CN108892502B - 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法 - Google Patents

一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法 Download PDF

Info

Publication number
CN108892502B
CN108892502B CN201810988406.3A CN201810988406A CN108892502B CN 108892502 B CN108892502 B CN 108892502B CN 201810988406 A CN201810988406 A CN 201810988406A CN 108892502 B CN108892502 B CN 108892502B
Authority
CN
China
Prior art keywords
barium ferrite
nickel
vanadium
wave
doped barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810988406.3A
Other languages
English (en)
Other versions
CN108892502A (zh
Inventor
王宗荣
刘剑
王珊
牛韶玉
杜丕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810988406.3A priority Critical patent/CN108892502B/zh
Publication of CN108892502A publication Critical patent/CN108892502A/zh
Application granted granted Critical
Publication of CN108892502B publication Critical patent/CN108892502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法,该材料为单相多晶粉体,化学式为BaFe12‑2xVxNixO19,其中x=0.1~0.8,钡铁氧体中同时存在Fe3+和Fe2+。这种钒镍共掺的钡铁氧体粉末的制备方法为:先通过柠檬酸盐溶胶凝胶的方法制备得到先驱体,预烧得到粉体后,经过高温烧结最终形成。本发明的吸波材料具有匹配厚度薄和吸波频段宽的特点,有效吸波频带覆盖在26.5~40GHz,最大吸收频宽可达9GHz,最佳匹配厚度仅为2.5mm左右,在特定频率处最佳反射损耗RL值可达‑59.4dB。这种钡铁氧体粉体材料制备工艺简单,可用于吸波涂层,在电磁屏蔽和隐身领域可以有很广泛的应用。

Description

一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法
技术领域
本发明涉及一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法,属于吸波材料技术领域。
背景技术
在飞机、导弹、坦克、舰艇、仓库等各种武器装备和军事设施上面涂覆吸收材料,就可以吸收侦察电波、衰减反射信号,从而突破敌方雷达的防区,这是反雷达侦察的一种有力手段,减少武器系统遭受红外制导导弹和激光武器袭击的一种方法,也是吸波材料在隐身技术中的重要应用。
M型钡铁氧体(BaFe12O19)其自然共振频率出现在约为45GHz。自然共振产生的较大磁损耗,使钡铁氧体成为一种极具潜力的吸波材料。但钡铁氧体本身的共振频率单一,且吸收频带较窄(反射损耗RL<-10dB的频率范围)。一方面,考虑到在频率高达几十GHz时,材料的介电性能更多依赖于离子位移极化和电子云畸变极化;另一方面根据介电理论,介电性能的提高可以增大材料的电导率,而材料的电导损耗同样依赖于其高电导率以形成电流消耗电能。这就需要提高材料的介电性能以提高其介电损耗。
进一步,在这种钡铁氧体材料中用非磁性或者弱磁性离子取代Fe3+时,由于磁晶各向异性场的随之下降,从而使自然共振峰频率也随之降低,因而可调节自然共振频率,也即可调节有效吸波频率降低至35 GHz附近,所以钡铁氧体可以掺杂成为一种35 GHz大气窗口频率附近的吸波材料。这就需要降低钡铁氧体自然共振峰的频率,提高钡铁氧体在35GHz附近的磁导率。
进一步,在采用三价以上的非磁性离子取代Fe3+时,为维持电荷平衡,体系中会有部分的Fe3+转变为Fe2+,而Fe3+和Fe2+离子通过交换耦合作用可以形成一些不同于本征Fe3+所产生的自然共振峰频率的新峰。
此外,铁氧体的自然共振峰与材料的磁晶各向异性场的强度成正比,非磁性阳离子取代其中的Fe3+可以降低其磁晶各向异性场,从而降低吸收峰频率。所以可以选择非磁性离子掺杂的方法可以控制吸收峰的宽度和位置。
如果能够制得一种具有高介电常数和高磁导率的单相晶体材料,既有磁损耗又有介电损耗的材料,有望得到单相材料实现宽频吸收及低反射损耗的吸波性能。
发明内容
本发明的目的在于提供一种吸收损耗强,吸波频带宽,匹配厚度薄,可调制吸波频率范围广的钒镍共掺的钡铁氧体吸波粉体材料及其制备方法。
一种钒镍共掺的钡铁氧体粉体材料的制备方法,所述的钒镍共掺钡铁氧体为单相材料,其化学式为BaFe12-2xVxNixO19,其中x=0.1~0.8,钡铁氧体中部分Fe3+离子被V5+、Ni2+取代,具体的制备步骤如下:
(1)将硝酸钡、硝酸铁、偏钒酸铵、硝酸镍按照摩尔比为1:11.8~10.4:0.1~0.8:0.1~0.8混合后,再加入柠檬酸,优选控制柠檬酸与硝酸根离子的摩尔比为1:2;加入去离子水后进行搅拌直到溶质完全溶解得到混合液;
(2)在上述混合液中加入氨水,调节pH值达到6~7,在80~90℃的水浴中加热并搅拌3~4h,使溶剂挥发至溶液浓度为0.04~0.06mol/L,得到溶胶前驱体;
(3)将得到的溶胶前驱体在100~120℃下干燥3~4天得到蓬松的干凝胶;
(4)将干凝胶升温,在210℃保温1.5~2h后继续升温至450℃保温1.5~2h,保证干凝胶燃烧和柠檬酸分解,随炉冷却得到钒镍掺杂钡铁氧体粉体先驱体;两次升温优选升温速率为5~10℃/min;
(5)将步骤(4)得到的粉末置于马弗炉中,优选以10~20 ℃/min 的速度升温到1250~1350℃保温3~5 h,随炉冷却至室温后,研磨1~3 h 获得钒镍共掺杂钡铁氧体吸波粉体材料。
本发明制得的钒镍共掺钡铁氧体吸波粉体材料的吸波性能利用安捷伦矢量网络分析仪E8363C 测试。测试时将本发明的吸波材料粉体与固体石蜡按质量比8:2 在80℃均匀混合进行测试。
与背景技术相比,本发明具有的有益效果:
本发明向钡铁氧体中掺入离子组合V5+-Ni2+,平均价态为3.5价,钒元素电子结构为[Ar]3d34s2,所以V5+的电子结构为[Ar], V5+半径为0.054nm,小于Fe3+半径(0.064nm),电负性为1.65。钒由于离子半径与Fe3+半径差距较大,在进入钡铁氧体晶格时易引起极大的晶格畸变,所以往往难以将钒成功的掺入钡铁氧体晶格中取代Fe3+,同时在制备过程中钒极易生成钒酸钡,导致难以实现高掺杂以拓宽其吸波频率范围及其可调性;本发明通过溶胶凝胶的方法将钒和镍共掺入钡铁氧体晶格中取代Fe3+,成功制备了钒镍共掺的钡铁氧体粉体,钒镍掺入量均可高达x=0.8(常规情况下钒的掺入量往往只能达到0.5),且在高掺入情况下,整个钡铁氧体材料还能保持良好的性能,吸波频宽达到7.1GHz,且反射损耗低至-63.5dB。
本发明的方法制得的吸波材料具有匹配厚度薄和吸波频段宽的特点,有效吸波频带控制在26.5~40GHz,最大吸收频宽可达9GHz,最佳匹配厚度仅为2.5mm左右,尤其是在特定频率处最佳反射损耗RL值可达-59.4dB。而且其反射损耗性能稳定,随掺杂量增加保持稳定RL<-58dB,尤其是当x=0.3时,反射损耗可以达到-70.3GHz。
附图说明
图1是实施例1 获得的钒镍共掺钡铁氧体吸波材料BaFe11.4V0.3Ni0.3O19(d=0.6mm)在波段(26.5~40GHz)内吸波性能随频率的变化关系曲线;
图2是实施例2 获得的钒镍共掺钡铁氧体吸波材料BaFe11.2V0.4Ni0.4O19 (d=2.5mm)在波段(26.5~40GHz)内吸波性能随频率的变化关系曲线;
图3是实施例3 获得的钒镍共掺钡铁氧体吸波材料BaFe10.4V0.8Ni0.8O19 (d=2.6mm)在波段(26.5~40GHz)内吸波性能随频率的变化关系曲线。
具体实施方式
下面根据具体的实施例详细的描述本发明。
本发明的钒镍共掺的钡铁氧体粉末,化学式为BaFe12-2xVxNixO19,其中x=0.1~0.8,粉末的烧结温度为1250℃~1350℃,保温时间3h,V5+Ni2+完成了对不同位置处的Fe3+的取代。
本发明本研究中使用了矢量网络分析仪AgilentE8363C对吸波材料在26.5~40GHz的电磁参数进行了测试。
实施例1
(1)按照摩尔比为1:11.4:0.3:0.3,将1.306g硝酸钡、23.028g九水合硝酸铁、0.175g偏钒酸铵及0.436g六水硝酸镍混合后。再加入20.594g一水合柠檬酸作为络合剂。加入过量去离子水后,进行搅拌2h,直到溶质完全溶解得到所需溶液;
(2)在上述溶液中加入氨水,调节pH值达到7,在85℃的水浴中加热并搅拌4h,使溶剂挥发至溶液浓度约为0.04mol/L,得到溶胶前驱体;
(3)将得到的溶胶前驱体在100~120℃下干燥3~4天得到蓬松的干凝胶;
(4)将干凝胶以5℃/min的速度升温到210℃保温1.5h后,再以5℃/min的速率继续升高到450℃保温2h后,进行研磨,得到前驱体粉末。
(5)将步骤4中的粉末放入以3~5oC的升温速度到1300oC的马弗炉中保温煅烧3小时然后随炉冷却到室温即得到吸波粉末。
实施例2
(1)按照摩尔比为1:11.2:0.4:0.4.,将1.306g硝酸钡、22.624g九水合硝酸铁、0.234g偏钒酸铵和0.582g六水硝酸镍混合后。再加入20.962g一水合柠檬酸作为络合剂。加入过量去离子水后,进行搅拌2h,直到溶质完全溶解得到所需溶液;
(2)在上述溶液中加入氨水,调节pH值达到7,在85℃的水浴中加热并搅拌4h,使溶剂挥发至溶液浓度为0.06mol/L,得到溶胶前驱体;
(3)将得到的溶胶前驱体在100~120℃下干燥3~4天得到蓬松的干凝胶;
(4)将干凝胶以5℃/min的速度升温到210℃保温1.5h后,再以5℃/min的速率继续升高到450℃保温2h后,进行研磨,得到前驱体粉末。
(5)将步骤4中的粉末放入以3~5oC的升温速度到1250oC的马弗炉中保温煅烧3小时然后随炉冷却到室温即得到吸波粉末。
实施例3
(1)按照摩尔比为1:10.4:0.8:0.8.,将1.306g硝酸钡、21.412g九水合硝酸铁、0.468g偏钒酸铵和1.163g六水硝酸镍混合后。再加入21.644g一水合柠檬酸作为络合剂。加入过量的去离子水后,进行搅拌2h,直到溶质完全溶解得到所需溶液;
(2)在上述溶液中加入氨水,调节pH值达到7,在85℃的水浴中加热并搅拌4h,使溶剂挥发至溶液浓度为0.05mol/L,得到溶胶前驱体;
(3)将得到的溶胶前驱体在100~120℃下干燥3~4天得到蓬松的干凝胶;
(4)将干凝胶以5℃/min的速度升温到210℃保温1.5h后,再以5℃/min的速率继续升高到450℃保温2h后,进行研磨,得到前驱体粉末。
(5)将步骤4中的粉末放入以3~5oC的升温速度到1350oC的马弗炉中保温煅烧3小时然后随炉冷却到室温即得到吸波粉末。

Claims (4)

1.一种钒镍共掺的钡铁氧体粉体材料的制备方法,其特征在于:所述的钒镍共掺钡铁氧体为单相材料,其化学式为BaFe12-2xVxNixO19,其中x=0.1~0.8,钡铁氧体中部分Fe3+离子被V5+、Ni2+取代,具体的制备步骤如下:
(1)将硝酸钡、硝酸铁、偏钒酸铵、硝酸镍按照摩尔比为1:11.8~10.4:0.1~0.8:0.1~0.8混合后,再加入柠檬酸;加入去离子水后,进行搅拌直到溶质完全溶解得到混合液;
(2)在上述混合液中加入氨水,调节pH值达到6~7,在80~90℃的水浴中加热并搅拌3~4h,使溶剂挥发至溶液浓度为0.04~0.06mol/L,得到溶胶前驱体;
(3)将得到的溶胶前驱体在100~120℃下干燥3~4天得到蓬松的干凝胶;
(4)将干凝胶升温至210℃,保温1.5~2h后继续升温至450℃保温1.5~2h,保证干凝胶燃烧和柠檬酸分解,随炉冷却得到钒镍掺杂钡铁氧体粉体先驱体;
(5)将步骤(4)得到的粉末置于马弗炉中升温到1250~1350℃保温3~5 h,随炉冷却至室温后,研磨1~3 h 获得钒镍共掺杂钡铁氧体吸波粉体材料,步骤(5)中升温速率为10~20℃/min。
2.根据权利要求1所述的钒镍共掺的钡铁氧体粉体材料的制备方法,其特征在于,步骤(1)中柠檬酸与硝酸根离子的摩尔比为1:2。
3.根据权利要求1所述的钒镍共掺的钡铁氧体粉体材料的制备方法,其特征在于,步骤(4)中两次升温的升温速率均为5~10℃/min。
4.一种钒镍共掺的钡铁氧体粉体材料,其特征在于,采用如权利要求1-3任一项所述的方法制备而成。
CN201810988406.3A 2018-08-28 2018-08-28 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法 Active CN108892502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810988406.3A CN108892502B (zh) 2018-08-28 2018-08-28 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810988406.3A CN108892502B (zh) 2018-08-28 2018-08-28 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108892502A CN108892502A (zh) 2018-11-27
CN108892502B true CN108892502B (zh) 2021-01-19

Family

ID=64358599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810988406.3A Active CN108892502B (zh) 2018-08-28 2018-08-28 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108892502B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422882A (zh) * 2019-07-17 2019-11-08 兰溪泛翌精细陶瓷有限公司 一种新型铁电材料及其制备方法
CN114956192B (zh) * 2022-06-09 2024-02-20 合肥工业大学 一种镧钴共掺杂钡铁氧体双波段吸波粉体材料及其制备方法
CN115957764B (zh) * 2023-01-13 2024-02-27 成都理工大学 一种用于乙酸自热重整制氢的镍掺杂钡铁氧体催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265827A (ja) * 1987-04-21 1988-11-02 Nippon Zeon Co Ltd 六方晶フエライト磁性粉の製造方法
CN104628372A (zh) * 2015-01-29 2015-05-20 浙江大学 一种铌镍共掺杂钡铁氧体吸波粉体材料及其制备方法
CN106904956A (zh) * 2017-03-10 2017-06-30 浙江大学 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671764B (zh) * 2015-01-29 2017-03-29 浙江大学 一种铌掺杂钡铁氧体吸波粉体材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265827A (ja) * 1987-04-21 1988-11-02 Nippon Zeon Co Ltd 六方晶フエライト磁性粉の製造方法
CN104628372A (zh) * 2015-01-29 2015-05-20 浙江大学 一种铌镍共掺杂钡铁氧体吸波粉体材料及其制备方法
CN106904956A (zh) * 2017-03-10 2017-06-30 浙江大学 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structural and magnetic properties of Vanadium Doped M-Type Barium Hexaferrite (BaFe12-xVxO19);Ahmad Awadallah et al.;《International Conference on Advanced Materials》;20151021;摘要、表4 *

Also Published As

Publication number Publication date
CN108892502A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN108892502B (zh) 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法
CN104030667B (zh) 一种锆掺杂钡铁氧体吸波材料及其制备方法
CN104844182B (zh) 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法
CN104628372B (zh) 一种铌镍共掺杂钡铁氧体吸波粉体材料及其制备方法
CN103102867B (zh) 一种金属离子掺杂的钡铁氧体吸波粉体及其制备方法
CN110511013B (zh) 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法
CN107418510B (zh) 一种埃洛石基软磁铁氧体吸波材料的制备方法
CN103409669A (zh) MnAl合金磁性吸波材料及其制备方法
CN103482969A (zh) 一种铁氧体吸波材料及其制备方法
CN111484080B (zh) 一种钕掺杂的镨锰氧化物吸波粉体材料及其制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN108975898B (zh) 一种针对毫米波大气窗口的高效吸波剂及其制备方法
CN104671764B (zh) 一种铌掺杂钡铁氧体吸波粉体材料及制备方法
CN104529428A (zh) 一种锰铈掺杂镍锌铁氧体纳米吸波粉体及其制备方法
CN114634208A (zh) 一种氧化物复合材料及其制备方法和应用
CN115650309A (zh) 一种铈掺杂钡铁氧体吸波材料及其制备方法
CN114956192B (zh) 一种镧钴共掺杂钡铁氧体双波段吸波粉体材料及其制备方法
CN113511687B (zh) 一种吸波材料及其制备方法
CN112280533B (zh) 一种具有空心结构的三元复合吸波材料制备方法
CN104402417B (zh) 稀土ReCrO3磁性吸波材料及其制备方法
CN111099888A (zh) 一种吸波铁氧体的制备方法
CN105524273A (zh) 一种聚苯胺掺杂BaFe12O19/CoFe2O4吸波材料及制备方法
CN115974542B (zh) 一种镨掺杂锶铁氧体吸波材料及其制备方法
CN115784316A (zh) 一种双位高价掺杂钡铁氧体吸波剂及其制备方法
CN114276781B (zh) 一种mo@nc核壳结构型纳米吸波材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant