WO2019102994A1 - 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法 - Google Patents

絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法 Download PDF

Info

Publication number
WO2019102994A1
WO2019102994A1 PCT/JP2018/042831 JP2018042831W WO2019102994A1 WO 2019102994 A1 WO2019102994 A1 WO 2019102994A1 JP 2018042831 W JP2018042831 W JP 2018042831W WO 2019102994 A1 WO2019102994 A1 WO 2019102994A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating film
resin
conductor
forming
Prior art date
Application number
PCT/JP2018/042831
Other languages
English (en)
French (fr)
Inventor
耕司 平野
慎太郎 飯田
桜井 英章
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880068543.3A priority Critical patent/CN111247219A/zh
Priority to US16/758,923 priority patent/US20200347185A1/en
Priority to EP18880940.4A priority patent/EP3715427B1/en
Priority to KR1020207012993A priority patent/KR102619226B1/ko
Priority to CN202110806157.3A priority patent/CN113372810B/zh
Priority to FIEP18880940.4T priority patent/FI3715427T3/fi
Publication of WO2019102994A1 publication Critical patent/WO2019102994A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/004Modification of polymers by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4461Polyamides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/004Inhomogeneous material in general with conductive additives or conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Definitions

  • the present invention relates to a resin for forming an insulating film, a varnish, an electrodeposition solution, and a method for producing an insulating conductor.
  • Insulated conductors in which a conductor such as a copper wire is covered with an insulating film are used for electric coils for various electric devices such as motors and transformers.
  • Resins, such as polyamide imide and polyimide, are widely used as the material of the insulating film of the insulating conductor.
  • the coating method and the electrodeposition method are known as a manufacturing method of an insulated conductor.
  • the application method is a method in which a varnish containing a resin for forming an insulating film and a solvent is applied on the surface of a conductor to form a coated layer, and then the coated layer is heated to bake the generated insulating film on the conductor.
  • an electrodeposition solution containing a resin for forming an insulating film, a polar solvent, water, a poor solvent and a base is electrodeposited on the surface of a conductor to form an electrodeposited layer, and then the electrodeposited layer is heated. Is a method of baking the generated insulating film on a conductor.
  • a varnish having a boiling point of 160 ° C. or more and a carbon number of 10 or more is a varnish (insulation paint) capable of forming an insulating film having high adhesion to a conductor in a high temperature environment.
  • An insulating paint is described in which at least one reducing agent selected from the group consisting of primary alcohol, secondary alcohol, primary thiol and secondary thiol is added.
  • the reducing agent is left in the insulating film of the insulating conductor manufactured using the insulating paint, and the remaining reducing agent is used to suppress the oxidation of the conductor, The adhesion between the conductor and the insulating film in a high temperature environment can be maintained.
  • the reducing agent remaining in the insulating film gradually evaporates, and the effect of suppressing the oxidation of the conductor by the reducing agent disappears There was a fear.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to form an insulating film capable of forming an insulating film excellent in adhesion to a conductor even when stored for a long time in a high temperature environment. It is an object of the present invention to provide a method for producing a resin, a varnish, an electrodeposition solution, and an insulated conductor.
  • the resin for insulating film formation of the present invention contains at least one of a modified polyamideimide having an OH group or an SH group at one end and a modified polyimide having an OH group or an SH group at one end. It is characterized by
  • the resin for insulating film formation of the present invention since the modified polyamideimide and the modified polyimide have OH group or SH group at the end and have high reducing power, the insulating film formed using this resin for insulating film formation By covering the conductor with this, it is possible to suppress the oxidation of the conductor in a high temperature environment, which makes it possible to suppress the decrease in the adhesion between the conductor and the insulating film due to the oxidation of the conductor.
  • modified polyamideimide and modified polyimide have high boiling point temperature and high stability under high temperature environment compared with compounds conventionally used as a reducing agent, even if stored for a long time under high temperature environment It is hard to lose the oxidation control effect of the conductor by OH group or SH group. Therefore, according to the resin for insulating film formation of this invention, it becomes possible to form the insulating film which is excellent in adhesiveness with a conductor, even if it preserves under high temperature environment for a long time.
  • the modified polyamideimide and the modified polyimide have a weight average molecular weight in the range of 10 ⁇ 10 4 to 30 ⁇ 10 4 , or a number average molecular weight of 2 ⁇ it is preferably in the range of 10 4 to 5 ⁇ 10 4 or less.
  • the molecular weight of the modified polyamideimide and the modified polyimide is large, volatilization hardly occurs even when stored for a long time in a high temperature environment. Therefore, it is possible to more reliably form the insulating film having excellent adhesion to the conductor even when stored for a long time under a high temperature environment.
  • the modified polyamideimide is one in which the NCO group of the polyamideimide whose end is an NCO group and the OH group of the linear diol or the SH group of the linear dithiol Is preferred.
  • the modified polyamideimide since the modified polyamideimide has an OH group derived from a linear diol or an SH group derived from a linear dithiol, the reducing power is increased.
  • denatured polyamide imide is a compound represented by following General formula (1).
  • X 1 and X 2 are each independently O or S, and L 1 and L 2 are each independently an alkylene group having a carbon atom number in the range of 2 to 12, Y 1 Is SH if X 1 is S and OH if X 1 is O, Y 2 is SH if X 2 is S and OH if X 2 is O, n is an integer of 30 or more.
  • the modified polyimide is one in which the NCO group of the polyimide having an NCO group at the end is bonded to the OH group of the linear diol or the SH group of the linear dithiol. Is preferred. In this case, since the modified polyimide has an OH group derived from a linear diol or an SH group derived from a linear dithiol, the reducing power is increased.
  • denatured polyimide is a compound represented by following General formula (2).
  • Ar is a tetravalent aromatic group
  • R 1 and R 2 are each independently a divalent organic group
  • X 3 and X 4 are each independently O or S
  • L 3 and L 4 are each independently an alkylene group having 2 to 12 carbon atoms
  • Y 3 is SH when X 3 is S and X 3 is O.
  • Y 4 is SH when X 4 is S and OH when X 4 is O
  • m is an integer of 30 or more.
  • the varnish of the present invention is a varnish containing a resin for forming an insulating film and a polar solvent, and the resin for forming an insulating film is characterized by being the above-mentioned resin for forming an insulating film.
  • the varnish of the present invention since the resin for forming the insulating film described above is included as the resin for forming the insulating film, it is possible to form the insulating film having excellent adhesion to the conductor even when stored for a long time in a high temperature environment. It becomes possible.
  • the method for producing an insulated conductor using the above-mentioned varnish according to the present invention comprises the steps of applying the above-mentioned varnish on the surface of a conductor to form a coating layer on the surface of the conductor, and heating the coating layer to form And b) baking the insulating coating on the conductor.
  • the method of manufacturing an insulated conductor of the present invention since the insulating coating formed by using the above-mentioned varnish is baked on the conductor, an insulated conductor having excellent adhesion between the conductor and the insulating coating even when stored for a long time under high temperature environment It is possible to manufacture
  • the electrodeposition solution of the present invention is an electrodeposition solution containing a resin for forming an insulating film, a polar solvent, water, a poor solvent, and a base, and the resin for forming an insulating film is the above-described insulating film. It is characterized by being an adhesive resin. According to the electrodeposition solution of the present invention, since the above-described insulating film-forming resin is contained as the insulating film-forming resin, an insulating film having excellent adhesion to the conductor is formed even when stored for a long time in a high temperature environment. It becomes possible.
  • the method for producing an insulated conductor using the above-mentioned electrodeposition solution of the present invention comprises the steps of: electrodepositing the above-mentioned electrodeposition solution on the surface of the conductor to form an electrodeposition layer on the surface of the conductor; Heating the layer to bake the produced insulating film on the conductor.
  • the method for producing an insulated conductor of the present invention since the insulating coating formed by using the above-mentioned electrodeposition solution is baked on the conductor, the adhesion between the conductor and the insulating coating is excellent even when stored for a long time under high temperature environment It becomes possible to manufacture an insulated conductor.
  • a resin for insulating film formation capable of forming an insulating film excellent in adhesion to a conductor even when stored for a long time in a high temperature environment, a varnish, an electrodeposition liquid, and an insulating conductor It becomes possible to provide a method.
  • the “insulated conductor” is a conductor (coated body) having an insulating film formed on the surface.
  • the conductor include copper wire, aluminum wire, steel wire, copper alloy wire, aluminum alloy wire and the like.
  • the film thickness of the insulating film is usually in the range of 10 ⁇ m to 70 ⁇ m.
  • the resin for insulating film formation of this embodiment contains at least one of a modified polyamideimide whose terminal is an OH group or a SH group, and a modified polyimide whose terminal is an OH group or a SH group. That is, the resin for insulating film formation is OH group modified polyamide imide whose terminal is OH group, SH group modified polyamide imide whose terminal is SH group, OH group modified polyimide whose terminal is OH group, terminal is SH group SH-modified polyimide is included.
  • One of these resins may be used alone, or two or more of these resins may be used in combination.
  • the terminal OH group or SH group of modified polyamideimide and modified polyimide acts as a reducing agent, and has the effect of reducing the oxide formed on the surface of the conductor and suppressing the decrease in the adhesion of the insulating film due to the oxidation of the conductor. is there.
  • the amount of OH group or SH group contained in the modified polyamideimide and the modified polyimide is preferably in the range of 0.005 mole or more and 0.02 mole or less with respect to 100 g of the modified polyamideimide and the modified polyimide.
  • the insulating film formed using the modified polyamideimide and the modified polyimide in which the amount of the OH group or the SH group is in the above range can more reliably suppress the oxidation of the conductor in a high temperature environment.
  • the modified polyamideimide and the modified polyimide have a weight average molecular weight in the range of 10 ⁇ 10 4 or more and 30 ⁇ 10 4 or less, and a number average molecular weight in the range of 2 ⁇ 10 4 or more and 5 ⁇ 10 4 or less.
  • An insulation film formed using modified polyamideimide and modified polyimide having weight average molecular weight and number average molecular weight in the above ranges is less likely to volatilize even when stored for a long time in a high temperature environment.
  • the weight average molecular weight is less than 10 ⁇ 10 4 and the number average molecular weight is less than 2 ⁇ 10 4, it may be difficult to form an insulating film excellent in film thickness uniformity without foaming. .
  • modified polyamideimides and modified polyimides having a weight average molecular weight of more than 30 ⁇ 10 4 and a number average molecular weight of more than 5 ⁇ 10 4 are difficult to synthesize and there is a possibility that the production cost may be high.
  • modified polyamideimide having an OH group or SH group at the end is that the NCO group of the polyamideimide whose end is an NCO group and the OH group of a linear diol or the SH group of a linear dithiol preferable. That is, the modified polyamideimide preferably has an OH group derived from a linear diol or an SH group derived from an SH group of a linear dithiol at an end. Hydrogen is easily released from the linear diol-derived OH group or the SH group-derived SH group of the linear dithiol. For this reason, modified polyamideimide having a straight chain diol-derived OH group or a SH group-derived SH group of a linear dithiol has a high reducing power.
  • Polyamideimides in which the end is an NCO group can be produced by the isocyanate method.
  • the isocyanate method is a method in which trimellitic anhydride and a diisocyanate compound are reacted.
  • the polyamideimide produced by the isocyanate method has an NCO group derived from a diisocyanate compound at its end.
  • the linear diol is a compound having a structure in which one carbon atom of linear hydrocarbon is substituted with one hydroxy group.
  • the linear diol preferably has in the range of 2 to 12 carbon atoms.
  • Examples of linear diols include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol and 1,7-heptanediol And 1,8-octanediol.
  • linear dithiol preferably has 2 to 12 carbon atoms.
  • linear diols include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexadithiol, 1,7-heptanedithiol And 1,8-octanedithiol.
  • polyamide imide and linear diol are mixed in a solvent, and the obtained mixed solution is 50 ° C. or more and 80 ° C. or less
  • a method of heating at a temperature of 0 ° C. or less can be used.
  • the modified polyamideimide whose terminal is an OH group or an SH group is preferably a compound represented by the following general formula (1). Hydrogen is easily released from an OH group or an SH group bonded to an alkylene group having a carbon number of 2 to 12. For this reason, the modified polyamideimide having an OH group or an SH group bonded to an alkylene group having a carbon number of 2 to 12 has a high reducing power.
  • X 1 and X 2 are each independently O or S.
  • X 1 and X 2 are identical.
  • L 1 and L 2 are each independently an alkylene group having 2 to 12 carbon atoms.
  • L 1 and L 2 are identical.
  • Y 1 is SH when X 1 is S and OH when X 1 is O
  • Y 2 is SH when X 2 is S and OH when X 2 is O is there.
  • n is an integer of 30 or more.
  • the modified polyimide in which the end is an OH group or an SH group is preferably a polyimide in which the NCO group of the polyimide whose end is an NCO group is bonded to the OH group of a linear diol or the SH group of a linear dithiol. That is, the modified polyimide preferably has an OH group derived from a linear diol or an SH group derived from an SH group of a linear dithiol at an end. Hydrogen is easily released from the linear diol-derived OH group or the SH group-derived SH group of the linear dithiol. For this reason, the modified polyimide having a straight chain diol-derived OH group or a SH group-derived SH group of a linear dithiol has a high reducing power.
  • Polyimides having NCO groups at the end can be produced by the isocyanate method.
  • the isocyanate method is a method of reacting a carboxylic acid dianhydride with a diisocyanate compound.
  • the polyimide produced by the isocyanate method has an NCO group derived from a diisocyanate compound at its end.
  • linear diol and linear dithiol to be bonded to the NCO group of the polyimide the same ones as in the case of the modified polyamideimide can be used.
  • the polyimide and the linear diol are mixed in a solvent, and the obtained mixed solution is heated to a temperature of 50 ° C. to 80 ° C. Can be used.
  • the NCO group of the polyimide and the SH group of the linear dithiol for example, the polyimide and the linear dithiol are mixed in a solvent, and the obtained mixed solution is 50 ° C. to 80 ° C.
  • the modified polyimide in which the terminal is an OH group or an SH group is a compound represented by the following general formula (2). Hydrogen is easily released from an OH group or an SH group bonded to an alkylene group having a carbon number of 2 to 12. For this reason, the modified polyimide having an OH group or an SH group bonded to an alkylene group having a carbon number of 2 to 12 has a high reducing power.
  • Ar is a tetravalent aromatic group.
  • R 1 and R 2 are each independently a divalent organic group.
  • the divalent organic group is preferably a divalent aromatic group or a combination of a divalent aromatic group and a divalent linking group.
  • the divalent aromatic group is preferably a phenylene group. It is preferable that the group which combined the bivalent aromatic group and the bivalent linking group is a group which the bivalent aromatic group, the bivalent linking group, and the bivalent aromatic group were linked in this order .
  • Examples of the divalent linking group include an alkylene group having 1 to 12 carbon atoms, a carbonyl group (-CO-), an oxy group (-O-), and a carbon atom having a range of 1 to 8
  • An imino group optionally substituted with an alkyl group (-NR-: wherein R is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms), a thio group (-S-) And sulfinyl group (-SO-), sulfonyl group (-SO 2- ) and the like can be mentioned.
  • X 3 and X 4 are each independently O or S.
  • X 3 and X 4 are identical.
  • L 3 and L 4 are each independently an alkylene group having 2 to 12 carbon atoms.
  • L 3 and L 4 are identical.
  • Y 3 is SH when X 3 is S and OH when X 3 is O.
  • Y 4 is SH when X 4 is S and OH when X 4 is O. is there.
  • m is an integer of 30 or more.
  • the varnish of this embodiment contains the resin for insulating film formation of the above-mentioned this embodiment, and a polar solvent.
  • the insulating film-forming resin is preferably dissolved in a polar solvent.
  • the polar solvent is not particularly limited as long as it can dissolve modified polyamideimide and modified polyimide.
  • polar solvents include N, N-dimethylacetamide, N, N-dimethylformamide, propylene carbonate, dimethyl sulfoxide, 4-butyrolactone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone Etc., and the like.
  • the viscosity of the varnish is preferably 1000 to 10000 mPa ⁇ s at 25 ° C.
  • the varnish may contain additives as long as the effects of the present invention are not impaired.
  • additives a stabilizer, a plasticizer, an antifoamer, a flame retardant etc. are mentioned, for example.
  • the above-mentioned varnish can be used as a raw material at the time of manufacturing an insulated conductor by an application method.
  • the method of manufacturing the insulated conductor of the present embodiment using a varnish is a step of applying a varnish on the surface of a conductor to form a coating layer on the surface of the conductor (coating step) and heating the coating layer to generate Baking the insulating film on the conductor (heating step).
  • the method generally utilized as a coating method of a varnish such as a dip coating (dip method) and a spraying method, can be used.
  • the heating temperature of the coating layer is preferably in the range of 200 ° C. or more and 600 ° C. or less.
  • the electrodeposition solution of the present embodiment contains the resin for forming an insulating film of the present embodiment described above, a polar solvent, water, a poor solvent, and a base.
  • the poor solvent is a solvent having low solubility in the insulating film-forming resin. Since the electrodeposition solution contains water and a poor solvent, the insulating film-forming resin is dispersed in the electrodeposition solution in the form of fine particles.
  • the particles of the insulating film-forming resin preferably have an average particle diameter of 400 nm or less.
  • the average particle size of the insulating film-forming resin particles is a volume-based average particle size measured using a dynamic light scattering particle size distribution measuring apparatus (LB-550, manufactured by Horiba, Ltd.).
  • the polar solvent used in the electrodeposition solution is preferably soluble in the insulating film-forming resin and hydrophilic.
  • polar solvents include N, N-dimethylacetamide, N, N-dimethylformamide, propylene carbonate, dimethyl sulfoxide, 4-butyrolactone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone Etc.
  • poor solvents examples include isopropyl alcohol, 1-methoxy-2-propanol, cyclohexanone and the like.
  • Examples of the base include N, N-dimethylaminoethanol, triethylamine, tripropylamine, triethanolamine, imidazole and the like.
  • the viscosity of the electrodeposition solution is preferably 3 to 20 mPa ⁇ s at 25 ° C.
  • the electrodeposition solution is preferably prepared by dropping water into a mixed solution containing a resin for forming an insulating film, a solvent, a poor solvent and a basic water.
  • the dropping of water is preferably performed while stirring the mixture at a speed of 8000 rpm or more and 12000 rpm or less.
  • the electrodeposition solution may contain an additive as long as the effects of the present invention are not impaired.
  • an additive a stabilizer, a plasticizer, an antifoamer, a flame retardant etc. are mentioned, for example.
  • the above-mentioned electrodeposition liquid can be used as a raw material at the time of manufacturing an insulated conductor by the electrodeposition method.
  • the method for producing an insulated conductor of the present embodiment using an electrodeposition liquid comprises the steps of electrodepositing an electrodeposition liquid on the surface of the conductor to form an electrodeposition layer on the surface of the conductor (electrodeposition step); Heating the layer to bake the formed insulating film on the conductor (heating step).
  • the counter electrode and the conductor are immersed in the electrodeposition liquid, and then the counter electrode is used as a cathode and the conductor is used as an anode to apply a DC voltage.
  • the direct current voltage to be applied is preferably in the range of 1 V or more and 600 V or less. It is preferable that the temperature of the electrodeposition solution at the time of DC voltage application be in the range of 5 ° C. to 60 ° C. The application time of the DC voltage is preferably in the range of 0.01 seconds to 30 seconds.
  • the heating temperature of the electrodeposition layer is preferably in the range of 200 ° C. or more and 600 ° C. or less.
  • the conductor is an insulating film formed using the resin for forming the insulating film.
  • the conductor is an insulating film formed using the resin for forming the insulating film.
  • the modified polyamideimide and the modified polyimide have a weight average molecular weight in the range of 10 ⁇ 10 4 to 30 ⁇ 10 4 and a number average molecular weight of 2 ⁇ 10 4. Since the range is as large as 5 ⁇ 10 4 or less, volatilization hardly occurs even when stored for a long time in a high temperature environment. Therefore, it is possible to more reliably form the insulating film having excellent adhesion to the conductor even when stored for a long time under a high temperature environment.
  • the varnish of the present embodiment since the resin for forming the insulating film described above is included as the resin for forming the insulating film, the insulating film is excellent in adhesion to the conductor even when stored for a long time in a high temperature environment. It is possible to form Further, according to the method of manufacturing the insulated conductor of the present embodiment using this varnish, the insulating coating formed by using the varnish of the present embodiment described above is baked on the conductor, so long-term storage in a high temperature environment is required. Also, it is possible to manufacture an insulated conductor which is excellent in adhesion between the conductor and the insulating film.
  • the resin for forming an insulating film described above contains the resin for forming an insulating film of the above-described embodiment, and therefore, the adhesion to a conductor is excellent even when stored for a long time in a high temperature environment It becomes possible to form an insulating film. Further, in the method of producing an insulated conductor according to the present embodiment using this electrodeposition liquid, the insulating film formed using the electrodeposition liquid according to the present embodiment described above is baked on the conductor, so long-term storage under high temperature environment However, it becomes possible to manufacture an insulated conductor which is excellent in adhesion between the conductor and the insulating film.
  • the modified polyamideimide and the modified polyimide have a weight average molecular weight in the range of 10 ⁇ 10 4 to 30 ⁇ 10 4 and a number average molecular weight in the range of 2 ⁇ 10 4 to 5 ⁇ 10 4 .
  • both the weight average molecular weight and the number average molecular weight do not necessarily have to satisfy this range.
  • PAI polyamideimide
  • the copper plate of the counter electrode and the copper wire (round wire) of the object to be coated are immersed in the electrodeposition solution obtained in (3) above, and the copper plate is used as the cathode and the copper wire is used as the anode.
  • a DC voltage of 500 V was applied between the copper plate (cathode) and the copper wire (anode) to form an electrodeposited layer on the surface of the copper wire.
  • the copper wire having the electrodeposited layer was allowed to stand in a muffle furnace at 250 ° C. for 3 minutes, dried, and baked to produce an insulated copper wire.
  • the resulting insulated copper wire was covered with a 40 ⁇ m thick polyamideimide insulating film excellent in film thickness uniformity without foaming.
  • Comparative Example 1 Electrodeposition was carried out in the same manner as in Inventive Example 1 except that the polyamideimide solution obtained in Inventive Example 1 (1) was used instead of the OH group-modified polyamideimide solution in Inventive Example 1 (3). A solution was prepared, and an insulated copper wire was produced using this electrodeposition solution. The resulting insulated copper wire was covered with a 40 ⁇ m thick polyamideimide insulating film excellent in film thickness uniformity without foaming.
  • Comparative Example 2 In the invention example 1 (3), the polyamideimide solution obtained in the invention example 1 (1) was used instead of the OH group-modified polyamideimide solution, and 25 g of the polyamideimide resin solution was An electrodeposition solution was prepared in the same manner as in Inventive Example 1, except that after further dilution with 50 g of -2-imidazolidinone, 3 g of geraniol was added as an additive together with 8 g of 1-methoxypropanol and 0.2 g of tripropylamine. Were prepared, and an insulated copper wire was produced using this electrodeposition solution. The resulting insulated copper wire was covered with a 40 ⁇ m thick polyamideimide insulating film excellent in film thickness uniformity without foaming.
  • the obtained insulated copper wire was heated at 300 ° C. for 3, 5, 10, and 30 minutes.
  • the adhesiveness (floating length) of a rectangular copper wire and an insulating film and the elastic modulus of the insulating film were measured by the following method. The results are shown in Table 1.
  • the adhesion was measured in accordance with the method defined in “5.5 Adhesion test” of JIS C 3216-3 (Winding wire test method—Part 3: mechanical properties).
  • a cut from the surface of the insulating film to the surface of the copper wire is made in the center of the length direction of the test piece (300 mm in length x 10 mm in width), and then the test piece is a bench type precision universal testing machine (Autograph made by Shimadzu Corporation) After stretching to 15% at a speed of 5 ⁇ 1 mm per second using AGS-10 kNX), observe the circumference of the cut placed in the test piece, and insulate the insulating film floating from the copper wire The length (floating length) was measured. In addition, the measurement of floating length was performed with respect to the whole surface of a test piece, and the maximum length was described in Table 1 among floating length measured by each surface.
  • the modulus of elasticity was measured according to the method described in JIS K 7127 (Plastics-Test methods for tensile properties-Part 3: Test conditions for films and sheets).
  • the insulation coating piece (length 150 mm, width 10 mm) was peeled off from the test piece (length 300 mm ⁇ width 10 mm). Then, the elastic modulus of the peeled edged film was measured at a test speed of 5 mm / min.
  • the insulation copper wire manufactured using the electrodeposition liquid of Comparative Example 1 containing a polyamideimide whose end is an NCO group has a floating length of 20 mm or more when heated at 300 ° C. for 3 minutes, and the high temperature environment The adhesion between the flat rectangular copper wire and the insulating film in the lower part was greatly reduced.
  • the insulated copper wire manufactured using the electrodeposition liquid of Comparative Example 2 containing a polyamide whose end is an NCO group and geraniol has a floating length of 0.5 mm when heated at 300 ° C. for 3 minutes. However, the floating length of the insulating film when heated at 300 ° C. for 30 minutes is 20 mm or more, and the time in which the adhesion between the flat copper wire and the insulating film can be maintained is short.
  • the insulated copper wire manufactured using the electrodeposition liquid of the invention examples 1 and 2 containing an OH group-modified polyamideimide having an OH group at the end is a floating of the insulating film when heated at 300 ° C. for 60 minutes.
  • the length was 1.5 mm or less.
  • the insulating copper wire manufactured using the electrodeposition liquid of the invention examples 1 and 2 is also about the same as that of the comparative example 1 and 2 in elastic modulus, and while maintaining the elastic modulus, the rectangular copper wire and the insulating film The time to maintain adhesion was significantly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

絶縁皮膜形成用樹脂は、末端がOH基又はSH基である変性ポリアミドイミド、及び末端がOH基又はSH基である変性ポリイミドの少なくとも一方を含む。ワニスは、上記の絶縁皮膜形成用樹脂と、溶剤とを含む。電着液は、上記の絶縁皮膜形成用樹脂と、極性溶媒と、水と、貧溶媒と、塩基とを含む。絶縁導体の製造方法は、上記のワニスを導体の表面に塗布して、前記導体の表面に塗布層を形成する工程と、前記塗布層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程とを有する方法、あるいは上記の電着液を導体の表面に電着させて、前記導体の表面に電着層を形成する工程と、前記電着層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程とを有する方法である。

Description

絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法
 本発明は、絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法に関するものである。
 本願は、2017年11月21日に、日本に出願された特願2017-223537号に基づき優先権を主張し、その内容をここに援用する。
 銅線などの導体を絶縁皮膜で被覆した絶縁導体は、モータや変圧器などの各種電気機器用の電気コイルに使用されている。絶縁導体の絶縁皮膜の材料としては、ポリアミドイミドやポリイミド等の樹脂が広く利用されている。
 絶縁導体の製造方法としては、塗布法と電着法とが知られている。塗布法は、絶縁皮膜形成用の樹脂と溶剤とを含むワニスを、導体の表面に塗布して塗布層を形成し、次いで塗布層を加熱して、生成した絶縁皮膜を導体に焼き付ける方法である。電着法は、絶縁皮膜形成用の樹脂と極性溶媒と水と貧溶媒と塩基を含む電着液を、導体の表面に電着させて電着層を形成し、次いで電着層を加熱して、生成した絶縁皮膜を導体に焼き付ける方法である。
 絶縁導体は、高温環境下に曝されると導体の酸化や絶縁皮膜の劣化によって、導体と絶縁皮膜との密着性が低下することがある。
 特許文献1には、高温環境下での導体との密着性が高い絶縁皮膜を形成することができるワニス(絶縁塗料)として、沸点が160℃以上の、炭素数が10以上の化合物である、一級アルコール、二級アルコール、一級チオールおよび二級チオールからなる群から選ばれる少なくとも1種の還元剤を添加した絶縁塗料が記載されている。
日本国特許第5871439号公報(A)
 特許文献1に記載されている絶縁塗料では、その絶縁塗料を用いて製造した絶縁導体の絶縁皮膜中に還元剤を残留させて、その残留させた還元剤で導体の酸化を抑制することによって、高温環境下での導体と絶縁皮膜の密着性を維持できるようにされている。しかしながら、還元剤を残留させた絶縁皮膜は、高温環境下で長期間保存すると、絶縁皮膜中に残留している還元剤が徐々に揮発してしまい、還元剤による導体の酸化抑制効果が消失するおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、その目的は、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することができる絶縁皮膜形成用樹脂と、ワニスと、電着液と、絶縁導体の製造方法を提供することにある。
 上記の課題を解決するために、本発明の絶縁皮膜形成用樹脂は、末端がOH基又はSH基である変性ポリアミドイミド、及び末端がOH基又はSH基である変性ポリイミドの少なくとも一方を含むことを特徴としている。
 本発明の絶縁皮膜形成用樹脂によれば、変性ポリアミドイミド及び変性ポリイミドは、末端がOH基又はSH基であり、高い還元力を有するので、この絶縁皮膜形成用樹脂を用いて形成した絶縁皮膜で導体を被覆することによって、高温環境下での導体の酸化を抑制することができ、これにより導体の酸化による導体と絶縁皮膜との密着性の低下を抑えることが可能となる。また、変性ポリアミドイミド及び変性ポリイミドは、従来より還元剤として利用されている化合物と比較して、沸点温度が高く高温環境下での安定性が高いので、高温環境下で長期間保存してもOH基又はSH基による導体の酸化抑制効果が消失しにくい。よって、本発明の絶縁皮膜形成用樹脂によれば、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。
 ここで、本発明の絶縁皮膜形成用樹脂において、前記変性ポリアミドイミド及び前記変性ポリイミドは、重量平均分子量が10×10以上30×10以下の範囲にあるか、あるいは数平均分子量が2×10以上5×10以下の範囲にあることが好ましい。
 この場合、変性ポリアミドイミド及び変性ポリイミドの分子量が大きいので、高温環境下で長期間保存しても揮発が起こりにくくなる。従って、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜をより確実に形成することが可能となる。
 また、本発明の絶縁皮膜形成用樹脂において、前記変性ポリアミドイミドは、末端がNCO基であるポリアミドイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることが好ましい。
 この場合、変性ポリアミドイミドは、直鎖状ジオールに由来するOH基又は直鎖状ジチオールに由来するSH基を有するので、還元力が高くなる。
 また、本発明の絶縁皮膜形成用樹脂において、前記変性ポリアミドイミドは、下記の一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、X及びXは、それぞれ独立してO又はSであり、L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基であり、Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHであり、nは、30以上の整数である。)
 この場合、変性ポリアミドイミドは、末端のOH基又はSH基がアルキレン基に結合しているので、還元力がさらに高くなる。
 また、本発明の絶縁皮膜形成用樹脂において、前記変性ポリイミドは、末端がNCO基であるポリイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることが好ましい。
 この場合、変性ポリイミドは、直鎖状ジオールに由来するOH基又は直鎖状ジチオールに由来するSH基を有するので、還元力が高くなる。
 また、本発明の絶縁皮膜形成用樹脂において、前記変性ポリイミドは、下記の一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Arは、4価の芳香族基であり、R及びRは、それぞれ独立して2価の有機基であり、X及びXは、それぞれ独立してO又はSであり、L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基であり、Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHであり、mは、30以上の整数である。)
 この場合、変性ポリイミドは、末端のOH基又はSH基がアルキレン基に結合しているので、還元力がさらに高くなる。
 本発明のワニスは、絶縁皮膜形成用樹脂と、極性溶媒とを含むワニスであって、前記絶縁皮膜形成用樹脂が、前述の絶縁皮膜形成用樹脂であることを特徴としている。
 本発明のワニスによれば、絶縁皮膜形成用樹脂として、前述の絶縁皮膜形成用樹脂を含むので、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。
 本発明の前述のワニスを用いた絶縁導体の製造方法は、前述のワニスを導体の表面に塗布して、前記導体の表面に塗布層を形成する工程と、前記塗布層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程と、を有することを特徴としている。
 本発明の絶縁導体の製造方法によれば、前述のワニスを用いて生成させた絶縁皮膜を導体に焼き付けるので、高温環境下で長期間保存しても導体と絶縁皮膜の密着性に優れる絶縁導体を製造することが可能となる。
 本発明の電着液は、絶縁皮膜形成用樹脂と、極性溶媒と、水と、貧溶媒と、塩基とを含む電着液であって、前記絶縁皮膜形成用樹脂が、前述の絶縁皮膜形成用樹脂であることを特徴としている。
 本発明の電着液によれば、絶縁皮膜形成用樹脂として、前述の絶縁皮膜形成用樹脂を含むので、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。
 本発明の前述の電着液を用いた絶縁導体の製造方法は、前述の電着液を導体の表面に電着させて、前記導体の表面に電着層を形成する工程と、前記電着層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程と、を有することを特徴としている。
 本発明の絶縁導体の製造方法によれば、前述の電着液を用いて生成させた絶縁皮膜を導体に焼き付けるので、高温環境下で長期間保存しても導体と絶縁皮膜の密着性に優れる絶縁導体を製造することが可能となる。
 本発明によれば、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することができる絶縁皮膜形成用樹脂と、ワニスと、電着液と、絶縁導体の製造方法を提供することが可能となる。
 以下に、本発明の一実施形態である絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法について説明する。
 本実施形態において、「絶縁導体」とは表面に絶縁皮膜が形成された導体(被塗装体)である。導体の例としては、銅線、アルミウム線、鋼線、銅合金線、アルミニウム合金線等が挙げられる。絶縁皮膜の膜厚は、通常は、10μm以上70μm以下の範囲である。
<絶縁皮膜形成用樹脂>
 本実施形態の絶縁皮膜形成用樹脂は、末端がOH基又はSH基である変性ポリアミドイミド、及び末端がOH基又はSH基である変性ポリイミドの少なくとも一方を含む。すなわち、絶縁皮膜形成用樹脂は、末端がOH基であるOH基変性ポリアミドイミド、末端がSH基であるSH基変性ポリアミドイミド、末端がOH基であるOH基変性ポリイミド、末端がSH基であるSH基変性ポリイミドを含む。これらの樹脂は、一種を単独で使用してもよいし、二種以上を組合せて使用してもよい。
 変性ポリアミドイミド及び変性ポリイミドの末端であるOH基又はSH基は還元剤として作用し、導体の表面に生成した酸化物を還元して、導体の酸化による絶縁皮膜の密着性の低下を抑える効果がある。変性ポリアミドイミド及び変性ポリイミドに含まれるOH基又はSH基の量は、変性ポリアミドイミド及び変性ポリイミド100gに対して0.005モル以上0.02モル以下の範囲にあることが好ましい。OH基又はSH基の量が上記の範囲にある変性ポリアミドイミド及び変性ポリイミドを用いて形成された絶縁皮膜は、高温環境下での導体の酸化をより確実に抑制することができる。
 変性ポリアミドイミド及び変性ポリイミドは、重量平均分子量が10×10以上30×10以下の範囲とされ、かつ数平均分子量が2×10以上5×10以下の範囲とされている。重量平均分子量及び数平均分子量が上記の範囲にある変性ポリアミドイミド及び変性ポリイミドを用いて形成された絶縁皮膜は、高温環境下で長期間保存しても揮発が起こりにくくなる。また、重量平均分子量が10×10未満で、かつ数平均分子量が2×10未満であると、発泡の無い膜厚均一性に優れた絶縁皮膜を形成するのが困難となるおそれがある。一方、重量平均分子量が30×10を超え、かつ数平均分子量が5×10を超える変性ポリアミドイミド及び変性ポリイミドは合成が困難で、製造コストが高くなるおそれがある。
(末端がOH基又はSH基である変性ポリアミドイミド)
 末端がOH基又はSH基である変性ポリアミドイミドは、末端がNCO基であるポリアミドイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることが好ましい。すなわち、変性ポリアミドイミドは、末端に直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基を有することが好ましい。直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基は、水素が離脱しやすい。このため、直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基を有する変性ポリアミドイミドは、還元力が高くなる。
 末端がNCO基であるポリアミドイミドは、イソシアネート法によって製造できる。イソシアネート法は、トリメリット酸無水物とジイソシアネート化合物とを反応させる方法である。イソシアネート法によって製造されたポリアミドイミドは、ジイソシアネート化合物に由来するNCO基を末端に有する。
 直鎖状ジオールは、直鎖状炭化水素のうちの2つの炭素原子に1つのヒドロキシ基が置換している構造を持つ化合物である。直鎖状ジオールは、炭素原子数が2~12の範囲にあることが好ましい。直鎖状ジオールの例としては、1,2-エタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、1,7-ヘプタンジオール、1,8-オクタンジオールを挙げることができる。
 直鎖状ジチオール、直鎖状炭化水素のうちの2つの炭素原子に1つのヒドロキシ基が置換している構造を持つ化合物である。直鎖状ジチオールは、炭素原子数が2~12の範囲にあることが好ましい。直鎖状ジオールの例としては、1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサジチオール、1,7-ヘプタンジチオール、1,8-オクタンジチオールを挙げることができる。
 ポリアミドイミドのNCO基と直鎖状ジオールのOH基とを結合させる方法としては、例えば、ポリアミドイミドと直鎖状ジオールとを溶剤中で混合し、得られた混合液を50℃以上80℃以下の温度で加熱する方法を用いることができる。また、ポリアミドイミドのNCO基と直鎖状ジチオールのSH基とを結合させる方法としては、例えば、ポリアミドイミドと直鎖状ジチオールとを溶剤中で混合し、得られた混合液を50℃以上80℃以下の温度で加熱する方法を用いることができる。
 末端がOH基又はSH基である変性ポリアミドイミドは、下記の一般式(1)で表される化合物であることが好ましい。炭素原子数が2~12の範囲にあるアルキレン基に結合しているOH基又はSH基は、水素が離脱しやすい。このため、炭素原子数が2~12の範囲にあるアルキレン基に結合しているOH基又はSH基を有する変性ポリアミドイミドは、還元力が高くなる。
Figure JPOXMLDOC01-appb-C000005
 式中、X及びXは、それぞれ独立してO又はSである。X及びXは同一であることが好ましい。
 L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基である。L及びLは同一であることが好ましい。
 Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHである。
 nは、30以上の整数である。
(末端がOH基又はSH基である変性ポリイミド)
 末端がOH基又はSH基である変性ポリイミドは、末端がNCO基であるポリイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることが好ましい。すなわち、変性ポリイミドは、末端に直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基を有することが好ましい。直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基は、水素が離脱しやすい。このため、直鎖状ジオール由来のOH基又は直鎖状ジチオールのSH基由来のSH基を有する変性ポリイミドは、還元力が高くなる。
 末端がNCO基であるポリイミドは、イソシアネート法によって製造できる。イソシアネート法は、カルボン酸二無水物とジイソシアネート化合物とを反応させる方法である。イソシアネート法によって製造されたポリイミドは、ジイソシアネート化合物に由来するNCO基を末端に有する。
 ポリイミドのNCO基と結合させる直鎖状ジオール及び直鎖状ジチオールは、変性ポリアミドイミドの場合と同じものを用いることができる。
 ポリイミドのNCO基と直鎖状ジオールのOH基とを結合させる方法としては、例えば、ポリイミドと直鎖状ジオールとを溶剤中で混合し、得られた混合液を50℃以上80℃以下の温度で加熱する方法を用いることができる。また、ポリイミドのNCO基と直鎖状ジチオールのSH基とを結合させる方法としては、例えば、ポリイミドと直鎖状ジチオールとを溶剤中で混合し、得られた混合液を50℃以上80℃以下の温度で加熱する方法を用いることができる。
 末端がOH基又はSH基である変性ポリイミドは、下記の一般式(2)で表される化合物であることが好ましい。炭素原子数が2~12の範囲にあるアルキレン基に結合しているOH基又はSH基は、水素が離脱しやすい。このため、炭素原子数が2~12の範囲にあるアルキレン基に結合しているOH基又はSH基を有する変性ポリイミドは、還元力が高くなる。
Figure JPOXMLDOC01-appb-C000006
 式中、Arは、4価の芳香族基である。
 R及びRは、それぞれ独立して2価の有機基である。2価の有機基は、2価の芳香族基、あるいは2価の芳香族基と2価の連結基を組合せた基であることが好ましい。2価の芳香族基は、フェニレン基であることが好ましい。2価の芳香族基と2価の連結基を組合せた基は、2価の芳香族基と2価の連結基と2価の芳香族基とがこの順で連結した基であることが好ましい。2価の連結基の例としては、炭素原子数が1~12の範囲にあるアルキレン基、カルボニル基(-CO-)、オキシ基(-O-)、炭素原子数が1~8の範囲にあるアルキル基で置換されていてもよいイミノ基(-NR-:但し、Rは、水素原子もしくは炭素原子数が1~8個の範囲にあるアルキル基である)、チオ基(-S-)、スルフィニル基(-SO-)、スルホニル基(-SO-)等を挙げることができる。
 X及びXは、それぞれ独立してO又はSである。X及びXは同一であることが好ましい。
 L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基である。L及びLは同一であることが好ましい。
 Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHである。
 mは、30以上の整数である。
<ワニス>
 本実施形態のワニスは、上述の本実施形態の絶縁皮膜形成用樹脂と、極性溶媒とを含む。絶縁皮膜形成用樹脂は極性溶媒に溶解していることが好ましい。
 極性溶媒は、変性ポリアミドイミド及び変性ポリイミドを溶解させることができるものであれば特に制限はない。極性溶媒の例としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、プロピレンカーボネイト、ジメチルスルホキシド、4-ブチロラクトン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等の非プロトン性溶剤等が挙げられる。
 ワニスに含まれる絶縁皮膜形成用樹脂と極性溶媒の配合比は、質量比で5~30/70~95(=絶縁皮膜形成用樹脂/極性溶媒樹脂溶剤)であることが好ましい。また、ワニスの粘度は、25℃で1000~10000mPa・sであることが好ましい。
 ワニスは、本発明の効果を損なわない範囲で添加剤を含んでいてもよい。添加剤としては、例えば、安定剤、可塑剤、消泡剤、難燃剤等が挙げられる。
<ワニスを用いた絶縁導体の製造方法>
 上記のワニスは、塗布法により絶縁導体を製造する際の原料として使用することができる。ワニスを用いた本実施形態の絶縁導体の製造方法は、ワニスを導体の表面に塗布して、導体の表面に塗布層を形成する工程(塗布工程)と、塗布層を加熱して、生成した絶縁皮膜を導体に焼き付ける工程(加熱工程)と、を有する。
 塗布工程において、ワニスを導体の表面に塗布する方法としては、特に制限はなく、浸漬法(ディップ法)や噴霧法等の一般にワニスの塗布方法として利用されている方法を用いることができる。
 加熱工程において、塗布層の加熱温度は、200℃以上600℃以下の範囲であることが好ましい。
<電着液>
 本実施形態の電着液は、上述の本実施形態の絶縁皮膜形成用樹脂と、極性溶媒と、水と、貧溶媒と、塩基とを含む。貧溶媒は、絶縁皮膜形成用樹脂に対して溶解度が低い溶媒である。電着液は、水と、貧溶媒とを含むので、絶縁皮膜形成用樹脂は、微粒子の状態で電着液に分散している。絶縁皮膜形成用樹脂の粒子は、平均粒子径が400nm以下であることが好ましい。絶縁皮膜形成用樹脂粒子の平均粒径は、動的光散乱粒径分布測定装置(株式会社堀場製作所製、LB-550)を用いて測定された体積基準平均粒径である。
 電着液で用いる極性溶媒は、絶縁皮膜形成用樹脂を可溶でかつ親水性であることが好ましい。極性溶媒の例としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、プロピレンカーボネイト、ジメチルスルホキシド、4-ブチロラクトン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
 貧溶媒の例としては、イソプロピルアルコール、1-メトキシ-2-プロパノール、シクロヘキサノン等が挙げられる。
 塩基の例としては、N,N-ジメチルアミノエタノール、トリエチルアミン、トリプロピルアミン、トリエタノールアミン、イミダゾール等が挙げられる。
 電着液に含まれる絶縁皮膜形成用樹脂と極性溶媒と水と貧溶媒と塩基の配合比は、質量比で、1~20/60~80/10~20/5~15/0.01~0.5(=絶縁皮膜形成用樹脂/極性溶媒/水/貧溶媒/塩基)であることが好ましい。また、電着液の粘度は、25℃で3~20mPa・sであることが好ましい。
 電着液は、絶縁皮膜形成用樹脂と溶剤と貧溶媒と塩基水を含む混合液に、水を滴下することによって調製することが好ましい。水の滴下は、混合液を8000rpm以上12000rpm以下の速度で攪拌しながら行うことが好ましい。
 電着液は、本発明の効果を損なわない範囲で添加剤を含んでいてもよい。添加剤としては、例えば、安定剤、可塑剤、消泡剤、難燃剤等が挙げられる。
<電着液を用いた絶縁導体の製造方法>
 上記の電着液は、電着法により絶縁導体を製造する際の原料として使用することができる。電着液を用いた本実施形態の絶縁導体の製造方法は、電着液を導体の表面に電着させて、導体の表面に電着層を形成する工程(電着工程)と、電着層を加熱して、生成した絶縁皮膜を導体に焼き付ける工程(加熱工程)と、を有する。
 電着工程において、電着液を導体の表面に電着させる方法としては、電着液に対向電極と導体とを浸漬し、次いで、対向電極を陰極とし、導体を陽極として、直流電圧を印加する方法を用いることができる。印加する直流電圧は、1V以上600V以下の範囲にあることが好ましい。直流電圧印加時の電着液の温度は、5℃以上60℃以下の範囲にあることが好ましい。直流電圧の印加時間は0.01秒以上30秒以下の範囲にあることが好ましい。
 加熱工程において、電着層の加熱温度は、200℃以上600℃以下の範囲であることが好ましい。
 以上のような構成とされた本実施形態の絶縁皮膜形成用樹脂によれば、変性ポリアミドイミド及び変性ポリイミドは高い還元力を有するので、この絶縁皮膜形成用樹脂を用いて形成した絶縁皮膜で導体を被覆することによって、高温環境下での導体の酸化を抑制することができ、これにより導体の酸化による導体と絶縁皮膜との密着性の低下を抑えることができる。また、変性ポリアミドイミド及び変性ポリイミドは、従来より還元剤として利用されている化合物と比較して、沸点温度が高く高温環境下での安定性が高いので、高温環境下で長期間保存しても導体の酸化抑制効果が消失しにくい。よって、本実施形態の絶縁皮膜形成用樹脂によれば、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。
 また、本実施形態の絶縁皮膜形成用樹脂においては、変性ポリアミドイミド及び変性ポリイミドは、重量平均分子量が10×10以上30×10以下の範囲とされ、かつ数平均分子量が2×10以上5×10以下の範囲と大きいので、高温環境下で長期間保存しても揮発が起こりにくくなる。従って、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜をより確実に形成することが可能となる。
 本実施形態のワニスによれば、絶縁皮膜形成用樹脂として、上述の本実施形態の絶縁皮膜形成用樹脂を含むので、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。また、このワニスを用いた本実施形態の絶縁導体の製造方法によれば、上述の本実施形態のワニスを用いて生成させた絶縁皮膜を導体に焼き付けるので、高温環境下で長期間保存しても導体と絶縁皮膜の密着性に優れる絶縁導体を製造することが可能となる。
 本実施形態の電着液によれば、絶縁皮膜形成用樹脂として、上述の本実施形態の絶縁皮膜形成用樹脂を含むので、高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することが可能となる。また、この電着液を用いた本実施形態の絶縁導体の製造方法は、上述の本実施形態の電着液を用いて生成させた絶縁皮膜を導体に焼き付けるので、高温環境下で長期間保存しても導体と絶縁皮膜の密着性に優れる絶縁導体を製造することが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、変性ポリアミドイミド及び変性ポリイミドは、重量平均分子量が10×10~30×10の範囲とされ、かつ数平均分子量が2×10~5×10の範囲とされているが、重量平均分子量と数平均分子量の両者が、この範囲を必ずしも満足する必要はない。但し、重量平均分子量及び数平均分子量のいずれか一方が上記の範囲を満足することが好ましい。
 以下に、本発明の作用効果を実施例により説明する。
<本発明例1>
(1)末端がNCO基であるポリアミドイミドの合成
 攪拌機、冷却管、窒素導入管及び温度計を備えた2リットルの四つ口フラスコに、N-メチル-2-ピロリドン(NMP)122g(1.23モル)と、4,4’-ジフェニルメタンジイソシアネート69g(0.28モル)と、無水トリメリット酸52g(0.27モル)とを仕込み、攪拌して混合液を得た。得られた混合液を、攪拌しながら180℃まで昇温し、この温度で1.5時間攪拌して反応させて、末端がNCO基であるポリアミドイミド(PAI)を生成させた後、N-メチル-2-ピロリドン336g(3.39モル)を加えて希釈し、その後60℃まで冷却して、ポリアミドイミド溶液(PAI/NMP=20/80質量%)を得た。
(2)OH基変性ポリアミドイミドの合成
 上記(1)で得られたポリアミドイミド溶液に、1,6-ヘキサンジオール1.6g(0.01モル)を加え、60℃で12時間攪拌して、ポリアミドイミドのNCO基と1,6-ヘキサンジオールとをウレタン結合させてOH基変性ポリアミドイミドを生成させ、OH基変性ポリアミドイミド溶液を得た。
(3)電着液の調製
 上記(2)で得られたOH基変性ポリアミドイミド溶液25gを1,3-ジメチル-2-イミダゾリジノン50gでさらに希釈した。次いで、貧溶媒として1-メトキシ-2-プロパノール8g、塩基としてトリプロピルアミン0.2gを加え、よく攪拌して混合液を得た。得られた混合液を10000rmpの高速で攪拌しながら水17gを滴下して加え、OH基変性ポリアミドイミド微粒子が分散した電着液を得た。
(4)絶縁銅線の製造
 上記(3)で得られた電着液に、対向電極の銅板と被塗装体の銅線(丸線)とを浸漬し、銅板を陰極に、銅線を陽極に接続した。次いで、銅板(陰極)と銅線(陽極)との間に500Vの直流電圧を印加して、銅線の表面に電着層を形成した。そして、この電着層を有する銅線を250℃のマッフル炉に3分間静置し乾燥、焼付を実施して、絶縁銅線を製造した。得られた絶縁銅線は、発泡の無い膜厚均一性に優れた皮膜厚さ40μmのポリアミドイミド絶縁皮膜で被覆されていた。
<本発明例2>
 本発明例1(2)において、ポリアミドイミド溶液に、1,6-ヘキサンジオールの代わりに1,3-プロパンジオール0.76g(0.01モル)を加えたこと以外は、本発明例1と同様にしてOH基変性ポリアミドイミド溶液を調製した。そして、本発明例1(3)において、得られたOH基変性ポリアミドイミド溶液25gを用いたこと以外は、本発明例1と同様にして電着液を調製し、この電着液を用いて絶縁銅線を製造した。得られた絶縁銅線は、発泡の無い膜厚均一性に優れた皮膜厚さ40μmのポリアミドイミド絶縁皮膜で被覆されていた。
<比較例1>
 本発明例1(3)において、OH基変性ポリアミドイミド溶液の代わりに、本発明例1(1)で得られたポリアミドイミド溶液を用いたこと以外は、本発明例1と同様にして電着液を調製し、この電着液を用いて絶縁銅線を製造した。得られた絶縁銅線は、発泡の無い膜厚均一性に優れた皮膜厚さ40μmのポリアミドイミド絶縁皮膜で被覆されていた。
<比較例2>
 本発明例1(3)において、OH基変性ポリアミドイミド溶液の代わりに、本発明例1(1)で得られたポリアミドイミド溶液を用いたこと、さらにポリアミドイミド樹脂溶液25gを1,3-ジメチル-2-イミダゾリジノン50gでさらに希釈した後、1-メトキシプロパノール8g、トリプロピルアミン0.2gと共に添加剤として、ゲラニオール3gを加えたこと以外は、本発明例1と同様にして電着液を調製し、この電着液を用いて絶縁銅線を製造した。得られた絶縁銅線は、発泡の無い膜厚均一性に優れた皮膜厚さ40μmのポリアミドイミド絶縁皮膜で被覆されていた。
[ポリアミドイミドの分子量]
 本発明例1、2で用いたOH基変性ポリアミドイミド及び比較例1、2で用いたポリアミドイミドの重量平均分子量と数平均分子量とを、高速GPC装置(東ソー株式会社製:HLC-8320GPC)を使用し、両親媒性で排除限界分子量4×10以上のカラムを用い、示唆屈折計にて検出した数値を標準ポリスチレン換算して測定した。なお、移動相には、ジメチルアセトアミドに吸着抑制剤として臭化リチウムとリン酸を添加したものを用いた。
[絶縁銅線の耐熱性評価]
 平角銅線(長さ300mm×幅10mm)に、本発明例1、2及び比較例1、2で調製した電着液を用いて絶縁皮膜を形成して、絶縁銅線を得た。絶縁銅線は、銅線として平角銅線を用いたこと以外は、本発明例1(4)と同様にして製造した。得られた絶縁導線の絶縁皮膜の厚さを表1に示す。
 次いで、得られた絶縁銅線を300℃で3分、5分、10分、30分の各時間加熱した。加熱後の絶縁銅線(試験片)について、平角銅線と絶縁皮膜との密着性(浮き長さ)、及び絶縁皮膜の弾性率を下記の方法により測定した。その結果を、表1に示す。
 密着性は、JIS C 3216-3(巻線試験方法-第3部:機械的特性)の「5.5密着試験」に規定された方法に準拠して測定した。試験片(長さ300mm×幅10mm)の長さ方向の中央に、絶縁皮膜表面から銅線表面に達する切れ目を入れ、次いで試験片を卓上形精密万能試験機(株式会社島津製作所製、オートグラフAGS-10kNX)を用い1秒間当り5±1mmの速度で、伸長率が15%となるまで伸長させた後、試験片に入れた切れ目の周囲を観察し、銅線から浮いている絶縁皮膜の長さ(浮き長さ)を測定した。なお、浮き長さの測定は、試験片の全面に対して行い、各面で測定された浮き長さのうち最大の長さを表1に記載した。
 弾性率は、JIS K 7127(プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験条件)に記載された方法に準拠して測定した。試験片(長さ300mm×幅10mm)から絶縁被膜片(長さ150mm、幅10mm)を剥がし取った。そして、剥がし取った縁被膜片の弾性率を、試験速度5mm/分の条件で測定した。
Figure JPOXMLDOC01-appb-T000007
 末端がNCO基であるポリアミドイミドを含む比較例1の電着液を用いて製造した絶縁銅線は、300℃で3分間加熱したときの絶縁皮膜の浮き長さが20mm以上であり、高温環境下での平角銅線と絶縁皮膜との密着性が大きく低下した。
 末端がNCO基であるポリアミドとゲラニオールとを含む比較例2の電着液を用いて製造した絶縁銅線は、300℃で3分間加熱したときの絶縁皮膜の浮き長さは0.5mmであったが、300℃で30分間加熱したときの絶縁皮膜の浮き長さは20mm以上であり、平角銅線と絶縁皮膜との密着性を維持できる時間が短かった。
 これに対して末端がOH基であるOH基変性ポリアミドイミドを含む本発明例1、2の電着液を用いて製造した絶縁銅線は、300℃で60分間加熱したときの絶縁皮膜の浮き長さが1.5mm以下であった。また、本発明例1、2の電着液を用いて製造した絶縁銅線は、弾性率も比較例1、2と同程度であり、弾性率を維持しながら平角銅線と絶縁皮膜との密着性を維持できる時間が顕著に長くなった。
 高温環境下で長期間保存しても導体との密着性に優れる絶縁皮膜を形成することができる絶縁皮膜形成用樹脂と、ワニスと、電着液と、絶縁導体の製造方法を提供することが可能となる。

Claims (10)

  1.  末端がOH基又はSH基である変性ポリアミドイミド、及び末端がOH基又はSH基である変性ポリイミドの少なくとも一方を含むことを特徴とする絶縁皮膜形成用樹脂。
  2.  前記変性ポリアミドイミド及び前記変性ポリイミドは、重量平均分子量が10×10~30×10の範囲にあるか、あるいは数平均分子量が2×10~5×10の範囲にあることを特徴とする請求項1に記載の絶縁皮膜形成用樹脂。
  3.  前記変性ポリアミドイミドは、末端がNCO基であるポリアミドイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることを特徴とする請求項1または2に記載の絶縁皮膜形成用樹脂。
  4.  前記変性ポリアミドイミドは、下記の一般式(1)で表される化合物であることを特徴とする請求項3に記載の絶縁皮膜形成用樹脂:
    Figure JPOXMLDOC01-appb-C000001
    (式中、X及びXは、それぞれ独立してO又はSであり、L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基であり、Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHであり、nは、30以上の整数である。)
  5.  前記変性ポリイミドは、末端がNCO基であるポリイミドのNCO基と直鎖状ジオールのOH基又は直鎖状ジチオールのSH基とが結合したものであることを特徴とする請求項1又は2に記載の絶縁皮膜形成用樹脂。
  6.  前記変性ポリイミドは、下記の一般式(2)で表される化合物であることを特徴とする請求項5に記載の絶縁皮膜形成用樹脂:
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは、4価の芳香族基であり、R及びRは、それぞれ独立して2価の有機基であり、X及びXは、それぞれ独立してO又はSであり、L及びLは、それぞれ独立して炭素原子数が2~12の範囲にあるアルキレン基であり、Yは、XがSの場合はSHであってXがOの場合はOHであり、Yは、XがSの場合はSHであってXがOの場合はOHであり、mは、30以上の整数である。)
  7.  絶縁皮膜形成用樹脂と、極性溶媒とを含むワニスであって、
     前記絶縁皮膜形成用樹脂が、請求項1~6のうちいずれか1項に記載の絶縁皮膜形成用樹脂であることを特徴とするワニス。
  8.  請求項7に記載のワニスを導体の表面に塗布して、前記導体の表面に塗布層を形成する工程と、
     前記塗布層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程と、
     を有することを特徴とする絶縁導体の製造方法。
  9.  絶縁皮膜形成用樹脂と、極性溶媒と、水と、貧溶媒と、塩基とを含む電着液であって、
     前記絶縁皮膜形成用樹脂が、請求項1~6のうちいずれか1項に記載の絶縁皮膜形成用樹脂であることを特徴とする電着液。
  10.  請求項9に記載の電着液を導体の表面に電着させて、前記導体の表面に電着層を形成する工程と、
     前記電着層を加熱して、生成した絶縁皮膜を前記導体に焼き付ける工程と、
     を有することを特徴とする絶縁導体の製造方法。
PCT/JP2018/042831 2017-11-21 2018-11-20 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法 WO2019102994A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880068543.3A CN111247219A (zh) 2017-11-21 2018-11-20 绝缘覆膜形成用树脂、清漆、电沉积液、绝缘导体的制造方法
US16/758,923 US20200347185A1 (en) 2017-11-21 2018-11-20 Resin for forming insulating coating film, varnish, electrodeposition liquid, and method for producing insulated conductor
EP18880940.4A EP3715427B1 (en) 2017-11-21 2018-11-20 Resin for forming insulating coating film, varnish, electrodeposition liquid, and method for producing insulated conductor
KR1020207012993A KR102619226B1 (ko) 2017-11-21 2018-11-20 절연 피막 형성용 수지, 바니시, 전착액, 절연 도체의 제조 방법
CN202110806157.3A CN113372810B (zh) 2017-11-21 2018-11-20 绝缘覆膜形成用树脂、清漆、电沉积液、绝缘导体的制法
FIEP18880940.4T FI3715427T3 (fi) 2017-11-21 2018-11-20 Hartsi eristävän pinnoitekalvon, lakan, sähköpinnoitusnesteen muodostamiseksi ja menetelmä eristetyn johtimen valmistamiseksi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017223537A JP6769425B2 (ja) 2017-11-21 2017-11-21 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法
JP2017-223537 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019102994A1 true WO2019102994A1 (ja) 2019-05-31

Family

ID=66630989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042831 WO2019102994A1 (ja) 2017-11-21 2018-11-20 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法

Country Status (7)

Country Link
US (1) US20200347185A1 (ja)
EP (1) EP3715427B1 (ja)
JP (1) JP6769425B2 (ja)
KR (1) KR102619226B1 (ja)
CN (2) CN113372810B (ja)
FI (1) FI3715427T3 (ja)
WO (1) WO2019102994A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111666050B (zh) 2019-03-05 2023-04-11 精工爱普生株式会社 印刷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217499A (ja) * 2006-02-15 2007-08-30 Soken Chem & Eng Co Ltd Oh変性ポリイミド樹脂及びその製造方法
JP2007217496A (ja) * 2006-02-15 2007-08-30 Soken Chem & Eng Co Ltd Oh変性ポリアミドイミド樹脂及びその製造方法
JP5871439B2 (ja) 2011-10-19 2016-03-01 古河電気工業株式会社 絶縁塗料、絶縁電線、及び絶縁電線の製造方法
WO2017141885A1 (ja) * 2016-02-18 2017-08-24 三菱マテリアル株式会社 電着液及び電着塗装体
JP2017223537A (ja) 2016-06-15 2017-12-21 本田技研工業株式会社 電池状態推定装置および電池状態推定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476476B2 (en) * 2003-06-02 2009-01-13 Toray Industries, Inc. Photosensitive resin composition, electronic component using the same, and display unit using the same
US20070134484A1 (en) * 2004-02-23 2007-06-14 Jun Yamada Porous film, process for producing the same, and lithium-ion secondary cell made with the same
TWI389936B (zh) * 2005-03-28 2013-03-21 Ube Industries 聚醯亞胺樹脂以及可固化之樹脂組成物
JP5099979B2 (ja) * 2005-04-27 2012-12-19 日立化成デュポンマイクロシステムズ株式会社 ネガ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2008041426A1 (en) * 2006-10-04 2008-04-10 Hitachi Chemical Company, Ltd. Polyamideimide resin, adhesive agent, material for flexible substrate, flexible laminate, and flexible print wiring board
JP5064950B2 (ja) * 2007-09-14 2012-10-31 株式会社カネカ 新規な感光性樹脂組成物、それから得られる感光性樹脂組成物溶液、感光性フィルム、絶縁膜及び絶縁膜付きプリント配線板
JP2009091509A (ja) * 2007-10-11 2009-04-30 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物及びエナメル線
US8759989B2 (en) * 2010-07-09 2014-06-24 Toray Industries, Inc. Photosensitive adhesive composition, photosensitive adhesive film, and semiconductor device using each
WO2012043775A1 (ja) * 2010-09-30 2012-04-05 宇部興産株式会社 テープキャリアパッケージの製造方法、及びテープキャリアパッケージ用柔軟性配線板の製造方法
KR101597683B1 (ko) * 2014-09-17 2016-02-25 한국전기연구원 말단에 수산기 또는 에테르기를 가지는 변성폴리아미드이미드를 이용한 세라믹졸 나노하이브리드 소재 및 이의 제조방법
JP5994955B1 (ja) * 2015-05-25 2016-09-21 三菱マテリアル株式会社 水分散型絶縁皮膜形成用電着液
JP6794718B2 (ja) * 2015-12-22 2020-12-02 三菱マテリアル株式会社 水分散型絶縁皮膜形成用電着液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217499A (ja) * 2006-02-15 2007-08-30 Soken Chem & Eng Co Ltd Oh変性ポリイミド樹脂及びその製造方法
JP2007217496A (ja) * 2006-02-15 2007-08-30 Soken Chem & Eng Co Ltd Oh変性ポリアミドイミド樹脂及びその製造方法
JP5871439B2 (ja) 2011-10-19 2016-03-01 古河電気工業株式会社 絶縁塗料、絶縁電線、及び絶縁電線の製造方法
WO2017141885A1 (ja) * 2016-02-18 2017-08-24 三菱マテリアル株式会社 電着液及び電着塗装体
JP2017223537A (ja) 2016-06-15 2017-12-21 本田技研工業株式会社 電池状態推定装置および電池状態推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715427A4

Also Published As

Publication number Publication date
US20200347185A1 (en) 2020-11-05
JP2019094404A (ja) 2019-06-20
KR20200080249A (ko) 2020-07-06
CN113372810B (zh) 2023-05-26
KR102619226B1 (ko) 2023-12-28
FI3715427T3 (fi) 2023-05-24
JP6769425B2 (ja) 2020-10-14
EP3715427A1 (en) 2020-09-30
EP3715427A4 (en) 2021-08-18
TW201925270A (zh) 2019-07-01
CN111247219A (zh) 2020-06-05
EP3715427B1 (en) 2023-03-15
CN113372810A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
JP4584014B2 (ja) 耐部分放電性絶縁塗料、絶縁電線、及びそれらの製造方法
JP5761151B2 (ja) 絶縁電線及びコイル
JP2009292904A (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2009161683A (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
US11286576B2 (en) Electrodeposition solution and method for producing conductor with insulating film using same
JP2012184416A (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2013049843A (ja) ポリアミドイミド樹脂絶縁塗料及びその製造方法、絶縁電線、並びにコイル
JP2013131423A (ja) 絶縁電線及びコイル
JPH0126370B2 (ja)
WO2018230706A1 (ja) 絶縁電線
JP2013131424A (ja) 絶縁電線及びそれを用いたコイル
WO2019102994A1 (ja) 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法
JP2008016266A (ja) 絶縁電線
JP2015108062A (ja) 分岐ポリアミック酸、ポリアミック酸塗料およびそれを用いた絶縁電線
TWI833720B (zh) 絕緣皮膜形成用樹脂、塗料、電沉積液、絕緣導體之製造方法
JP2013155281A (ja) 絶縁塗料、該絶縁塗料を用いた絶縁電線および該絶縁電線を用いたコイル
JP6515571B2 (ja) ポリイミド塗料および絶縁電線
JP2015209457A (ja) ポリアミック酸塗料および絶縁電線
TWI827161B (zh) 鈦黑組合物、聚醯胺酸組合物、聚醯亞胺膜及其層疊體
JP2019040790A (ja) 絶縁電線
JP5804314B2 (ja) 絶縁電線用ポリアミドイミド樹脂、絶縁電線用絶縁塗料及びそれを用いた絶縁電線
JP2022164467A (ja) 電着塗装用塗料、電着塗装用塗料の製造方法、及び絶縁材の製造方法
JP2016094522A (ja) ポリイミド被膜
JPH03134915A (ja) 熱軟化温度の低下防止用内層皮膜を有するf種半田付け可能な自己融着性マグネットワイヤ
JP6024490B2 (ja) ポリアミドイミド塗料及びそれを用いた絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880940

Country of ref document: EP

Effective date: 20200622