de ejes y planos que llevan a una configuración menor en la cual uno o varios de sus elementos, principalmente las llantas, se separan de dicha configuración mínima. Esto implica (los problemas inherentes a la separación de los elementos) que el elemento separado pueda ser extraviado y con ello perder la integridad de la bicicleta imposibilitando su uso como medio de transporte.
En los documentos ejemplares CN 202243869, CN1105053C y US6702312B1 la distancia entre los pedales y el eje de tracción de la rueda trasera siempre se mantienen en las configuraciones plegada y desplegada a la misma distancia, esto independientemente del plegado del dispositivo y del tipo de tracción que se utilice.
En el estado de la técnica se mencionan diversas solicitudes en las que se describen bicicletas plegables en donde el límite de dicho plegamiento es el diámetro de la ruedas, así principalmente la patente US6702312B1 y la solicitud CN 20235827 U presentan una configuración mínima la cual comprende ruedas estándar sin sistemas de plegado.
Por otra parte existen bicicletas plegables que a su vez han desarrollado ruedas plegables como es el caso de la solicitud CN1105053C en donde el cuadro y las llantas son plegables, alcanzando su configuración mínima, sin embargo estas se separan de su estructura y conlleva a los problemas de las bicicletas plegables que han perdido su integridad por contener piezas separadas como ya fue mencionado anteriormente.
La adición de una llanta plegable a partir de una diversidad de modelos o alternativas de llantas plegables ya reconocidas en el estado de la técnica por ejemplo CN101678707B, no logra reducir de manera proporcional su área en el plano sagital, de tal suerte que al reducir su área en su eje antero posterior la aumenta en el eje vertical.
Existen otras alternativas por ejemplo CN 102991267B la cual reduce su área proporcional a costa de aumentar significativamente su área en el eje transversal impidiendo que la rueda se mantenga integrada a la bicicleta en su estado mínimo y en consecuencia deba de ser separada del resto de la bicicleta.
Por otra parte son conocidas ruedas separadas en secciones como se describe en CN 202243869 U, las cuales se encuentran unidas a un eje central apilando dichas secciones de rueda al eje central de dicha rueda generando un volumen superior en uno de sus costados. Otro inconveniente se da cuando se mantienen las secciones perpendiculares al brazo de la rueda, lo cual genera poca disminución del volumen de la rueda, en su estado plegado.
Breve descripción de las figuras.
Se describirán a continuación, las figuras que se adjuntan.
Fig. 1 Vista lateral de la invención en su estado máximo desplegado.
Fig. 2 Vista lateral de la invención en su estado mínimo plegado.
Fig. 3 Vista lateral de la rueda delantera (25) en su estado máximo desplegado.
Fig. 4 Perspectiva de la rueda en su estado mínimo plegado.
Fig. 5 Perspectiva de la invención en su estado máximo desplegado (dibujo superior) y mínimo plegado (dibujo inferior) en el plano sagital (35). En esta figura se observa la relación de anchura entre los dos estados de la invención.
Fig. 6 Perspectiva de la invención en su estado máximo desplegado (dibujo lado izquierdo) y estado mínimo plegado (dibujo lado derecho) comparado su altura tomando como base el piso marcado con la línea punteada inferior. Fig. 7 Vista superior completa de la invención, comparando su estado máximo desplegado (dibujo izquierdo) y mínimo plegada (dibujo derecho).
Fig. 8 Vista lateral del cuadro (3) de la invención, mostrando la carrera de la tijera trasera (19) de su estado máximo desplegado (línea continua izquierda), a su estado mínimo plegada (línea continua derecha), con un paso intermedio a modo de ejemplo (línea punteada central).
Fig. 9 Vista lateral de la invención es su estado máximo desplegado mostrando en línea continua la sección conformada por las ruedas trasera (24) y delantera (25).
Fig. 10 Vista lateral de la invención en su estado máximo desplegada mostrando en línea continua la sección del cuadro (3).
Fig. 11 Vista lateral de la invención en su estado máximo desplegada mostrando en línea continua la sección del manubrio (1).
Fig. 12. Vista lateral de los componentes del cuadro (3) y la rueda trasera (24) en su estado máximo desplegado, señalando la distancia máxima (33) entre el piñón trasero (20) y la estrella delantera (22).
Fig. 13 Vista lateral de la invención en su estado mínimo plegado, señalando la distancia mínima (34) entre el piñón trasero (20) y la estrella delantera (22).
Fig. 14 Vista lateral de la invención en su estado máximo desplegado mostrando en línea punteada la carrera del asiento (16) para el plegado y desplegado.
Fig. 15 Perspectiva superior izquierda del pedalier (13) y el tubo del asiento (15), la articulación inferior del tubo del asiento (14), la articulación inferior del tubo inferior extensible (12) y el tubo inferior extensible (11).
Fig. 16 Perspectiva del rango de movimiento del brazo articulado de la rueda (30) del segmento de arco de la rueda (27)(a).
Fig. 17 Perspectiva del desplazamiento del segmento de arco de la rueda (27) (a). Fig. 18 Perspectiva del rango de rotación del segmento de arco de la rueda (27) (a).
Fig. 19 Perspectiva de la rotación del segmento de arco de la rueda (27)
(a).
Fig. 20 Perspectiva del rango de rotación del toroide de la rueda (26), de los segmentos de arco de la rueda (27)(b, c, d).
Fig. 21 Perspectiva de la rotación del toroide de la rueda (26), de los segmentos de arco de la rueda (27) (b, c, d).
Fig. 22 Perspectiva del rango de movimiento del brazo articulado de la rueda (30) del segmento de arco de la rueda (27) (b). Fig. 23 Perspectiva del desplazamiento del segmento de arco de la rueda (27) (b).
Fig. 24 Perspectiva del rango de rotación del segmento de arco de la rueda (27) (b).
Fig. 25 Perspectiva de la rotación del segmento de arco de la rueda (27)
(b). Fig. 26 Perspectiva del rango de rotación del toroide de la rueda (26), de los segmentos de arco de la rueda (27) (c, d).
Fig. 27 Perspectiva de la rotación del toroide de la rueda (26) de los segmentos de arco de la rueda (27) (c, d).
Fig. 28 Perspectiva del rango de rotación del segmento de arco de la rueda (27) (c).
Fig. 29 Perspectiva de la rotación del segmento de arco de la rueda (27)
(c).
Fig. 30 Perspectiva del rango de movimiento del brazo articulado de la rueda (30) del segmento de arco de la rueda (27) (d).
Fig. 31 Perspectiva del desplazamiento del segmento de arco de la rueda (27) (d).
Fig. 32 Perspectiva del rango de rotación del toroide de la rueda (26) del segmento de arco de la rueda (27) (d).
Fig. 33 Perspectiva de la rotación del toroide de la rueda (26) del segmento de arco de la rueda (27) (d).
Fig. 34 Perspectiva del rango de rotación del segmento de arco de la rueda (27) (d).
Fig. 35 Perspectiva de la rotación del segmento de arco de la rueda (27)
(d).
Fig. 36 Perspectiva del rango de rotación de los segmentos de arco de la rueda (27) (a, b, c, d).
Fig. 37 Perspectiva de la rotación de los segmentos de arco de la rueda (27) (a, b, c, d). Fig. 38 Perspectiva de la rueda delantera (25) en su estado mínimo plegado.
Fig. 39 Vista lateral de la rueda delantera (25) en su estado mínimo plegado.
Fig. 40 Perspectiva del rango de movimiento de los segmentos de arco de la rueda (27).
Fig. 41 Perspectiva del movimiento de los segmentos de arco de la rueda (27).
Fig. 42 Perspectiva de la apertura de almacenaje del manubrio (1).
Fig. 43 Perspectiva de la rueda trasera (24) es su estado mínimo plegado.
Fig. 44 Vista lateral de la invención con las ruedas plegadas.
Fig. 45 Vista lateral del desplazamiento de plegado de la tijera trasera (19).
Fig. 46 Vista lateral del rango de desplazamiento del asiento (16).
Fig. 47 Vista lateral del desplazamiento del asiento (16) para plegado.
Fig. 48 Perspectiva del rango de rotación de plegado del manillar (2).
Fig. 49 Perspectiva de la rotación de plegado del manillar (2).
Fig. 50 Perspectiva del rango de retracción del sistema de extensión del manillar (5).
Fig. 51 Perspectiva de la retracción del sistema de extensión del manillar (5). Fig. 52 Perspectiva del rango de rotación del manubrio (1).
Fig. 53 Perspectiva de la rotación del manubrio (1).
Fig. 54 Vista lateral del rango de retracción del tubo inferior extensible (11).
Fig. 55 Vista lateral de la retracción del tubo inferior extensible (11).
Fig. 56 Vista lateral del rango de rotación de la articulación superior del tubo inferior extensible (10).
Fig. 57 Vista lateral de la rotación de la articulación superior del tubo inferior extensible (10).
Fig. 58 Vista lateral del rango de rotación de la articulación inferior del tubo inferior extensible (12).
Fig. 59 Vista lateral de la rotación de la articulación inferior del tubo inferior extensible (12).
Fig. 60 Plano sagital (35), con la invención desplegada.
Fig. 61 Plano sagital (35), con la invención plegada.
Fig. 62 Plano frontal (36), con la invención desplegada.
Fig. 63 Plano frontal (36), con la invención plegada.
Fig. 64. Plano transversal (37), con la invención desplegada.
Fig. 65 Plano transversal (37), con la invención plegada.
Fig. 66 Eje anteroposterior (38), con la invención desplegada. Fig. 67 Eje anteroposterior (38), con la invención plegada.
Fig. 68 Eje vertical (39), con la invención desplegada.
Fig. 69 Eje vertical (39), con la invención plegada.
Fig. 70 Eje transversal (40), con la invención desplegada.
Fig. 71 Eje transversal (40), con la invención plegada.
Fig. 72 Vista lateral del toroide de la rueda (26).
Fig. 73 Vista de detalle del nodo (41).
Fig. 74 Vista lateral del eje de dirección (44) con respecto al eje del manubrio (45).
Fig. 75 Explosivo de los nodos del eje de la rueda (31).
Fig. 76 Perspectiva de la rotación de la rueda para rodamiento.
Fig. 77 Perspectiva de la rotación de nodo del eje de la rueda (31).
Fig. 78 Vista trasera del rango de desplazamiento del segmento de arco de la rueda (27), mediante la acción de la doble articulación del brazo articulado de la rueda (30).
Fig. 79 Vista en perspectiva inferior del seguro delantero del dispositivo de transmisión de potencia (43), en el estado máximo desplegado.
Fig. 80 Vista en perspectiva inferior del seguro delantero del dispositivo de transmisión de potencia (43), en el estado mínimo plegado. Fig. 81 Perspectiva del seguro trasero del dispositivo de transmisión de potencia (42), en su estado máximo desplegado.
Fig. 82 Perspectiva del seguro trasero del dispositivo de transmisión de potencia (42), en su estado mínimo plegado.
Fig. 83 Vista lateral de la bicicleta en su estado máximo desplegado (47) y su estado mínimo plegado (48), en comparación con una escala humana (46).
Descripción de la invención.
El término bicicleta, bicicleta de la presente invención, invención u otro término referido en la descripción a la bicicleta de la solicitud, es utilizado de manera indistinta y se refiere a la bicicleta plegable objeto de la invención que se reclama en la presente solicitud.
El término estado o configuración se refieren a las formas de realización o etapas concluidas de la bicicleta plegable de la presente solicitud, donde los términos "estado" o "configuración" pueden ser utilizados indistintamente para denotar la presentación de la bicicleta ya sea en el estado desplegado o máximo o en el estado mínimo o plegado.
La bicicleta presenta dos formas de estado o configuraciones, una máxima denominada "Desplegada" como se muestra en la Fig. 1, la cual es la conformación en donde todos los componentes del cuadro (3), el manubrio (1), la rueda delantera (25) y la rueda trasera (24) se encuentran desplegados y es óptima para su uso como medio de transporte.
Un segundo estado o configuración mínima denominada "Plegada" Fig. 2, en donde todos los componentes del cuadro (3), el manubrio (1), la rueda delantera (25) y la rueda trasera (24) se encuentran plegados siendo su estado óptimo para su almacenaje. Ambos estados o configuraciones se encuentran descritos en la fig. 83, la cual muestra la relación de dichas configuraciones con una escala humana.
En la fig. 83 se muestra la bicicleta en su estado máximo desplegado (47) con respecto a la relación de plegado de la bicicleta en su estado mínimo plegado (48) y la relación de ambas con una escala humana (46). Note que en su estado máximo desplegada (47) la bicicleta es cómoda y segura; mientras que en su estado mínimo plegado (48) comprende el menor volumen de almacenaje. Se muestra además una escala humana promedio de alrededor de 170 cm de altura, esta relación es un modelo ejemplar de la presente solicitud y no limitativo para la misma.
Los sistemas de plegado del cuadro (3), de la rueda trasera (24), rueda delantera (25), y del manubrio (1) de esta invención permite que cuando se encuentra completamente plegada los sistemas se encuentran alineados uno al lado del otro de manera vertical en el plano sagital (35), como se muestra en la Fig. 2. Lo anterior permite que sus dimensiones en el plano sagital (35), sean menores al diámetro de la rueda cuando se encuentra desplegada Fig. 5.
Adicionalmente en la Fig. 5, se observa la relación de área en el plano sagital (35), entre el estado máximo desplegado (dibujo superior) y mínimo plegado (dibujo inferior) de la bicicleta. En esta figura se muestra que cuando la invención se encuentra en su estado mínimo es menos ancha que la rueda en su estado máximo. Esta relación de área es posible gracias a las acciones de plegado de las rueda trasera (24), delantera (25), el cuadro (3) y el manubrio (1).
En la Fig. 6, se puede apreciar la relación de área de la bicicleta entre el estado máximo desplegado (dibujo lado izquierdo) y su estado mínimo plegado (dibujo lado derecho), en esta figura se puede apreciar que la bicicleta cuando se encuentra en su estado mínimo su altura es la misma que la rueda de la invención cuando se encuentra en su estado máximo. De manera principal la bicicleta se conforma por las secciones ejemplares denominadas: rueda trasera (24), la rueda delantera (25), el cuadro (3) y el manubrio (1).
En la Fig. 9, se aprecia las secciones de la rueda trasera (24) y delantera (25), en línea continua conformadas de manera individual por, el segmento de arco de la rueda (27), la articulación del arco de la rueda (28), el nodo del arco de la rueda (29), el brazo articulado de la rueda (30), el nodo del eje de la rueda (31) y el eje de la rueda (32).
El proceso de desplegado y plegado de la rueda se logra en primer lugar gracias a que la rueda se conforma por segmentos discretos. Estos segmentos denominados como, segmentos del arco de la rueda (27), permiten que en el estado máximo desplegado todos los segmentos del arco de la rueda (27), se encuentren alineado en el plano sagital (35) generando el toroide de la rueda (26), obteniendo así la estructura y tensión necesaria para que los componentes de la rueda funcionen para rodamiento.
Así mismo la conformación del toroide de la rueda (26) mediante segmentos discretos permite, mediante la acción combinada del brazo articulado de la rueda (30) y el nodo del eje de la rueda (31) desplace los segmentos del arco de la rueda (27) a su estado mínimo plegado como se muestra en la Fig. 4 (el procedimiento de plegado y desplegado de la rueda se describe detalladamente de la Fig. 16 a la Fig. 43.
En el estado máximo desplegado de las ruedas (24 y 25) los segmentos del arco de la rueda (27), forman el toroide de la rueda (26) que se refiere a la forma de dona que se obtiene con esta acción, que permite que la rueda funcione para rodamiento. Como se muestra en la Fig. 72.
El brazo articulado de la rueda (30) une el nodo del arco de la rueda (29) con el nodo del eje de la rueda (31) y soporta la compresión y tensión de las ruedas (24 y 25). Esta compresión y tensión se da con la bicicleta en su estado máximo desplegado y soportando el peso del usuario.
El segmento del arco de la rueda (27) contiene en su estructura la superficie de rodamiento, la superficie de amortiguación y la superficie estructural, necesarias para un rodamiento seguro y cómodo por parte del usuario.
La construcción del buje de la rueda se da mediante la alineación de los segmentos de los nodos del eje de la rueda (31), como se muestra en explosivo en la Fig. 75, permite que la rueda cuente con dos tipos de rotación.
El primer tipo de rotación como se muestra en la Fig. 76, se realiza cuando la rueda se encuentra es su estado máximo desplegada y todos los componentes incluyendo los nodos del eje se mantienen integrados para permitir el rodamiento de la rueda.
El segundo tipo de rotación como se muestra en la Fig. 77, se realiza para el proceso de plegado y desplegado de las ruedas, en los cuales cada nodo del eje de la rueda (31), rotan de manera independiente para permitir posicionarnos de manera paralela vertical en su estado mínimo plegado como se muestra en la Fig. 4, o de igual forma mediante su rotación independiente para pasar a su estado máximo desplegado como se muestra en la Fig. 3.
Las secciones del arco de rueda (27) se encuentran unidas a los nodos del eje de la rueda (31) mediante brazos articulados de la rueda (30) que permite a estas cambiar de su estado plegado a desplegado y viceversa.
En la Fig. 10, muestra la sección del cuadro (3) en línea continua. Esta sección se encuentra conformada por los componentes que brindan la geometría, la estructura y la tracción de la bicicleta cuando se encuentra desplegada. Las articulaciones y extensiones de estos componentes permiten que el cuadro (3) transite del estado plegado al estado desplegado y viceversa.
La sección del cuadro (3) se divide en los siguientes elementos: La tijera trasera (19), la vaina superior (17) y la vaina inferior (18), tubo del asiento (15), el asiento (16), el pedalier (13), articulación inferior del tubo del asiento (14), articulación inferior del tubo inferior extensible (12), el dispositivo de transmisión de potencia (21), la estrella delantera (22), el seguro delantero del dispositivo de transmisión de potencia (43), el piñón trasero (20), seguro trasero del dispositivo de transmisión de potencia (42), la articulación superior del tubo inferior extensible (10), el tubo inferior extensible (11) y los pedales (23).
En la Fig. 11, se aprecia la sección del manubrio (1), en línea continua, que se encuentra conformada por, el manillar (2), articulación del manillar (4), Sistema de extensión del manillar (5), base articulada del manubrio (6), potencia (7) y el nodo de potencia (9).
El nodo de potencia (9), permite la rotación en el plano sagital (35) para el plegado, así como la dirección de la rueda delantera en el plano transversal (37), cuando se encuentra desplegada para su uso como transporte. En la Fig. 73 se muestran los dos tipos de rotaciones que se describieron en el nodo de la potencia (9).
El eje del manubrio (45), es la conexión mecánica con el manubrio (1), es el que permite por parte del usuario dictar la dirección de la invención cuando funciona como transporte. Este eje del manubrio (45) se encuentra excéntrico al eje de la dirección (44), que es el que permite la rotación del sistema del manubrio (1) y la rueda delantera (25). El detalle de esta excentricidad de muestra en la Fig. 74.
Para reducir el volumen de plegado, el manubrio (1), es almacenado en la rueda delantera, entre los segmentos del arco de la rueda (27) (b, c) los cuales generan un espacio que se muestra en la Fig. 42, que permite almacenar el manubrio permitiendo que este se encuentre vertical en su estado mínimo plegado como se muestra en la Fig. 53.
El plegado del cuadro se realiza en el plano sagital (35) mediante una serie de articulaciones que conectan los sistemas.
El tubo del asiento (15) es la referencia a un elemento tradicional de la bicicleta, el cual puede estar constituido de una pluralidad de geometrías tales como barras o tubos o una combinación de estas.
Así mismo el tubo inferior extensible (11) se refiere a una denominación conocida de este componente de bicicleta, este puede estar constituido de una pluralidad de geometrías tales como barras o tubos o una combinación de estas.
La bicicleta plegable de la presente invención puede estar construida en su totalidad o en cada uno de sus elementos por un solo material o una combinaciones de materiales para cada uno de elementos, dichos materiales pueden ser aleaciones metálicas, materiales compuestos como fibras de vidrio y fibra de carbono, polímeros y materiales naturales como madera, bambú y cuero.
Los elementos de las secciones de la bicicleta; la rueda trasera (24), la rueda delantera (25), el cuadro (3) y el manubrio (1), se pliegan gracias a una serie de articulaciones que le permite ser plegada y desplegada en estos elementos en la siguiente secuencia.
Paso 1, del plegado como se muestra en la Fig. 17. Se desplaza el segmento de arco de la rueda (27) (a), de su posición alineada con el toroide de la rueda (26), a su posición mínima. En la Fig. 16 se muestra el rango de movimiento del segmento del arco de la rueda (27). El desplazamiento del segmento de arco de la rueda (27), entre sus posiciones desplegada y plegada es posible gracias a la acción coordinada de las articulaciones brazo articulado de la rueda (30).
La articulación (interior) que se une con el nodo del eje de la rueda (31), permite que dicho segmento del arco de la rueda (27), se desplace desde su posición máxima desplegada (fig. 3), central del toroide de la rueda (26) hasta su posición de plegado y viceversa.
Así mismo la articulación (exterior) que une el brazo articulado de la rueda (30), con el nodo del arco de la rueda (29), permite que el segmento de arco de la rueda (27), mantenga su vertical todo el tiempo.
La acción combinada de las articulaciones del brazo articulado de la rueda (30), se muestran en la Fig. 78.
Paso 2 del plegado como se muestra en la Fig. 19, el segmento del arco de la rueda (27) (a), se rota en el eje transversal (40), hasta que la parte interior del segmento de arco de la rueda (27), hace contacto con el nodo del eje de la rueda (31). En la Fig. 18 se muestra el rango de rotación de la articulación del arco de la rueda del segmento del arco de la rueda (27) (a).
Paso 3 del plegado como se muestra en la Fig. 21, se rota 90° el toroide de la rueda (26), compuesto por los segmentos del arco de la rueda (27) (b, c, d), alineando los segmentos del arco de la rueda (27) (a, b), del brazo articulado de la rueda (30) que se mantiene en la misma posición del paso anterior. En la Fig. 20 se muestra el rango de rotación de los segmento del arco de la rueda (27) (b, c, d).
Paso 4 del plegado como se muestra en la Fig. 23, se desplaza el segmento del arco de la rueda (27) (b), de su posición alineada con el toroide de la rueda (26), a su posición mínima. En la Fig. 22 se muestra el rango de movimiento del segmento de arco de la rueda (27). Paso 5 del plegado como se muestra en la Fig. 25, el segmento del arco de la rueda (27) (b), se rota en el eje transversal (40), hasta que la parte interior del segmento de arco de la rueda (27), hace contacto con el nodo del eje de la rueda (31). En la Fig. 24 se muestra el rango de rotación de la articulación del arco de la rueda del segmento del arco de la rueda (27)
(b).
Paso 6 del plegado como se muestra en la Fig. 27. Se rota 90° el toroide de la rueda (26), compuesto por los segmentos del arco de la rueda (27) (c,d), alineando el brazo articulado de la rueda (30), del segmento del arco de la rueda (27) (c), con el brazo articulado de la rueda (30) del segmento del arco de la rueda (27) (b,a), que se mantienen en posición vertical. En la Fig. 20 se muestra el rango de rotación de los segmentos del arco de la rueda (27) (c, d).
Paso 7 del plegado como se muestra en la Fig. 29, el segmento del arco de la rueda (27) (c), se rota en el eje transversal (40), hasta que la parte interior del segmento de arco de la rueda (27), hace contacto con el nodo del eje de la rueda (31). En la Fig. 28 se muestra el rango de rotación de la articulación del arco de la rueda del segmento del arco de la rueda (27)
(c).
Paso 8 del plegado como se muestra en la Fig. 31, se desplaza el segmento del arco de la rueda (27) (d), de su posición alineada con el toroide de la rueda (26), a su posición de almacenaje. En la Fig. 30 se muestra el rango de movimiento del segmento de arco de la rueda (27) (d).
Paso 9 del plegado como se muestra en la Fig. 33, se rota 90° el toroide de la rueda (26), compuesto por el segmento de arco de la rueda (27) (d), alineando el brazo articulado de la rueda (30), del segmento de arco de la rueda (27) (d), con los segmentos de arco de la rueda (27) (a, b), del brazo articulado de la rueda (30) que se mantiene en posición vertical. En la Fig. 32 se muestra el rango de rotación del segmento del arco de la rueda (27) (d).
Paso 10 del plegado como se muestra en la Fig. 35, el segmento del arco de la rueda (27) (d), se rota en el eje transversal (40), hasta que la parte interior del segmento de arco de la rueda (27), hace contacto con el nodo del eje de la rueda (31). En la Fig. 34 se muestra el rango de rotación de la articulación del arco de la rueda del segmento del arco de la rueda (27) (d).
Al finalizar este paso todos los componentes y segmentos del arco de la rueda (27), se encuentran alineados de manera vertical.
Paso 11 del plegado como se muestra en la Fig. 37, el conjunto de los segmentos del arco de la rueda (27), plegada se rotan hasta que hagan contacto con su tijera correspondiente, siendo la tijera frontal (8) o la tijera trasera (19).
Paso 12 del plegado que se muestra en la Fig. 41, se genera un espacio entre las secciones de arco (b, c). En la Fig. 42 se muestra el espacio entre los segmentos del arco de la rueda (27) (b, c). La función de este espacio es contener el sistema del manubrio (1) una vez plegado como se muestra en la Fig. 53, este paso se realiza solamente en la rueda delantera.
Para el plegado de la rueda trasera (24) se sigue el mismo procedimiento hasta llegar al paso 11, con el cual termina el plegamiento de la rueda trasera, como se muestra en la Fig. 43.
En la Fig. 42 se muestra el resultado final del plegado de la rueda delantera (25) y en la Fig. 43, se muestra el resultado final del plegado de la rueda trasera (24). Paso 13 del plegado como se muestra en la Fig. 45, la tijera trasera (19) junto con la rueda trasera (24), se desplaza de su posición desplegada a su posición plegada.
La carrera de este paso se logra mediante la acción combinada de las vainas. De manera individual la vaina superior (17) dicta la separación entre la tijera trasera (19) y el tubo del asiento (15), mientras que la vaina inferior (18) define el ángulo de la tijera trasera (19). La acción de esta carrera se puede apreciar de manera más detallada en la Fig. 8.
La tijera trasera en su estado desplegado como se muestra en la Fig. 44, mantiene al piñón trasero (20) alejado de la estrella delantera (22) a su distancia máxima (33), lo que permite que el dispositivo de transmisión de potencia (21) transmita la fuerza del pedaleo a la rueda trasera para su avance.
Cuando la tijera trasera pasa a su estado mínimo plegado, la distancia entre el piñón trasero (20) y la estrella delantera (22) se reduce a su mínima distancia (34) permitiendo el menor espacio de almacenaje como se muestra en la Fig.46.
El dispositivo de transmisión de potencia (21), mantiene su propia integridad durante el proceso de plegado y desplegado, así como durante su estado mínimo plegado Fig. 2, gracias a que se utiliza un material flexible a modo de banda.
El dispositivo de transmisión de potencia (21) se mantiene fijo al piñón trasero (20) y a la estrella delantera (22) durante el estado mínimo de la bicicleta y las transiciones de plegado y desplegado, gracias al seguro trasero del dispositivo de transmisión de potencia (42), y al seguro delantero del dispositivo de transmisión de potencia (43), que evitan que el dispositivo de transmisión de potencia (21) pierda contacto con el piñón trasero (20), y la estrella delantera (22) en el momento que el dispositivo de transmisión de potencia (21) pierde su tensión en el estado mínimo plegado así como durante las transiciones de plegado y desplegado. Esta integridad no podría ser mantenida por una cadena metálica de bicicleta dado que la integridad de este tipo de cadenas se logra solamente bajo tensión, la cual se pierde en el estado mínimo plegado así como en las transiciones de plegado de la presente invención.
Paso 14 del plegado como se muestra en la Fig. 47, el asiento (16) pasa de su configuración máxima desplegada a su configuración mínima plegada. En la Fig.46 se muestra el rango de retraimiento y desplegado de asiento.
Paso 15 del plegado como se muestra en la Fig. 49, el manillar (2), se encuentra en forma de "T" en su estado desplegado, se gira 90° en el plano frontal (36). Esta acción permite que el manillar se alinee de manera vertical al sistema de extensión del manillar (5). En la Fig. 48 se muestra el rango de rotación del manillar (2).
Paso 16 del plegado como se muestra en la Fig. 51, el sistema de extensión del manillar pasa de su extensión máxima desplegada, al retraerse a su extensión mínima plegada. En la Fig. 50 se muestra el rango de extensión del sistema de extensión del manillar (5).
Paso 17 del plegado como se muestra en la Fig. 53, el sistema del manubrio (1), se rota hacia el frente en el plano sagital (35), hasta quedar alineado paralelamente con la tijera frontal (8). El sistema del manubrio (1) se almacena en el espacio generado entre los segmentos del arco de la rueda (27) (b, c), de la rueda delantera del paso 12 del plegado que se muestra en la Fig. 41 y Fig.42. En la Fig. 52, se aprecia el rango de rotación de la base articulada del manubrio (6).
Paso 18 del plegado como se muestra en la Fig. 55, el tubo inferior extensible (11) se reduce de su extensión máxima desplegada a la mínima plegada. En la Fig. 54 se muestra el rango de extensión del tubo inferior extensible (11). Paso 19 del plegado como se muestra en la Fig. 57, el grupo de elementos conformado por el nodo de potencia (9), la potencia (7), la tijera frontal (8), la rueda delantera (25) y el sistema del manubrio (1), giran gracias a la articulación superior del tubo inferior extensible (10) hacia atrás en el plano sagital (35), hasta quedar alineado de manera paralela al tubo inferior extensible (11). En la Fig. 56 se muestra el rango de rotación.
Paso 20 del plegado como se muestra en la Fig. 59, el grupo de elementos conformados por el tubo inferior extensible (11), el nodo de potencia (9), la potencia (7), la tijera frontal (8), la rueda delantera (25) y el manubrio (1), giran gracias al pedalier (13) y a la acción combinada de la articulación inferior del tubo del asiento (14) y la articulación inferior del tubo inferior extensible (12) como nudillos de articulación, hasta que dicho grupo de elemento se alinee paralelamente con el tubo del asiento (15), esto se muestra en detalle en la Fig. 15, (En esta figura como referencia la rueda delantera se encuentra del lado izquierdo y la rueda trasera del lado derecho). En la Fig. 58 se muestra el rango de rotación de dicho grupo de elementos.
Con la secuencia de los pasos antes mencionados se logra cambiar la configuración de la bicicleta plegable de la invención de su estado máximo desplegado Fig. 1, a su estado mínimo plegado Fig. 2.
Para que la bicicleta plegable de la invención cambie de su estado mínimo plegado a su estado máximo desplegado es necesario seguir los mismos pasos pero en sentido inverso comenzando ahora en el paso 20 y continuar así hasta el paso 1.
Los sistemas de plegado del cuadro (3), el manillar (1), ruedas delantera (25) y rueda trasera (24), permiten que la bicicleta plegable de la presente invención cuente con una relación de extensión máxima cuando se encuentra en la configuración desplegada, por una relación mínima cuando se encuentra en la configuración plegada con relación además a una escala humana, como se muestra en la Fig. 83. Los sistemas de plegado del cuadro (3), el manubrio (1), ruedas delantera (25) y rueda trasera (24), permiten que el área de la bicicleta en su configuración plegada, sea menor que el área de la rueda cuando se encuentra desplegada como se muestra en la Fig. 5, es decir, el tamaño de la bicicleta en su configuración plegada es inferior al tamaño de la rueda en su configuración desplegada.
El hecho de que el plegado de la bicicleta se realice principalmente en el plano sagital (35), impide que la bicicleta aumente su área en el eje transversal (40), como se muestra en la Fig. 7.
En el estado o configuración desplegado de la bicicleta, la estrella delantera (22) y el piñón trasero (20), mantienen la distancia regular entre ellos, lo cual permite sostener la tensión necesaria que requiere el dispositivo de distribución o tracción de potencia (21), para hacer girar la rueda trasera mediante el pedaleo.
Por otra parte en el estado o configuración plegado de la bicicleta, la tijera trasera (19), recorre una carrera que le permite alinearse con el tubo del asiento (15), como se muestra en la Fig. 8, esta acción de plegado permite también que la estrella delantera (22) y el piñón trasero (20), queden uno frente al otro, buscando un volumen mínimo de almacenaje en el estado plegado de la bicicleta.
Aunque la presente invención ha sido descrita con referencia a detalles específicos o modalidades de la misma, no se pretende que tales detalles sean considerados como limitaciones del alcance de la invención, excepto como y en la medida en que estén incluidos en las reivindicaciones que se acompañan, por lo que muchas modificaciones y variaciones son posibles a la luz de la descripción anterior. Glosario.
Plano sagital (35): Es el plano que divide la invención en mitad derecha y mitad izquierda como se muestra en la Fig. 60 bicicleta desplegada y Fig. 61 bicicleta plegada.
Plano frontal (36): Es el plano que divide la invención en mitad trasera y delantera como se muestra en la en la Fig. 62 bicicleta desplegada y Fig. 63 bicicleta plegada.
Plano transversal (37): Es el plano que divide la invención en parte superior e inferior como se muestra en la Fig. 64 bicicleta desplegada y Fig. 65 bicicleta plegada.
Eje anteroposterior (38): Es el eje que se dirige de adelante o atrás y es perpendicular al plano frontal (36), como se muestra en la Fig. 66 bicicleta desplegada y Fig. 67 bicicleta plegada.
Eje vertical (39): Es el eje que se dirige de arriba hacia abajo y es perpendicular al plano horizontal como se muestra en la Fig. 68 bicicleta desplegada y Fig. 69 bicicleta plegada.
Eje transversal (40): Es el eje que se dirige de lado a lado y es perpendicular al plano sagital (35), como se muestra en la Fig. 70 bicicleta desplegada y Fig. 71 bicicleta plegada.
Toroide de la rueda (26): Es la geometría de toroide (forma de dona), que adquiere la rueda cuando se encuentra completamente armada o desplegada y lista para su rodamiento, como se muestra en la Fig. 72. Aplica de igual manera en la rueda delantera (25) y rueda trasera (24).
Nodo: Se refiere a una pieza que es el punto de unión entre diversas piezas. Como ejemplo se muestra en la Fig. 73, el nodo (41), el cual funciona como punto de unión entre la pieza (e) y la pieza (f). Rotar: Se refiere a la rotación de una pieza utilizando un eje como centro de la rotación, manteniéndose en un plano definido.
Carrera: Se refiere a la distancia del recorrido definido de una pieza dictado mediante rieles, telescópicos o articulaciones.
Articulación: Se refiere una conexión entre dos sólidos que permite que ambos se muevan o roten gracias a que convergen en el mismo eje o punto de apoyo.

Claims

Reivindicaciones. Habiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1.- Bicicleta plegable con elementos íntegros e inseparable en sus distintos elementos, caracterizada porque se conforma por un cuadro plegable (3), un manubrio plegable (1) y ruedas plegables (24) y (25) que en su conjunto o conformación mínima plegada es inferior al área de la rueda máxima desplegada, y donde en la conformación mínima plegada, todos sus elementos se encuentran alineados de forma paralela vertical.
2.- La bicicleta plegable de conformidad con la reivindicación 1 en donde el cuadro plegable está caracterizado porque comprende el sistema de sujeción y plegamiento de la rueda trasera, tubo del asiento (15), el asiento (16), el pedalier (13), articulación inferior del tubo del asiento (14), elementos de transmisión de potencia plegables y el tubo inferior extensible (11).
3.- La bicicleta plegable de conformidad con la reivindicación 2 en donde el sistema de sujeción y plegamiento de la rueda trasera comprende la tijera trasera (19), la vaina superior (17) y la vaina inferior (18) las cuales permiten el desplazamiento de la posición de la tijera trasera de su estado desplegado a su estado plegado y viceversa.
4.- La bicicleta plegable de conformidad con la reivindicación 2 en donde los elementos de transmisión de potencia plegables comprenden el dispositivo de distribución de potencia (21), la estrella delantera (22) y el piñón trasero (20), el seguro trasero del dispositivo de transmisión de potencia (42) y el seguro delantero del dispositivo de transmisión de potencia (43), en donde el dispositivo de distribución de potencia (21) es flexible.
5.- La bicicleta plegable de conformidad con la reivindicación 2 en donde el tubo inferior extensible (11) comprende la articulación superior del tubo inferior extensible (10) y la articulación inferior del tubo inferior extensible (12) en donde el tubo inferior extensible es extensible.
6.- La bicicleta plegable de conformidad con la reivindicación 2 en donde el pedalier (13) es el eje entre la articulación inferior del tubo inferior extensible (12) y la articulación inferior del tubo del asiento (14).
7.- La bicicleta de conformidad con la reivindicación 1 en donde el manubrio plegable comprende el manillar (2), articulación del manillar (4), sistema de extensión del manillar (5), base articulada del manubrio (6), potencia (7), y el nodo de potencia (9), en donde el manubrio en el estado plegado se almacena entre los segmentos del arco de la rueda (27) (b, c), de la rueda delantera por la acción de rotación de la base articulada del manubrio (6),
8.- La bicicleta de conformidad con la reivindicación 7 en donde el manillar pasa de su forma "T" desplegado a su estado plegado por medio de un rotación de 90° en el plano frontal, para alinearse de manera vertical al sistema de extensión del manillar (5).
9.- La bicicleta de conformidad con la reivindicación 7 en donde el sistema de extensión del manillar (5) pasa de su extensión máxima desplegada, al retraerse a su extensión mínima plegada.
10.- La bicicleta de conformidad con la reivindicación 1 en donde las rueda trasera (24) y la rueda delantera (25) plegables están caracterizadas porque comprenden segmentos de arco de la rueda (27) (a, b, c, d), nodo del arco de la rueda (29), brazo articulado de la rueda (30), nodo del eje de la rueda (31).
11.- La bicicleta de conformidad con la reivindicación 10 en donde los segmento de arco de la rueda (27), son plegables, permite el rodamiento, la amortiguación y mantiene la integridad de la estructura del toroide de la rueda (26).
12.- La bicicleta de conformidad con la reivindicación 10 en donde el nodo del arco rotación de la rueda (29) mantiene el segmento de arco de la rueda (27), alineado al plano sagital en su estado plegado y desplegado.
13.- La bicicleta de conformidad con la reivindicación 10 en donde el nodo del arco de la rueda (29) permite además rotar el segmento de arco de la rueda (27), de su estado plegado a desplegado y viceversa por medio de la articulación del arco de la rueda (28).
14.- La bicicleta de conformidad con la reivindicación 10 en donde el brazo articulado de la rueda (30) une el nodo del arco de la rueda (29) con el nodo del eje de la rueda (31) y soporta la compresión y tensión de las ruedas (24 y 25).
15.- La bicicleta de conformidad con la reivindicación 10 en donde el nodo del eje de la rueda (31) permite acoplar y desacoplar el segmento de arco de la rueda (27).
16.- La bicicleta de conformidad con la reivindicación 10 en donde el nodo del eje de la rueda (31) permite la rotación de la llanta en su conjunto y la rotación independiente de los brazos articulados de la rueda (30) en el proceso de plegado y desplegado.
17.- La bicicleta de conformidad con la reivindicación 10 en donde el conjunto de nodo del eje de la rueda (31) forma el buje de la rueda.
PCT/MX2018/000125 2017-11-28 2018-11-27 Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado WO2019108051A2 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/766,733 US20200391818A1 (en) 2017-11-28 2018-11-27 Folding bicycle with folding handlebar, wheels and frame, comprising an integrated structure providing a minimum folded configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2017/015313 2017-11-28
MX2017015313A MX2017015313A (es) 2017-11-28 2017-11-28 Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una minima configuracion de plegado.

Publications (2)

Publication Number Publication Date
WO2019108051A2 true WO2019108051A2 (es) 2019-06-06
WO2019108051A3 WO2019108051A3 (es) 2019-08-01

Family

ID=66665097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2018/000125 WO2019108051A2 (es) 2017-11-28 2018-11-27 Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado

Country Status (3)

Country Link
US (1) US20200391818A1 (es)
MX (1) MX2017015313A (es)
WO (1) WO2019108051A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586507A (en) * 2019-08-23 2021-02-24 Ibraheem Ibikunle Animashan Alexander Folding bicycle wheel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180214B2 (en) * 2016-01-27 2021-11-23 Ford Global Technologies, Llc Foldable bicycle and storage system for the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105053C (zh) * 1996-11-28 2003-04-09 鲍建华 全折叠自行车
SK284821B6 (sk) * 1999-11-26 2005-12-01 Pavel P. Mikk Univerzálny skladací bicykel
JP4356466B2 (ja) * 2004-01-30 2009-11-04 正昇 兼次 自転車用折りたたみ自在車輪及び折りたたみ自転車
US8371659B2 (en) * 2007-06-13 2013-02-12 Royal College Of Art Spoked wheel
US8011736B2 (en) * 2009-01-04 2011-09-06 Fu-Hsing Tan Collapsible wheel
TWI466785B (zh) * 2010-08-03 2015-01-01 Nat Univ Tsing Hua 可收疊之輪子
CN202243869U (zh) * 2011-08-18 2012-05-30 杨东旭 折叠轮自行车
US10179476B2 (en) * 2012-10-29 2019-01-15 Karsten Manufacturing Corporation Collapsible wheels and methods of making collapsible wheels
CA2976069C (en) * 2012-10-29 2019-09-03 Karsten Manufacturing Corporation Collapsible wheels and methods of making collapsible wheels
CN102991267B (zh) * 2012-12-27 2014-12-17 东南大学 一种可折叠车轮
CN103350607A (zh) * 2013-07-12 2013-10-16 中国矿业大学 一种折叠轮毂
CN104924843B (zh) * 2015-07-20 2017-06-16 唐小英 一种折叠车轮及折叠自行车
ITUB20153374A1 (it) * 2015-09-03 2017-03-03 Andrea Mocellin Ruota ripiegabile e veicoli equipaggiati con tale ruota
US11231084B2 (en) * 2017-12-12 2022-01-25 Martin W. Stryker Foldable flywheel mechanism to facilitate energy generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586507A (en) * 2019-08-23 2021-02-24 Ibraheem Ibikunle Animashan Alexander Folding bicycle wheel
WO2021037770A1 (en) 2019-08-23 2021-03-04 Animashaun Alexander Ibraheem Ibikunle Folding bicycle wheel

Also Published As

Publication number Publication date
WO2019108051A3 (es) 2019-08-01
US20200391818A1 (en) 2020-12-17
MX2017015313A (es) 2019-05-29

Similar Documents

Publication Publication Date Title
US10654541B2 (en) Convertible scooter
ES2302971T3 (es) Bicicleta plegable.
ES2309301T3 (es) Bicicleta plegable.
ES2950345T3 (es) Suspensión delantera de vehículo automóvil
ES2581909T3 (es) Cuadro plegable para una bicicleta
ES2308099T3 (es) Cochecito infantil.
ES2352795T3 (es) Aparato de ciclismo convertible.
ES2829926T3 (es) Un vehículo plegable
WO2019108051A2 (es) Bicicleta plegable con ruedas, cuadro y manubrio plegables, con estructura integra que provee una mínima configuración de plegado
AU1567901A (en) Universal folding bicycle
US8833777B2 (en) Combination scooter and messenger bag
ES1059575U (es) Chasis plegable para cochecitos para niños.
WO2013123567A1 (pt) Dispositivo de transporte
WO2019033015A1 (en) FOLDING TROTTINETTE
ES2346265T3 (es) Chasis plegable particularmente para sillas de paseo, cochecitos de niños o similares.
ES2398025B1 (es) Sistema de plegado longitudinal para bicicletas.
BRPI0900353A2 (pt) bicicleta dobrável
ES2411835B1 (es) Carro de golf multifuncional plegable
ES2368393B1 (es) Conjunto de manillar de bicicleta.
ES1066018U (es) Carrito de compra.
CN208979028U (zh) 多功能便携式踏板车
WO2017043978A1 (en) Improvements in and relating to personal transportation devices
ES1225519U (es) Patinete electrico plegable
WO2016003260A1 (es) Vehículo plegable de dos ruedas para transporte personal urbano, y metodo para plegar el mismo
ES2568438B1 (es) Carrito de golf plegable

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884818

Country of ref document: EP

Kind code of ref document: A2