WO2019107456A1 - Ni基合金の製造方法及びNi基合金 - Google Patents

Ni基合金の製造方法及びNi基合金 Download PDF

Info

Publication number
WO2019107456A1
WO2019107456A1 PCT/JP2018/043878 JP2018043878W WO2019107456A1 WO 2019107456 A1 WO2019107456 A1 WO 2019107456A1 JP 2018043878 W JP2018043878 W JP 2018043878W WO 2019107456 A1 WO2019107456 A1 WO 2019107456A1
Authority
WO
WIPO (PCT)
Prior art keywords
based alloy
soaking
less
test
content
Prior art date
Application number
PCT/JP2018/043878
Other languages
English (en)
French (fr)
Inventor
崇光 ▲高▼木
正明 照沼
貴代子 竹田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201880076390.7A priority Critical patent/CN111417739B/zh
Priority to KR1020207018144A priority patent/KR102386636B1/ko
Priority to US16/767,451 priority patent/US11739407B2/en
Priority to EP18883203.4A priority patent/EP3719165B1/en
Priority to CA3082754A priority patent/CA3082754C/en
Priority to JP2019557296A priority patent/JP7052807B2/ja
Publication of WO2019107456A1 publication Critical patent/WO2019107456A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/005Alloys based on nickel or cobalt with Manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel

Definitions

  • the present invention relates to a method of manufacturing a Ni-based alloy and a Ni-based alloy.
  • Components used in oil well purification equipment, chemical plant equipment, geothermal power generation equipment and the like are exposed to a high temperature corrosive environment containing hydrogen sulfide, carbon dioxide, various acid liquids and the like.
  • the high temperature corrosive environment may be up to about 1100 ° C. Therefore, members used for equipment in a high temperature corrosive environment are required to have excellent strength at high temperatures and excellent corrosion resistance.
  • Ni-based alloy containing a large amount of Cr and Mo is known as a material usable for the above-mentioned equipment application.
  • This Ni-based alloy has excellent corrosion resistance due to the inclusion of Cr and Mo.
  • the alloying elements may be concentrated between the secondary arms of dendrite formed during solidification. In this case, segregation occurs in the Ni-based alloy.
  • Mo which has the effect of enhancing the corrosion resistance, tends to segregate. If Mo is segregated, the corrosion resistance of the Ni-based alloy is reduced.
  • Patent Document 1 A method of suppressing segregation of a Ni-based alloy is proposed in WO 2010/038680 (Patent Document 1).
  • a liquid alloy of a Ni-based alloy is melted by vacuum melting. Then, a liquid alloy is cast to manufacture a Ni-based alloy material.
  • secondary melting such as Vacuum Arc Remelting (VAR) or Electro-Slag Remelting (ESR) is performed on the Ni-based alloy material to further enhance the performance. Segregation suppression effect of Subsequently, the Ni-based alloy material is homogenized at 1160 to 1220 ° C. for 1 to 100 hours. It is described in Patent Document 1 that segregation of the Ni-based alloy is thereby suppressed.
  • VAR Vacuum Arc Remelting
  • ESR Electro-Slag Remelting
  • Patent Document 1 primary dissolution by vacuum dissolution is performed, and further, secondary dissolution such as VAR or ESR is performed as necessary, and then a long-term homogenization treatment is performed. Therefore, when the manufacturing method of patent document 1 is employ
  • An object of the present invention is to provide a method of manufacturing a Ni-based alloy and a Ni-based alloy that can reduce Mo segregation.
  • the method for producing a Ni-based alloy according to the present invention is Cast the liquid alloy
  • the chemical composition is in mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, One or more elements selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: 0.
  • Ni-based alloy material 100% or less, O: 0.1000% or less, Co: 0 to 1.00%, Cu: 0 to 0.50%, At least one element selected from the group consisting of Ca, Nd and B: 0 to 0.5000%, and A casting process for producing a Ni-based alloy material, the balance of which is Ni and impurities; For Ni-based alloy materials produced by the casting process, Soaking, or Soaking treatment, combined treatment including soaking, hot working and soaking after hot working, And a segregation reduction process satisfying equation (1).
  • each symbol in Formula (1) is as follows.
  • V R Solidification cooling rate of liquid alloy in casting process (° C / min)
  • T n Soaking temperature (° C.) in n-th soaking treatment
  • t n Holding time at soaking temperature in nth soaking (hr)
  • Rd n-1 Cumulative reduction in area of Ni base alloy material before nth soaking (%)
  • N Total number of times of soaking
  • the Ni-based alloy according to the present invention is The chemical composition is in mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, One or more elements selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: 0.
  • the balance consists of Ni and impurities, In a cross section perpendicular to the longitudinal direction of the Ni-based alloy, the average concentration of Mo is 8.0% or more by mass%, the maximum value of the Mo concentration is 11.0% or less by mass%, and the Mo concentration is The area ratio of the region of less than 8.0% by mass is less than 2.0%.
  • the method for producing a Ni-based alloy according to the present invention can reduce Mo segregation of the Ni-based alloy.
  • the Ni-based alloy according to the present invention has Mo segregation suppressed and has excellent corrosion resistance.
  • FIG. 1 is a schematic view of a Ni-based alloy during solidification in a casting process.
  • FIG. 2 is a view showing the relationship between dendrite in FIG. 1 and the Mo concentration of the Ni-based alloy.
  • 3, the Ni-base alloy material having the chemical composition of the present invention (cast material), is a diagram showing the relationship between the secondary dendrite arm spacing D II and solidification cooling rate V R.
  • FIG. 5A is a microstructure observation image of a Ni-based alloy in the case of performing hot working once at a cross-section reduction rate of 44.6% in the segregation reduction step.
  • FIG. 5A is a microstructure observation image of a Ni-based alloy in the case of performing hot working once at a cross-section reduction rate of 44.6% in the segregation reduction step.
  • FIG. 5B is a microstructure observation image of a Ni-based alloy in the case of performing hot working once at a cross-sectional reduction rate of 31.3% in the segregation reduction step.
  • FIG. 6 is an EPMA image in a Ni based alloy according to a second embodiment.
  • the inventors of the present invention suitably use a Ni-based alloy having a high Mo content to obtain excellent corrosion resistance in a high temperature corrosive environment, specifically, in mass%, C: not more than 0.100%, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10 .0%, at least one element selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe From 0.05 to 5.00%, N: not more than 0.100%, O: not more than 0.1000%, Co: from 0 to 1.00%, Cu: from 0 to 0.50%, from Ca, Nd and B N having a chemical composition of one or more elements selected from the group consisting of: 0 to 0.5000%, and the balance being Ni and impurities Based alloy is considered to be appropriate. Therefore, the present inventors investigated and examined
  • FIG. 1 is a schematic view of a Ni-based alloy during solidification in a casting process.
  • the liquid alloy in mold 13 is cooled and solidification proceeds. Specifically, the portion in the vicinity of the mold 13 solidifies, and the formation of the solid phase 11 proceeds. Furthermore, in the liquid phase 10, dendrite 12 is formed in the part where coagulation is in progress.
  • FIG. 2 is a view showing the relationship between dendrite 12 in FIG. 1 and the Mo concentration in the Ni-based alloy.
  • a portion with high Mo concentration is defined as a positive segregation portion of Mo segregation
  • a portion with low Mo concentration is Mo segregation Defined as the negative segregation part of Then, the distance between adjacent Mo segregations (the interval between the positive segregated portions or the spacing between the negative segregated portions) is defined as the distance between Mo segregations Ds.
  • the Mo segregation distance Ds corresponds to the dendrite secondary arm spacing D II .
  • the Mo segregation distance Ds matches the dendrite secondary arm spacing D II .
  • FIG. 3 the Ni-base alloy material having the chemical composition described above (cast material), is a diagram showing the relationship between the secondary dendrite arm spacing D II and solidification cooling rate V R.
  • FIG. 3 was obtained by the following method. A liquid alloy of Ni base alloy was melted. Then, by cooling with a variety of solidification cooling rate V R to room temperature (25 ° C.), a plurality producing Ni based alloy material (ingot) having the chemical composition described above. In this experiment, the solidification cooling rate V R was defined as the average cooling rate (° C./min) in the temperature range from the liquid solution temperature at the start of casting to the completion of solidification (the temperature range is 1290 ° C.). The temperature of the Ni-based alloy during cooling was measured using a consumable thermocouple.
  • a cross section perpendicular to the longitudinal direction of the Ni-based alloy material is defined as a “cross section”, and a width of the Ni-based alloy material in the cross section is defined as W.
  • the cross section has a rectangular shape, the long side of the cross section is defined as the width W. If the cross section is circular, the diameter is defined as the width W.
  • a region at a W / 4 depth position in the width W direction from the surface perpendicular to the width W direction is defined as “W / 4 depth position”.
  • the manufactured Ni-based alloy material was cut in the direction perpendicular to the longitudinal direction. Then, the dendrite secondary arm interval D II ( ⁇ m) was measured at the W / 4 depth position in the cross section. Specifically, a sample was taken from the W / 4 depth position. Of the surface of the sample, the surface parallel to the cross section was mirror-polished and then etched with aqua regia. The etched surface was observed with a 400 ⁇ optical microscope to produce a photographic image of a 200 ⁇ m ⁇ 200 ⁇ m viewing field. The obtained photographic image was used to measure any 20 dendrite secondary arm intervals ( ⁇ m) in the observation field of view. The average of the measured dendrite secondary arm spacing was defined as dendrite secondary arm spacing D II ( ⁇ m).
  • FIG. 3 was created using the determined solidification cooling rate V R and the dendritic secondary arm spacing D II .
  • ⁇ in the formula (B) is an average distance (hereinafter referred to as diffusion distance: unit is ⁇ m) in which Mo moves at time t (hr) in the Ni-based alloy material having the above-mentioned chemical composition.
  • D in Formula (B) is a diffusion coefficient of Mo, and is defined by the Arrhenius formula of Formula (C).
  • D D 0 exp (-Q / R (T + 273)) (C)
  • Q in Formula (C) is the activation energy of Mo diffusion.
  • R is a gas constant
  • T is a temperature (° C.).
  • D 0 is a constant (frequency factor) of Mo in the Ni-based alloy.
  • Do was determined by the following experiment. Soaking was performed at 1248 ° C. for 48 hours on the Ni-based alloy material having the above-described chemical composition. Then, the diffusion distance ⁇ of Mo in the Ni-based alloy after soaking was determined. In more detail, the following experiment was performed. The dendrite secondary arm interval D II of the Ni-based alloy material before soaking was measured by the method described above. After the measurement, the Ni-based alloy material was maintained at a soaking temperature of 1248 ° C. At this time, soaking at various holding times was performed. After soaking, the difference in Mo concentration between the positive segregation part and the negative segregation part of Mo was measured at the W / 4 depth position of the Ni-based alloy material.
  • the concentration difference between the positive segregated portion and the negative segregated portion of Mo was determined for each holding time in soaking. Then, the retention time t at which the concentration difference becomes 1.0 mass% or less was determined.
  • the concentration difference between the positive segregation part and the negative segregation part of Mo became 1.0 mass% or less .
  • the concentration difference between the positive segregation part and the negative segregation part of Mo is 1.
  • the activation energy value of Mo in the said temperature range in austenitic steel is substituted as an activation energy value of Mo in Ni-based alloy.
  • the Mo segregation distance Ds can be further narrowed before soaking. Because, as shown in FIG. 1, the dendrite arm extends in the normal direction of the surface of the Ni-based alloy material and grows. In hot working, a reduction is loaded in the direction normal to the surface of the Ni-based alloy material. Therefore, if hot working is performed, the dendritic secondary arm distance D II (that is, the distance between Mo segregation Ds) becomes narrower as compared to the case where the hot working is not performed. Therefore, when performing soaking at the same soaking temperature T (° C.) and the same holding time t (hr), performing hot working before soaking does not perform hot working before soaking. As compared with the above, segregation of Mo can be more easily reduced.
  • equation (E) is established based on equation (D).
  • V R Solidification cooling rate (° C / min) in casting process
  • T n Soaking temperature (° C.) in n-th soaking treatment
  • t n Holding time at soaking temperature in nth soaking (hr)
  • Rd n-1 Cumulative reduction in area of Ni base alloy material before nth soaking (%)
  • N Total number of times of soaking
  • n is a natural number of 1 to N
  • N is a natural number.
  • the cumulative cross-sectional reduction rate Rd n-1 is defined by the following equation (F).
  • Rd n-1 (1- (S n-1 / S 0 )) ⁇ 100
  • Sn-1 is an area (mm 2 ) of a cross section (cross section) perpendicular to the longitudinal direction of the Ni-based alloy material before the n-th soaking treatment
  • S 0 is the area of a cross section (cross section) perpendicular to the longitudinal direction of the Ni-based alloy material after the casting process and before the first hot working (that is, after the casting process but before the segregation reduction process) (Mm 2 ).
  • Ni based alloy material to be S 0 is the ingot, define four as represented by a truncated pyramid shape, when the cross section perpendicular to the longitudinal direction is not constant in the longitudinal direction, the area S 0 are: Be done.
  • S 0 V 0 / L
  • V 0 is the volume (mm 3 ) of the Ni-based alloy material
  • L is the length (mm) of the Ni-based alloy material in the longitudinal direction.
  • Ni base alloy of this embodiment completed based on the above knowledge, and the Ni base alloy manufactured by the manufacturing method of this embodiment have the following composition.
  • the method of manufacturing the Ni-based alloy of the present embodiment according to the configuration of [1] Cast the liquid alloy The chemical composition is in mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, One or more elements selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: 0.
  • V R Solidification cooling rate of liquid alloy in casting process (° C / min)
  • T n Soaking temperature (° C.) in n-th soaking treatment
  • t n Holding time at soaking temperature in nth soaking (hr)
  • Rd n-1 Cumulative reduction in area of Ni base alloy material before nth soaking (%)
  • N Total number of times of soaking
  • the method for producing a Ni-based alloy of the present embodiment according to the configuration of [2] is the method for producing a Ni-based alloy according to [1],
  • the soaking temperature is 1000 to 1300 ° C.
  • the method for producing a Ni-based alloy of the present embodiment according to the configuration of [3] is the method for producing a Ni-based alloy according to [2],
  • the composite processing is performed one or more times, and the hot working is performed at least once at a reduction of area of 35.0% or more on the Ni-based alloy material heated to 1000 to 1300.degree.
  • the grain size number according to ASTM E112 of the manufactured Ni-based alloy is 0.0 or more.
  • the method for producing a Ni-based alloy of the present embodiment according to the configuration of [4] is the method for producing a Ni-based alloy according to [2] or [3], In the segregation reduction process, Soaking at least 1000 hours at a soaking temperature of 1000 to 1300 ° C. is performed at least once.
  • the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ 10 ⁇ 2 / ⁇ m 2 or less. As a result, the hot workability is further enhanced.
  • the method for producing a Ni-based alloy according to the configuration of [5] is the method for producing a Ni-based alloy according to any one of [1] to [4],
  • the chemical composition of the Ni-based alloy material is One or more elements selected from the group consisting of Ca, Nd, and B are contained at a content satisfying the formula (2). (Ca + Nd + B) /S ⁇ 2.0 (2) Here, the content of the corresponding element in atomic% (at) is substituted for the element symbol in the formula (2).
  • the hot workability of the manufactured Ni-based alloy is further enhanced.
  • the Ni-based alloy according to the configuration of [6] is The chemical composition is in mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, One or more elements selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: 0.
  • the balance consists of Ni and impurities, In a cross section perpendicular to the longitudinal direction of the Ni-based alloy, the average concentration of Mo is 8.0% or more by mass%, the maximum value of the Mo concentration is 11.0% or less by mass%, and the Mo concentration is The area ratio of the region of less than 8.0% by mass is less than 2.0%.
  • Ni-based alloy according to the present embodiment Mo segregation is suppressed. Therefore, the Ni-based alloy of the present embodiment is excellent in corrosion resistance.
  • the Ni-based alloy according to the constitution of [7] is the Ni-based alloy according to [6],
  • the chemical composition is One or more elements selected from the group consisting of Ca, Nd, and B are contained at a content satisfying the formula (2). (Ca + Nd + B) /S ⁇ 2.0 (2) Here, the content of the corresponding element in atomic% (at) is substituted for the element symbol in the formula (2).
  • the hot workability of the Ni-based alloy is further enhanced.
  • the Ni-based alloy according to the constitution of [8] is the Ni-based alloy according to [6] and [7],
  • the grain size number according to ASTM E112 is 0.0 or more.
  • the hot workability of the Ni-based alloy is further enhanced.
  • the Ni-based alloy according to the constitution of [9] is the Ni-based alloy according to any one of [6] to [8],
  • the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less.
  • the hot workability of the Ni-based alloy is further enhanced.
  • Nb carbonitride is a concept including Nb carbide, Nb nitride, and Nb carbonitride, and the total content of Nb, C and N is 90% by mass% The above precipitates are meant.
  • the maximum length of Nb carbonitride means the largest length of straight lines connected at any two points on the interface (boundary) between Nb carbonitride and the matrix.
  • the method of manufacturing a Ni-based alloy according to the present embodiment includes a casting step and a segregation reduction step. Each step will be described below.
  • the chemical composition of the Ni-based alloy material contains the following elements. Hereinafter,% relating to an element means mass% unless otherwise noted.
  • the chemical composition of the Ni-based alloy produced by the method of producing a Ni-based alloy of the present embodiment is the same as the chemical composition of the Ni-based alloy material.
  • C 0. 100% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. If the C content is too high, carbides represented by Cr carbides precipitate at grain boundaries due to long-term use at high temperature. In this case, the corrosion resistance of the Ni-based alloy is reduced. The precipitation of carbides at grain boundaries further degrades mechanical properties such as toughness of the Ni-based alloy. Therefore, the C content is 0.100% or less.
  • the upper limit of the C content is preferably 0.070%, more preferably 0.050%, still more preferably 0.030%, still more preferably 0.025%, further preferably 0.023%. %. It is preferable that the C content be as low as possible. However, extreme reduction of the C content adds to the manufacturing cost. Therefore, the preferable lower limit of the C content is 0.001%, more preferably 0.005%, and still more preferably 0.010%.
  • Si Silicon (Si) is inevitably contained. That is, the Si content is more than 0%. Si deoxidizes the Ni-based alloy. However, if the Si content is too high, Si combines with Ni or Cr to form an intermetallic compound, or promotes the formation of an intermetallic compound such as a sigma phase ( ⁇ phase). As a result, the hot workability of the Ni-based alloy is reduced. Therefore, the Si content is 0.50% or less.
  • the upper limit of the Si content is preferably 0.40%, more preferably 0.30%, still more preferably 0.25%, further preferably 0.20%, still more preferably 0. It is 19%.
  • the preferable lower limit of the Si content for obtaining the above-mentioned deoxidation function more effectively is 0.01%, more preferably 0.02%, further preferably 0.04%.
  • Mn 0.50% or less Manganese (Mn) is inevitably contained. That is, the Mn content is more than 0%. Mn deoxidizes the Ni-based alloy. Mn further fixes the impurity S as Mn sulfide to enhance the hot workability of the Ni-based alloy. However, if the Mn content is too high, during use in a high temperature corrosive environment, the formation of a spinel-type oxide film is promoted, and as a result, the oxidation resistance at high temperatures is reduced. If the Mn content is too high, the hot workability of the Ni-based alloy is further reduced. Therefore, the Mn content is 0.50% or less.
  • the upper limit of the Mn content is preferably 0.40%, more preferably 0.30%, and still more preferably 0.23%.
  • the preferable lower limit of the Mn content for effectively enhancing the hot workability is 0.01%, more preferably 0.02%, still more preferably 0.04%, further preferably 0. It is 08%, more preferably 0.12%.
  • Phosphorus (P) is an impurity.
  • the P content may be 0%. P lowers the toughness of the Ni-based alloy. Accordingly, the P content is 0.015% or less (which is 0% or more).
  • the upper limit of the P content is preferably 0.013%, more preferably 0.012%, and still more preferably 0.010%.
  • the P content is preferably as low as possible. However, extreme reduction of P content adds to the manufacturing cost. Therefore, the preferable lower limit of P content is 0.001%, more preferably 0.002%, and still more preferably 0.004%.
  • S 0.0150% or less Sulfur (S) is an unavoidable impurity. That is, the S content is more than 0%. S reduces the hot workability of the Ni-based alloy. Therefore, the S content is 0.0150% or less.
  • the upper limit of the S content is preferably 0.0100%, more preferably 0.0080%, still more preferably 0.0050%, still more preferably 0.0020%, and still more preferably 0.0015%. %, More preferably 0.0010%, still more preferably 0.0007%.
  • the S content is preferably as low as possible. However, the extreme reduction of the S content adds to the manufacturing cost. Therefore, the preferable lower limit of the S content in view of the manufacturing cost is 0.0001%, more preferably 0.0002%.
  • Chromium (Cr) improves the corrosion resistance such as oxidation resistance, water vapor oxidation resistance and high temperature corrosion resistance of a Ni-based alloy. Furthermore, Cr combines with Nb to form an intermetallic compound and precipitates at grain boundaries to enhance the creep strength of the Ni-based alloy. If the Cr content is too low, the above effects can not be sufficiently obtained. On the other hand, if the Cr content is too high, a large amount of M 23 C 6 type carbides precipitate, and the corrosion resistance is rather lowered. Therefore, the Cr content is 20.0 to 23.0%.
  • the preferable lower limit of the Cr content is 20.5%, more preferably 21.0%, and still more preferably 21.2%.
  • the upper limit of the Cr content is preferably 22.9%, more preferably 22.5%, still more preferably 22.3%, still more preferably 22.0%.
  • Mo 8.0 to 10.0% Molybdenum (Mo) enhances the corrosion resistance of Ni-based alloys in use in high temperature corrosive environments. Furthermore, Mo is solid-solved in the matrix phase to increase the creep strength of the Ni-based alloy by solid solution strengthening. This increases the strength of the Ni-based alloy in a high temperature corrosive environment. On the other hand, if the Mo content is too high, the hot workability is reduced. Therefore, the Mo content is 8.0 to 10.0%.
  • the lower limit of the Mo content is preferably 8.1%, more preferably 8.2%, still more preferably 8.3%, further preferably 8.4%, further preferably 8.5. %.
  • the upper limit of the Mo content is preferably 9.9%, more preferably 9.5%, still more preferably 9.2%, further preferably 9.0%, further preferably 8.8. %.
  • Nb and Ta 3.150 to 4.150%
  • Nb and Ta niobium (Nb) and tantalum (Ta) promote the formation of intermetallic compounds and contribute to the precipitation strengthening within grain boundaries and within grains. As a result, creep strength is increased. If the total content of one or more elements selected from the group consisting of Nb and Ta is too low, the above effect can not be sufficiently obtained. On the other hand, if the total content of one or more elements selected from the group consisting of Nb and Ta is too high, the precipitates become coarse and creep strength decreases. Therefore, the total content of one or more elements selected from the group consisting of Nb and Ta is 3.150 to 4.150%.
  • the lower limit of the total content of one or more elements selected from the group consisting of Nb and Ta is preferably 3.200%, more preferably 3.210%, and still more preferably 3.220%.
  • the upper limit of the total content of one or more elements selected from the group consisting of Nb and Ta is preferably 4.120%, more preferably 4.000%, still more preferably 3.800%, further preferably Is 3.500%, more preferably 3.450%.
  • Nb may be contained, and Ta may not be contained. Further, only Ta may be contained, and Nb may not be contained. Both Nb and Ta may be contained.
  • the above-mentioned total content (3.150 to 4.150%) means the content of Nb.
  • the above-mentioned total content (3.150 to 4.150%) means the content of Ta.
  • Ti 0.05 to 0.40% Titanium (Ti) deoxidizes the Ni-based alloy together with Si, Mn and Al. Ti further forms a gamma prime phase ( ⁇ ′ phase) with Al to enhance the creep strength of the Ni-based alloy in a high temperature corrosive environment. If the Ti content is too low, the above effects can not be sufficiently obtained. On the other hand, if the Ti content is too high, a large amount of carbides and / or oxides are formed, and the hot workability and creep strength of the Ni-based alloy are reduced. Therefore, the Ti content is 0.05 to 0.40%.
  • the lower limit of the Ti content is preferably 0.08%, more preferably 0.10%, still more preferably 0.13%, and still more preferably 0.15%.
  • the upper limit of the Ti content is preferably 0.35%, more preferably 0.30%, still more preferably 0.25%, and still more preferably 0.22%.
  • Al 0.05 to 0.40%
  • Aluminum (Al) deoxidizes the Ni-based alloy together with Si, Mn and Ti. Al further forms a gamma prime phase ( ⁇ ′ phase) with Ti to enhance the creep strength of the Ni-based alloy in a high temperature corrosive environment. If the Al content is too low, the above effect can not be sufficiently obtained. On the other hand, if the Al content is too high, a large amount of oxide inclusions are generated, and the hot workability and the creep strength of the Ni-based alloy are reduced. Therefore, the Al content is 0.05 to 0.40%.
  • the preferable lower limit of the Al content is 0.06%, more preferably 0.07%, and still more preferably 0.08%.
  • the upper limit of the Al content is preferably 0.35%, more preferably 0.32%, still more preferably 0.30%, still more preferably 0.27%.
  • the Al content is sol. It means the content of Al (acid-soluble Al).
  • Fe 0.05 to 5.00% Iron (Fe) substitutes for Ni. Specifically, Fe improves the hot workability of the Ni-based alloy. Fe further precipitates Laves phase at grain boundaries and strengthens the grain boundaries. If the Fe content is too low, the above effects can not be sufficiently obtained. On the other hand, if the Fe content is too high, the corrosion resistance of the Ni-based alloy is reduced. Therefore, the Fe content is 0.05 to 5.00%.
  • the lower limit of the Fe content is preferably 0.10%, more preferably 0.50%, still more preferably 1.00%, further preferably 2.00%, further preferably 2.50. %.
  • the upper limit of the Fe content is preferably 4.70%, more preferably 4.50%, still more preferably 4.00%, still more preferably 3.90%.
  • N 0. 100% or less Nitrogen (N) is inevitably contained. That is, the N content is more than 0%. N stabilizes austenite in the Ni-based alloy. N further enhances the creep strength of the Ni-based alloy. However, if the N content is too high, the hot workability of the Ni-based alloy is reduced. Therefore, the N content is 0.100% or less.
  • the upper limit of the N content is preferably 0.080%, more preferably 0.050%, still more preferably 0.030%, and still more preferably 0.025%. Extreme reduction of the N content increases the manufacturing cost. Therefore, the preferable lower limit of the N content in view of the production cost is 0.001%, more preferably 0.002%, and still more preferably 0.005%.
  • Oxygen (O) is an impurity.
  • the O content may be 0%. O forms oxides to reduce the hot workability of the steel. Therefore, the O content is (not less than 0%) not more than 0.1000%.
  • the upper limit of the O content is preferably 0.0800%, more preferably 0.0050%, still more preferably 0.0300%, and still more preferably 0.0150%.
  • the O content is preferably as low as possible. However, the extreme reduction of the O content adds to the manufacturing cost. Therefore, the preferable lower limit of the O content in view of the production cost is 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%.
  • Ni-based alloy material The balance of the Ni-based alloy material according to the present invention is nickel (Ni) and impurities.
  • impurity as used herein means an element mixed from ore or scrap used as a raw material when industrially manufacturing a Ni-based alloy, or an element mixed from the environment of a manufacturing process or the like.
  • Ni stabilizes austenite in the structure of the Ni-based alloy and enhances the corrosion resistance of the Ni-based alloy.
  • the balance other than the above-described elements is Ni and impurities.
  • the preferable lower limit of the Ni content is 58.0%, more preferably 59.0%, still more preferably 60.0%.
  • the Ni-based alloy material of the present embodiment may further contain one or more elements selected from the group consisting of Co and Cu, instead of part of Ni. Both Co and Cu increase the high temperature strength of the Ni-based alloy.
  • Co is an optional element. That is, the Co content may be 0%. When contained, Co enhances the high temperature strength of the Ni-based alloy. The above effect can be obtained to some extent if Co is contained in any amount. However, if the Co content is too high, the hot workability of the Ni-based alloy is reduced. Therefore, the Co content is 0 to 1.00%.
  • the upper limit of the Co content is preferably 0.90%, more preferably 0.80%, still more preferably 0.70%, and still more preferably 0.60%.
  • the lower limit of the Co content is preferably 0.01%, more preferably 0.10%, still more preferably 0.20%, and still more preferably 0.30%.
  • Cu 0 to 0.50%
  • Copper (Cu) is an optional element. That is, the Cu content may be 0%. When it is contained, Cu precipitates to enhance the high temperature strength of the Ni-based alloy. The above effect can be obtained to some extent if Cu is contained even in small amounts. However, if the Cu content is too high, the hot workability of the Ni-based alloy is reduced. Therefore, the Cu content is 0 to 0.50%.
  • the upper limit of the Cu content is preferably 0.45%, more preferably 0.40%, still more preferably 0.30%, still more preferably 0.20%, still more preferably 0.15 %.
  • the lower limit of the Cu content is preferably 0.01%, more preferably 0.02%, and still more preferably 0.05%.
  • the Ni-based alloy material of the present embodiment may further contain one or more elements selected from the group consisting of Ca, Nd and B, instead of part of Ni.
  • At least one element or more selected from the group consisting of Ca, Nd and B: 0 to 0.5000% in total content Calcium (Ca), neodymium (Nd) and boron (B) are all optional elements and may not be contained. That is, the Ca content may be 0%, the Nd content may be 0%, and the B content may be 0%.
  • any of these elements enhances the hot workability of the Ni-based alloy. Since at least one or more elements selected from the group consisting of Ca, Nd and B may be contained, for example, only Ca may be contained, only Nd may be contained, or only B is contained. It may be done.
  • Ca and Nd may be contained, Ca and B may be contained, and Nd and B may be contained. Ca, Nd and B may be contained. If at least one or more elements selected from the group consisting of Ca, Nd and B are contained at least a little, the above effect can be obtained to some extent. However, Ca, Nd and B are easily absorbed by slag or the like during the production of a liquid alloy, and hardly remain in the Ni-based alloy material. Therefore, the total content of Ca, Nd and B is unlikely to exceed 0.5000%. Therefore, the total content of at least one or more elements selected from the group consisting of Ca, Nd and B is 0 to 0.5000%.
  • the upper limit of the total content of one or more elements selected from the group consisting of Ca, Nd and B is preferably 0.4500%, and more preferably 0.4200%.
  • the lower limit of the total content of one or more elements selected from the group consisting of Ca, Nd and B is preferably 0.0001%, more preferably 0.0003%, still more preferably 0.0005%.
  • the liquid alloy is melted so that the chemical composition of the Ni-based alloy material becomes the above-mentioned chemical composition.
  • the liquid alloy may be melted by a known method.
  • the liquid alloy is produced, for example, by electric furnace melting.
  • the liquid alloy may be melted by vacuum melting. From the viewpoint of production cost, it is preferable to produce the liquid alloy by electric furnace melting.
  • the molten liquid alloy is used to manufacture a Ni-based alloy material having the above-mentioned chemical composition by a casting method.
  • the Ni-based alloy material may be an ingot produced by the ingot method, or may be a slab (slab or bloom) produced by the continuous casting method.
  • the solidification cooling rate V R from liquid alloy to Ni-based alloy material in the casting process is measured by measuring the secondary dendrite arm spacing D II of the Ni-based alloy material after the casting process and before the segregation reduction process. It can be calculated.
  • Dendrite secondary arm spacing D II can be measured by the following method. A sample is taken at a W / 4 depth position of a cross section (cross section) perpendicular to the longitudinal direction at the longitudinal central position of the Ni-based alloy material. After mirror polishing is performed on the surface of the sample parallel to the cross section, etching is performed with aqua regia. The etched surface is observed with a 400 ⁇ optical microscope to produce a photographic image of a 200 ⁇ m ⁇ 200 ⁇ m viewing field. The resulting photographic image is used to measure any 20 dendrite secondary arm spacings ( ⁇ m) within the field of view. The average of the measured dendrite secondary arm spacing is defined as dendrite secondary arm spacing D II ( ⁇ m).
  • Composite processing means a series of processing that performs hot working and further performs soaking after hot working.
  • composite treatment means a combination of one hot working and one soaking after hot working.
  • One-time soaking means a process from inserting into a heating furnace or a soaking furnace and holding it at a predetermined soaking temperature and a predetermined holding time, and then extracting it.
  • One-time hot working means starting the hot working on the Ni-based alloy material heated to 1000 to 1300 ° C., and means the process until the hot working is finished without heating again on the way Do.
  • Hot working means, for example, hot extrusion, hot forging, hot rolling.
  • the soaking may not be performed once and the composite treatment may not be performed, or the composite treatment may be performed only once and the soaking may not be performed.
  • the combined process may be repeated several times.
  • One or more composite treatments may be performed after one or more soaking processes.
  • One or more soaking may be performed after one or more composite treatments.
  • at least one soaking, or at least one soaking and at least one combined treatment may be performed.
  • the composite treatment may be carried out as it is, or after the soaking treatment, the Ni-based alloy material may be once cooled, and then the soaking treatment may be carried out again, and then the composite treatment may be carried out (that is, in this case) Soaking treatment, soaking treatment, and combined treatment are carried out in this order).
  • the composite treatment may be performed, and then the compound treatment may be further performed (in this case, the soaking treatment, the combination treatment, and the combination treatment are performed in order).
  • the soaking process and the composite process may be combined as appropriate. For example, soaking treatment, composite treatment, soaking treatment may be performed in order, or soaking treatment, composite treatment, soaking heat treatment, and composite treatment may be performed in order.
  • hot working during soaking and composite treatment will be described.
  • the Ni-based alloy material produced by the casting process is held at the soaking temperature T n (° C.) for a holding time t n (hr).
  • n is 1 to N (N is a natural number)
  • the soaking temperature T n is the n-th soaking (including the soaking of (I) and the soaking of (I) above).
  • the thermal temperature (° C.) is meant, and the retention time t n is the retention time (hr) of the n-th soaking treatment.
  • N is the total number of soaking of (I) and soaking of (II).
  • the soaking temperature T n is not particularly limited, but the preferable soaking temperature T n is 1000 to 1300 ° C.
  • the soaking process may be performed by a known heating furnace or a soaking furnace.
  • the hot working may be hot extrusion, hot forging, or hot rolling.
  • the type of hot working is not particularly limited.
  • the above-described soaking process is performed after the hot working (composite treatment).
  • the distance Ds between Mo segregation in the Ni-based alloy material is reduced by the hot working. Therefore, in the soaking process after hot working, Mo is more easily diffused, and the holding time t n required to reduce Mo segregation can be reduced.
  • the segregation reduction step in the case where composite processing is performed without performing soaking in the previous stage, the Ni-based alloy material is heated to 1000 to 1300 ° C. in a heating furnace or a soaking furnace, and then hot working is performed. carry out.
  • the segregation reduction process (soaking treatment or soaking treatment and composite treatment) is performed so as to satisfy the formula (1), it is possible to manufacture a Ni-based alloy in which Mo segregation is suppressed.
  • Ni-based alloy according to the present embodiment The shape of the Ni-based alloy according to the present embodiment is not particularly limited.
  • the Ni-based alloy manufactured by the above-mentioned manufacturing method is, for example, a billet.
  • the cross section (transverse cross section) perpendicular to the longitudinal direction of the Ni-based alloy may be circular or rectangular, or may be polygonal.
  • the Ni-based alloy may be a pipe or solid material.
  • the chemical composition is, in mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S Cr: 20.0-23.0%, Mo: 8.0-10.0%, at least one element selected from the group consisting of Nb and Ta: 3.150-4.150 %, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: not more than 0.100%, O: not more than 0.1000% , Co: 0 to 1.00%, Cu: 0 to 0.50%, one or more elements selected from the group consisting of Ca, Nd and B: 0 to 0.5000%, and the balance being Ni and impurities Become.
  • the chemical composition of the Ni-based alloy of the present embodiment is the same as the chemical composition of the above-described Ni-based alloy material. Furthermore, in the cross section perpendicular to the longitudinal direction of the Ni-based alloy according to the present embodiment, the average concentration of Mo is 8.0% or more by mass%, and the maximum value of the Mo concentration is 11.0 by mass%. % Or less, and further, the area ratio of the region having a Mo concentration of less than 8.0% by mass is less than 2.0%. In the Ni-based alloy according to the present embodiment, segregation of Mo is suppressed.
  • the Ni-based alloy of the present embodiment will be described.
  • the content (each including the preferable upper limit and the preferable lower limit) of each element of the chemical composition of the Ni-based alloy according to the present embodiment and the function and effect are the chemical compositions of the Ni-based alloy material in the method of manufacturing the Ni-based alloy described above. It is the same as the content of each element (including the preferable upper limit and the preferable lower limit) and the function and effect.
  • the average concentration of Mo is 8.0% or more by mass%, and the maximum value of the Mo concentration is 11% by mass Not more than 0%, and further, the area ratio of the region of less than 8.0% by mass of Mo is less than 2.0%.
  • the average concentration of Mo, the maximum value of Mo concentration, and the region where the Mo concentration is less than 8.0% by mass% in the cross section of the Ni-based alloy are determined by the following method.
  • a region in which the Mo concentration is less than 8.0% by mass is also referred to as a “Mo low concentration region”.
  • a sample is taken from the cross section of the Ni-based alloy.
  • the Ni-based alloy is a solid material whose cross-sectional shape is a rectangular shape
  • the long side of the cross-section is defined as the width W.
  • the cross section is a circular solid material (i.e., a bar)
  • the diameter is defined as the width W.
  • the Ni-based alloy is a solid material
  • a sample is taken from the surface perpendicular to the width W direction from the W / 4 depth position (W / 4 depth position) in the width W direction.
  • the Ni-based alloy is a tube
  • a sample is taken from the thick center position.
  • the beam diameter is 10 ⁇ m
  • the scanning length is 2000 ⁇ m
  • the irradiation time per point is 3000 ms in any one field of view in the viewing surface.
  • Irradiation pitch A line analysis with an electron probe micro analyzer (EPMA: Electron Probe Micro Analyzer) set to 5 ⁇ m is performed. In the scanning range of 2000 ⁇ m where line analysis was performed, an average value of a plurality of Mo concentrations measured at 5 ⁇ m pitch, a maximum value of Mo concentration among a plurality of measured Mo concentrations, and a minimum value of Mo concentration are determined.
  • a total length of a continuous range (a range in which two or more points are continuous) of the measurement points where the Mo concentration is less than 8.0% is obtained.
  • the obtained total length is defined as the Mo low concentration area total length ( ⁇ m).
  • the Mo low concentration region ratio determined by the above equation is defined as “the area ratio of the region where the Mo concentration is less than 8.0% by mass”. More specifically, in the cross section of the Ni-based alloy, the line length by EPMA is performed by performing beam analysis with a beam diameter of 10 ⁇ m, a scan length of 2000 ⁇ m, an irradiation time per point of 3000 ms, and an irradiation pitch of 5 ⁇ m.
  • the average concentration of Mo obtained at 2000 ⁇ m and 5 ⁇ m pitch is 8.0% or more by mass%
  • the maximum value of Mo concentration is 11.0% or less by mass%
  • the Mo concentration is 2000 ⁇ m in scanning length
  • the scan length of the Mo low concentration area total length is defined. The percentage is less than 2.0%.
  • the average value of Mo concentration obtained by the above measurement is 8.0% or more by mass%, and the maximum value of Mo concentration is 11.0% or less by mass%. Furthermore, the proportion of the region in which the Mo concentration is less than 8.0% by mass, that is, the low Mo region concentration ratio is less than 2.0%.
  • Mo segregation is suppressed in the Ni-based alloy of the present embodiment.
  • the corrosion resistance of the Ni-based alloy is enhanced.
  • intergranular corrosion and stress corrosion cracking can be suppressed as follows.
  • the corrosion rate is 0.075 mm / month or less when the corrosion test specified in ASTM G28 Method A is performed.
  • the corrosion test according to ASTM G28 Method A is carried out by the following method. Specimens are collected from any position of the Ni-based alloy. The size of the test piece is, for example, 40 mm ⁇ 10 mm ⁇ 3 mm. Measure the weight of the test piece before the corrosion test starts. After the measurement, the test piece is immersed for 120 hours in a solution (50% sulfuric acid / ferric sulfate solution) in which 25 g of ferric sulfate is added to 600 mL of 50% by mass sulfuric acid solution.
  • test weight loss is determined based on the change in weight of the test piece measured.
  • the test weight is converted to a volume loss using the density of the test piece.
  • the volume reduction is divided by the surface area of the specimen to determine the corrosion depth.
  • the corrosion depth is divided by the test time to determine the corrosion rate (mm / month).
  • the corrosion rate is 0.075 mm / month or less, intergranular corrosion is suppressed, and corrosion resistance is excellent.
  • the Ni-based alloy of the present embodiment can also suppress stress corrosion cracking.
  • low strain rate tensile test specimens are collected from any position of the Ni-based alloy.
  • the low strain rate tensile test specimen has a length of 80 mm, a parallel part length of 25.4 mm, and a parallel part diameter of 3.81 mm.
  • the longitudinal direction of the low strain rate tensile test specimen is parallel to the longitudinal direction of the Ni-based alloy.
  • the Ni-based alloy manufactured by the manufacturing method of the present embodiment has the above-described chemical composition, and further, the average concentration of Mo is 8.0% or more by mass%, and the maximum value of Mo concentration Is 11.0% or less by mass%. Furthermore, the area ratio of the area
  • the method for producing the Ni-based alloy of the present embodiment is not particularly limited as long as it can produce the Ni-based alloy having the above-described configuration.
  • the above-described method of producing a Ni-based alloy is a preferred example for producing the Ni-based alloy of the present embodiment.
  • the method of manufacturing a Ni-based alloy of the present embodiment includes the above-described casting step and the above-described segregation reduction step.
  • a liquid alloy is cast, and the chemical composition is, by mass%, C: 0.100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015 % Or less, S: 0.0150% or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, at least one element selected from the group consisting of Nb and Ta: 3.150 To 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: not more than 0.100%, O: 0 .1000% or less, Co: 0 to 1.00%, Cu: 0 to 0.50%, one or more elements selected from the group consisting of Ca, Nd and B: 0 to 0.5000% and the balance are Manufacture a Ni-based alloy material consisting of Ni and impurities. And, in the segregation reduction process, (I) one or more soaking processes, or (II) one or more soaking processes and
  • the chemical composition is, by mass%, C: 0. 100% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.0150 % Or less, Cr: 20.0 to 23.0%, Mo: 8.0 to 10.0%, at least one element selected from the group consisting of Nb and Ta: 3.150 to 4.150%, Ti: 0.05 to 0.40%, Al: 0.05 to 0.40%, Fe: 0.05 to 5.00%, N: not more than 0.100%, O: not more than 0.1000%, Co: 0 1 to 1.00%, Cu: 0 to 0.50%, 1 or more elements selected from the group consisting of Ca, Nd and B: 0 to 0.5000%, and the balance being Ni and impurities, Ni group In a cross section perpendicular to the longitudinal direction of the alloy, the average concentration of Mo is 8.0% or more by mass%, and the maximum concentration of Mo is There is less 11.0% in mass%, further, Mo concentration can be prepared Ni-
  • FIG. 4 is a view showing the relationship between F1 and the corrosion rate in the Ni-based alloy having the chemical composition of the present invention.
  • F1 is an equation obtained by subtracting the left side of equation (1) from the right side of equation (1), and is defined as follows.
  • the corrosion rate is significantly higher than 0.075 mm / month, and the F1 value fluctuates. Even the corrosion rate does not fluctuate so much.
  • the manufacturing method of the Ni-based alloy of the present embodiment is not particularly limited as long as the Ni-based alloy having the above-described configuration can be manufactured.
  • the manufacturing method of the above-mentioned Ni-based alloy using Formula (1) is a suitable example for manufacturing the Ni-based alloy of this embodiment.
  • the grain size number according to ASTM E112 is 0.0 or more in the Ni-based alloy of the present embodiment. If the grain size number is 0.0 or more, the solidified structure is resolved in the Ni-based alloy, which indicates that the microstructure is substantially crystallized.
  • the preferred grain size number is 0.5 or more, more preferably 1.0 or more. The upper limit of the grain size number is not particularly limited.
  • the measurement method of the grain size number in the Ni-based alloy of the present embodiment is as follows.
  • the Ni-based alloy is equally divided into five in the axial direction (longitudinal direction) to specify the axial center position of each section.
  • 4 sampling positions are specified at a pitch of 90 ° around the central axis of the Ni-based alloy.
  • the sampling position is specified at a pitch of 90 degrees in the pipe circumferential direction.
  • a sample is taken from the identified sampling point.
  • the Ni-based alloy is a tube, a sample is taken from the thickness center position of the specified sampling point.
  • the Ni-based alloy is a bar or an alloy material having a rectangular cross section
  • a sample is taken from the W / 4 depth position at a selected sampling position.
  • the observation surface of the sample is a cross section perpendicular to the axial direction of the Ni-based alloy, and the area of the observation surface is 40 mm 2 .
  • the average value of the grain size numbers determined for the 20 samples is defined as the grain size number based on ASTM E112 in the Ni-based alloy.
  • the Ni-based alloy of the present embodiment which has a grain size number of 0.0 or more in accordance with ASTM E112, is manufactured, for example, by the following method.
  • Ni base alloy which contains the above-mentioned casting process and a segregation reduction process
  • a composite processing is implemented at least once in a segregation reduction process.
  • the hot working is performed at least once at a reduction of area of 35.0% or more on the Ni-based alloy material heated to 1000 to 1300 ° C. Hot working under this condition is called "specified hot working".
  • the grain size number according to ASTM E112 is 0.0 or more in the manufactured Ni-based alloy.
  • the cross-section reduction rate said by this item means the cross-section reduction rate in one hot working, not the cumulative cross-section reduction rate.
  • FIG. 5A shows a microstructure observation of a Ni-based alloy manufactured by performing one hot working at a cross-section reduction rate of 44.6% on a Ni-based alloy material having the above-described chemical composition in the segregation reduction step. It is an image.
  • FIG. 5B shows a microstructure observation of a Ni-based alloy manufactured by performing one hot working at a reduction rate of 31.3% on the Ni-based alloy material having the above-described chemical composition in the segregation reduction step. It is an image.
  • the grain size number according to ASTM E112 was 2.0 and was 0.0 or more.
  • the grain size number according to ASTM E112 was ⁇ 2.0 and was less than 0.0.
  • the crystal according to ASTM E112 is implemented by performing the hot working at least once at a reduction of area of 35.0% or more to the Ni-based alloy material having the above-mentioned chemical composition.
  • a Ni-based alloy having a grain size number of 0.0 or more can be manufactured.
  • the specific hot working may be performed a plurality of times.
  • the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is not more than 4.0 ⁇ 10 ⁇ 2 / ⁇ m 2 in the Ni-based alloy.
  • Nb carbonitride is a concept including Nb carbide, Nb nitride, and Nb carbonitride, and the total content of Nb, C and N is 90% by mass% The above precipitates are meant.
  • the maximum length of Nb carbonitride means the largest length of straight lines connected at any two points on the interface (boundary) between Nb carbonitride and the matrix.
  • Nb carbonitrides are sufficiently dissolved in the matrix phase. Therefore, the starting point of the crack in hot working decreases, and hot working property further improves.
  • the total number of coarse Nb carbonitrides can be determined by the following method.
  • the Ni-based alloy is axially divided into five equal parts, and the axial center position of each section is specified. In each section, the sampling position is specified at a pitch of 90 degrees in the circumferential direction at the axial center position. A sample is taken from the identified sampling point.
  • the Ni-based alloy is a tube
  • a sample is taken from the thickness center position of the specified sampling point.
  • the Ni-based alloy is a bar or an alloy material having a rectangular cross section
  • a sample is taken from the W / 4 depth position of the specified sampling point.
  • the observation surface of the sample is a cross section perpendicular to the axial direction of the Ni-based alloy.
  • Nb carbonitride is identified by EPMA (Electron Probe Micro Analyzer) in any one field of view (400 ⁇ m ⁇ 400 ⁇ m) in each observation surface (20 pieces in total). Specifically, the surface analysis of EPMA identifies a precipitate having a total content of Nb, C and N of 90% or more, and defines the identified precipitate as Nb carbonitride.
  • FIG. 6 is an EPMA image in an example of the one field of view. The precipitate 100 displayed in white in FIG. 6 is Nb carbonitride. Measure the maximum length of the identified Nb carbonitrides.
  • the value of the largest straight line is defined as the maximum length of the Nb carbonitride.
  • Nb carbonitride coarse Nb carbonitride having a maximum length of 1 to 100 ⁇ m is identified, and the total number of coarse Nb carbonitrides in all the 20 views is determined. Based on the obtained total number, the total number (number / ⁇ m 2 ) of coarse Nb carbonitrides is determined.
  • Ni-based alloy described above wherein the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less, can be obtained, for example, by It can be manufactured.
  • a method of manufacturing a Ni-based alloy including the above-described casting step and segregation reduction step, wherein in the segregation reduction step, soaking at least 1000 hours at a soaking temperature of 1000 to 1300 ° C. is performed at least once. .
  • the soaking process under this condition is called "specific soaking process".
  • the specific soaking is performed at least once, the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ 10 ⁇ 2 / ⁇ m in the manufactured Ni-based alloy. 2 or less.
  • the specific soaking process may be performed a plurality of times.
  • Ni-based alloy further has a grain size number of 0.0 or more according to ASTM E112, and the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 in the Ni-based alloy. It may be 10 ⁇ 2 pieces / ⁇ m 2 or less.
  • the hot working is performed at least once at a cross-section reduction rate of 35.0% or more on the Ni-based alloy material heated to 1000 to 1300 ° C.
  • soaking at a soaking temperature of 1000 to 1300 ° C. for 1.0 hour or more is performed at least once. That is, in the segregation reduction step, the specified hot working is performed at least once, and the specified soaking is performed at least once.
  • the above-mentioned Ni-based alloy further contains one or more elements selected from the group consisting of Ca, Nd, and B at a content satisfying the formula (2).
  • the content of the corresponding element in atomic% (at%) is substituted for the element symbol in the formula (2).
  • F2 (Ca + Nd + B) / S.
  • F2 is an index of hot workability.
  • the total content F2 of one or more selected from the group consisting of Ca, Nd, and B is 2.0 or more, that is, when F2 satisfies the formula (2), a Ni-based alloy of the above-mentioned chemical composition In the above, even better hot workability is obtained.
  • the reduction (break reduction) becomes 35.0% or more.
  • FIG. 7 is a view showing the relationship between F2 and the reduction in area (%) obtained when a tensile test is performed at a strain rate of 10 / sec in the atmosphere at 900 ° C. for the Ni-based alloy of the present embodiment. is there.
  • FIG. 7 was obtained by the test shown in Example 2 described later. Referring to FIG. 7, the fracture reduction at 900 ° C. did not change so much even when F 2 increased until F 2 became 1.0. On the other hand, when F2 exceeds 1.0, the breaking reduction at 900 ° C. rises rapidly with the increase of F2, and it becomes about 50.0% and exceeds 35.0% at F2 of 2.0.
  • the preferable lower limit of F2 is 2.5, more preferably 3.0, and still more preferably 3.5.
  • the upper limit of the total content (mass%) of Ca, Nd and B in the Ni-based alloy is 0.5000% as in the first embodiment.
  • the method of manufacturing the Ni-based alloy of the second embodiment described above is not particularly limited as long as the Ni-based alloy of the second embodiment having the above-described configuration can be manufactured.
  • the method of manufacturing the Ni-based alloy of the second embodiment is the same as the method of manufacturing the Ni-based alloy of the first embodiment.
  • the method of manufacturing a Ni-based alloy according to the second embodiment includes a casting step and a segregation reduction step.
  • a liquid alloy is cast to produce a Ni-based alloy material having the above-described chemical composition and F2 satisfying the formula (2).
  • the Ni-based alloy material produced in the casting step is (I) Soaking, or (II) Soaking and combined treatment, Conduct.
  • soaking may be performed only once, or the composite treatment may be performed only once.
  • the combined process may be repeated several times.
  • Composite treatment may be performed after soaking.
  • the segregation reduction step soaking treatment, or soaking treatment and composite treatment are performed.
  • the soaking temperature T n (° C.), the holding time t n (hr), and the cross-sectional reduction rate Rd n-1 (%) so that the solidification cooling rate V R in the casting process satisfies the equation (1) adjust.
  • the segregation reduction step (soaking or soaking and composite treatment) is performed so as to satisfy formula (1) on a Ni-based alloy material having a chemical composition that satisfies formula (2)
  • the second embodiment Forms of Ni-based alloys can be produced.
  • Ni base alloy of 2nd Embodiment manufactures Ni base alloy raw material in a casting process
  • dissolves the Ni base alloy raw material again is not implemented. That is, in the present manufacturing method, it is preferable to carry out the segregation reduction step without carrying out secondary melting for melting the Ni-based alloy manufactured in the casting step again after the casting step.
  • Ca, Nd, B, etc. generally combine with S in the steel to form a sulfide, and the solid solution S concentration in the steel (especially grain boundaries) Hot workability is improved by reducing it.
  • Ca, Nd, and B will be discharged from the Ni-based alloy material to the outside during secondary melting.
  • ESR electroslag remelting
  • the secondary melting is not performed (the secondary melting is omitted), and the Ni-based alloy material is manufactured only by the primary melting. Therefore, in the Ni-based alloy, at least one or more elements of Ca, Nd, and B can be maintained at a content satisfying the formula (2), and hot workability can be enhanced. Furthermore, since the above-described segregation reduction step is performed on the Ni-based alloy material, Mo segregation can also be suppressed.
  • the grain size number according to ASTM E112 is 0.0 or more.
  • the grain size number in the Ni-based alloy is 0.0 or more, preferably, the cross-sectional reduction of 35.0% or more with respect to the Ni-based alloy material heated to 1000 to 1300 ° C. in the segregation reduction step Perform hot working (specified hot working) at least once at a rate.
  • the grain size number according to ASTM E112 is 0.0 or more in the manufactured Ni-based alloy.
  • the specific hot working may be performed a plurality of times.
  • the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ in the Ni-based alloy. 10 ⁇ 2 particles / ⁇ m 2 or less. In this case, the hot workability is further enhanced.
  • the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less, preferably, 1000 to 1300 ° C. in the segregation reduction step.
  • Soaking which is maintained at the soaking temperature for at least 1.0 hour, is performed at least once. If the specific soaking is performed at least once, the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m in the manufactured Ni-based alloy is 4.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less.
  • the specific soaking process may be performed a plurality of times.
  • Ni-based alloy further has a grain size number of 0.0 or more according to ASTM E112, and the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m is 4.0 in the Ni-based alloy. It may be 10 ⁇ 2 pieces / ⁇ m 2 or less.
  • the hot working is performed at least once at a cross-section reduction rate of 35.0% or more on the Ni-based alloy material heated to 1000 to 1300 ° C.
  • soaking at a soaking temperature of 1000 to 1300 ° C. for 1.0 hour or more is performed at least once.
  • the liquid alloy was melted by electric furnace melting.
  • the melted liquid alloy was solidified by a continuous casting method or an ingot method to manufacture a Ni-based alloy material (slab or ingot) having the chemical composition of Table 1.
  • the Ni-based alloy materials of Test Nos. 1 to 5 and 8 were slabs.
  • the cross section perpendicular to the longitudinal direction of the cast slab was 600 ⁇ 285 mm.
  • the Ni-based alloy material of Test Nos. 6 and 7 was an ingot.
  • the cross section perpendicular to the longitudinal direction of the ingot was 500 mm ⁇ 500 mm.
  • the dendrite secondary arm distance D II is measured by the following method, and the solidification cooling rate V R (° C./min of each test number) Asked for). Specifically, a sample was taken at a W / 4 depth position of a cross section perpendicular to the longitudinal direction at the longitudinal central position of the Ni-based alloy material. Of the surface of the sample, the surface parallel to the cross section was mirror-polished and then etched with aqua regia. The etched surface was observed with a 400 ⁇ optical microscope to produce a photographic image of a 200 ⁇ m ⁇ 200 ⁇ m viewing field. The obtained photographic image was used to measure any 20 dendrite secondary arm intervals ( ⁇ m) in the observation field of view.
  • the average of the measured dendrite secondary arm spacing was defined as dendrite secondary arm spacing D II ( ⁇ m).
  • the solidification cooling rate V R (° C./min) was determined by substituting the obtained dendrite secondary arm interval D II into the formula (A).
  • D II 182 V R- 0.294 (A)
  • the segregation reduction process shown in Table 2 was performed on the Ni-based alloys of test numbers 2 to 5, 7 and 8.
  • soaking was performed once as a segregation reduction process.
  • Test No. 4 soaking was performed (soaking 1), then hot rolling was performed (hot working 1), and after hot rolling, soaking was performed again (soaking 2).
  • the test number 5 it implemented in order of soaking treatment 1, hot working 1, soaking heat treatment 2, hot working 2 (hot rolling), and soaking heat treatment 3.
  • Test No. 7 the soaking process 1 was performed.
  • the soaking treatment 1, the hot working 1, and the soaking treatment 2 were performed in this order. That is, test numbers 2, 3 and 7 performed only one soaking process.
  • Test No. 4 performed one soaking and one combined treatment.
  • Test No. 5 performed one soaking and two combined treatments.
  • Test No. 8 performed one combination process.
  • the segregation reduction process was not implemented.
  • test numbers 4, 5, and 8 manufactured the solid material (that is, round bar material) whose cross section was circular in all. Moreover, in each of test numbers 4, 5, and 8, after carrying out soaking treatment 1, hot working 1 was carried out promptly. In the test number 5, after the soaking treatment 2 was performed, the hot working 2 was promptly performed.
  • the soaking temperature (° C.) and soaking time (hr) in each of the soaking processes 1 to 3 were as shown in Table 2.
  • the cross-sectional reduction rate Rd n-1 (%) in each of the hot workings 1 and 2 is as shown in Table 2.
  • F1 right side of equation (1) -left side of equation (1) was determined. The obtained F1 is shown in Table 2.
  • test pieces were collected from the same position as the sampling position in the Mo concentration measurement test.
  • the size of the test piece was 40 mm ⁇ 10 mm ⁇ 3 mm.
  • the corrosion test specified by ASTM G28 Method A was performed using the collected test pieces. Specifically, the weight of the test piece before the start of the corrosion test was measured. After the measurement, the test piece was immersed in a 50% ferric sulfate solution for 120 hours. After 120 hours, the weight of the test piece after the test was measured. The corrosion rate (mm / month) of each test piece was determined from the change in weight of the measured test piece.
  • Test results The test results are shown in Table 2. Referring to Table 2, in the test numbers 3 to 5, 7 and 8, the chemical composition of the Ni-based alloy was appropriate, F1 was 0 or more, and the formula (1) was satisfied in the segregation reduction step. Therefore, in a cross section perpendicular to the longitudinal direction of the Ni-based alloy, the average concentration of Mo is 8.0% or more by mass%, the maximum value of the Mo concentration is 11.0% or less by mass%, and Mo The area ratio (Mo low concentration area ratio) of the area having a concentration of less than 8.0% by mass% was less than 2.0%. As a result, no crack was identified in the SSRT test. Furthermore, the corrosion rate was less than 0.075 mm / month, showing excellent corrosion resistance. In the Ni-based alloys of Test Nos. 3 to 5, 7 and 8, the total number of Nb carbonitrides having a maximum length of 1 to 100 ⁇ m was 4.0 ⁇ 10 ⁇ 2 / ⁇ m 2 or less.
  • a liquid alloy melted by electric furnace melting was solidified by a continuous casting method or an ingot method to manufacture a Ni-based alloy material (slab or ingot) having the chemical composition of Table 3.
  • the Ni-based alloy material of Test Nos. 9 to 21 was a cast piece, and the cross section (cross section) perpendicular to the longitudinal direction of the cast piece was 600 ⁇ 285 mm.
  • the blank part in Table 3 shows that content of the corresponding element was less than the detection limit.
  • the dendrite secondary arm distance D II is measured by the above-mentioned method, and the solidification cooling rate V R (° C./min of each test number) Asked for).
  • the solidification cooling rate V R was 5 (°C / min).
  • the segregation reduction step was performed on the Ni-based alloy of each test number. Specifically, in the test numbers 9 and 11, the soaking was performed only once and the hot working step was not performed. The soaking temperature of soaking was 1200 ° C., and the holding time was 96 hours. As a result, F1 was all 0.06, which satisfied the formula (1).
  • the soaking treatment 1, the hot working 1, the soaking 2, the hot working 2 and the soaking 3 were carried out in this order.
  • the soaking temperature in the soaking process 1 was 1200 ° C., and the holding time was 48 hours.
  • the cumulative cross-sectional reduction rate in hot working 1 was 47.3%.
  • the soaking temperature in the soaking process 2 was 1200 ° C., and the holding time was 24 hours.
  • the cumulative sectional reduction rate in hot working 2 was 85.0%.
  • the soaking time in the soaking process 3 was 1200 ° C., and the holding time was 0.08 hours.
  • F1 was 0.38 in all cases and satisfied the equation (1).
  • Ni base alloys of test numbers 9 to 21 were manufactured. In all of Test Nos. 9 to 21, secondary melting was not performed on the Ni-based alloy material after the casting step.
  • the Ni-based alloys of Test Nos. 9 and 11 were slabs, and the Ni-based alloys of Test Nos. 10 and 12 to 21 were solid materials having a circular cross section (that is, round bars).
  • the hot working 1 was carried out promptly.
  • the hot working 2 was carried out promptly.
  • the grain size number of the Ni-based alloy of Test No. 5 of Example 1 and Test No. 12 of Example 2 was determined by the following method.
  • the Ni-based alloy was axially divided into five equal parts, and the axial center position of each section was specified. In each section, sampling positions were specified at a pitch of 90 degrees around the axis (around the longitudinal direction) at the axial center position.
  • the sample was taken from the W / 4 depth position of the specified sampling position.
  • the observation surface of the sample was a cross section perpendicular to the axial direction of the Ni-based alloy, and the area of the observation surface was 40 mm 2 . According to the above method, four samples were taken in each section, and 20 samples were taken in all sections.
  • the observation surface of the collected sample was corroded using a curling reagent to reveal grain boundaries on the surface.
  • the corroded observation surface was observed to determine the grain size number according to ASTM E112.
  • the average value of the grain size numbers determined for 20 samples was defined as the grain size number according to ASTM E112 in a Ni-based alloy.
  • Ni-based alloy material of Test No. 22 having the chemical composition shown in Table 5 was prepared.
  • the Ni-based alloy material was a slab, and the cross section perpendicular to the longitudinal direction of the slab was 600 ⁇ 285 mm.
  • the chemical composition of Test No. 22 was the same as that of Test No. 5.
  • the dendrite secondary arm distance D II is measured by the same method as in Example 1, and the solidification cooling speed V R of the Ni-based alloy material of each test No. (° C./min) was determined.
  • the solidification cooling rate V R was 5 ° C./min.
  • the segregation reduction process shown in Table 6 was carried out on the Ni-based alloy material of Test No. 22.
  • the cross-sectional reduction rate of the first hot working was 31.3%, as compared to the manufacturing conditions of test No. 5.
  • the cumulative cross-sectional reduction rate in the second hot working was 62.6%, and the cross-sectional reduction rate in the second hot working was 31.3%. That is, in the test number 22, the cross-sectional reduction rate in each hot working was less than 35.0% in each case.
  • the grain size number of the test No. 22 was also determined in the same manner as in the test No. 5.
  • the grain size number according to ASTM E112 is 0.0 or more (2.0), and in the test number 12, the grain size number according to ASTM E112 is 0.0 It became. On the other hand, in the test No. 22, the grain size number according to ASTM E112 was less than 0.0 (-2.0).
  • the total number of coarse Nb carbonitrides of the Ni-based alloy of Test No. 4 of Example 1 was determined by the following method.
  • the Ni-based alloy was axially divided into five equal parts, and the axial center position of each section was specified. In each section, sampling positions were specified at a pitch of 90 degrees around the axis (around the longitudinal direction) at the axial center position. The sample was taken from the thickness center position of the specified sampling point.
  • the observation surface of the sample was a cross section perpendicular to the axial direction of the Ni-based alloy.
  • Nb carbonitride was identified by EPMA in any one field of view (400 ⁇ m ⁇ 400 ⁇ m) in each of the observation planes (20 pieces in total). The maximum length of the identified Nb carbonitride was measured.
  • the value of the largest straight line was defined as the maximum length of the Nb carbonitride.
  • Nb carbonitride coarse Nb carbonitride having a maximum length of 1 to 100 ⁇ m was identified, and the total number of coarse Nb carbonitrides in all the 20 views was determined. The total number of coarse Nb carbonitrides (piece / ⁇ m 2 ) was determined based on the total number obtained.
  • a Ni-based alloy of Test No. 23 shown in Table 7 was prepared.
  • the Ni-based alloy material was a slab, and the cross section perpendicular to the longitudinal direction of the slab was 600 ⁇ 285 mm.
  • the chemical composition of Test No. 23 was the same as that of Test No. 4.
  • the segregation reduction step shown in Table 8 was carried out on the Ni-based alloy material of Test No. 23. Specifically, in the test No. 23, the first soaking at the same temperature as the test No. 4 is carried out (soaking 1), and then the hot rolling is carried out with the same reduction in area as the test No. 4 (thermal A second soaking treatment was carried out at the same temperature as the test No. 4 again after the hot working and the interworking 1) (hot soaking 2). However, the soaking time in each of the soaking process 1 and the soaking process 2 was 50 minutes (0.83 hours), which was less than one hour. Also in Test No. 23, the total number of coarse Nb carbonitrides was determined in the same manner as in Test No. 4.
  • the hot workability evaluation test was implemented by the same method as Example 2 with respect to the Ni-based alloy of the test number 4 and the test number 23, and the breaking reduction (%) was determined.
  • the total number of coarse Nb carbonitrides was 4.0 ⁇ 10 ⁇ 2 / ⁇ m 2 or less in Test No. 4, but exceeded 4.0 ⁇ 10 ⁇ 2 / ⁇ m 2 in Test No. 23.
  • the breaking reduction exceeded 35.0%, whereas in the comparative example, the breaking reduction was less than 35.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Mo偏析を低減できるNi基合金の製造方法を提供する。本実施形態によるNi基合金の製造方法は、Ni基合金の原料である液体合金を鋳造してNi基合金素材を製造する鋳造工程と、鋳造工程により製造されたNi基合金素材に対して、均熱処理、又は、均熱処理と、熱間加工と熱間加工後の均熱処理とを含む複合処理と、を実施し、式(1)を満たす偏析低減工程とを備える。 ここで、式(1)中の各記号は次のとおりである。 VR:鋳造工程における液体合金の凝固冷却速度(℃/min) Tn:n回目の均熱処理における均熱温度(℃) tn:n回目の均熱処理における均熱温度での保持時間(hr) Rdn-1:n回目の均熱処理前のNi基合金素材の累積断面減少率(%) N:均熱処理の総回数

Description

Ni基合金の製造方法及びNi基合金
 本発明は、Ni基合金の製造方法及びNi基合金に関する。
 油井精製設備や化学プラント設備、及び、地熱発電設備等で使用される部材は、硫化水素、二酸化炭素、及び、各種の酸液等を含有する高温腐食環境に曝される。高温腐食環境は、最大で1100℃程度になる場合もある。そのため、高温腐食環境の設備に使用される部材では、高温での優れた強度が要求されるとともに、優れた耐食性が要求される。
 上記設備用途に使用可能な材料として、Cr及びMoを多く含有したNi基合金が知られている。このNi基合金は、Cr、Moの含有により、優れた耐食性を有する。
 ところで、Ni基合金には複数種類の合金元素が含有される。そのため、溶製された液体合金を鋳造する工程において、合金元素が、凝固時に生成するデンドライトの二次アーム間に濃化する場合がある。この場合、Ni基合金には、偏析が発生する。特に、耐食性を高める効果を有するMoは偏析しやすい。Moが偏析すれば、Ni基合金の耐食性が低下する。
 Ni基合金の偏析を抑制する方法が、国際公開第2010/038680号(特許文献1)に提案されている。この文献では、真空溶解によりNi基合金の液体合金を溶製する。そして、液体合金を鋳造してNi基合金素材を製造する。さらに、必要に応じて、Ni基合金素材に対して真空アーク再溶解(Vacuum Arc Remelting:VAR)又はエレクトロスラグ再溶解(Electro-Slag Remelting:ESR)等の二次溶解を実施して、より一層の偏析抑制効果を得る。続いて、Ni基合金素材に対して、1160~1220℃にて1~100時間の均質化処理を実施する。これにより、Ni基合金の偏析が抑制される、と特許文献1には記載されている。
国際公開第2010/038680号 特開昭60-211029号公報
 特許文献1では、真空溶解による一次溶解を実施し、さらに、必要に応じてVAR又はESR等の二次溶解を実施した後、長時間の均質化処理を実施する。そのため、特許文献1の製造方法を採用した場合、製造コストが高くなる場合がある。したがって、Ni基合金において、Mo偏析を低減できる他の方法があってもよい。
 本発明の目的は、Mo偏析を低減できるNi基合金の製造方法及びNi基合金を提供することである。
 本発明によるNi基合金の製造方法は、
 液体合金を鋳造して、
 化学組成が、質量%で、
 C:0.100%以下、
 Si:0.50%以下、
 Mn:0.50%以下、
 P:0.015%以下、
 S:0.0150%以下、
 Cr:20.0~23.0%、
 Mo:8.0~10.0%、
 Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、
 Ti:0.05~0.40%、
 Al:0.05~0.40%、
 Fe:0.05~5.00%、
 N:0.100%以下、
 O:0.1000%以下、
 Co:0~1.00%、
 Cu:0~0.50%、
 Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
 残部はNi及び不純物からなるNi基合金素材を製造する鋳造工程と、
 鋳造工程により製造されたNi基合金素材に対して、
 均熱処理、又は、
 均熱処理と、均熱処理後に、熱間加工と熱間加工後の均熱処理とを含む複合処理と、
 を実施し、式(1)を満たす偏析低減工程とを備える。
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)中の各記号は次のとおりである。
 VR:鋳造工程における液体合金の凝固冷却速度(℃/min)
 Tn:n回目の均熱処理における均熱温度(℃)
 tn:n回目の均熱処理における均熱温度での保持時間(hr)
 Rdn-1:n回目の均熱処理前のNi基合金素材の累積断面減少率(%)
 N:均熱処理の総回数
 本発明によるNi基合金は、
 化学組成が、質量%で、
 C:0.100%以下、
 Si:0.50%以下、
 Mn:0.50%以下、
 P:0.015%以下、
 S:0.0150%以下、
 Cr:20.0~23.0%、
 Mo:8.0~10.0%、
 Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、
 Ti:0.05~0.40%、
 Al:0.05~0.40%、
 Fe:0.05~5.00%、
 N:0.100%以下、
 O:0.1000%以下、
 Co:1.0%以下、
 Cu:0.50%以下、
 Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
 残部がNi及び不純物からなり、
 Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満である。
 本発明によるNi基合金の製造方法は、Ni基合金のMo偏析を低減できる。本発明によるNi基合金は、Mo偏析が抑制されており、優れた耐食性を有する。
図1は、鋳造工程における、凝固中のNi基合金の模式図である。 図2は、図1中のデンドライトと、Ni基合金のMo濃度との関係を示す図である。 図3は、本発明の化学組成を有するNi基合金素材(鋳造材)において、デンドライト二次アーム間隔DIIと凝固冷却速度VRとの関係を示す図である。 図4は、本発明の化学組成を有するNi基合金における、F1(=式(1)の右辺-式(1)の左辺)と腐食速度との関係を示す図である。 図5Aは、偏析低減工程において、44.6%の断面減少率で熱間加工を1回実施した場合のNi基合金のミクロ組織観察画像である。 図5Bは、偏析低減工程において、31.3%の断面減少率で熱間加工を1回実施した場合のNi基合金のミクロ組織観察画像である。 図6は、第2の実施形態によるNi基合金内のEPMA画像である。 図7は、Ni基合金におけるF2=(Ca+Nd+B)/Sと、大気中、900℃において歪速度10/秒で引張試験をした場合に得られる破断絞り(%)との関係を示す図である。
 本発明者らは、高温腐食環境において優れた耐食性を得るためには、Mo含有量が高いNi基合金が適切であって、具体的には、質量%で、C:0.100%以下、Si:0.50%以下、Mn:0.50%以下、P:0.015%以下、S:0.0150%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、Ti:0.05~0.40%、Al:0.05~0.40%、Fe:0.05~5.00%、N:0.100%以下、O:0.1000%以下、Co:0~1.00%、Cu:0~0.50%、Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、残部はNi及び不純物からなる化学組成を有するNi基合金が適切であると考えた。そこで、本発明者らは、上述の化学組成を有する高MoのNi基合金におけるMo偏析の低減方法について、調査及び検討を行った。その結果、本発明者らは、次の知見を得た。
 [デンドライト二次アーム間隔と、鋳造工程における凝固冷却速度との関係]
 上述の化学組成を有するNi基合金におけるMoの濃度分布は、鋳造工程における最終凝固段階で形成されるデンドライト二次アーム間隔と相関関係を有する。
 図1は、鋳造工程における、凝固中のNi基合金の模式図である。図1を参照して、鋳造工程では、鋳型13内の液体合金が冷却されて凝固が進行する。具体的には、鋳型13近傍部分が凝固して固相11の形成が進む。さらに、液相10内において、凝固が進行中の部分では、デンドライト12が形成されている。
 図2は、図1中のデンドライト12と、Ni基合金中のMo濃度との関係を示す図である。図2を参照して、鋳造後のNi基合金素材(鋳造材)中のMo濃度分布のうち、Mo濃度が高い部分をMo偏析の正偏析部と定義し、Mo濃度が低い部分をMo偏析の負偏析部と定義する。そして、隣り合うMo偏析の間隔(正偏析部間の間隔、又は、負偏析部間の間隔)を、Mo偏析間距離Dsと定義する。図2に示すとおり、Mo偏析間距離Dsは、デンドライト二次アーム間隔DIIに対応する。図2では、一例として、Mo偏析間距離Dsは、デンドライト二次アーム間隔DIIと一致している。
 図3は、上述の化学組成を有するNi基合金素材(鋳造材)において、デンドライト二次アーム間隔DIIと凝固冷却速度VRとの関係を示す図である。図3は、次の方法で求めた。Ni基合金の液体合金を溶製した。そして、種々の凝固冷却速度VRで常温(25℃)まで冷却して、上述の化学組成を有するNi基合金素材(インゴット)を複数製造した。この実験では、凝固冷却速度VRは、鋳造開始時の液体溶液温度から凝固が完了するまでの温度範囲(温度範囲は1290℃)の平均の冷却速度(℃/min)で定義した。冷却中のNi基合金の温度は、消耗型熱電対を用いて測定した。
 ここで、本明細書において、Ni基合金素材の長手方向に垂直な断面を「横断面」と定義し、横断面におけるNi基合金素材の幅をWと定義する。横断面が長方形状である場合、横断面の長辺を幅Wと定義する。横断面が円形状である場合、直径を幅Wと定義する。また、横断面において、幅W方向と垂直な表面から幅W方向にW/4深さ位置の領域を、「W/4深さ位置」と定義する。
 製造されたNi基合金素材を長手方向に垂直な方向に切断した。そして、横断面のW/4深さ位置において、デンドライト二次アーム間隔DII(μm)を測定した。具体的には、W/4深さ位置からサンプルを採取した。サンプルの表面のうち、上記横断面と平行な表面に対して鏡面研磨を実施した後、王水にてエッチングした。エッチングされた表面を400倍の光学顕微鏡で観察して、200μm×200μmの観察視野の写真画像を生成した。得られた写真画像を用いて、観察視野内の任意の20ヶ所のデンドライト二次アーム間隔(μm)を測定した。測定されたデンドライト二次アーム間隔の平均を、デンドライト二次アーム間隔DII(μm)と定義した。求めた凝固冷却速度VRと、デンドライト二次アーム間隔DIIとを用いて、図3を作成した。
 図3を参照して、上述の化学組成のNi基合金素材では、凝固冷却速度VRが速くなるにしたがい、デンドライト二次アーム間隔DIIは狭くなる。図3の結果に基づいて、上述の化学組成のNi基合金素材において、デンドライト二次アーム間隔DII(μm)は、凝固冷却速度VR(℃/min)を用いて、次の式(A)で定義できる。
 DII=182VR -0.294 (A)
 [均熱処理におけるMoの拡散距離]
 鋳造工程により製造されたNi基合金素材に対して、均熱処理を実施する場合を想定する。このとき、Ni基合金素材中のMoの拡散距離は次のとおり定義できる。
 拡散方程式は、次の式(B)で定義される。
 σ2=2D×t (B)
 ここで、式(B)中のσは上述の化学組成のNi基合金素材中において、時間t(hr)でMoが移動する平均距離(以下、拡散距離という:単位はμm)である。また、式(B)中のDは、Moの拡散係数であり、式(C)のアレニウスの式で定義される。
 D=D0exp(-Q/R(T+273)) (C)
 式(C)中のQはMo拡散の活性化エネルギーである。また、Rは気体定数であり、Tは温度(℃)である。D0は、Ni基合金中でのMoの定数(振動数因子)である。
 Doは次の実験により求めた。上述の化学組成を有するNi基合金素材に対して、1248℃で48時間の均熱処理を実施した。そして、均熱処理後でのNi基合金中のMoの拡散距離σを求めた。より詳細には、次の実験を実施した。上述の方法により、均熱処理前のNi基合金素材のデンドライト二次アーム間隔DIIを測定した。測定後、Ni基合金素材を均熱温度1248℃で保持した。このとき、種々の保持時間での均熱処理を実施した。均熱処理後、Ni基合金素材のW/4深さ位置において、Moの正偏析部と負偏析部のMo濃度差を測定した。均熱処理での保持時間ごとのMoの正偏析部と負偏析部との濃度差を求めた。そして、濃度差が1.0質量%以下になる保持時間tを求めた。なお、試験で用いたNi基合金素材のNi基合金のデンドライト二次アーム間隔DIIはいずれも120.6μmであった。Moの拡散距離σ=DII/2であるため、Mo拡散距離σは60.3μmとした。上述の試験の結果、均熱温度が1248℃で保持時間tを48時間とする均熱処理をした場合、Moの正偏析部と負偏析部との濃度差が1.0質量%以下になった。
 上記実験により得られた事項(拡散距離σが60.3μmの場合、温度T=1248℃、保持時間t=48時間とすれば、Moの正偏析部と負偏析部との濃度差が1.0質量%以下となるという実験結果)と、1050~1360℃の範囲でのMoの活性化エネルギーQ=240kJ/molと、式(B)及び式(C)に基づいて、均熱温度T(℃)、保持時間t(hr)でのMoの拡散距離σは、次の式(D)のとおりとなる。なお、活性化エネルギーについては、オーステナイト鋼での上記温度範囲でのMoの活性化エネルギー値を、Ni基合金におけるMoの活性化エネルギー値として代替する。
Figure JPOXMLDOC01-appb-M000003
 [デンドライト二次アーム間隔DIIとMoの拡散距離σとの関係]
 式(A)及び式(D)を参照して、上記式(D)で定義される、均熱処理でのMoの拡散距離σが、式(A)で定義されるデンドライト二次アーム間隔DII(つまり、Mo偏析間距離Ds)の1/2以上となれば、均熱処理により、Mo偏析を十分に改善できると考えられる。つまり、均熱温度T(℃)、保持時間t(hr)、凝固冷却速度VR(℃/min)が式(0)を満たせば、均熱処理において、Mo偏析が十分に低減される。
Figure JPOXMLDOC01-appb-M000004
 [熱間加工によるMo偏析のさらなる改善]
 均熱処理前のNi基合金素材に熱間加工を実施すれば、均熱処理前において、Mo偏析間距離Dsをさらに狭くすることができる。なぜなら、デンドライトアームは、図1に示すとおり、Ni基合金素材の表面の法線方向に伸びて成長する。熱間加工では、Ni基合金素材の表面の法線方向に圧下が負荷される。そのため、熱間加工を実施すれば、熱間加工を実施しない場合と比較して、デンドライト二次アーム間隔DII(つまり、Mo偏析間距離Ds)が狭くなる。そのため、同じ均熱温度T(℃)及び同じ保持時間t(hr)で均熱処理を実施する場合、均熱処理前に熱間加工を実施した方が、均熱処理前に熱間加工を実施しない場合と比較して、Moの偏析をより低減しやすくなる。
 ここで、鋳造工程後のNi基合金素材に対して減面率Rdで熱間加工を実施し、熱間加工後のNi基合金素材に対して均熱処理を実施することを想定する。この場合、減面率Rd分だけMo偏析間距離Dsは縮まると考えられる。逆に言えば、減面率Rd分だけ均熱処理におけるMo拡散距離σは延びるとみなすことができる。
 以上の事項を考慮すれば、均熱処理前に減面率Rdで熱間加工を実施した場合、式(D)に基いて、次の式(E)が成立する。
Figure JPOXMLDOC01-appb-M000005
 以上の検討に基づけば、均熱処理前に熱間加工を実施すれば、Mo偏析をさらに低減しやすくなる。ここで、熱間加工を実施し、さらに、熱間加工後に均熱処理を実施する一連の処理を(つまり、1回の熱間加工と、その熱間加工後に実施する1回の均熱処理との組合せの処理を)、「複合処理」と定義する。Ni基合金素材に対して、複合処理を1回又は複数回繰り返して実施する場合、式(E)に基づいて、次の式(1)が成立する。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(1)中の各記号は次のとおりである。
 VR:鋳造工程における凝固冷却速度(℃/min)
 Tn:n回目の均熱処理における均熱温度(℃)
 tn:n回目の均熱処理における均熱温度での保持時間(hr)
 Rdn-1:n回目の均熱処理前のNi基合金素材の累積断面減少率(%)
 N:均熱処理の総回数
 ここで、nは1~Nの自然数であり、Nは自然数である。
 累積断面減少率Rdn-1は次の式(F)で定義される。
 Rdn-1=(1-(Sn-1/S0))×100 (F)
 ここで、Sn-1はn回目の均熱処理前のNi基合金素材の長手方向に垂直な断面(横断面)の面積(mm2)である。S0は、鋳造工程後であって1回目の熱間加工前の(つまり、鋳造工程後あって、偏析低減工程前の)Ni基合金素材の長手方向に垂直な断面(横断面)の面積(mm2)である。S0の対象となるNi基合金素材がインゴットであり、四角錐台状の形状に代表されるように、長手方向に垂直な断面が長手方向で一定でない場合、面積S0は次のとおり定義される。
 S0=V0/L
 ここで、V0はNi基合金素材の体積(mm3)であり、LはNi基合金素材の長手方向の長さ(mm)である。
 なお、熱間加工を実施しない場合、累積断面減少率Rdn-1=0(鋳造材まま)となる。
 以上の知見に基づいて完成した本実施形態のNi基合金の製造方法、及び、本実施形態の製造方法により製造されるNi基合金は次の構成を有する。
 [1]の構成による本実施形態のNi基合金の製造方法は、
 液体合金を鋳造して、
 化学組成が、質量%で、
 C:0.100%以下、
 Si:0.50%以下、
 Mn:0.50%以下、
 P:0.015%以下、
 S:0.0150%以下、
 Cr:20.0~23.0%、
 Mo:8.0~10.0%、
 Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、
 Ti:0.05~0.40%、
 Al:0.05~0.40%、
 Fe:0.05~5.00%、
 N:0.100%以下、
 O:0.1000%以下、
 Co:0~1.00%、
 Cu:0~0.50%、
 Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
 残部はNi及び不純物からなるNi基合金素材を製造する鋳造工程と、
 前記鋳造工程により製造されたNi基合金素材に対して、
 均熱処理、又は、
 均熱処理と、均熱処理後、熱間加工と熱間加工後の均熱処理とを含む複合処理と、
 を実施し、式(1)を満たす偏析低減工程とを備える。
Figure JPOXMLDOC01-appb-M000007
 ここで、式(1)中の各記号は次のとおりである。
 VR:鋳造工程における液体合金の凝固冷却速度(℃/min)
 Tn:n回目の均熱処理における均熱温度(℃)
 tn:n回目の均熱処理における均熱温度での保持時間(hr)
 Rdn-1:n回目の均熱処理前のNi基合金素材の累積断面減少率(%)
 N:均熱処理の総回数
 [2]の構成による本実施形態のNi基合金の製造方法は、[1]に記載のNi基合金の製造方法であって、
 均熱温度は1000~1300℃である。
 [3]の構成による本実施形態のNi基合金の製造方法は、[2]に記載のNi基合金の製造方法であって、
 偏析低減工程では、
 複合処理を1回以上実施し、かつ、1000~1300℃に加熱されたNi基合金素材に対して、35.0%以上の断面減少率で熱間加工を少なくとも1回実施する。
 この場合、製造されたNi基合金のASTM E112に準拠した結晶粒度番号が0.0以上になる。
 [4]の構成による本実施形態のNi基合金の製造方法は、[2]又は[3]に記載のNi基合金の製造方法であって、
 偏析低減工程では、
 1000~1300℃の均熱温度で1.0時間以上保持する均熱処理を少なくとも1回実施する。
 この場合、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下となる。その結果、熱間加工性がさらに高まる。
 [5]の構成によるNi基合金の製造方法は、[1]~[4]のいずれか1項に記載のNi基合金の製造方法であって、
 Ni基合金素材の化学組成は、
 Ca、Nd、及び、Bからなる群から選択される1元素以上を、式(2)を満たす含有量で含有する。
 (Ca+Nd+B)/S≧2.0 (2)
 ここで、式(2)中の元素記号には、対応する元素の原子%(at)での含有量が代入される。
 この場合、製造されたNi基合金の熱間加工性がさらに高まる。
 [6]の構成によるNi基合金は、
 化学組成が、質量%で、
 C:0.100%以下、
 Si:0.50%以下、
 Mn:0.50%以下、
 P:0.015%以下、
 S:0.0150%以下、
 Cr:20.0~23.0%、
 Mo:8.0~10.0%、
 Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、
 Ti:0.05~0.40%、
 Al:0.05~0.40%、
 Fe:0.05~5.00%、
 N:0.100%以下、
 O:0.1000%以下、
 Co:0~1.0%、
 Cu:0~0.50%、
 Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
 残部がNi及び不純物からなり、
 Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満である。
 本実施形態によるNi基合金は、Mo偏析が抑制されている。そのため、本実施形態のNi基合金は耐食性に優れる。
 [7]の構成によるNi基合金は、[6]に記載のNi基合金であって、
 化学組成は、
 Ca、Nd、及び、Bからなる群から選択される1元素以上を、式(2)を満たす含有量で含有する。
 (Ca+Nd+B)/S≧2.0 (2)
 ここで、式(2)中の元素記号には、対応する元素の原子%(at)での含有量が代入される。
 この場合、Ni基合金の熱間加工性がさらに高まる。
 [8]の構成によるNi基合金は、[6]及び[7]に記載のNi基合金であって、
 ASTM E112に準拠した結晶粒度番号が0.0以上である。
 この場合、Ni基合金の熱間加工性がさらに高まる。
 [9]の構成によるNi基合金は、[6]~[8]のいずれか1項に記載のNi基合金であって、
 Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下である。
 この場合、Ni基合金の熱間加工性がさらに高まる。
 ここで、本明細書において「Nb炭窒化物」とは、Nb炭化物、Nb窒化物、及びNb炭窒化物を含む概念であって、Nb、C及びNの総含有量が質量%で90%以上の析出物を意味する。また、Nb炭窒化物の最大長とは、Nb炭窒化物と母相との界面(境界)上の任意の2点で結ばれる直線のうち、最大の長さのものを意味する。
 以下、本実施形態によるNi基合金の製造方法及びNi基合金について説明する。
 [第1の実施の形態]
 [Ni基合金の製造方法]
 本実施形態によるNi基合金の製造方法は、鋳造工程と、偏析低減工程とを備える。以下、各工程について説明する。
 [鋳造工程]
 鋳造工程では、Ni基合金素材の液体合金を溶製し、液体合金を鋳造することにより、次の化学組成を有するNi基合金素材を製造する。
 [化学組成]
 Ni基合金素材の化学組成は、次の元素を含有する。以下、元素に関する%は、特に断りがない限り、質量%を意味する。なお、本実施形態のNi基合金の製造方法により製造されるNi基合金の化学組成は、Ni基合金素材の化学組成と同じである。
 C:0.100%以下
 炭素(C)は、不可避に含有される。つまり、C含有量は0%超である。C含有量が高すぎれば、高温での長時間の使用により、粒界にCr炭化物に代表される炭化物が析出する。この場合、Ni基合金の耐食性が低下する。粒界での炭化物の析出はさらに、Ni基合金の靱性等の機械的性質を低下する。したがって、C含有量は0.100%以下である。C含有量の好ましい上限は0.070%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%であり、さらに好ましくは0.023%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極度の低減は製造コストを高める。したがって、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは、0.010%である。
 Si:0.50%以下
 シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。SiはNi基合金を脱酸する。しかしながら、Si含有量が高すぎれば、SiはNi又はCr等と結合して金属間化合物を形成したり、シグマ相(σ相)等の金属間化合物の生成を助長したりする。その結果、Ni基合金の熱間加工性が低下する。したがって、Si含有量は0.50%以下である。Si含有量の好ましい上限は、0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.19%である。上述の脱酸作用をより有効に得るためのSi含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.04%である。
 Mn:0.50%以下
 マンガン(Mn)は不可避に含有される。つまり、Mn含有量は0%超である。MnはNi基合金を脱酸する。Mnはさらに、不純物であるSをMn硫化物として固定し、Ni基合金の熱間加工性を高める。しかしながら、Mn含有量が高すぎれば、高温腐食環境での使用中において、スピネル型の酸化被膜の形成が促進され、その結果、高温での耐酸化性が低下する。Mn含有量が高すぎればさらに、Ni基合金の熱間加工性が低下する。したがって、Mn含有量は0.50%以下である。Mn含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.23%である。熱間加工性を有効に高めるためのMn含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは、0.04%であり、さらに好ましくは0.08%であり、さらに好ましくは0.12%である。
 P:0.015%以下
 燐(P)は不純物である。P含有量は0%であってもよい。Pは、Ni基合金の靱性を低下する。したがって、P含有量は(0%以上であって)0.015%以下である。P含有量の好ましい上限は0.013%であり、さらに好ましくは0.012%であり、さらに好ましくは0.010%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の極度の低減は製造コストを高める。したがって、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.004%である。
 S:0.0150%以下
 硫黄(S)は不可避に含有される不純物である。つまり、S含有量は0%超である。Sは、Ni基合金の熱間加工性を低下する。したがって、S含有量は0.0150%以下である。S含有量の好ましい上限は0.0100%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0007%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極度の低減は製造コストを高める。したがって、製造コストの観点でのS含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
 Cr:20.0~23.0%
 クロム(Cr)は、Ni基合金の耐酸化性、耐水蒸気酸化性、耐高温腐食性等の耐食性を高める。Crはさらに、Nbと結合して金属間化合物を形成して粒界に析出し、Ni基合金のクリープ強度を高める。Cr含有量が低すぎれば、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、M236型の炭化物が多量に析出し、耐食性がかえって低下する。したがって、Cr含有量は20.0~23.0%である。Cr含有量の好ましい下限は20.5%であり、さらに好ましくは21.0%であり、さらに好ましくは21.2%である。Cr含有量の好ましい上限は22.9%であり、さらに好ましくは22.5%であり、さらに好ましくは22.3%であり、更に好ましくは22.0%である。
 Mo:8.0~10.0%
 モリブデン(Mo)は、高温腐食環境での使用において、Ni基合金の耐食性を高める。Moはさらに、母相に固溶して、固溶強化によりNi基合金のクリープ強度を高める。これにより、高温腐食環境でのNi基合金の強度が高まる。一方、Mo含有量が高すぎれば、熱間加工性が低下する。したがって、Mo含有量は8.0~10.0%である。Mo含有量の好ましい下限は8.1%であり、さらに好ましくは8.2%であり、さらに好ましくは8.3%であり、さらに好ましくは8.4%であり、さらに好ましくは8.5%である。Mo含有量の好ましい上限は9.9%であり、さらに好ましくは9.5%であり、さらに好ましくは9.2%であり、さらに好ましくは9.0%であり、さらに好ましくは8.8%である。
 Nb及びTaからなる群から選択される1元素以上:3.150~4.150%
 ニオブ(Nb)及びタンタル(Ta)はいずれも、金属間化合物の生成を促進し、粒界及び粒内の析出強化に寄与する。その結果、クリープ強度が高まる。Nb及びTaからなる群から選択される1元素以上の合計含有量が低すぎれば、上記効果が十分に得られない。一方、Nb及びTaからなる群から選択される1元素以上の合計含有量が高すぎれば、析出物が粗大となり、クリープ強度が低下する。したがって、Nb及びTaからなる群から選択される1元素以上の合計含有量は3.150~4.150%である。Nb及びTaからなる群から選択される1元素以上の合計含有量の好ましい下限は3.200%であり、さらに好ましくは3.210%であり、さらに好ましくは3.220%である。Nb及びTaからなる群から選択される1元素以上の合計含有量の好ましい上限は4.120%であり、さらに好ましくは4.000%であり、さらに好ましくは3.800%であり、さらに好ましくは3.500%であり、さらに好ましくは3.450%である。なお、Nbのみが含有され、Taが含有されていなくてもよい。また、Taのみが含有され、Nbが含有されていなくてもよい。NbとTaとがともに含有されていてもよい。Nb及びTaのうちNbのみが含有される場合、上述の合計含有量(3.150~4.150%)は、Nbの含有量を意味する。Nb及びTaのうちTaのみが含有される場合、上述の合計含有量(3.150~4.150%)は、Taの含有量を意味する。
 Ti:0.05~0.40%
 チタン(Ti)はSi、Mn、及び、Alとともに、Ni基合金を脱酸する。Tiはさらに、Alとともにガンマプライム相(γ’相)を形成して、高温腐食環境下でのNi基合金のクリープ強度を高める。Ti含有量が低すぎれば、上記効果が十分に得られない。一方、Ti含有量が高すぎれば、炭化物及び/又は酸化物が多量に生成して、Ni基合金の熱間加工性及びクリープ強度が低下する。したがって、Ti含有量は0.05~0.40%である。Ti含有量の好ましい下限は0.08%であり、さらに好ましくは0.10%であり、さらに好ましくは0.13%であり、さらに好ましくは0.15%である。Ti含有量の好ましい上限は0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.22%である。
 Al:0.05~0.40%
 アルミニウム(Al)はSi、Mn及びTiとともにNi基合金を脱酸する。Alはさらに、Tiとともにガンマプライム相(γ’相)を形成して、高温腐食環境下でのNi基合金のクリープ強度を高める。Al含有量が低すぎれば、上記効果が十分に得られない。一方、Al含有量が高すぎれば、酸化物系介在物が多量に生成して、Ni基合金の熱間加工性及びクリープ強度が低下する。したがって、Al含有量は0.05~0.40%である。Al含有量の好ましい下限は0.06%であり、さらに好ましくは0.07%であり、さらに好ましくは0.08%である。Al含有量の好ましい上限は0.35%であり、さらに好ましくは0.32%であり、さらに好ましくは0.30%であり、さらに好ましくは0.27%である。なお、本明細書において、Al含有量は、sol.Al(酸可溶Al)の含有量を意味する。
 Fe:0.05~5.00%
 鉄(Fe)はNiを代替する。具体的には、FeはNi基合金の熱間加工性を高める。Feはさらに、粒界でラーベス相を析出し、粒界を強化する。Fe含有量が低すぎれば、上記効果が十分に得られない。一方、Fe含有量が高すぎれば、Ni基合金の耐食性が低下する。したがって、Fe含有量は0.05~5.00%である。Fe含有量の好ましい下限は0.10%であり、さらに好ましくは0.50%であり、さらに好ましくは1.00%であり、さらに好ましくは2.00%であり、さらに好ましくは2.50%である。Fe含有量の好ましい上限は4.70%であり、さらに好ましくは4.50%であり、さらに好ましくは4.00%であり、さらに好ましくは3.90%である。
 N:0.100%以下
 窒素(N)は、不可避に含有される。つまり、N含有量は0%超である。Nは、Ni基合金中のオーステナイトを安定化する。Nはさらに、Ni基合金のクリープ強度を高める。しかしながら、N含有量が高すぎれば、Ni基合金の熱間加工性が低下する。したがって、N含有量は0.100%以下である。N含有量の好ましい上限は0.080%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%であり、さらに好ましくは0.025%である。N含有量の極度の低減は製造コストを高める。したがって、製造コストの観点でのN含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.005%である。
 O:0.1000%以下
 酸素(O)は不純物である。O含有量は0%であってもよい。Oは酸化物を生成して鋼の熱間加工性を低下する。したがって、O含有量は(0%以上であって)0.1000%以下である。O含有量の好ましい上限は0.0800%であり、さらに好ましくは0.0500%であり、さらに好ましくは0.0300%であり、さらに好ましくは0.0150%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の極度の低減は製造コストを高める。したがって、製造コストの観点でのO含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。
 本発明によるNi基合金素材の残部は、ニッケル(Ni)及び不純物である。なお、ここでいう不純物とは、Ni基合金を工業的に製造する際に、原料として利用される鉱石やスクラップから混入する元素、又は製造過程の環境等から混入する元素を意味する。
 なお、Niは、Ni基合金の組織中のオーステナイトを安定化し、Ni基合金の耐食性を高める。上述のとおり、化学組成のうち、上述の元素以外の残部はNi及び不純物である。Ni含有量の好ましい下限は、58.0%であり、さらに好ましくは59.0%であり、さらに好ましくは60.0%である。
 本実施形態のNi基合金素材はさらに、Niの一部に代えて、Co及びCuからなる群から選択される1元素以上を含有してもよい。Co及びCuはいずれも、Ni基合金の高温強度を高める。
 Co:0~1.00%
 コバルト(Co)は任意元素である。つまり、Co含有量は0%であってもよい。含有される場合、CoはNi基合金の高温強度を高める。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が高すぎれば、Ni基合金の熱間加工性が低下する。したがって、Co含有量は0~1.00%である。Co含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%である。Co含有量の好ましい下限は0.01%であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%であり、さらに好ましくは0.30%である。
 Cu:0~0.50%
 銅(Cu)は任意元素である。つまり、Cu含有量は0%であってもよい。含有される場合、Cuは、析出してNi基合金の高温強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、Ni基合金の熱間加工性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%である。Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。
 本実施形態のNi基合金素材はさらに、Niの一部に代えて、Ca、Nd及びBからなる群から選択される1元素以上を含有してもよい。
 Ca、Nd及びBからなる群から選択される少なくとも1元素以上:合計含有量で0~0.5000%
 カルシウム(Ca)、ネオジム(Nd)、及び、ボロン(B)はいずれも、任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよく、Nd含有量は0%であってもよく、B含有量は0%であってもよい。Ca、Nd及びBの少なくとも1元素以上が含有される場合、これらの元素はいずれも、Ni基合金の熱間加工性を高める。Ca、Nd及びBからなる群から選択される少なくとも1元素以上が含有されればよいため、たとえば、Caのみが含有されてもよいし、Ndのみが含有されてもよいし、Bのみが含有されてもよい。Ca及びNdが含有されてもよいし、Ca及びBが含有されてもよいし、Nd及びBが含有されてもよい。Ca、Nd及びBが含有されてもよい。Ca、Nd及びBからなる群から選択される少なくとも1元素以上が少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca、Nd及びBは液体合金の溶製中において、スラグ等に吸収されやすく、Ni基合金素材に残存しにくい。そのため、Ca、Nd及びBの合計含有量は0.5000%を超えにくい。したがって、Ca、Nd及びBからなる群から選択される少なくとも1元素以上の合計含有量は0~0.5000%である。Ca、Nd及びBからなる群から選択する1元素以上の合計含有量の好ましい上限は0.4500%であり、さらに好ましくは、0.4200%である。Ca、Nd及びBからなる群から選択する1元素以上の合計含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
 Ni基合金素材の化学組成が上述の化学組成となるように、液体合金を溶製する。液体合金は周知の方法で溶製すればよい。液体合金はたとえば、電気炉溶解により製造する。真空溶解により液体合金を溶製してもよい。製造コストの観点から、液体合金を電気炉溶解により製造するのが好ましい。
 溶製された液体合金を用いて、鋳造法により、上述の化学組成を有するNi基合金素材を製造する。Ni基合金素材は造塊法により製造されるインゴットでもよいし、連続鋳造法により製造される鋳片(スラブ又はブルーム)であってもよい。
 鋳造工程における液体合金からNi基合金素材に凝固するまでの凝固冷却速度VRは、鋳造工程後であって偏析低減工程前のNi基合金素材のデンドライト二次アーム間隔DIIを測定することにより算出可能である。デンドライト二次アーム間隔DIIは次の方法により測定できる。Ni基合金素材の長手方向中央位置での長手方向に垂直な断面(横断面)のW/4深さ位置において、サンプルを採取する。サンプルの表面のうち、上記横断面と平行な表面に対して鏡面研磨を実施した後、王水にてエッチングする。エッチングされた表面を400倍の光学顕微鏡で観察して、200μm×200μmの観察視野の写真画像を生成する。得られた写真画像を用いて、観察視野内の任意の20ヶ所のデンドライト二次アーム間隔(μm)を測定する。測定されたデンドライト二次アーム間隔の平均を、デンドライト二次アーム間隔DII(μm)と定義する。
 式(A)に、求めたデンドライト二次アーム間隔DIIを代入することにより、凝固冷却速度VR(℃/min)を求める。
 DII=182VR -0.294 (A)
 [偏析低減工程]
 偏析低減工程では、鋳造工程にて製造されたNi基合金素材に対して、Mo偏析を低減する。具体的には、鋳造工程で製造されたNi基合金素材に対して、
 (I)均熱処理、又は、
 (II)均熱処理と、均熱処理後に複合処理と
 を実施する。
 本明細書において、「複合処理」とは、熱間加工を実施し、さらに、熱間加工後に均熱処理を実施する一連の処理を意味する。換言すれば、「複合処理」とは、1回の熱間加工と、その熱間加工後の1回の均熱処理とを組合せた処理を意味する。1回の均熱処理とは、加熱炉又は均熱炉に挿入して所定の均熱温度、所定の保持時間で保持した後、抽出するまでの処理を意味する。1回の熱間加工とは、1000~1300℃に加熱されたNi基合金素材に対して熱間加工を開始し、途中で再度加熱することなく、熱間加工を終了するまでの処理を意味する。熱間加工はたとえば、熱間押出、熱間鍛造、熱間圧延を意味する。
 偏析低減工程では、均熱処理を1回のみ実施して複合処理を実施しなくてもよいし、複合処理を1回のみ実施して均熱処理を実施しなくてもよい。また、複合処理を複数回繰り返し実施してもよい。1回以上の均熱処理後に1回以上の複合処理を実施してもよい。1回以上の複合処理後に1回以上の均熱処理を実施してもよい。要するに、偏析低減工程では少なくとも1回の均熱処理、又は、少なくとも1回の均熱処理及び少なくとも1回の複合処理を実施すればよい。
 均熱処理後、そのまま複合処理を実施してもよいし、均熱処理後、Ni基合金素材をいったん冷却後、再び均熱処理を実施し、その後、複合処理を実施してもよい(つまり、この場合、均熱処理、均熱処理、複合処理の順に実施する)。また、均熱処理後、複合処理を実施し、その後さらに複合処理を実施してもよい(この場合、均熱処理、複合処理、複合処理の順に実施する)。均熱処理と複合処理とを適宜組み合わせてもよい。たとえば、均熱処理、複合処理、均熱処理、順に実施してもよいし、均熱処理、複合処理、均熱処理、複合処理の順に実施してもよい。以下、均熱処理及び複合処理中の熱間加工について説明する。
 [均熱処理]
 n回目の均熱処理では、鋳造工程により製造されたNi基合金素材を均熱温度Tn(℃)で保持時間tn(hr)保持する。ここで、nは1~N(Nは自然数)であり、均熱温度Tnはn回目の均熱処理(上記(I)の均熱処理、及び、上記(I)の均熱処理を含む)の均熱温度(℃)を意味し、保持時間tnはn回目の均熱処理の保持時間(hr)を意味する。Nは、上記(I)の均熱処理及び上記(II)の均熱処理の総回数である。
 均熱温度Tnが低すぎれば、Moの拡散距離σを大きくすることができず、均熱処理中にMoが拡散しにくい。一方、均熱温度Tnが高すぎれば、Ni基合金素材の一部が再溶解してしまう場合がある。したがって、均熱温度Tnは特に限定されないが、好ましい均熱温度Tnは1000~1300℃である。均熱処理は、周知の加熱炉、又は均熱炉で実施すれば足りる。
 [熱間加工]
 熱間加工は、上述のとおり、熱間押出であってもよいし、熱間鍛造であってもよいし、熱間圧延であってもよい。熱間加工の種類は特に限定されない。本実施形態の製造方法では、熱間加工を実施した場合、熱間加工後に上述の均熱処理を実施する(複合処理)。熱間加工によりNi基合金素材中のMo偏析間距離Dsが縮まっている。そのため、熱間加工後の均熱処理において、Moがさらに拡散しやすく、Mo偏析の低減に必要な保持時間tnを低減できる。なお、偏析低減工程において、前段で均熱処理を実施することなく、複合処理を実施する場合、Ni基合金素材を加熱炉又は均熱炉で1000~1300℃に加熱された後、熱間加工を実施する。
 [式(1)について]
 上述のとおり、偏析低減工程では、1回以上の均熱処理、又は、1回以上の均熱処理と1回以上の複合処理とを実施する。このとき、式(1)を満たすように、均熱温度Tn(℃)、保持時間tn(hr)、断面減少率Rdn-1(%)を調整する。
Figure JPOXMLDOC01-appb-M000008
 なお、偏析低減工程において均熱処理を1回のみ実施して、複合処理を実施しない場合(つまり、n=1、N=1の場合)、偏析低減工程では熱間加工を実施しない。そのため、累積断面減少率Rdn-1=Rd0は0(%)となる。したがって、式(1)にRd0=0を代入して得られる次式に基づいて、凝固冷却速度VR(℃/min)、均熱温度Tn(℃)、保持時間tn(hr)を調整する。
Figure JPOXMLDOC01-appb-M000009
 式(1)を満たすように偏析低減工程(均熱処理、又は、均熱処理及び複合処理)を実施すれば、Mo偏析が抑制されたNi基合金を製造することができる。なお、偏析低減工程を実施した後、さらに熱間加工工程、冷間加工工程、切削加工工程等の他の工程を実施してもよい。
 [本実施形態によるNi基合金]
 本実施形態によるNi基合金の形状は特に限定されない。上述の製造方法で製造されたNi基合金はたとえば、ビレットである。Ni基合金の長手方向に垂直な断面(横断面)は円形状でも矩形状でもよく、多角形状であってもよい。Ni基合金は管材であってもよいし、中実材であってもよい。
 本実施形態によるNi基合金は、化学組成が、質量%で、C:0.100%以下、Si:0.50%以下、Mn:0.50%以下、P:0.015%以下、S:0.0150%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、Ti:0.05~0.40%、Al:0.05~0.40%、Fe:0.05~5.00%、N:0.100%以下、O:0.1000%以下、Co:0~1.00%、Cu:0~0.50%、Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、残部はNi及び不純物からなる。つまり、本実施形態のNi基合金の化学組成は、上述のNi基合金素材の化学組成と同じである。本実施形態のNi基合金はさらに、Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満である。本実施形態によるNi基合金では、Moの偏析が抑制されている。以下、本実施形態のNi基合金について説明する。なお、本実施形態のNi基合金の化学組成の各元素の含有量(好ましい上限、好ましい下限含む)及び作用効果については、上述のNi基合金の製造方法におけるNi基合金素材の化学組成での各元素の含有量(好ましい上限、好ましい下限含む)及び作用効果と同じである。
 [Mo偏析の抑制]
 本実施形態のNi基合金では、Mo偏析が抑制される。具体的には、Ni基合金の長手方向に垂直な断面(以下、横断面という)において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満である。
 Ni基合金の横断面におけるMoの平均濃度、Mo濃度の最大値、及び、Mo濃度が質量%で8.0%未満の領域は次の方法で求める。なお、本明細書において、Mo濃度が質量%で8.0%未満の領域を「Mo低濃度領域」ともいう。
 Ni基合金の横断面からサンプルを採取する。具体的には、Ni基合金が、横断面形状が矩形状の中実材である場合、横断面の長辺を幅Wと定義する。横断面が円形状の中実材(つまり棒材)である場合、直径を幅Wと定義する。Ni基合金が中実材である場合、幅W方向と垂直な表面から幅W方向にW/4深さ位置(W/4深さ位置)からサンプルを採取する。一方、Ni基合金が管材である場合、肉厚中央位置からサンプルを採取する。サンプルの表面のうち、横断面に相当する表面(観察面)を鏡面研磨した後、観察面内の任意の1視野において、ビーム径10μm、走査長さ2000μm、1点当りの照射時間:3000ms、照射ピッチ:5μmとした電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)による線分析を実施する。線分析を実施した2000μmの走査範囲において、5μmピッチで測定した複数のMo濃度の平均値と、測定した複数のMo濃度のうちのMo濃度の最大値、及び、Mo濃度の最小値を求める。さらに、測定範囲である走査長さ2000μmにおいて、Mo濃度が8.0%未満となった測定点が、連続している範囲(2点以上連続している範囲)の総長さを求める。求めた総長さをMo低濃度領域総長さ(μm)と定義する。求めたMo低濃度領域総長さを用いて、次の式により、Mo低濃度領域割合(%)を求める。
 Mo低濃度領域割合=Mo低濃度領域総長さ(μm)/走査長さ(=2000μm)×100
 上記式により求めたMo低濃度領域割合を、「Mo濃度が質量%で8.0%未満の領域の面積率」と定義する。より具体的には、Ni基合金の横断面において、ビーム径10μm、走査長さ2000μm、1点当りの照射時間:3000ms、照射ピッチ:5μmとしたEPMAによる線分析を実施して、走査長さ2000μmで5μmピッチで得られたMoの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、走査長さ2000μmにおいて、Mo濃度が8.0%未満となった測定点が連続している範囲(2点以上連続している範囲)の総長さをMo低濃度領域と定義したとき、Mo低濃度領域総長さの走査長さに対する割合が2.0%未満である。
 本実施形態のNi基合金では、上記測定により得られたMo濃度の平均値は質量%で8.0%以上であり、Mo濃度の最大値は質量%で11.0%以下である。さらに、Mo濃度が質量%で8.0%未満となる領域の割合、つまり、Mo低濃度領域割合は2.0%未満となる。
 以上のとおり、本実施形態のNi基合金では、Mo偏析が抑制される。その結果、Ni基合金の耐食性が高まる。具体的には、次のとおり、粒界腐食及び応力腐食割れが抑制できる。
 [粒界腐食の低減]
 本実施形態によるNi基合金では、ASTM G28 Method Aで規定された腐食試験を行った場合、腐食速度が0.075mm/month以下である。ASTM G28 Method Aに準拠した腐食試験は次の方法で実施する。Ni基合金の任意の位置から試験片を採取する。試験片のサイズはたとえば、40mm×10mm×3mmである。腐食試験開始前の試験片の重量を測定する。測定後、質量%で50%の硫酸溶液600mLに対して硫酸第二鉄を25gの割合で加えた溶液(50%硫酸・硫酸第二鉄溶液)に試験片を120時間浸漬する。120時間経過後、試験後の試験片の重量を測定する。測定された試験片の重量の変化に基いて、試験減量を求める。試験片の密度を用いて、試験減量を体積減少量に換算する。体積減少量を試験片の表面積で除算して、腐食深さを求める。腐食深さを試験時間で除算して、腐食速度(mm/month)を求める。
 本実施形態のNi基合金では、腐食速度が0.075mm/month以下であり、粒界腐食が抑制され、耐食性に優れる。
 [応力腐食割れの抑制]
 本実施形態のNi基合金ではさらに、耐粒界腐食性に優れるだけでなく、応力腐食割れも抑制できる。具体的には、Ni基合金の任意の位置から低歪速度引張試験片を採取する。低歪速度引張試験片の長さを80mmとし、平行部長さを25.4mmとし、平行部の直径を3.81mmとする。低歪速度引張試験片の長手方向は、Ni基合金の長手方向と平行とする。0.7MPaの硫化水素を飽和させた、pH2.8~3.1かつ232℃の25%NaCl+0.5%CH3COOH水溶液に低歪速度引張試験片を浸漬しながら、歪速度4.0×10-6-1で低歪速度引張試験(SSRT)を実施して試験片を破断させる。試験後の試験片において、破断部以外の部分に亀裂(サブクラック)が発生しているか否かを目視により確認する。亀裂が発生している場合、応力腐食割れが発生したと判断し、亀裂が確認されなければ、応力腐食割れが発生しなかったと判断する。本製造方法で製造されたNi基合金では、上記低歪速度引張試験において、亀裂が確認されず、応力腐食割れが抑制される。したがって、本実施形態の製造方法で製造されたNi基合金は優れた耐食性を有する。
 以上のとおり、本実施形態の製造方法により製造されたNi基合金では、上述の化学組成を有し、さらに、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下である。さらに、Mo濃度が質量%で8.0%未満の領域(Mo低濃度領域)の面積率が2.0%未満である。そのため、本実施形態のNi基合金は耐食性に優れる。具体的には、ASTM G28のMethod A試験により得られた腐食速度が0.075mm/month以下であり、耐食性(耐粒界腐食性)に優れる。さらに、SSRT試験において、試験片の破断部以外の領域において亀裂が発生せず、耐食性(具体的には耐SCC性)に優れる。
 [本実施形態のNi基合金の製造方法]
 本実施形態のNi基合金の製造方法は、上述の構成を有するNi基合金を製造できれば、特に限定されない。しかしながら、上述のNi基合金の製造方法は、本実施形態のNi基合金を製造するための好適な例である。具体的には、本実施形態のNi基合金の製造方法は、上述の鋳造工程と、上述の偏析低減工程とを備える。上述の鋳造工程では、液体合金を鋳造して、化学組成が、質量%で、C:0.100%以下、Si:0.50%以下、Mn:0.50%以下、P:0.015%以下、S:0.0150%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、Ti:0.05~0.40%、Al:0.05~0.40%、Fe:0.05~5.00%、N:0.100%以下、O:0.1000%以下、Co:0~1.00%、Cu:0~0.50%、Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、残部はNi及び不純物からなるNi基合金素材を製造する。そして、偏析低減工程では、鋳造工程により製造されたNi基合金素材に対して、(I)1回以上の均熱処理、又は、(II)1回以上の均熱処理及び1回以上の複合処理、を実施し、式(1)を満たす。
Figure JPOXMLDOC01-appb-M000010
 上記製造方法により、化学組成が、質量%で、C:0.100%以下、Si:0.50%以下、Mn:0.50%以下、P:0.015%以下、S:0.0150%以下、Cr:20.0~23.0%、Mo:8.0~10.0%、Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、Ti:0.05~0.40%、Al:0.05~0.40%、Fe:0.05~5.00%、N:0.100%以下、O:0.1000%以下、Co:0~1.00%、Cu:0~0.50%、Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、残部はNi及び不純物からなり、Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満であるNi基合金を製造できる。
 図4は、本発明の化学組成を有するNi基合金における、F1と腐食速度との関係を示す図である。ここで、F1は、式(1)の右辺から式(1)の左辺を差し引いた式であって、次のとおり定義される。
Figure JPOXMLDOC01-appb-M000011
 図4を参照して、F1が0未満、すなわち、偏析低減工程での製造条件が式(1)を満たさない場合、腐食速度は0.075mm/monthよりも顕著に高く、F1値が変動しても、腐食速度はあまり変動しない。これに対して、F1が0以上となる場合、すなわち、偏析低減工程での製造条件が式(1)を満たす場合、腐食速度は顕著に低下して、0.075mm/month以下となる。したがって、式(1)を満たす製造条件により製造されたNi基合金は、優れた耐食性を有する。なお、本実施形態のNi基合金の製造方法は、上述の構成を有するNi基合金を製造できれば、特に限定されない。式(1)を用いた上述のNi基合金の製造方法は、本実施形態のNi基合金を製造するための好適な例である。
 [第1の実施形態のNi基合金の好ましい形態(1)]
 Ni基合金において、結晶粒が微細である方が、強度及び延性に優れることが知られている。好ましくは、本実施形態のNi基合金ではさらに、ASTM E112に準拠した結晶粒度番号が0.0以上である。結晶粒度番号が0.0以上であれば、Ni基合金内において、凝固組織が解消され、ミクロ組織が実質的に結晶化したことを示している。好ましい結晶粒度番号は0.5以上であり、さらに好ましくは1.0以上である。結晶粒度番号の上限は特に限定されない。
 本実施形態のNi基合金での結晶粒度番号の測定方法は次のとおりである。Ni基合金を軸方向(長手方向)に5等分して、各区分の軸方向中央位置を特定する。各区分の特定された位置において、Ni基合金の中心軸周りに90°ピッチで4ヶ所のサンプル採取位置を特定する。たとえば、Ni基合金が管材の場合、管周方向に90度ピッチでサンプル採取位置を特定する。特定されたサンプル採取位置から、サンプルを採取する。Ni基合金が管材である場合、特定されたサンプル採取位置の肉厚中央位置からサンプルを採取する。Ni基合金が棒材、又は、横断面が矩形状の合金材である場合、選定されたサンプル採取位置において、W/4深さ位置からサンプルを採取する。サンプルの観察面は、Ni基合金の軸方向に垂直な断面とし、観察面の面積は、40mm2とする。
 上記方法により、各区分で4つのサンプル、全区分で20個のサンプルを採取する。採取されたサンプルの観察面を、グリセレジア、カーリング試薬又はマーブル試薬等を用いて腐食して、表面の結晶粒界を現出させる。腐食された観察面を観察して、ASTM E112に準拠して、結晶粒度番号を求める。
 20個のサンプルで求めた結晶粒度番号の平均値を、Ni基合金におけるASTM E112に準拠した結晶粒度番号と定義する。
 本実施形態のNi基合金であって、ASTM E112に準拠した結晶粒度番号が0.0以上であるNi基合金はたとえば、次の方法で製造される。
 上述の鋳造工程と偏析低減工程とを含むNi基合金の製造方法であって、偏析低減工程において、複合処理を少なくとも1回実施する。そして、複合処理において、1000~1300℃に加熱されたNi基合金素材に対して、35.0%以上の断面減少率で熱間加工を少なくとも1回実施する。この条件での熱間加工を、「特定熱間加工」という。偏析低減工程において、特定熱間加工を少なくとも1回実施すれば、製造されたNi基合金において、ASTM E112に準拠した結晶粒度番号が0.0以上になる。なお、本項目でいう断面減少率は、累積断面減少率ではなく、1回の熱間加工での断面減少率を意味する。
 図5Aは、偏析低減工程において、上述の化学組成を有するNi基合金素材に対して44.6%の断面減少率で熱間加工を1回実施して製造されたNi基合金のミクロ組織観察画像である。図5Bは、偏析低減工程において、上述の化学組成を有するNi基合金素材に対して31.3%の断面減少率で熱間加工を1回実施して製造されたNi基合金のミクロ組織観察画像である。図5Aでは、ASTM E112に準拠した結晶粒度番号が2.0であり、0.0以上であった。これに対して、図5Bでは、ASTM E112に準拠した結晶粒度番号が-2.0であり、0.0未満であった。以上のとおり、偏析低減工程において、上述の化学組成を有するNi基合金素材に対して35.0%以上の断面減少率で熱間加工を少なくとも1回実施することにより、ASTM E112に準拠した結晶粒度番号が0.0以上であるNi基合金を製造できる。なお、特定熱間加工は、複数回実施してもよい。
 [第1の実施形態のNi基合金の好ましい形態(2)]
 好ましくは、本実施形態のNi基合金ではさらに、Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下である。
 ここで、本明細書において「Nb炭窒化物」とは、Nb炭化物、Nb窒化物、及びNb炭窒化物を含む概念であって、Nb、C及びNの総含有量が質量%で90%以上の析出物を意味する。また、Nb炭窒化物の最大長とは、Nb炭窒化物と母相との界面(境界)上の任意の2点で結ばれる直線のうち、最大の長さのものを意味する。
 粗大Nb炭窒化物の総個数が4.0×10-2個/μm2以下であれば、Nb炭窒化物が母相に十分に固溶している。そのため、熱間加工における割れの起点が少なくなり、熱間加工性がさらに高まる。
 粗大Nb炭窒化物の総個数は次の方法で求めることができる。Ni基合金を軸方向に5等分して、各区分の軸方向中央位置を特定する。各区分において、軸方向中央位置にて管周方向に90度ピッチでサンプル採取位置を特定する。特定されたサンプル採取位置から、サンプルを採取する。Ni基合金が管材である場合、特定されたサンプル採取位置の肉厚中央位置からサンプルを採取する。Ni基合金が棒材、又は、横断面が矩形状の合金材である場合、特定されたサンプル採取位置のW/4深さ位置からサンプルを採取する。サンプルの観察面は、Ni基合金の軸方向に垂直な断面とする。各観察面(全部で20個)中の任意の1視野(400μm×400μm)において、EPMA(Electron Probe Micro Analyzer)により、Nb炭窒化物を特定する。具体的には、EPMAの面分析により、Nb、C及びNの総含有量が90%以上の析出物を特定し、特定された析出物をNb炭窒化物と定義する。図6は、上記1視野の一例でのEPMA画像である。図6において白く表示されている析出物100がNb炭窒化物である。特定されたNb炭窒化物の最大長を測定する。上述のとおり、Nb炭窒化物と母相との界面の任意の2点を結ぶ直線のうち、最大の直線の値を、そのNb炭窒化物の最大長と定義する。各Nb炭化物の最大長を測定した後、最大長が1~100μmのNb炭窒化物(粗大Nb炭窒化物)を特定し、20視野全ての粗大Nb炭窒化物の総個数を求める。得られた総個数に基づいて、粗大Nb炭窒化物の総個数(個/μm2)を求める。
 上述のNi基合金であって、最大長が1~100μmのNb炭窒化物の総個数を4.0×10-2個/μm2以下であるNi基合金は、たとえば、次の製造方法で製造できる。
 上述の鋳造工程と偏析低減工程とを含むNi基合金の製造方法であって、偏析低減工程において、1000~1300℃の均熱温度で1.0時間以上保持する均熱処理を少なくとも1回実施する。この条件での均熱処理を、「特定均熱処理」という。偏析低減工程において、特定均熱処理を少なくとも1回実施すれば、製造されたNi基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下となる。なお、特定均熱処理は複数回実施してもよい。
 [第1の実施形態のNi基合金の好ましい形態(3)]
 上述のNi基合金はさらに、ASTM E112に準拠した結晶粒度番号が0.0以上であり、かつ、Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下であってもよい。
 この場合、好ましくは、上記偏析低減工程において、1000~1300℃に加熱されたNi基合金素材に対して、35.0%以上の断面減少率で熱間加工を少なくとも1回実施し、かつ、上記偏析低減工程において、1000~1300℃の均熱温度で1.0時間以上保持する均熱処理を少なくとも1回実施する。つまり、偏析低減工程において、特定熱間加工を少なくとも1回実施し、かつ、特定均熱処理を少なくとも1回実施する。
 [第2の実施の形態]
 好ましくは、上述のNi基合金はさらに、Ca、Nd、及び、Bからなる群から選択される1元素以上を式(2)を満たす含有量で含有する。
 (Ca+Nd+B)/S≧2.0 (2)
 ここで、式(2)中の元素記号には、対応する元素の原子%(at%)での含有量が代入される。
 カルシウム(Ca)、ネオジム(Nd)、及び、ボロン(B)はいずれも、上述のとおり、Ni基合金の熱間加工性を高める。F2=(Ca+Nd+B)/Sと定義する。F2は熱間加工性の指標である。Ca、Nd、及び、Bからなる群から選択される1種以上の合計含有量F2が2.0以上の場合、つまり、F2が式(2)を満たす場合、上述の化学組成のNi基合金において、さらに優れた熱間加工性が得られる。具体的には、歪速度10/秒、大気中、900℃で引張試験を実施した場合の絞り(破断絞り)が35.0%以上となる。
 図7は、本実施形態のNi基合金に対して、大気中、900℃において歪速度10/秒で引張試験をした場合に得られる破断絞り(%)と、F2との関係を示す図である。図7は後述の実施例2に示す試験により得られた。図7を参照して、F2が1.0になるまでは、F2が増加しても900℃での破断絞りはそれほど変化しなかった。一方、F2が1.0を超えると、F2の増加に伴い900℃での破断絞りが急激に上昇し、F2が2.0では35.0%を超え、50.0%程度になる。その後、F2の増加に伴い破断絞りがさらに上昇したものの、F2が8.0以上では、破断絞りは80.0%程度でほぼ一定となった。つまり、図7の曲線は、F2=1.0~2.0近傍に変曲点を有した。以上の結果より、F2が2.0以上であれば、900℃において十分な破断絞り(35.%以上)を得ることができる。F2の好ましい下限は2.5であり、さらに好ましくは3.0であり、さらに好ましくは、3.5である。
 なお、Ni基合金中のCa、Nd及びBの総含有量(質量%)の上限は、第1の実施形態と同様に、0.5000%である。
 [第2の実施形態のNi基合金の製造方法]
 上述の第2の実施形態のNi基合金の製造方法は、上述の構成を有する第2の実施形態のNi基合金が製造できれば、特に限定されない。好ましくは、第2の実施形態のNi基合金の製造方法は、第1の実施の形態のNi基合金の製造方法と同じである。
 具体的には、第2の実施形態のNi基合金の製造方法は、鋳造工程と、偏析低減工程とを備える。鋳造工程では、液体合金を鋳造して、上述の化学組成を有し、かつ、F2が式(2)を満たすNi基合金素材を製造する。
 偏析低減工程では、鋳造工程で製造されたNi基合金素材に対して、
 (I)均熱処理、又は、
 (II)均熱処理及び複合処理、
 を実施する。偏析低減工程では、均熱処理を1回のみ実施してもよいし、複合処理を1回のみ実施してもよい。また、複合処理を複数回繰り返し実施してもよい。均熱処理後に複合処理を実施してもよい。
 上述のとおり、偏析低減工程では、均熱処理、又は、均熱処理及び複合処理を実施する。このとき、鋳造工程での凝固冷却速度VRが式(1)を満たすように、均熱温度Tn(℃)、保持時間tn(hr)、断面減少率Rdn-1(%)を調整する。
Figure JPOXMLDOC01-appb-M000012
 なお、偏析低減工程において均熱処理を1回のみ実施する場合、熱間加工を実施しないため、断面減少率Rd0は0(%)である。したがって、式(1)にRd0=0%を代入して得られる次式に基づいて、凝固冷却速度VR(℃/min)、均熱温度Tn(℃)、保持時間tn(hr)を調整する。
Figure JPOXMLDOC01-appb-M000013
 式(2)を満たす化学組成を有するNi基合金素材に対して、式(1)を満たすように偏析低減工程(均熱処理、又は、均熱処理及び複合処理)を実施すれば、第2の実施形態のNi基合金を製造することができる。なお、偏析低減工程を実施した後、さらに熱間加工工程、冷間加工工程、切削加工工程等の他の工程を実施してもよい。
 なお、第2実施形態のNi基合金の製造方法は、鋳造工程にてNi基合金素材を製造後、そのNi基合金素材を再度溶解する、いわゆる二次溶解を実施しない。つまり、本製造方法は、鋳造工程後、鋳造工程により製造されたNi基合金を再度溶解する二次溶解を実施することなく、偏析低減工程を実施するのが好ましい。
 第2実施形態のNi基合金において、Ca、Nd、及び、B等は、一般的に鋼材中のSと結合して硫化物を形成し、鋼材中(特に粒界)の固溶S濃度を低減させることで熱間加工性を高める。しかしながら、これらの元素を含有するNi基合金素材に対して二次溶解を実施すれば、二次溶解時にCa、Nd、及び、BがNi基合金素材から外部に排出されてしまう。たとえば、二次溶解としてエレクトロスラグ再溶解法(ESR)を適用すれば、Ni基合金素材の溶融時に、Ca、Nd、及び、Bが溶融スラグに取り込まれる。その結果、Ni基合金素材からCa、Nd、及び、Bが排出され、二次溶解後のNi基合金素材の化学組成が式(2)を満たさない。同様に、二次溶解として真空アーク再溶解法(VAR)を適用すれば、Ni基合金素材の溶融時に、熱間加工性向上に有効な元素であるCa、Nd、及び、Bが、溶解時に発生するCOバブルにより浮上分離されてしまう。その結果、Ni基合金素材からCa、Nd、及び、Bが排出され、二次溶解後の製造されたNi基合金素材の化学組成が式(2)を満たさなくなる。これに対して、本製造方法では、上述のとおり、二次溶解を実施せず(二次溶解を省略して)、一次溶解のみでNi基合金素材を製造する。そのため、Ni基合金中において、Ca、Nd、及び、Bの少なくとも1元素以上を式(2)を満たす含有量で維持することができ、熱間加工性を高めることができる。さらに、そのNi基合金素材に対して上述の偏析低減工程を実施するため、Mo偏析も抑制できる。
 [第2の実施の形態のNi基合金の好ましい形態(1)]
 第1の実施の形態と同様に、好ましくは、第2の実施形態のNi基合金では、ASTM E112に準拠した結晶粒度番号が0.0以上である。
 Ni基合金中の結晶粒度番号を0.0以上にする場合、好ましくは、上記偏析低減工程において、1000~1300℃に加熱されたNi基合金素材に対して、35.0%以上の断面減少率で熱間加工(特定熱間加工)を少なくとも1回実施する。偏析低減工程において、特定熱間加工を少なくとも1回実施すれば、製造されたNi基合金において、ASTM E112に準拠した結晶粒度番号が0.0以上になる。なお、特定熱間加工は、複数回実施してもよい。
 [第2の実施形態のNi基合金の好ましい形態(2)]
 第1の実施の形態と同様に、好ましくは、第2の実施の形態のNi基合金では、Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下である。この場合、熱間加工性がさらに高まる。
 Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数を4.0×10-2個/μm2以下にする場合、好ましくは、上記偏析低減工程において、1000~1300℃の均熱温度で1.0時間以上保持する均熱処理(特定均熱処理)を少なくとも1回実施する。特定均熱処理を少なくとも1回実施すれば、製造されたNi基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下となる。なお、特定均熱処理は複数回実施してもよい。
 [第2の実施形態のNi基合金の好ましい形態(3)]
 上述のNi基合金はさらに、ASTM E112に準拠した結晶粒度番号が0.0以上であり、かつ、Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下であってもよい。
 この場合、好ましくは、上記偏析低減工程において、1000~1300℃に加熱されたNi基合金素材に対して、35.0%以上の断面減少率で熱間加工を少なくとも1回実施し、かつ、上記偏析低減工程において、1000~1300℃の均熱温度で1.0時間以上保持する均熱処理を少なくとも1回実施する。
 液体合金を電気炉溶解により溶製した。溶製した液体合金を連続鋳造法又は造塊法により凝固させて、表1の化学組成を有するNi基合金素材(鋳片又はインゴット)を製造した。試験番号1~5及び8のNi基合金素材は鋳片であった。鋳片の長手方向に垂直な断面は600×285mmであった。試験番号6及び7のNi基合金素材はインゴットであった。インゴットの長手方向に垂直な断面は、500mm×500mmであった。
Figure JPOXMLDOC01-appb-T000014
 製造されたNi基合金素材(鋳片)に対して、次の方法により、デンドライト二次アーム間隔DIIを測定して、各試験番号のNi基合金素材の凝固冷却速度VR(℃/min)を求めた。具体的には、Ni基合金素材の長手方向中央位置での長手方向に垂直な横断面のW/4深さ位置において、サンプルを採取した。サンプルの表面のうち、上記横断面と平行な表面に対して鏡面研磨を実施した後、王水にてエッチングした。エッチングされた表面を400倍の光学顕微鏡で観察して、200μm×200μmの観察視野の写真画像を生成した。得られた写真画像を用いて、観察視野内の任意の20ヶ所のデンドライト二次アーム間隔(μm)を測定した。測定されたデンドライト二次アーム間隔の平均を、デンドライト二次アーム間隔DII(μm)と定義した。得られたデンドライト二次アーム間隔DIIを、式(A)に代入することにより、凝固冷却速度VR(℃/min)を求めた。
 DII=182VR -0.294 (A)
 さらに、試験番号2~5、7及び8のNi基合金に対して、表2に示す偏析低減工程を実施した。試験番号2及び3では、偏析低減工程として、均熱処理を1回実施した。試験番号4では、均熱処理を実施し(均熱処理1)、その後、熱間圧延を実施し(熱間加工1)、熱間圧延後に再び均熱処理を実施した(均熱処理2)。試験番号5では、均熱処理1、熱間加工1、均熱処理2、熱間加工2(熱間圧延)、均熱処理3の順に実施した。試験番号7では、均熱処理1を実施した。試験番号8では、均熱処理1、熱間加工1、均熱処理2の順に実施した。つまり、試験番号2、3及び7は、1回の均熱処理のみを実施した。試験番号4は、1回の均熱処理と、1回の複合処理とを実施した。試験番号5は、1回の均熱処理と、2回の複合処理とを実施した。試験番号8は、1回の複合処理を実施した。なお、試験番号1及び6では、偏析低減工程を実施しなかった。
 なお、試験番号4、5及び8はいずれも、横断面が円形状の中実材(つまり、丸棒材)を製造した。また、試験番号4、5、8ではいずれも、均熱処理1を実施した後、速やかに熱間加工1を実施した。試験番号5では、均熱処理2を実施した後、速やかに熱間加工2を実施した。
Figure JPOXMLDOC01-appb-T000015
 各均熱処理1~3での均熱温度(℃)及び均熱時間(hr)は表2に示すとおりであった。各熱間加工1及び2での断面減少率Rdn-1(%)は表2に示すとおりであった。また、各試験番号において、F1(=式(1)の右辺-式(1)の左辺)、を求めた。求めたF1を表2に示す。
 [評価試験]
 [Mo濃度測定試験]
 偏析低減工程後の各試験番号のNi基合金の長手方向に垂直な断面(横断面)において、Mo濃度測定試験用のサンプルを採取した。具体的には、各試験番号において、横断面のW/4深さ位置からサンプルを採取した、サンプルの表面のうち、横断面に相当する表面(観察面)を鏡面研磨した後、観察面内の任意の1視野において、ビーム径10μm、走査長さ2000μm、1点当りの照射時間:3000ms、照射ピッチ:5μmで、EPMAによる線分析を実施した。線分析を実施した2000μmの走査範囲において5μmピッチで測定した複数のMo濃度の平均値と、測定した複数のMo濃度のうちのMo濃度の最大値を求めた。さらに、測定範囲である走査長さ2000μmにおいて、Mo濃度が8.0%未満となった測定点が連続している範囲(2点以上連続している範囲)の総長さ(つまり、Mo低濃度領域総長さ)を求めた。求めたMo低濃度領域総長さを用いて、次の式により、Mo低濃度領域割合(%)を求めた。
 Mo低濃度領域割合=Mo低濃度総長さ(μm)/走査長さ(=2000μm)×100
 [低歪速度引張試験(SSRT)]
 偏析低減工程後の各試験番号のNi基合金の長手方向に垂直な断面において、Mo濃度測定試験でのサンプル採取位置と同じ位置から、低歪速度引張試験片を採取した。低歪速度引張試験片の長さを80mmとし、平行部長さを25.4mmとし、平行部の直径を3.81mmとした。低歪速度引張試験片の長手方向は、Ni基合金の長手方向と平行であった。0.7MPaの硫化水素を飽和させた、pH2.8~3.1かつ232℃の25%NaCl+0.5%CH3COOH水溶液に低歪速度引張試験片を浸漬しながら、歪速度4.0×10-6-1で低歪速度引張試験(SSRT)を実施して試験片を破断させた。試験後の試験片において、破断部以外の部分に亀裂(サブクラック)が発生しているか否かを目視により確認した。亀裂が発生している場合、応力腐食割れが発生したと判断し、亀裂が確認されなければ、応力腐食割れが発生せず、優れた耐食性(耐SCC性)が得られたと判断した。
 [粒界腐食試験]
 偏析低減工程後の各試験番号のNi基合金の長手方向に垂直な断面において、Mo濃度測定試験でのサンプル採取位置と同じ位置から、試験片を採取した。試験片のサイズは、40mm×10mm×3mmとした。採取した試験片を用いて、ASTM G28 Method Aで規定された腐食試験を実施した。具体的には、腐食試験開始前の試験片の重量を測定した。測定後、50%硫酸・硫酸第二鉄溶液に試験片を120時間浸漬した。120時間経過後、試験後の試験片の重量を測定した。測定した試験片の重量の変化から、各試験片の腐食速度(mm/month)を求めた。
 [試験結果]
 試験結果を表2に示す。表2を参照して、試験番号3~5、7及び8では、Ni基合金の化学組成が適切であり、かつ、F1が0以上であり、偏析低減工程において式(1)を満たした。そのため、Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率(Mo低濃度領域割合)が2.0%未満であった。その結果、SSRT試験において、亀裂は確認されなかった。さらに、腐食速度は0.075mm/month以下であり、優れた耐食性を示した。なお、試験番号3~5、7及び8のNi基合金中において、最大長が1~100μmのNb炭窒化物の総個数は4.0×10-2個/μm2以下であった。
 さらに、試験番号4、5及び8では、偏析低減工程において、最終の均熱処理の前に熱間加工を実施した。その結果、均熱処理前に熱間加工を実施しなかった試験番号3と比較して、腐食速度がさらに低く、腐食速度が0.055mm/month以下であった。
 一方、試験番号1及び6では、鋳造工程によりNi基合金素材を製造した後、偏析低減工程を実施しなかった。そのため、Ni基合金の長手方向に垂直な断面において、Mo濃度の最大値が質量%で11.0%を超え、さらに、Mo濃度が質量%で8.0%未満の領域の面積率(Mo低濃度領域割合)が2.0%以上であった。その結果、SSRT試験において亀裂が確認された。さらに、腐食速度が0.075mm/monthを超えた。
 試験番号2では、偏析低減工程において均熱処理を実施したものの、F1が0未満であり、式(1)を満たさなかった。そのため、Mo低濃度領域割合が2.0%以上であった。その結果、SSRT試験において亀裂が確認された。さらに、腐食速度が0.075mm/monthを超えた。
 電気炉溶解により溶製した液体合金を連続鋳造法又は造塊法により凝固させて、表3の化学組成を有するNi基合金素材(鋳片又はインゴット)を製造した。試験番号9~21のNi基合金素材は鋳片であり、鋳片の長手方向に垂直な断面(横断面)は600×285mmであった。なお、表3中のF2欄には、各試験番号のF2値(=(Ca+Nd+B)/S)を記載している。なお、表3中の空白部分は、対応する元素の含有量が、検出限界未満であったことを示す。
Figure JPOXMLDOC01-appb-T000016
 製造されたNi基合金素材(鋳片)に対して、上述の方法により、デンドライト二次アーム間隔DIIを測定して、各試験番号のNi基合金素材の凝固冷却速度VR(℃/min)を求めた。その結果、表4に示すとおり、いずれの試験番号においても、凝固冷却速度VRは5(℃/min)であった。
Figure JPOXMLDOC01-appb-T000017
 各試験番号のNi基合金に対して、偏析低減工程を実施した。具体的には、試験番号9及び11では、均熱処理を1回のみ実施し、熱間加工工程を実施しなかった。均熱処理の均熱温度は1200℃であり、保持時間は96時間であった。その結果、F1はいずれも0.06であり、式(1)を満たした。
 試験番号10及び12~18ではいずれも、均熱処理を実施し(均熱処理1)、その後、熱間圧延を実施し(熱間加工1)、熱間圧延後に再び均熱処理を実施した(均熱処理2)。均熱処理1での均熱温度は、1200℃であり、保持時間は48時間であった。熱間加工1での断面減少率は47.3%であった。均熱処理2での均熱温度は1200℃であり、保持時間は24時間であった。その結果、F1(=式(1)の右辺-式(1)の左辺)はいずれも0.33であり、式(1)を満たした。
 試験番号19~21では均熱処理1、熱間加工1、均熱処理2、熱間加工2、均熱処理3の順に実施した。均熱処理1での均熱温度は、1200℃であり、保持時間は48時間であった。熱間加工1での累積断面減少率は47.3%であった。均熱処理2での均熱温度は1200℃であり、保持時間は24時間であった。熱間加工2での累積断面減少率は85.0%であった。均熱処理3での均熱時間は1200℃であり、保持時間は0.08時間であった。その結果、F1はいずれも0.38であり、式(1)を満たした。
 以上の工程により、試験番号9~21のNi基合金を製造した。なお、試験番号9~21ではいずれも、鋳造工程後のNi基合金素材に対して、二次溶解を実施しなかった。試験番号9及び11のNi基合金は鋳片であり、試験番号10、12~21のNi基合金は横断面が円形状の中実材(つまり、丸棒材)であった。なお、試験番号10、12~21では、均熱処理1を実施した後、速やかに熱間加工1を実施した。試験番号19~21では、均熱処理2を実施した後、速やかに熱間加工2を実施した。
 [熱間加工性評価試験]
 各試験番号のNi基合金を用いて、次の引張試験を実施した。Ni基合金から、引張試験片を採取した。引張試験片はJIS規格の14A号試験片に相当した。各試験番号において、横断面のW/4深さ位置から引張試験片を採取した。引張試験片を900°に加熱した。900℃の引張試験片を用いて、歪速度10/秒、大気中にて引張試験を実施し、破断絞り(%)を測定した。破断絞りが35.0%以上であれば、熱間加工性に優れると判断した。測定結果を表3に示す。
 [試験結果]
 表3を参照して、試験番号9~21ではいずれも、式(1)を満たした。そのため、Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満であった。その結果、SSRT試験において、亀裂は確認されなかった。さらに、腐食速度は0.075mm/month以下であり、優れた耐食性を示した。なお、試験番号9~21のNi基合金中において、最大長が1~100μmのNb炭窒化物の総個数は4.0×10-2個/μm2以下であった。
 さらに、試験番号11、12、16~20ではいずれも、化学組成が適切であり、F2が2.0以上となり、式(2)を満たした。そのため、破断絞りはいずれも35.0%以上(より具体的には45.0%以上)であり、優れた熱間加工性を示した。
 実施例1の試験番号5及び実施例2の試験番号12のNi基合金の結晶粒度番号を次の方法で求めた。Ni基合金を軸方向に5等分して、各区分の軸方向中央位置を特定した。各区分において、軸方向中央位置にて軸周り(長手方向の周り)に90度ピッチでサンプル採取位置を特定した。特定されたサンプル採取位置のW/4深さ位置からサンプルを採取した。サンプルの観察面は、Ni基合金の軸方向に垂直な断面とし、観察面の面積は、40mm2とした。上記方法により、各区分で4つのサンプル、全区分で20個のサンプルを採取した。採取されたサンプルの観察面を、カーリング試薬を用いて腐食して、表面の結晶粒界を現出させた。腐食された観察面を観察して、ASTM E112に準拠して、結晶粒度番号を求めた。20個のサンプルで求めた結晶粒度番号の平均値を、Ni基合金におけるASTM E112に準拠した結晶粒度番号と定義した。
 比較例として、表5に示す化学組成を有する試験番号22のNi基合金素材を準備した。Ni基合金素材は鋳片であり、鋳片の長手方向に垂直な断面は600×285mmであった。試験番号22の化学組成は、試験番号5の化学組成と同じであった。
Figure JPOXMLDOC01-appb-T000018
 試験番号22のNi基合金素材(鋳片)に対して、実施例1と同じ方法により、デンドライト二次アーム間隔DIIを測定して、各試験番号のNi基合金素材の凝固冷却速度VR(℃/min)を求めた。その結果、凝固冷却速度VRは、表6に示すとおり、5℃/minであった。
Figure JPOXMLDOC01-appb-T000019
 試験番号22のNi基合金素材に対して、表6に示す偏析低減工程を実施した。試験番号5の製造条件と比較して、1回目の熱間加工の断面減少率は31.3%であった。また、2回目の熱間加工の累積断面減少率は62.6%であり、2回目の熱間加工での断面減少率は31.3%であった。つまり、試験番号22において、各熱間加工での断面減少率はいずれも35.0%未満であった。試験番号22についても、試験番号5と同様の方法で、結晶粒度番号を求めた。
 結晶粒度番号を求めた結果、試験番号5では、ASTM E112に準拠した結晶粒度番号が0.0以上(2.0)となり、試験番号12では、ASTM E112に準拠した結晶粒度番号が0.0となった。一方、試験番号22では、ASTM E112に準拠した結晶粒度番号が0.0未満(-2.0)となった。
 実施例1の試験番号4のNi基合金の粗大Nb炭窒化物の総個数を次の方法で求めた。Ni基合金を軸方向に5等分して、各区分の軸方向中央位置を特定した。各区分において、軸方向中央位置にて軸周り(長手方向の周り)に90度ピッチでサンプル採取位置を特定した。特定されたサンプル採取位置の肉厚中央位置からサンプルを採取した。サンプルの観察面は、Ni基合金の軸方向に垂直な断面とした。各観察面(全部で20個)中の任意の1視野(400μm×400μm)において、EPMAにより、Nb炭窒化物を特定した。特定されたNb炭窒化物の最大長を測定した。上述のとおり、Nb炭窒化物と母相との界面の任意の2点を結ぶ直線のうち、最大の直線の値を、そのNb炭窒化物の最大長と定義した。各Nb炭化物の最大長を測定した後、最大長が1~100μmのNb炭窒化物(粗大Nb炭窒化物)を特定し、20視野全ての粗大Nb炭窒化物の総個数を求めた。得られた総個数に基づいて、粗大Nb炭窒化物の総個数(個/μm2)を求めた。
 比較例として、表7に示す試験番号23のNi基合金を準備した。Ni基合金素材は鋳片であり、鋳片の長手方向に垂直な断面は600×285mmであった。試験番号23の化学組成は、試験番号4の化学組成と同じであった。
Figure JPOXMLDOC01-appb-T000020
 試験番号23のNi基合金素材に対して、表8に示す偏析低減工程を実施した。具体的には、試験番号23では、試験番号4と同じ温度で1回目の均熱処理を実施し(均熱処理1)、その後、試験番号4と同じ断面減少率で熱間圧延を実施し(熱間加工1)、熱間圧延後に再び、試験番号4と同じ温度で2回目の均熱処理を実施した(均熱処理2)。しかしながら、均熱処理1及び均熱処理2での均熱時間はいずれも50分(0.83時間)であり、1時間未満であった。試験番号23においても、試験番号4と同様に、粗大Nb炭窒化物の総個数を求めた。
Figure JPOXMLDOC01-appb-T000021
 さらに、試験番号4及び試験番号23のNi基合金に対して、実施例2と同じ方法で熱間加工性評価試験を実施して、破断絞り(%)を求めた。
 粗大Nb炭窒化物の総個数は、試験番号4では4.0×10-2個/μm2以下であったが、試験番号23では4.0×10-2個/μm2を超えた。その結果、試験番号4では破断絞りが35.0%を超えたのに対して、比較例では破断絞りが35.0%未満であった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (9)

  1.  液体合金を鋳造して、
     化学組成が、質量%で、
     C:0.100%以下、
     Si:0.50%以下、
     Mn:0.50%以下、
     P:0.015%以下、
     S:0.0150%以下、
     Cr:20.0~23.0%、
     Mo:8.0~10.0%、
     Nb及びTaからなる群から選択される1元素以上:3.150~4.150%、
     Ti:0.05~0.40%、
     Al:0.05~0.40%、
     Fe:0.05~5.00%、
     N:0.100%以下、
     O:0.1000%以下、
     Co:0~1.00%、
     Cu:0~0.50%、
     Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
     残部はNi及び不純物からなるNi基合金素材を製造する鋳造工程と、
     前記鋳造工程により製造された前記Ni基合金素材に対して、
     均熱処理、又は、
     前記均熱処理と、前記均熱処理後に、熱間加工と前記熱間加工後の均熱処理とを含む複合処理と、
     を実施し、式(1)を満たす偏析低減工程とを備える、
     Ni基合金の製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ここで、式(1)中の各記号は次のとおりである。
     VR:前記鋳造工程における前記液体合金の凝固冷却速度(℃/min)
     Tn:n回目の前記均熱処理における均熱温度(℃)
     tn:n回目の前記均熱処理における前記均熱温度での保持時間(hr)
     Rdn-1:n回目の前記均熱処理前の前記Ni基合金素材の累積断面減少率(%)
     N:前記均熱処理の総回数
  2.  請求項1に記載のNi基合金の製造方法であって、
     前記均熱温度は1000~1300℃である、
     Ni基合金の製造方法。
  3.  請求項2に記載のNi基合金の製造方法であって、
     前記偏析低減工程では、
     前記複合処理を1回以上実施し、かつ、1000~1300℃に加熱された前記Ni基合金素材に対して、35.0%以上の断面減少率で熱間加工を少なくとも1回実施する、
     Ni基合金の製造方法。
  4.  請求項2又は請求項3に記載のNi基合金の製造方法であって、
     前記偏析低減工程では、
     1000~1300℃の前記均熱温度で1.0時間以上保持する前記均熱処理を少なくとも1回実施する、Ni基合金の製造方法。
  5.  請求項1~請求項4のいずれか1項に記載のNi基合金の製造方法であって、
     前記化学組成は、
     前記Ca、Nd、及び、Bからなる群から選択される1元素以上を、式(2)を満たす含有量で含有する、
     Ni基合金の製造方法。
     (Ca+Nd+B)/S≧2.0 (2)
     ここで、式(2)中の元素記号には、対応する元素の原子%(at%)での含有量が代入される。
  6.  Ni基合金であって、
     化学組成が、質量%で、
     C:0.100%以下、
     Si:0.50%以下、
     Mn:0.50%以下、
     P:0.015%以下、
     S:0.0150%以下、
     Cr:20.0~23.0%、
     Mo:8.0~10.0%、
     Nb及びTaからなる群から選択される1種以上:3.150~4.150%、
     Ti:0.05~0.40%、
     Al:0.05~0.40%、
     Fe:0.05~5.00%、
     N:0.100%以下、
     O:0.1000%以下、
     Co:0~1.00%、
     Cu:0~0.50%、
     Ca、Nd及びBからなる群から選択される1元素以上:0~0.5000%、及び、
     残部がNi及び不純物からなり、
     前記Ni基合金の長手方向に垂直な断面において、Moの平均濃度が質量%で8.0%以上であり、Mo濃度の最大値が質量%で11.0%以下であり、さらに、前記Mo濃度が質量%で8.0%未満の領域の面積率が2.0%未満である、
     Ni基合金。
  7.  請求項6に記載のNi基合金であって、
     前記化学組成は、
     前記Ca、Nd、及び、Bからなる群から選択される1元素以上を、式(2)を満たす含有量で含有する、
     Ni基合金。
     (Ca+Nd+B)/S≧2.0 (2)
     ここで、式(2)中の元素記号には、対応する元素の原子%(at%)での含有量が代入される。
  8.  請求項6又は請求項7に記載のNi基合金であって、
     ASTM E112に準拠した結晶粒度番号が0.0以上である、
     Ni基合金。
  9.  請求項6~請求項8のいずれか1項に記載のNi基合金であって、
     前記Ni基合金中において、最大長が1~100μmのNb炭窒化物の総個数が4.0×10-2個/μm2以下である、
     Ni基合金。
PCT/JP2018/043878 2017-11-28 2018-11-28 Ni基合金の製造方法及びNi基合金 WO2019107456A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880076390.7A CN111417739B (zh) 2017-11-28 2018-11-28 Ni基合金的制造方法及Ni基合金
KR1020207018144A KR102386636B1 (ko) 2017-11-28 2018-11-28 Ni기 합금의 제조 방법 및 Ni기 합금
US16/767,451 US11739407B2 (en) 2017-11-28 2018-11-28 Method for producing ni-based alloy and ni-based alloy
EP18883203.4A EP3719165B1 (en) 2017-11-28 2018-11-28 Method for manufacturing ni-based alloy and ni-based alloy
CA3082754A CA3082754C (en) 2017-11-28 2018-11-28 Method for producing ni-based alloy and ni-based alloy
JP2019557296A JP7052807B2 (ja) 2017-11-28 2018-11-28 Ni基合金の製造方法及びNi基合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228397 2017-11-28
JP2017-228397 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107456A1 true WO2019107456A1 (ja) 2019-06-06

Family

ID=66665584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043878 WO2019107456A1 (ja) 2017-11-28 2018-11-28 Ni基合金の製造方法及びNi基合金

Country Status (7)

Country Link
US (1) US11739407B2 (ja)
EP (1) EP3719165B1 (ja)
JP (1) JP7052807B2 (ja)
KR (1) KR102386636B1 (ja)
CN (1) CN111417739B (ja)
CA (1) CA3082754C (ja)
WO (1) WO2019107456A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839316B1 (ja) * 2020-04-03 2021-03-03 日本冶金工業株式会社 Ni−Cr−Mo−Nb系合金
EP3913102A1 (en) * 2020-05-22 2021-11-24 Nippon Steel Corporation Ni-based alloy tube and welded joint

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593120A (zh) * 2020-12-09 2021-04-02 上海蓝铸特种合金材料有限公司 一种镍基多元合金及其制成的管材和制备方法
CN114293067B (zh) * 2021-12-27 2023-03-31 上海康晟航材科技股份有限公司 一种用于电子烟花推杆的高温合金及其制备工艺及应用
CN114318194B (zh) * 2022-03-16 2022-06-07 河北钢研德凯科技有限公司北京分公司 一种镍基铸造高温合金及其热处理方法和合金铸件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211029A (ja) 1984-04-04 1985-10-23 Nippon Kokan Kk <Nkk> 熱間加工性が優れたNi基超合金
JPH01136939A (ja) * 1987-11-25 1989-05-30 Nippon Steel Corp 熱間加工性に優れたNi基超合金の製造方法
WO2010038680A1 (ja) 2008-09-30 2010-04-08 日立金属株式会社 Ni基合金の製造方法及びNi基合金

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795564A (fr) * 1972-02-16 1973-08-16 Int Nickel Ltd Alliage de nickel-fer resistant a la corrosion
JPS6312250A (ja) 1986-07-03 1988-01-19 Shinji Morita 抹茶入りのお茶
IN2014DN09561A (ja) * 2012-06-07 2015-07-17 Nippon Steel & Sumitomo Metal Corp
JP5682602B2 (ja) * 2012-08-09 2015-03-11 新日鐵住金株式会社 内面品質に優れたNi含有高合金丸ビレットの製造方法
WO2017170433A1 (ja) * 2016-03-31 2017-10-05 日立金属株式会社 Ni基超耐熱合金の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211029A (ja) 1984-04-04 1985-10-23 Nippon Kokan Kk <Nkk> 熱間加工性が優れたNi基超合金
JPH01136939A (ja) * 1987-11-25 1989-05-30 Nippon Steel Corp 熱間加工性に優れたNi基超合金の製造方法
WO2010038680A1 (ja) 2008-09-30 2010-04-08 日立金属株式会社 Ni基合金の製造方法及びNi基合金

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839316B1 (ja) * 2020-04-03 2021-03-03 日本冶金工業株式会社 Ni−Cr−Mo−Nb系合金
WO2021201142A1 (ja) * 2020-04-03 2021-10-07 日本冶金工業株式会社 Ni-Cr-Mo-Nb系合金
EP3913102A1 (en) * 2020-05-22 2021-11-24 Nippon Steel Corporation Ni-based alloy tube and welded joint
CN113718135A (zh) * 2020-05-22 2021-11-30 日本制铁株式会社 Ni基合金管和焊接接头
CN113718135B (zh) * 2020-05-22 2022-12-09 日本制铁株式会社 Ni基合金管和焊接接头

Also Published As

Publication number Publication date
CA3082754A1 (en) 2019-06-06
KR102386636B1 (ko) 2022-04-14
CN111417739A (zh) 2020-07-14
EP3719165B1 (en) 2024-04-17
CN111417739B (zh) 2021-12-31
EP3719165A1 (en) 2020-10-07
CA3082754C (en) 2022-07-05
US20200392612A1 (en) 2020-12-17
EP3719165C0 (en) 2024-04-17
US11739407B2 (en) 2023-08-29
JPWO2019107456A1 (ja) 2020-11-26
JP7052807B2 (ja) 2022-04-12
EP3719165A4 (en) 2021-07-21
KR20200087256A (ko) 2020-07-20

Similar Documents

Publication Publication Date Title
KR102090201B1 (ko) 오스테나이트계 내열합금 및 그 제조 방법
WO2019107456A1 (ja) Ni基合金の製造方法及びNi基合金
JP6904359B2 (ja) オーステナイト系ステンレス鋼
JP6705508B2 (ja) NiCrFe合金
WO2021033672A1 (ja) 二相ステンレス鋼材
JP6675846B2 (ja) 高温強度に優れたFe−Cr−Ni系合金
JP6816779B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
CN102171375A (zh) 用于制造Ni基合金的方法以及Ni基合金
US20190127832A1 (en) Austenitic Stainless Steel
JP2021167445A (ja) 二相ステンレス鋼材
JP6160942B1 (ja) 低熱膨張超耐熱合金及びその製造方法
JP6520546B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP6299349B2 (ja) 靭性および孔食性に優れた油井管用鋳片の連続鋳造方法
JP7498420B1 (ja) 二相ステンレス鋼材
JP5780212B2 (ja) Ni基合金
JP7464817B2 (ja) オーステナイト系ステンレス鋼
WO2018066709A1 (ja) ニッケル材及びニッケル材の製造方法
KR20210014631A (ko) 새로운 오스테나이트계 합금
JP2001200342A (ja) 鋳造品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3082754

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019557296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018144

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018883203

Country of ref document: EP

Effective date: 20200629