WO2019100652A1 - 一种吸波剂及其制备方法 - Google Patents

一种吸波剂及其制备方法 Download PDF

Info

Publication number
WO2019100652A1
WO2019100652A1 PCT/CN2018/083689 CN2018083689W WO2019100652A1 WO 2019100652 A1 WO2019100652 A1 WO 2019100652A1 CN 2018083689 W CN2018083689 W CN 2018083689W WO 2019100652 A1 WO2019100652 A1 WO 2019100652A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing agent
expanded graphite
graphite
parts
hollow
Prior art date
Application number
PCT/CN2018/083689
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
刘志礼
黄赤
王佳佳
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019100652A1 publication Critical patent/WO2019100652A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials

Definitions

  • the present invention relates to a wave absorbing material, and more particularly to a wave absorbing agent and a method of preparing the same.
  • ferroferric oxide is considered to be the most suitable absorbing material for use in the gyrtz range because of its high magnetic permeability, low toxicity, low cost, and easy availability.
  • the conventional ferroferric oxide cannot absorb at the same time due to the high density of the absorbing material, low absorption rate, poor temperature stability, and low magnetic permeability and dielectric constant in the microwave section.
  • the material is "thin, light, wide and strong".
  • a preparation method of composite material has appeared in the prior art, and a carbonyl group and a hydroxyl group are introduced on the surface of the carbon nanotube by reflux treatment in concentrated nitric acid.
  • the nanocomposites prepared by functional groups such as carboxyl groups have good application prospects in the fields of high-density magnetic recording materials, absorbing materials, electromagnetic shielding materials, medicine, etc.
  • the cost of carbon nanotubes is high, the preparation process is complicated, and The distribution in the matrix is random, the design is poor, and the absorbing material of the prepared absorbing material is narrow. Therefore, it is urgent to study a absorbing agent having a small density, a absorbing bandwidth, and a strong absorbing ability.
  • the present invention can reduce the density of the absorbing agent on the one hand by coating the surface of the expanded graphite with hollow ferroferric oxide, and on the other hand, multiple reflections and multiple absorptions can be caused by the hollow microstructure, so that Excellent absorbing properties are obtained.
  • microstructure and morphology of the hollow ferroferric oxide and the integrity of the coating of the expanded graphite by the hollow ferroferric oxide particles can be controlled by pH adjustment and temperature treatment, and the prepared hollow ferroferric oxide is ensured.
  • the microstructure and size of the coated expanded graphite are stable.
  • the invention provides a method for preparing a absorbing agent, comprising the steps of: mixing ammonia water and ethanolamine, adding iron salt, reacting to obtain a mixed liquid; and adding expanded graphite to the mixed liquid to adjust pH at a temperature The mixture was stirred, washed, and dried to obtain a absorbing agent formed of expanded graphite coated with hollow ferroferric oxide.
  • the expanded graphite is prepared by mixing graphite with sulfuric acid, adding deionized water for stirring, washing with water, filtering, drying, and heat preservation to obtain the expanded graphite.
  • the pH adjustment adjusts the pH to 10.5-11.5.
  • the temperature T is from 90 to 120 °C.
  • the mass ratio of ammonia water, ethanolamine and the iron salt is: 5-8: 10-20: 200-300.
  • the mass ratio of the mixed liquid to the expanded graphite is 40-50:10-20.
  • the temperature of the reaction is from 200 to 300 ° C, and the reaction time is from 5 to 10 h.
  • the mass ratio of the graphite, the sulfuric acid and the deionized water is: 30-70: 5-10: 80-120.
  • the temperature of the heat preservation is 800-1000 ° C, and the heat preservation time is 5-10 min.
  • the present invention also provides a wave absorbing agent prepared according to the above method.
  • the absorbing agent prepared by the invention has the characteristics of low cost, simple preparation process, strong absorption capacity, small absorption frequency bandwidth and low density; in addition, the preparation method of the invention is simple, convenient to operate, non-polluting, and the material itself is also a kind Environmentally friendly cleaning materials.
  • the invention adopts expanded graphite with low price, light weight, good dielectric property, high strength, good wear resistance, wide source of raw materials, simple preparation process and good temperature stability, and is coated with high magnetic permeability on the surface of expanded graphite.
  • the hollow ferroferric oxide particles form a absorbing agent with a core-shell structure, which not only can reduce the density of the absorbing agent, but also can utilize the hollow and core-shell structure to increase the multiple reflection of electromagnetic waves inside the absorbing agent, thereby increasing the suction.
  • the reflection loss of the wave agent improves the absorbing performance.
  • the microstructure and shape of the hollow ferroferric oxide and the integrity of the coating of the expanded graphite by the hollow ferroferric oxide particles can be controlled, and the prepared hollow ferroferric oxide coating can be ensured.
  • the microstructure and size of the expanded graphite are stable;
  • the expanded graphite is obtained by expanding the graphite at a high temperature of 800-1000 ° C for 5-10 min.
  • the invention provides a absorbing agent and a preparation method thereof, the method comprising the following steps:
  • reaction vessel 5 parts of ammonia water and 10 parts of ethanolamine were stirred and mixed uniformly, and then 200 parts of iron sulfate was added thereto, and the mixture was stirred and mixed uniformly, and then reacted in a reaction vessel at 200 ° C for 10 hours to obtain a mixed liquid, and the mixture was poured.
  • Reaction vessel beaker 5 parts of ammonia water and 10 parts of ethanolamine were stirred and mixed uniformly, and then 200 parts of iron sulfate was added thereto, and the mixture was stirred and mixed uniformly, and then reacted in a reaction vessel at 200 ° C for 10 hours to obtain a mixed liquid, and the mixture was poured.
  • the above stirring speed is between 500 and 700 r/min.
  • the reflection loss of the prepared absorbing agent formed by the hollow ferritic oxide coated expanded graphite at a thickness of 2.5 mm is a function of frequency; in addition, the ferroferric oxide and the embodiment 1 are measured by a method commonly used in the art.
  • the hollow four prepared in Example 6 The density of the iron-coated expanded graphite absorbing agent is formed, the test results are shown in Table 1:
  • the absorbing agent formed by the hollow graphite sulphide coated expanded graphite has a significantly lower density while improving its absorbing performance compared with the filling of the same mass fraction of ferroferric oxide;
  • the density of the absorbing agent formed by coating the expanded graphite with hollow ferritic oxide is reduced to 3.13 g/cm 3 as compared with the density of ferric oxide of 5.17 g/cm 3 ;
  • the present invention is effective in reducing the density of the absorbing agent by coating the surface of the expanded graphite with hollow ferroferric oxide particles having a high magnetic permeability to form a absorbing agent having a core-shell structure;
  • the absorbing agent formed by the hollow ferritic oxide coated expanded graphite has a absorbing bandwidth of ⁇ 10 dB reflection loss greater than 1.7 GHz, and a absorbing bandwidth of 0.8 GHz with ⁇ 10 dB of ferritic oxide.
  • the ratio is increased by at least 0.9 GHz; in addition, the reflection loss of the absorbing agent formed by the hollow ferritic oxide coated expanded graphite is as low as -32.46 dB, which is much lower than the reflection loss of the ferroferric oxide -14.37 dB.
  • the absorbing property of the absorbing agent is improved; this is because the invention can cover the surface of the expanded graphite by hollow hollow ferroferric oxide, and can utilize the hollow and core-shell structure to increase the multiple reflection of electromagnetic waves inside the absorbing agent. Multiple reflections and multiple absorptions increase the reflection loss of the absorbing agent, so that the prepared absorbing agent formed by the hollow ferritic oxide coated expanded graphite has excellent absorbing properties.
  • the absorbing agent prepared by the method of the invention has the advantages of low density, absorption frequency bandwidth, and good absorbing property, and can control the size, particle size and coating thickness of the hollow microstructure by adjusting the reaction conditions.
  • the absorbing agent prepared by the method of the invention can be manufactured into patches of different thicknesses and absorbing devices of different shapes according to requirements, and can be applied to the fields of aerospace, electronic communication, medical instruments, etc., especially in the field of electromagnetic wave absorption and electromagnetic shielding. Has important application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种吸波剂及其制备方法,该方法包括以下步骤:将氨水和乙醇胺混合,再加入铁盐,反应,得到混合液;以及在混合液中加入膨胀石墨,调节pH,在温度T下搅拌,清洗,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。通过本发明的方法制备的吸波剂具有密度低、吸波频带宽、吸波性能好的优点,可应用于航空航天、电子通信、医疗器械等领域。

Description

一种吸波剂及其制备方法 技术领域
本发明涉及吸波材料,更具体地,涉及一种吸波剂及其制备方法。
背景技术
随着电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。军事领域中的电磁隐身技术与导弹的微波制导需要,使得微波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、质量轻、频带宽、强吸收的吸波材料。
目前,四氧化三铁因具有高的磁导率、低毒、低成本且容易获得等优势,被认为是最有可能成为在吉赫兹范围内使用的理想吸波材料。然而,传统的四氧化三铁由于吸波材料密度大、吸收率低、温度的稳定性差,且在微波段的磁导率和介电常数较小,因而单一的铁氧体材料无法同时吸波材料“薄、轻、宽、强”的要求。
为了解决四氧化三铁密度大、吸波性能不好的问题,现有技术中出现了一种复合材料的制备方法,通过将碳纳米管在浓硝酸中回流处理,在其表面引入羰基、羟基、羧基等官能团,制备的纳米复合材料,在高密度磁记录材料、吸波材料、电磁屏蔽材料、医学等领域具有良好的应用前景,然而碳纳米管成本较高,制备工艺很复杂,并且其在基体中分布随机,可设计性差,所制得的吸波材料的吸波频带较窄。因此,急需研究一种密度小、吸波频带宽以及吸波能力强的吸波剂。
发明内容
为了解决以上问题,本发明通过在膨胀石墨表面包覆中空的四氧化三铁,一方面可以降低吸波剂密度,另一方面通过中空的微观结构可以发生多次反射和多次吸收,使其获得优异的吸波性能。
此外,通过pH的调节和温度的处理可控制中空四氧化三铁的微观结构、形貌尺寸以及中空四氧化三铁颗粒对膨胀石墨的包覆的完整度,保证了制备的中空四氧化三铁包覆的膨胀石墨的微观结构和尺寸的稳定。
本发明提供了一种制备吸波剂的方法,包括以下步骤:将氨水和乙醇胺混合,再加入铁盐,反应,得到混合液;以及在所述混合液中加入膨胀石墨,调节pH,在温度T下搅拌,清洗,烘干,得到由由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
在以上方法中,通过以下步骤制备所述膨胀石墨:将石墨与硫酸混合,再加入去离子水进行搅拌,水洗,过滤,烘干,保温,得到所述膨胀石墨。
在以上方法中,所述调节pH将pH值调节为10.5-11.5。
在以上方法中,所述温度T为90-120℃。
在以上方法中,氨水、乙醇胺和所述铁盐的质量比为:5-8:10-20:200-300。
在以上方法中,所述混合液和所述膨胀石墨的质量比为:40-50:10-20。
在以上方法中,所述反应的温度为200-300℃,所述反应的时间为5-10h。
在以上方法中,所述石墨、所述硫酸和所述去离子水的质量比为:30-70:5-10:80-120。
在以上方法中,所述保温的温度为800-1000℃,所述保温的时间为5-10min。
本发明还提供了一种根据以上方法制备的吸波剂。
通过本发明制备的吸波剂具备成本低、制备工艺简单、吸收能力强、吸收频带宽和密度小等特点;此外,本发明的制备方法简单、操作方便、无污染,并且材料本身也是一种环境友好型清洁材料。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明采用价格低、质量轻、介电性能好、强度高、耐磨性好、原料来源广泛、制备工艺简单、温度稳定性好的膨胀石墨,通过在膨胀石墨表 面包覆高磁导率的中空四氧化三铁颗粒,形成具有核壳结构的吸波剂,不仅可以降低吸波剂的密度,还可以利用中空及核壳结构,增加电磁波在吸波剂内部的多次反射,从而增加吸波剂的反射损耗,提高吸波性能。
在本发明中,通过在温度200-300℃下反应5-10h,促进了氨水、乙醇胺和可溶性铁盐的反应,保证了中空四氧化三铁颗粒的形成;
通过pH的调节和温度的处理可控制中空四氧化三铁的微观结构、形貌尺寸以及中空四氧化三铁颗粒对膨胀石墨的包覆的完整度,保证了制备的中空四氧化三铁包覆的膨胀石墨的微观结构和尺寸的稳定;
此外,在膨胀石墨的形成过程中,通过在800-1000℃下高温下保温5-10min膨化石墨,得到了疏松多孔的膨胀石墨。
本发明提供了一种吸波剂及其制备方法,该方法包括以下步骤:
将30-70份的石墨溶于5-10份浓硫酸(质量分数大于70%的浓硫酸)中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到80-120份的去离子水中,随后在50-60℃的水浴锅中机械搅拌40-60min,之后进行3-5次水洗,用孔径为30-50μm的滤纸过滤、60-80℃烘干10-12h,随后将得到的石墨放入已升温至800-1000℃的马弗炉中保温5-10min,之后,冷却制备得到膨胀石墨;
将5-8份的氨水和10-20份的乙醇胺,搅拌混合均匀,再加入200-300份的可溶性铁盐(氯化铁、硝酸铁和硫酸铁中的一种或多种),并搅拌混合均匀,之后在200-300℃的反应釜中反应5-10小时,得到混合液,将该混合液倒入反应容器烧杯中;
在40-50份的混合液中加入10-20份的膨胀石墨,调节pH至10.5-11.5,在90-120℃的油浴锅中机械搅拌8-12h,将磁性物质吸附烧杯底部,用孔径为30-50μm的滤纸过滤,清除上清液,重新水洗3-5次,60-80℃烘干10-12h,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例1
将50份的石墨溶于8份98%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到90份的去离子水中,随后在55℃的水浴锅中 机械搅拌50min,之后进行4次水洗,之后过滤、烘干,随后将得到的石墨放入已升温至900℃的马弗炉中保温8min,之后,冷却制备得到膨胀石墨;
将6份的氨水和15份的乙醇胺,搅拌混合均匀,再加入220份的氯化铁,搅拌混合均匀,之后在220℃的反应釜中反应7小时,得到混合液,将该混合液倒入反应容器烧杯中;
在45份的混合液中加入16份的膨胀石墨,调节pH至10.5-11.5,在100℃的油浴锅中机械搅拌10h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗4次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例2
将60份的石墨溶于9份98%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到100份的去离子水中,随后在60℃的水浴锅中机械搅拌50min,之后进行3次水洗,过滤、烘干,随后将得到的石墨放入已升温至950℃的马弗炉中保温6min,之后,冷却制备得到膨胀石墨;
将6份的氨水和12份的乙醇胺,搅拌混合均匀,再加入260份的硝酸铁,并搅拌混合均匀,之后在250℃的反应釜中反应8小时,得到混合液,将该混合液倒入反应容器烧杯中;
在46份的混合液中加入18份的膨胀石墨,调节pH至10.5-11.5,在110℃的油浴锅中机械搅拌11h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗5次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例3
将30份的石墨溶于5份98%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到80份的去离子水中,随后在50℃的水浴锅中机械搅拌60min,之后进行3次水洗,过滤、烘干,随后将得到的石墨放入已升温至800℃的马弗炉中保温10min,之后,冷却制备得到膨胀石墨;
将5份的氨水和10份的乙醇胺,搅拌混合均匀,再加入200份的硫酸铁,并搅拌混合均匀,之后在200℃的反应釜中反应10小时,得到混合液, 将该混合液倒入反应容器烧杯中;
在40份的混合液中加入10份的膨胀石墨,调节pH至10.5-11.5,在90℃的油浴锅中机械搅拌12h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗3次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例4
将70份的石墨溶于10份98%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到120份的去离子水中,随后在60℃的水浴锅中机械搅拌40min,之后进行5次水洗,过滤、烘干,随后将得到的石墨放入已升温至1000℃的马弗炉中保温5min,之后,冷却制备得到膨胀石墨;
将8份的氨水和20份的乙醇胺,搅拌混合均匀,再加入300份的氯化铁和硝酸铁(质量比为1:1),并搅拌混合均匀,之后在300℃的反应釜中反应5小时,得到混合液,将该混合液倒入反应容器烧杯中;
在50份的混合液中加入20份的膨胀石墨,调节pH至10.5-11.5,在120℃的油浴锅中机械搅拌8h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗5次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例5
将45份的石墨溶于9份90%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到110份的去离子水中,随后在55℃的水浴锅中机械搅拌45min,之后进行4次水洗,过滤、烘干,随后将得到的石墨放入已升温至950℃的马弗炉中保温6min,之后,冷却制备得到膨胀石墨;
将7份的氨水和12份的乙醇胺,搅拌混合均匀,再加入260份的氯化铁,并搅拌混合均匀,之后在260℃的反应釜中反应8小时,得到混合液,将该混合液倒入反应容器烧杯中;
在48份的混合液中加入16份的膨胀石墨,调节pH至10.5-11.5,在95℃的油浴锅中机械搅拌9h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗5次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
实施例6
将40份的石墨溶于6份99.5%的浓硫酸中,形成石墨的浓硫酸溶液;再将石墨的浓硫酸溶液加入到85份的去离子水中,随后在60℃的水浴锅中机械搅拌60min,之后进行3次水洗,过滤、烘干,随后将得到的石墨放入已升温至850℃的马弗炉中保温8min,之后,冷却制备得到膨胀石墨;
将6份的氨水和12份的乙醇胺,搅拌混合均匀,再加入260份的氯化铁,并搅拌混合均匀,之后在210℃的反应釜中反应6小时,得到混合液,将该混合液倒入反应容器烧杯中;
在50份的混合液中加入20份的膨胀石墨,调节pH至10.5-11.5,在120℃的油浴锅中机械搅拌9h,将磁性物质吸附烧杯底部,过滤,清除上清液,重新水洗3次,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
以上搅拌的转速均在500~700r/min之间。
分别将6-8份四氧化三铁和6-8份实施例1至实施例6中制备得到的由中空四氧化三铁包覆膨胀石墨所形成的吸波剂与1-4份石蜡在50-60℃的高温炉内加热,之后迅速拿出混合搅拌均匀,将制成的粘稠状固体填充到同轴圆环模具中(模具外径7mm,内径3.04mm),分别制备得到1-2mm厚的四氧化三铁和由中空四氧化三铁包覆膨胀石墨所形成的吸波剂同轴圆环,再采用本领域中常用的网络矢量分析仪分别测量四氧化三铁和由中空四氧化三铁包覆膨胀石墨所形成的吸波剂同轴圆环的复介电常数和复磁导率,然后根据电磁场传输线理论通过matlab仿真计算出四氧化三铁和实施例1至实施例6中制备得到的由中空四氧化三铁包覆膨胀石墨所形成的吸波剂在厚度2.5mm时的反射损耗随频率变化曲线;此外,采用本领域常用的方法测量四氧化三铁和实施例1至实施例6中制备得到的由中空四氧化三铁包覆膨胀石墨所形成的吸波剂的密度,测试结果如下表1所示:
表1
Figure PCTCN2018083689-appb-000001
Figure PCTCN2018083689-appb-000002
由上表1可知,相比较填充相同质量分数的四氧化三铁,由中空四氧化三铁包覆膨胀石墨所形成的吸波剂在密度明显降低的同时,提高了其吸波性能;
从表1中可以看出,与四氧化三铁的密度5.17g/cm 3相比,由中空四氧化三铁包覆膨胀石墨所形成的吸波剂的密度降低至3.13g/cm 3;这是由于本发明通过在膨胀石墨表面包覆高磁导率的中空四氧化三铁颗粒,形成具有核壳结构的吸波剂,有效降低了吸波剂的密度;
另外,由中空四氧化三铁包覆膨胀石墨所形成的吸波剂在≤10dB反射损耗的吸波频宽均大于1.7GHz,与四氧化三铁≤10dB反射损耗的吸波频宽0.8GHz相比,至少提高了0.9GHz;此外,由中空四氧化三铁包覆膨胀石墨所形成的吸波剂的反射损耗最低至-32.46dB,远低于四氧化三铁的反射损耗-14.37dB,大大提高了吸波剂的吸波性能;这是由于本发明通过在膨胀石墨表面包覆中空的四氧化三铁,可以利用中空及核壳结构,增加电磁波在吸波剂内部的多次反射,通过多次反射和多次吸收,增加吸波剂的反射损耗,使得制备的由中空四氧化三铁包覆膨胀石墨所形成的吸波剂具有优异的吸波性能。
综上,通过本发明的方法制备的吸波剂具有密度低、吸波频带宽、吸波性能好的优点,并且可以通过调节反应条件控制中空微结构的大小、颗粒尺寸及包覆厚度。通过本发明的方法制备的吸波剂根据需求可制造成不同厚度的贴片和不同形状的吸波器件,可应用于航空航天、电子通信、医 疗器械等领域,尤其在电磁波吸收和电磁屏蔽领域具有重要的应用价值。
以上份数均为质量份。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (10)

  1. 一种制备吸波剂的方法,其特征在于,包括以下步骤:
    将氨水和乙醇胺混合,再加入铁盐,反应,得到混合液;以及
    在所述混合液中加入膨胀石墨,调节pH,在温度T下搅拌,清洗,烘干,得到由中空四氧化三铁包覆膨胀石墨所形成的吸波剂。
  2. 根据权利要求1所述的方法,其特征在于,通过以下步骤制备所述膨胀石墨:
    将石墨与硫酸混合,再加入去离子水进行搅拌,水洗,过滤,烘干,保温,得到所述膨胀石墨。
  3. 根据权利要求1所述的方法,其特征在于,所述调节pH将pH值调节为10.5-11.5。
  4. 根据权利要求1所述的方法,其特征在于,所述温度T为90-120℃。
  5. 根据权利要求1所述的方法,其特征在于,氨水、乙醇胺和所述铁盐的质量比为:5-8:10-20:200-300。
  6. 根据权利要求1所述的方法,其特征在于,所述混合液和所述膨胀石墨的质量比为:40-50:10-20。
  7. 根据权利要求1所述的方法,其特征在于,所述反应的温度为200-300℃,所述反应的时间为5-10h。
  8. 根据权利要求2所述的方法,其特征在于,所述石墨、所述硫酸和所述去离子水的质量比为:30-70:5-10:80-120。
  9. 根据权利要求2所述的方法,其特征在于,所述保温的温度为800-1000℃,所述保温的时间为5-10min。
  10. 一种根据权利要求1-9中任一项所述的方法制备的吸波剂。
PCT/CN2018/083689 2017-11-27 2018-04-19 一种吸波剂及其制备方法 WO2019100652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711205742.8 2017-11-27
CN201711205742.8A CN109837062A (zh) 2017-11-27 2017-11-27 一种吸波剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2019100652A1 true WO2019100652A1 (zh) 2019-05-31

Family

ID=66631270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083689 WO2019100652A1 (zh) 2017-11-27 2018-04-19 一种吸波剂及其制备方法

Country Status (2)

Country Link
CN (1) CN109837062A (zh)
WO (1) WO2019100652A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635908B (zh) * 2020-12-31 2022-05-31 界首市天鸿新材料股份有限公司 一种改性聚乙烯锂电池隔膜的制备方法
CN115612963A (zh) * 2022-09-08 2023-01-17 苏州大学 一种膨胀石墨复合材料吸波涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604395A (zh) * 2012-01-09 2012-07-25 浙江师范大学 膨胀石墨/聚苯胺/钴铁氧体吸波材料及制备工艺
US20130299732A1 (en) * 2012-05-08 2013-11-14 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
CN105502513A (zh) * 2015-12-23 2016-04-20 淮北师范大学 一种中空四氧化三铁吸波材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179921B (zh) * 2006-11-09 2010-05-12 南京大学 一种用于电磁屏蔽的轻质石墨基纳米磁性金属复合材料的制备方法
CN102513547A (zh) * 2011-12-29 2012-06-27 南京大学 一种抗信息泄漏材料的制法及其制备的纳米金属/膨胀石墨抗信息泄漏材料
CN103342982B (zh) * 2013-07-25 2015-03-11 哈尔滨工业大学 一种空心球形四氧化三铁/石墨烯复合吸波材料
CN105329851B (zh) * 2015-11-02 2017-02-01 杭州电子科技大学 一种纳米铁氧化物‑多层石墨烯复合材料制备方法
CN106241886B (zh) * 2016-07-22 2017-12-22 浙江师范大学 一种电磁增强碳磁复合材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604395A (zh) * 2012-01-09 2012-07-25 浙江师范大学 膨胀石墨/聚苯胺/钴铁氧体吸波材料及制备工艺
US20130299732A1 (en) * 2012-05-08 2013-11-14 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
CN105502513A (zh) * 2015-12-23 2016-04-20 淮北师范大学 一种中空四氧化三铁吸波材料的制备方法

Also Published As

Publication number Publication date
CN109837062A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN107399735B (zh) 一种石墨烯复合气凝胶吸波材料的制备方法及其应用
Tan et al. Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption
Zhu et al. Controllable permittivity in 3D Fe 3 O 4/CNTs network for remarkable microwave absorption performances
US20220274844A1 (en) Core-shell structure type wave absorbing material, preparation method therefor, and application
Li et al. Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites
CN103436994B (zh) Fe-Ni合金/C复合纳米纤维微波吸收剂、制备方法及其应用
CN108546547B (zh) 一种多频谱复合吸波剂的制备方法
CN109005660B (zh) 钴纳米颗粒与还原氧化石墨烯电磁波吸收材料制备方法
CN108862366B (zh) 片状Cu2-xS纳米晶作为微波吸收剂的应用及其制备方法
CN109943018B (zh) 吸波剂、吸波材料及各自的制备方法
CN103422192A (zh) Fe-Co合金/C复合纳米纤维微波吸收剂、制备方法及其应用
CN108587159A (zh) 一种类石墨烯氮化碳/四氧化三铁/聚苯胺纳米复合吸波材料及其制备方法
CN114195197B (zh) 一种磁性多孔碳复合物及其制备方法与应用
WO2019100652A1 (zh) 一种吸波剂及其制备方法
CN111117265A (zh) 一种核壳结构复合微波吸收材料
CN111704115A (zh) 一种由粒状的α-Fe2O3制备具有微波吸收性能的Fe4N的方法
Zhang et al. Porous carbon/graphite nanosheet/ferromagnetic nanoparticle composite absorbents with adjustable electromagnetic properties
CN108892502B (zh) 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法
CN114980715B (zh) 一种复合多孔微球材料及其制备方法和应用
CN108483508B (zh) 一种多孔片状Fe3O4电磁吸波剂及其制备方法
CN113015422B (zh) 一种用于高频电磁波屏蔽的钴镍合金/还原氧化石墨烯纳米复合材料、其制备方法与应用
CN112897570B (zh) 磁性NiCo2O4包覆ZnO晶须吸波材料的制备方法
CN109195431B (zh) 一种多层、微米花状NiCo2O4/GN/Fe3O4新型吸波剂的制备方法
CN113277784B (zh) 一种具有电磁波吸收功能的浮石混凝土
CN105062092A (zh) 一种手性聚Schiff碱盐三元复合吸波材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881997

Country of ref document: EP

Kind code of ref document: A1