WO2019098324A1 - 車両の走行支援装置 - Google Patents
車両の走行支援装置 Download PDFInfo
- Publication number
- WO2019098324A1 WO2019098324A1 PCT/JP2018/042468 JP2018042468W WO2019098324A1 WO 2019098324 A1 WO2019098324 A1 WO 2019098324A1 JP 2018042468 W JP2018042468 W JP 2018042468W WO 2019098324 A1 WO2019098324 A1 WO 2019098324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- level difference
- wheel
- determination
- driving force
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 54
- 230000008569 process Effects 0.000 claims abstract description 48
- 230000001133 acceleration Effects 0.000 claims description 90
- 230000001629 suppression Effects 0.000 claims description 48
- 238000012545 processing Methods 0.000 claims description 25
- 238000012806 monitoring device Methods 0.000 claims description 7
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 description 14
- 241000910494 Heth Species 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000005484 gravity Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000009194 climbing Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- IHOMVTGPRWNUIO-UHFFFAOYSA-N 2-[3-[1-[2-[4-[4-[4-[2-[4-(2-hydroxyethyl)triazol-1-yl]acetyl]piperazin-1-yl]-6-[2-[2-(2-prop-2-ynoxyethoxy)ethoxy]ethylamino]-1,3,5-triazin-2-yl]piperazin-1-yl]-2-oxoethyl]triazol-4-yl]propyl]guanidine;hydrochloride Chemical compound [Cl-].N1=NC(CCCN=C([NH3+])N)=CN1CC(=O)N1CCN(C=2N=C(N=C(NCCOCCOCCOCC#C)N=2)N2CCN(CC2)C(=O)CN2N=NC(CCO)=C2)CC1 IHOMVTGPRWNUIO-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/181—Preparing for stopping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/662—Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
- B60T7/22—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/076—Slope angle of the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/02—Active or adaptive cruise control system; Distance control
- B60T2201/022—Collision avoidance systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/10—Automatic or semi-automatic parking aid systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/10—Detection or estimation of road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2250/00—Monitoring, detecting, estimating vehicle conditions
- B60T2250/04—Vehicle reference speed; Vehicle body speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/15—Road slope, i.e. the inclination of a road segment in the longitudinal direction
Definitions
- the present invention relates to a travel support device for a vehicle that supports the travel of a vehicle when wheels come into contact with a step.
- Patent Document 1 when it is determined that the wheel of the vehicle is riding on a step, the vehicle braking device is operated to narrow the gap between the disk and the pad to such an extent that the pad does not contact the disk integrally rotating with the wheel.
- An example of a driving support device that causes the vehicle to travel is described. By operating the braking device in this manner, the braking force can be quickly applied to the vehicle if the driver performs a braking operation when the wheels ride on the step.
- the driver may get angry.
- the driver may not be able to perform appropriate vehicle operations.
- the accelerator operation may be performed accidentally, or the operation may become rigid and the start of the braking operation may be delayed. That is, when the wheel rides on the step, the driver's improper operation is performed, or the inappropriate instruction during automatic traveling is input to the travel support device, thereby enhancing the safety of the vehicle. And there is room for improvement.
- the vehicle travel support device for solving the above-mentioned problems is a vehicle travel support device for supporting the travel of the vehicle, and among the steps capable of detecting that the wheels are in contact, the steps for stopping the vehicle
- the step determining unit that performs a determination process to determine whether the step the wheel comes in contact with is the step for stopping the car, and the determining process determines that the step is the step for stopping the car
- a braking / driving force setting unit that implements stop request control that requests that the vehicle be stopped by an increase in braking force of the vehicle.
- the vehicle does not stop even if the wheels of the traveling vehicle get over the level differences for stopping the vehicle.
- the vehicle can be stopped by increasing the braking force of the vehicle by implementing the stop request control. Therefore, it is possible to suppress the decrease in the safety of the vehicle when the wheel rides on the step.
- FIG. 2 is a block diagram showing a functional configuration of the control device.
- (A) And (b) is a timing chart when a wheel contacts a level difference.
- the schematic diagram which shows a mode that the driven wheel of the vehicle contacted the level
- the schematic diagram which shows a mode that the driving wheel of the vehicle contacted the level
- the flowchart explaining the processing routine performed in order to determine whether the level difference which the wheel contacted is a level difference for a car stop.
- the timing chart which shows transition of the body acceleration of vehicles when a wheel gets over a level difference for car stops.
- FIG. 1 illustrates an example of a vehicle provided with a control device 50 having a function as a travel support device of the present embodiment.
- the drive device 10 of the vehicle includes a power source of the vehicle such as an engine or an electric motor.
- the driving force output from the driving device 10 is transmitted to the rear wheels RL and RR via the differential 11. That is, in the vehicle, the rear wheels RL and RR function as drive wheels, and the front wheels FL and FR function as driven wheels.
- the braking system 20 of the vehicle operates so that the braking forces applied to the wheels FL, FR, RL, RR can be adjusted individually. Further, when the driver of the vehicle performs a braking operation, the braking device 20 operates so that a braking force corresponding to the amount of the braking operation is applied to the wheels FL, FR, RL, and RR.
- the vehicle is provided with a monitoring device 31, a navigation device 32, a vehicle speed detection system 33, an acceleration detection system 34, a pitch angle detection system 35, a vehicle weight detection system 36, and a road surface slope detection system 37.
- the monitoring device 31 has imaging means such as a camera and a radar, and monitors the periphery of the host vehicle using these. Further, the monitoring device 31 analyzes information obtained from monitoring using an imaging means, a radar, etc., and determines whether or not an obstacle exists in the traveling direction of the own vehicle, and from the own vehicle to the obstacle Calculates the relative distance, etc. Then, the monitoring device 31 outputs information obtained by various analysis processes to the control device 50.
- the navigation device 32 determines which area the vehicle is located in based on the position information of the vehicle obtained from the global positioning system etc., and informs the driver of the position of the vehicle on the map. Do. Further, the navigation device 32 outputs the acquired position information of the host vehicle, information for specifying an area in which the host vehicle is located, and the like to the control device 50.
- the vehicle speed detection system 33 calculates a vehicle speed VS, which is the moving speed of the vehicle, based on the wheel speeds of the wheels FL, FR, RL, RR and the like.
- the acceleration detection system 34 calculates a vehicle body acceleration GS which is a longitudinal acceleration of the vehicle based on a detection signal of an acceleration sensor or the like.
- the pitch angle detection system 35 calculates the pitch angle PR of the vehicle based on a detection signal of a sensor that detects the amount of rotation of the vehicle in the direction around the axis extending in the vehicle width direction.
- the vehicle weight detection system 36 calculates the weight We of the vehicle.
- the road surface slope detection system 37 calculates the slope SR of the road surface on which the vehicle travels. The information obtained by each of the detection systems 33 to 37 is output to the control device 50.
- the control device 50 includes, as functional units, a parking assist unit 60, a drive control unit 51 that controls the drive device 10, and a braking control unit 52 that controls the braking device 20.
- the parking support unit 60 is an example of a “travel support device” that supports the travel of the vehicle in an area (such as a parking lot) where there is a level difference on which the wheels FL, FR, RL, and RR can ride.
- a level difference for example, a level difference for stopping a vehicle, which is a level difference for stopping a vehicle, and a lock plate installed in coin parking can be mentioned.
- the wheel FL, FR, RL, and RR may get over the level difference that the vehicle may ride over. It is also called "step.” Further, the step for stopping the vehicle is a step for defining the parking position, and is a step that is undesirable for the wheels FL, FR, RL, and RR to get over when the vehicle is parked.
- the drive control unit 51 controls the drive device 10 based on an accelerator operation amount ACR which is an operation amount of an accelerator pedal by a driver of the vehicle.
- ACR an accelerator operation amount of an accelerator pedal by a driver of the vehicle.
- the drive control unit 51 controls the driving device 10 based on the received driving force request value FXdR. That is, the drive control unit 51 controls the drive device 10 so that the drive force FXd of the vehicle becomes larger as the drive force request value FXdR is larger.
- the braking control unit 52 controls the braking device 20 based on a braking operation amount BPR that is an operation amount of a brake pedal by a driver of the vehicle.
- a braking operation amount BPR that is an operation amount of a brake pedal by a driver of the vehicle.
- the braking control unit 52 controls the braking device 20 based on the received braking force request value FXbR. That is, the braking control unit 52 controls the braking device 20 so that the braking force FXb of the vehicle becomes larger as the braking force request value FXbR is larger.
- the parking assist unit 60 includes a step contact determination unit 61, a height estimation unit 62, a step determination unit 63, an operation determination unit 64, a level estimation unit 65, and a braking / driving force setting unit 66.
- the bump contact determination unit 61 determines whether at least one of the wheels FL, FR, RL, and RR has contacted a bump. For example, the step contact determination unit 61 performs the determination based on the driving force FXd of the vehicle, the vehicle body speed VS of the vehicle, the weight We of the vehicle, and the pitch angle PR of the vehicle. The specific method of the said determination is later mentioned using FIG.
- the height estimation unit 62 determines the height of the level difference with which the wheels are in contact when it is determined by the level difference contact determination unit 61 that at least one of the wheels FL, FR, RL, and RR contacts the level difference.
- the height estimated value He which is an estimated value of is calculated.
- the height estimation unit 62 calculates the height estimation value He based on the driving force FXd of the vehicle, the vehicle body speed VS of the vehicle, the weight We of the vehicle, and the pitch angle PR of the vehicle. The specific calculation method of the height estimated value He will be described later with reference to FIGS. 4 and 5.
- the level difference determination unit 63 includes a first level difference determination unit 631 and a second level difference determination unit 632.
- the first step determination unit 631 determines the level difference with which the wheels are in contact.
- a first determination process is performed to determine whether or not there is a step for stopping the vehicle.
- the first determination process corresponds to an example of the “determination process”.
- the first level difference determination unit 631 performs a first determination process based on the estimated height value He and the vehicle speed VS calculated by the height estimation unit 62. The specific content of the first determination process will be described later with reference to FIG.
- the second level difference determination unit 632 performs a second determination process to determine whether at least one of the wheels FL, FR, RL, and RR has passed over the level difference for wheel locking.
- the second determination process corresponds to an example of the “other determination process”.
- the second level difference determination unit 632 performs a second determination process based on the vehicle body acceleration GS of the vehicle. The specific content of the second determination process will be described later with reference to FIG.
- the implementation determining unit 64 acquires the position information of the vehicle and information specifying the area in which the vehicle is located from the navigation device 32, and permits execution of each determination process by the level difference determination unit 63 based on the information. Decide whether or not. For example, when the vehicle is traveling in an area where there is no step for stopping, such as a road, it is not necessary to perform parking support for the vehicle, which is an example of driving support for the vehicle. Therefore, based on the information acquired from the navigation device 32, the implementation determining unit 64 determines whether parking assistance for the vehicle is necessary.
- the implementation determination part 64 is parked, when a vehicle is drive
- the implementation determining unit 64 does not permit the implementation of each determination process when it is not determined that the parking assistance is necessary, as in the case where the vehicle is traveling on a road.
- the level estimation unit 65 estimates the vehicle operation level of the driver based on the history of the accelerator operation and the history of the braking operation. For example, when the level estimation unit 65 increases the accelerator operation amount ACR to accelerate the vehicle, if the frequency of performing the accelerator operation such that the vehicle rapidly accelerates is high, the vehicle operation level is lower than the case where the frequency is low. To estimate the vehicle operation level. When the level estimation unit 65 increases the braking operation amount BPR so as to decelerate the vehicle, the vehicle operation level is lower than when the frequency is low when the braking operation such that the vehicle rapidly decelerates is high. To estimate the vehicle operation level.
- the level estimation unit 65 controls the vehicle operation level more than when the interval time is long. Estimate the vehicle operation level so that Then, when the estimated value of the vehicle operation level is equal to or higher than the level determination value, the level estimation unit 65 determines that the vehicle operation level of the driver is high. On the other hand, when the estimated value of the vehicle operation level is less than the level determination value, the level estimation unit 65 determines that the vehicle operation level of the driver is low.
- the braking / driving force setting unit 66 determines, based on the result of each determination processing in the level difference determination unit 63, the driver's vehicle operation level determined by the level estimation unit 65, the vehicle body acceleration GS of the vehicle, and the accelerator operation amount ACR.
- Implement stop request control or acceleration suppression request control is control that requires the vehicle to be stopped by an increase in the braking force of the vehicle.
- the acceleration suppression request control is control that requires at least one of increasing the braking force of the vehicle and reducing the driving force of the vehicle such that acceleration of the vehicle is suppressed. The method of determining whether to perform stop request control or acceleration suppression request control and the specific content of the control to be performed will be described later with reference to FIG.
- FIGS. 3A and 3B show the transition of the driving force FXd and the vehicle speed VS when the wheels are in contact with the step while the vehicle is traveling at a constant speed.
- the step contact determination unit 61 detects that the driving force FXd is increasing despite the fact that the vehicle speed VS is decreasing, and immediately thereafter, the driving force at the time when the vehicle speed VS starts to increase.
- FXd is equal to or greater than the determination driving force FXdTh
- the determination driving force FXdTh is a reference value for determining whether the wheel has climbed on the step using the driving force FXd.
- the inertia force of the vehicle when the wheel contacts the step is larger.
- the slope of the road surface on which the step is installed is a down slope
- the inertial force of the vehicle when the wheels come in contact with the step is larger than when the slope of the road surface is not a down slope.
- the larger the inertial force of the vehicle the smaller the driving force required for the wheels to get on the step. Therefore, when the vehicle speed VS is large, the step contact determination unit 61 determines the determination driving force FXdTh to be smaller than when the vehicle speed VS is small, and when the gradient of the road surface is a downward slope, it is greater than when the slope is not a downward slope.
- the determination driving force FXdTh is calculated so that the determination driving force FXdTh becomes smaller.
- the height estimation unit 62 estimates the height estimated value He such that the height estimated value He becomes larger as the driving force FXd of the vehicle at the time when it is determined by the level difference contact determination unit 61 that the wheel has climbed the level difference.
- the relationship between the driving force and the height of the step is somewhat different between when the driven wheel rides on the step and when the drive wheel rides on the step. Therefore, in the present embodiment, the method of calculating the estimated height value He of the step is changed between when the driven wheel rides on the step and when the drive wheel rides on the step.
- FIG. 4 illustrates how the front wheels FL and FR as driven wheels are in contact with the step 100.
- the total "mg" of gravity acting on the front wheels FL and FR is The moment Ms generated at the contact point P.
- a moment Mf generated at the contact point P by the driving force FXd which is a force pressing the wheel toward the step 100, can be expressed by the following relational expression (Expression 2).
- "H" is the actual height of the step 100
- “R” is the radius of the front wheels FL, FR.
- the height estimation unit 62 estimates the height of the step 100 by substituting the driving force FXd when it is determined that the front wheels FL and FR have run over the step 100 into the relational expression (equation 3) shown below The value He can be calculated.
- FIG. 5 illustrates how the rear wheels RL and RR, which are drive wheels, are in contact with the step 100.
- Td an angle between the direction of “mg” and the step equivalent angle ⁇ is a driving torque Td which is the sum of the driving torques of the rear wheels RL and RR at the contact point P with the step 100, 4).
- “R” in the relational expression (Expression 4) is the radius of the rear wheels RL and RR.
- the height estimation unit 62 can calculate the driving torque Td when the rear wheels RL and RR ride on the step 100 based on the driving force FXd when the rear wheels RL and RR ride on the step 100. Then, the height estimation unit 62 can calculate the step equivalent angle ⁇ by substituting the drive torque Td into the relational expression (Expression 4). The step equivalent angle ⁇ increases as the driving torque Td increases. Then, the height estimation unit 62 can calculate the estimated height He of the step 100 based on the step equivalent angle ⁇ . In this case, the estimated height value He becomes larger as the step equivalent angle ⁇ is larger.
- the driving torque Td in a state in which only one of the rear wheels RL and RR is in contact with the step 100 also changes “mg” to the gravity acting on the one rear wheel in contact with the step. Then, the calculation can be performed using the above-mentioned relational expression (Expression 4).
- the estimated height He of the step 100 calculated as described above is such that the vehicle is on a horizontal road and the wheels are in contact with the step 100 with the vehicle speed VS equal to "0". It is a value calculated on the assumption that the wheel has climbed on the step 100 from the situation. In actuality, the wheels may come into contact with the step 100 while the vehicle is traveling at a certain speed. Then, as the vehicle body speed VS of the vehicle is larger, the inertia force of the vehicle generated when the wheel contacts the step 100 under the situation where the vehicle is traveling is larger, so the wheel is mounted on the step 100 with a small driving force FXd. It can be done. Therefore, the height estimation unit 62 corrects the estimated height value He calculated as described above based on the vehicle speed VS at that time. Specifically, the height estimation unit 62 corrects the height estimation value He such that the height estimation value He becomes larger when the vehicle body speed VS is large than when the vehicle body speed VS is small.
- the height estimation unit 62 corrects the estimated height value He calculated as described above based on the road surface slope SR. Specifically, when the road surface is a down slope, the height estimation unit 62 corrects the height estimation value He such that the height estimation value He increases as the absolute value of the slope SR increases. In addition, when the road surface is rising and the slope is high, the height estimation unit 62 corrects the height estimation value He so that the height estimation value He becomes smaller as the absolute value of the slope SR becomes larger.
- the relationship between the driving force FXd when the wheel rides on the step 100 and the height of the step 100 changes depending on the weight We of the vehicle.
- the wheel runs on the step 100 while the vehicle speed VS is “0” and the wheel is in contact with the step 100, the wheel is less likely to run on the step 100 as the weight We of the vehicle increases.
- the inertial force of the vehicle generated when the wheel contacts the step 100 is larger.
- the height estimation unit 62 estimates the height so that the height estimation value He increases as the weight We of the vehicle increases.
- the height estimation unit 62 estimates the height so that the height estimation value He decreases as the weight We of the vehicle increases. Correct the value He.
- the process routine is executed when the step contact determination unit 61 determines that the wheel has come into contact with the step 100, and the height estimation unit 62 calculates the estimated height He of the step 100.
- the first step determination unit 631 determines whether the execution determination unit 64 is permitted to perform the first determination process (S11). If the execution of the first determination process is not permitted (S11: NO), the first level difference determination unit 631 ends the present process routine. On the other hand, when execution of the first determination process is permitted (S11: YES), the first level difference determination unit 631 determines whether the vehicle speed VS of the vehicle is equal to or higher than the vehicle speed determination value VSTh. (S12).
- the parking assistance is control performed when the vehicle is traveling at a low speed. Therefore, when the vehicle travels at a certain speed or more, it can be determined that the vehicle may not be parked.
- the vehicle speed determination value VSTh is set so that it can be determined based on the vehicle speed VS whether there is a possibility that the vehicle is parked.
- the vehicle speed VS is equal to or higher than the vehicle speed determination value VSTh, it is determined that the vehicle may not be parked.
- the vehicle speed VS is less than the vehicle speed determination value VSTh, it is determined that the vehicle may be parked.
- the first level difference determination unit 631 ends the present processing routine.
- the first level difference determination unit 631 determines that the height estimated value He of the level difference 100 calculated by the height estimation unit 62 is the height A first determination process of determining whether or not the determination value HeTh or more is performed (S13).
- the height determination value HeTh is a reference for determining whether the step 100 with which the wheel is in contact is a step for stopping the vehicle.
- the first level difference determination unit 631 determines that the level difference 100 with which the wheel is in contact is the level difference for the car stop (S14), Thereafter, the processing routine is ended. On the other hand, when the estimated height value He is less than the height determination value HeTh (S13: NO), the first level difference determination unit 631 determines that the level difference 100 with which the wheel is in contact is a climbing permission level difference (S15) Then, the processing routine is ended.
- the second level difference determination section 632 does not determine that the level difference 100 with which the wheel is in contact is the level difference for the vehicle stop by the first level difference determination section 631.
- the vehicle speed VS of the vehicle is the vehicle speed determination value VSTh.
- the second determination process is performed when it is determined that both the conditions are less than the threshold value and the execution determination unit 64 permits the execution of the second determination process.
- the second level difference determination unit 632 obtains the vibration width AGS of the vehicle body acceleration GS, and determines that the wheel has climbed over the vehicle height difference when the vibration width AGS is equal to or greater than the determination vibration width AGSTh. On the other hand, when the acquired vibration width AGS is less than the judgment vibration width AGSTh, the second level difference judgment unit 632 does not judge that the wheel has got over the vehicle height difference. That is, the determination vibration width AGSTh is a reference for determining whether or not the wheel has got over the bump for stopping the vehicle based on the vibration width AGS of the vehicle body acceleration GS.
- this processing routine is executed when the result of determination by the level difference determination unit 63 (631, 632) is input to the braking / driving force setting unit 66.
- the braking / driving force setting unit 66 determines whether the level estimation unit 65 determines that the driver's vehicle operation level is high (S21). If it is determined that the vehicle operation level is high (S21: YES), the braking / driving force setting unit 66 ends the present processing routine. On the other hand, when it is not determined that the vehicle operation level is high (S21: NO), the braking / driving force setting unit 66 determines whether the second step determination unit 632 determines that the wheel has got over the step for stopping. Is determined (S22). If it is determined that the wheel has got over the step for stopping the vehicle (S22: YES), the braking / driving force setting unit 66 implements stop request control described later, that is, shifts the processing to step S25 described later.
- the braking / driving force setting unit 66 determines whether the wheel is determined to have run over the step by the step contact determination unit 61. To do (S23). If it is not determined that the wheel has run on the step 100 (S23: NO), the braking / driving force setting unit 66 ends the present processing routine. On the other hand, when it is determined that the wheel has run on the step 100 (S23: YES), the braking / driving force setting unit 66 determines that the step 100 on which the wheel runs over by the first step determination unit 631 is a step for stopping. It is determined whether it is determined (S24). If it is determined that the step 100 is a step for stopping the vehicle (S24: YES), the braking / driving force setting unit 66 carries out stop request control.
- the braking / driving force setting unit 66 makes the driving force request value FXdR equal to "0", and transmits the driving force request value FXdR to the drive control unit 51 (S25). Subsequently, when the braking force necessary for stopping the vehicle is the stopping braking force FXb1, the braking / driving force setting unit 66 makes the braking force request value FXbR equal to the stopping braking force FXb1, and this braking force request value FXbR Are transmitted to the braking control unit 52 (S26).
- the stop braking force FXb1 may be a predetermined value set in advance, or may be a value that varies according to the vehicle speed VS, the road surface slope SR, and the like.
- step S24 when it is not determined that the step 100 on which the wheel has run up is a step for detent (NO), the braking / driving force setting unit 66 carries out acceleration suppression request control.
- the braking / driving force setting unit 66 calculates a value obtained by subtracting the vehicle body acceleration GS from the request acceleration GR as the acceleration deviation ⁇ G (S27).
- the vehicle body acceleration GS is a value in accordance with the current actual acceleration or the actual acceleration of the vehicle.
- the required acceleration GR is a predicted value of the acceleration assumed from the current driving force FXd of the vehicle. The contact of the wheel with the step 100 temporarily reduces the acceleration of the vehicle.
- the acceleration deviation ⁇ G becomes larger than “0”. Then, as the acceleration deviation ⁇ G is larger, the acceleration of the vehicle immediately after the wheel climbs over the step 100 tends to increase, that is, the feeling of jumping out of the vehicle tends to be stronger.
- the braking / driving force setting unit 66 calculates an acceleration suppression control amount SFX based on the calculated acceleration deviation ⁇ G (S28). That is, the braking / driving force setting unit 66 calculates the acceleration suppression control amount SFX such that the acceleration suppression control amount SFX becomes larger as the acceleration deviation ⁇ G becomes larger.
- the braking / driving force setting unit 66 calculates the driving force request value FXdR and the braking force request value FXbR based on the calculated acceleration suppression control amount SFX, and transmits the driving force request value FXdR to the driving control unit 51, and The braking force request value FXbR is transmitted to the braking control unit 52 (S29).
- the braking / driving force setting unit 66 calculates the driving force request value FXdR such that the driving force request value FXdR becomes smaller as the acceleration suppression control amount SFX is larger. Further, the braking / driving force setting unit 66 calculates the braking force request value FXbR so that the braking force to the extent that the vehicle does not stop is applied to the vehicle.
- the braking / driving force setting unit 66 determines whether the vehicle body vibration of the vehicle has been settled (S30). That is, immediately after the wheel passes over the step 100, the reaction force input to the vehicle body from the road surface through the wheel vibrates, so the vehicle body vibrates. Thus, when the vehicle body vibrates, the vehicle body acceleration GS also vibrates. Therefore, the braking / driving force setting unit 66 can determine whether or not the vehicle vibration has settled by monitoring the vehicle acceleration GS. When the vehicle body vibration has not yet settled (S30: NO), the braking / driving force setting unit 66 shifts the process to step S28 described above, that is, continues the implementation of the acceleration suppression request control. On the other hand, when the vehicle body vibration is settled (S30: YES), the braking / driving force setting unit 66 ends the execution of the acceleration suppression request control, and ends the present processing routine.
- the operation and effects of the present embodiment will be described.
- the operation at the time of parking the vehicle in the parking lot will be described together with the effect.
- the execution of the first determination process and the second determination process is permitted based on the information input from the navigation device 32 to the control device 50.
- the vehicle body speed VS of the vehicle is equal to or higher than the vehicle body speed judgment value VSTh.
- Stop request control and acceleration suppression request control are not implemented. That is, when the parking assistance by the control device 50 is not yet required, it can be suppressed that the stop request control and the acceleration suppression request control are performed erroneously.
- the vehicle travels such that the vehicle speed VS is less than the vehicle speed determination value VSTh.
- the vehicle body speed VS of the vehicle decreases to, for example, “0” or “0”
- the driving force FXd of the vehicle becomes large.
- the rear wheel rides on the step 100
- the vehicle speed VS starts to increase.
- the determination driving force FXdTh used to determine whether the rear wheel (wheel) has come into contact with the step 100 is variable based on the vehicle speed VS of the vehicle and the slope SR of the road surface on which the step 100 is installed. Be done. Therefore, as compared with the case where determination driving force FXdTh is fixed at a constant value, it can be accurately determined whether the rear wheel has come into contact with step 100, that is, whether the rear wheel has run over step 100. .
- the estimated height He of the step 100 is calculated. That is, the height estimated value He is calculated based on the driving force FXd in a state where the rear wheel rides on the step 100.
- the method of calculating the estimated height value He is made different depending on whether the wheel in contact with the step 100 is a driving wheel (rear wheel) or a driven wheel (front wheel). Thus, the calculation accuracy of the estimated height value He of the step 100 can be increased.
- the height estimated value He is corrected by the vehicle speed VS and the weight We when the rear wheel (wheel) rides on the step 100, and the gradient SR of the road surface. That is, when the driving force FXd is constant, when the vehicle speed VS is large, the height estimated value He is calculated so that the height estimated value He becomes larger than when the vehicle speed VS is small. In addition, when the driving force FXd is constant, the height estimated value He is calculated so that the height estimated value He becomes larger than when the road surface slope is not the down slope when the road surface slope is the down slope. Ru.
- the height estimated value He is larger so that the height estimated value He becomes larger than when the inertial force is small. Is calculated. Therefore, the calculation accuracy of the estimated height value He of the step 100 can be further enhanced.
- the step 100 is a step for stopping a vehicle. That is, when the vehicle body speed VS of the vehicle is high, it is determined that the step 100 is a step for stopping the vehicle in a state where the driving force FXd of the vehicle is smaller than when the vehicle speed VS is small. In addition, when the slope of the road surface on which the vehicle travels is a downward slope, it is determined that the step 100 is a step for stopping the vehicle in a state where the driving force FXd of the vehicle is smaller than when the slope of the road surface is not a downward slope. become.
- step 100 it is possible to determine whether or not the step 100 is the step for stopping the vehicle, in consideration of the inertia force and the gravity of the vehicle when the wheel contacts the step 100. Therefore, it is possible to increase the accuracy of the determination as to whether or not the step 100 is a step for stopping a vehicle.
- the estimated height He of the step 100 is less than the height determination value HeTh, it is determined that the step 100 with which the rear wheel is in contact is a climbing permission step.
- acceleration suppression request control is performed.
- the acceleration suppression request control When the acceleration suppression request control is performed, the driving force FXd of the vehicle is reduced. Also, the braking force FXb is applied to the vehicle. As a result, compared with the case where acceleration suppression request control is not implemented, it becomes difficult for the vehicle to accelerate. As a result, when the rear wheel passes over the step 100, the acceleration of the vehicle is suppressed even if the accelerator pedal is operated such that the accelerator operation amount ACR becomes excessive or the operation start of the brake pedal is delayed. Can. That is, it is possible to weaken the feeling of the vehicle jumping out when the rear wheel gets over the step 100.
- the driver when the driver with a high level of vehicle operation is driving the vehicle, the driver should perform the accelerator operation or the braking operation so that the vehicle does not have a strong feeling of popping out when the wheels get over and get over the permission step. Can. That is, it can be determined that the necessity of implementation of the acceleration suppression request control is low. In this respect, in the present embodiment, when it is determined that the driver's vehicle operation level is high, the acceleration suppression request control is not performed even when the wheels get over the permission level difference. Therefore, unnecessary implementation of the acceleration suppression request control can be suppressed.
- the implementation of the acceleration suppression request control is ended when the vehicle body vibration is settled.
- the rear wheel comes into contact with another step 100 (this time, a step for stopping the vehicle). Even in this case, it is determined that the rear wheel has come into contact with the step 100 because the driving force FXd and the vehicle speed VS change (see FIG. 3) as in the case where the rear wheel contacts the crossing permission step. Can.
- the step 100 is a step for stopping the vehicle. Therefore, stop request control is implemented. Then, the driving force FXd of the vehicle is made equal to “0”, or a predetermined driving force (for example, accelerator off) is maintained such that the rear wheel contacting the step 100 and the road surface is maintained in contact.
- the vehicle is automatically stopped because it is set to a creeping torque or the like which is a driving force generated in the state, and the braking force FXb of the vehicle is increased. Therefore, the vehicle can be stopped even when the driver can not perform an appropriate vehicle operation when the rear wheel rides on the step for stopping the vehicle, thereby suppressing the decrease in the safety of the vehicle. be able to.
- the rear wheel (wheel) rides on the step 100, or the estimated height He of the step 100 on which the rear wheel runs is calculated. It is like that. Therefore, for example, in the case where a gentle slope is provided on the contact surface of the step 100 with the wheel, it is not determined that the wheel has run on the step 100 even though the wheel actually runs on the step 100. There is also. Further, even when it is determined that the wheel has run on the step 100, the estimated height He of the step 100 is calculated to be lower than the actual height H of the step 100, and the step 100 is a step for stopping the vehicle. It may not be determined that there is any. In this case, stop request control may not be implemented.
- the second determination process is performed separately from the first determination process. That is, the transition of the vehicle body acceleration GS of the vehicle is grasped, and when the vibration width AGS of the vehicle body acceleration GS is equal to or larger than the determination vibration width AGSTh, it is determined that the rear wheel (wheel) has got over the step for stopping. Then, when it is determined by the second determination processing that the rear wheel has got over the bump for stopping, the stop request control is performed. Therefore, it is possible to stop the vehicle immediately after the rear wheels get over the step for stopping the vehicle, and it is possible to suppress the decrease in the safety of the vehicle.
- stop request control or acceleration suppression request control is not performed. . Therefore, it is possible to suppress that the stop request control and the acceleration suppression request control are performed erroneously when the vehicle is traveling on a road surface having relatively large unevenness of the road surface, that is, a bad road.
- the vehicle may be advanced to park the vehicle at the parking position.
- the operation in this case is substantially the same as in the case where the vehicle is moved backward and parked at the parking position, and hence the description is omitted.
- the vehicle operation level is estimated using the history of the accelerator operation and the history of the braking operation.
- the present invention is not limited to this, and if the history of the accelerator operation is used, the vehicle operation level may be estimated without using the history of the braking operation. Alternatively, the vehicle operation level may be estimated using a history of steering operations.
- the vehicle operation level is higher as the frequency of implementing the emergency braking control is lower. .
- the stop request control when it is determined that the vehicle operation level is high, not only the acceleration suppression request control but also the stop request control is not performed. However, even if it is determined that the vehicle operation level is high, it is determined that the wheel has got over the step for stopping by the second determination processing, or the step where the wheel contacts by the first determination is stopping
- the stop request control may be performed when it is determined that the difference in level is for use.
- the acceleration suppression request control may be performed.
- the acceleration suppression control amount is set so that the acceleration suppression control amount SFX becomes smaller than when the vehicle operation level is determined low. SFX may be calculated.
- the acceleration suppression request control or the stop request control may be performed regardless of the vehicle operation level.
- the acceleration suppression control amount SFX may be varied by another parameter different from the acceleration deviation ⁇ G.
- the acceleration suppression control amount SFX may be calculated so that the acceleration suppression control amount SFX becomes larger as the estimated value of the vehicle operation level decreases. . Further, the acceleration suppression control amount SFX may be calculated so as to increase as the estimated height value He of the step 100 increases.
- the acceleration suppression control amount SFX may be fixed at a predetermined value set in advance. ⁇ When the vehicle speed VS is equal to or higher than the vehicle speed determination value VSTh, if each determination process is not performed, it is determined whether to permit each determination process based on the position information of the host vehicle. The process may be omitted.
- each determination process may be performed even if the vehicle speed VS is equal to or higher than the vehicle speed determination value VSTh.
- the vehicle-mounted navigation device 32 it is determined based on the information obtained from the on-vehicle navigation device 32 which area the host vehicle is traveling. However, if it is possible to obtain information from a device other than the vehicle-mounted device such as the vehicle-mounted navigation device 32 and not from the vehicle-mounted device, what area the host vehicle is based on the information obtained from the other device It is determined whether it is traveling or not.
- a server installed outside the vehicle
- a tablet terminal owned by an occupant of the vehicle can be mentioned.
- the vehicle may be started by the driver's operation of the vehicle from the state where the vehicle is parked at the parking position. In this case, for example, although it is necessary to set the shift range to the forward range to move the vehicle forward, if the shift range is mistakenly set to the reverse range and the accelerator operation is performed, the vehicle moves backward. In some cases, the rear wheels RL and RR may ride on the steps for stopping the vehicle.
- the step 100 may be determined to be a step for stopping the vehicle, and stop request control may be performed. Also, when starting the vehicle by the driver's operation from the state where the vehicle is parked at the parking position, the shift range is changed from one of the forward range and the reverse range to the other range. When it is determined that the wheel is in contact with the step 100, it may be determined that the step 100 is a step for stopping the vehicle, and the stop request control may be performed.
- another parameter different from the vehicle body acceleration GS may be used as long as it is a parameter that correlates with an impact due to contact between the road surface and the wheels after passing over the step 100.
- Other parameters may include, for example, acceleration in the vertical direction of the vehicle, time-differentiated value of wheel speed, tire pressure at the wheel, expansion and contraction of the suspension, and magnitude of sound when the wheel lands on the road surface it can.
- step 100 When the step 100 existing on the front side in the traveling direction of the vehicle can be detected based on the information acquired by the monitoring device 31, information on the step 100 is analyzed before the wheels contact the step 100, and the step 100 It may be determined whether or not it is a step for the purpose. When it is determined that the step 100 is a step for stopping the vehicle when the wheel contacts the step 100, stop request control may be performed. When the wheel contacts the step 100, the acceleration suppression request control is performed when it is not determined that the step 100 is a step for stopping the vehicle, that is, when it is determined that the step 100 is a crossing permission step. It may be implemented.
- the height estimated value He based on the driving force FXd of the vehicle is corrected by the vehicle body speed VS and the weight We of the vehicle and the gradient SR of the road surface, and the corrected height estimated value He is high. It is determined whether the threshold value HeTh or more.
- the height estimate He based on the driving force FXd of the vehicle may not be corrected by the vehicle body speed VS and the weight We of the vehicle and the gradient SR of the road surface.
- the height determination value HeTh may be corrected by the vehicle body speed VS and the weight We of the vehicle and the road surface slope SR. Even in this case, it is possible to obtain the same effects as those of the above embodiment.
- the vehicle inclines with respect to the road surface. That is, the pitch angle PR of the vehicle changes. Specifically, as the step 100 is higher, the amount of change in the pitch angle PR is larger. Therefore, the height estimated value He of the step 100 is calculated based on the pitch angle PR of the vehicle when it is determined that the wheel is in contact with the step 100, and the height estimated value He is equal to or greater than the height determination value HeTh. At this time, it may be determined that the step 100 is a step for stopping a vehicle. On the other hand, when the estimated height value He is equal to or less than the height determination value HeTh, it may be determined that the step 100 is a climbing permission step.
- the driving control unit 51 is requested to decrease the driving force FXd without requiring the braking control unit 52 to increase the braking force FXb. May be Further, in the acceleration suppression request control, if acceleration of the vehicle can be suppressed, the braking control unit 52 is requested to increase the braking force FXb without requiring the driving control unit 51 to decrease the driving force FXd. You may
- the acceleration suppression request control is performed when the driver's braking operation or a decrease in the accelerator operation amount ACR is detected. You do not have to.
- the stop request control may not be performed.
- -Whether or not the wheel has come into contact with the step 100 is determined using the driving force FXd of the vehicle. Therefore, in the state where the braking force FXb is applied to the vehicle, the accuracy of the determination becomes low. Therefore, when the braking force FXb is applied to the vehicle by the actuation of the service brake and when the braking force FXb is applied to the vehicle by the actuation of the parking brake, the determination may not be performed.
- the acceleration suppression request control is performed when it is not determined by the first determination process that the step 100 with which the wheel is in contact is the step for stopping the vehicle. However, if stop request control is to be performed when it is determined by the first determination processing that the step 100 with which the wheel is in contact is the step for stopping the vehicle, the step 100 is determined to be the step for stopping the vehicle. If not, acceleration suppression request control may not be performed.
- the parking brake may be operated to apply the braking force only to the rear wheels RL and RR instead of the regular brake applying the braking force to each wheel FL, FR, RL, RR .
- the determination as to whether or not the wheel has come into contact with the step 100 may be performed by a method different from the method described in the above embodiment. For example, it may be determined whether or not the wheel has come into contact with the step 100 by using the variation of the vehicle body acceleration GS of the vehicle, the variation of the pitch angle PR, or the like.
- control device 50 also having a function as a travel support device may be a front wheel drive vehicle in which drive force FXd output from drive device 10 is transmitted only to front wheels FL and FR, or the drive force It may be a four-wheel drive vehicle in which FXd is transmitted to both the front wheels FL, FR and the rear wheels RL, RR.
- the driver performs the driving operation.
- an instruction is output to the driving device 10 or the braking device 20 of the vehicle.
- the stop position of the vehicle is set based on external information such as the position of the step 100 obtained from the imaging means such as a camera and the area of the parking space, and the vehicle is moved to the stop position. Stop the vehicle.
- step 100 when the step 100 is not recognized or when the step 100 of the parking space on the other side adjacent to the parking space of the own vehicle is erroneously recognized as the difference 100 of the parking space of the own vehicle
- An instruction from the parking control to the inappropriate drive device 10 or an instruction to the inappropriate braking device 20 may cause the wheels of the vehicle to go over the step 100 and advance.
- the control device 50 by combining the parking assistance by the control device 50 with the automatic parking control, it is possible to easily stop the vehicle in the set parking space.
- the level difference 100 may be behind the vehicle body, and the imaging unit may not recognize the accurate position. Therefore, when there is no effective target other than the level difference 100, the automatic parking control instructs the drive device 10 and the braking device 20 of the vehicle to estimate the relative position of the level difference 100 and the vehicle from the information in advance and stop. It will be output. However, due to a decrease in detection accuracy of the vehicle speed at a very low speed, an error more than expected may occur in the actual stop position. Also in this case, by combining the parking assistance by the control device 50 with the automatic parking control, it is possible to easily stop the vehicle in the set parking space.
- a step height estimation device for estimating the height of a step that the wheels of a vehicle contact
- a step height estimation device comprising: a height estimation unit that calculates an estimated value of the height of a level difference in contact with a wheel so as to increase as the driving force of the vehicle increases when the wheel contacts the level difference.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Regulating Braking Force (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
駐車支援部60は、車輪が接触した段差が車止め用の段差であるか否かを判定する第1の判定処理を実施する段差判定部63と、第1の判定処理によって当該段差が車止め用の段差であると判定されたときには、車両の制動力の増大によって車両を停止させることを要求する停止要求制御を実施する制駆動力設定部66とを備える。
Description
本発明は、車輪が段差に接触した際における車両の走行を支援する車両の走行支援装置に関する。
特許文献1には、車両の車輪が段差に乗り上げていると判定したときに、車輪と一体回転するディスクにパッドが接触しない程度にディスクとパッドとの隙間を狭くすべく車両の制動装置を作動させる走行支援装置の一例が記載されている。このように制動装置を作動させることにより、車輪が段差に乗り上げた場合に運転者が制動操作を行うと、車両に制動力を速やかに付与することができる。
車輪が段差に乗り上げた際に、運転者が慌ててしまうことがある。このように運転者が慌ててしまった場合、同運転者が適切な車両操作を行うことができないおそれがある。例えば、本来は制動操作を行う必要があるときに、誤ってアクセル操作を行ってしまったり、硬直してしまって制動操作の開始が遅れてしまったりすることがある。すなわち、車輪が段差に乗り上げた際に、運転者による不適切な操作が行われたり、自動走行中における不適切な指示が走行支援装置に入力されたりした場合における車両の安全性を高めるという点で改善の余地がある。
上記課題を解決するための車両の走行支援装置は、車両の走行を支援する車両の走行支援装置であり、車輪が接触したことを検出できる段差のうち、車両を停止させるための段差のことを車止め用の段差とした場合、車輪が接触した段差が車止め用の段差であるか否かを判定する判定処理を実施する段差判定部と、判定処理によって段差が車止め用の段差であると判定されたときには、車両の制動力の増大によって車両を停止させることを要求する停止要求制御を実施する制駆動力設定部と、を備える。
車輪が乗り上げることの可能な段差が存在するエリアでは、走行する車両の車輪が車止め用の段差を乗り越えても車両が停止しないことは安全上好ましくない。この点、上記構成では、走行する車両の車輪が接触した段差が車止め用の段差であるときには、停止要求制御の実施によって、車両の制動力を増大させて車両を停車させることができる。そのため、車輪が段差に乗り上げた際における車両の安全性の低下を抑制することが可能となる。
以下、車両の走行支援装置の一実施形態を図1~図8に従って説明する。
図1には、本実施形態の走行支援装置としての機能を有する制御装置50を備える車両の一例が図示されている。図1に示すように、車両の駆動装置10は、エンジンや電動モータなどの車両の動力源を備えている。駆動装置10から出力された駆動力は、ディファレンシャル11を介して後輪RL,RRに伝達される。すなわち、当該車両では、後輪RL,RRが駆動輪として機能し、前輪FL,FRが従動輪として機能する。
図1には、本実施形態の走行支援装置としての機能を有する制御装置50を備える車両の一例が図示されている。図1に示すように、車両の駆動装置10は、エンジンや電動モータなどの車両の動力源を備えている。駆動装置10から出力された駆動力は、ディファレンシャル11を介して後輪RL,RRに伝達される。すなわち、当該車両では、後輪RL,RRが駆動輪として機能し、前輪FL,FRが従動輪として機能する。
車両の制動装置20は、各車輪FL,FR,RL,RRに付与する制動力を個別に調整できるように作動する。また、制動装置20は、車両の運転者が制動操作を行った場合、その制動操作量に応じた制動力が各車輪FL,FR,RL,RRに付与されるように作動する。
図1に示すように、車両には、監視装置31、ナビゲーション装置32、車速検出系33、加速度検出系34、ピッチ角検出系35、車両重量検出系36及び路面勾配検出系37が設けられている。監視装置31は、カメラなどの撮像手段やレーダを有しており、これらを用いて自車両の周辺を監視する。また、監視装置31は、撮像手段やレーダなどを用いた監視から得た情報を解析し、自車両の進行方向に障害物が存在するか否かの判定、及び、自車両から障害物までの相対距離の演算などを行う。そして、監視装置31は、各種の解析処理によって得た情報を制御装置50に出力する。ナビゲーション装置32は、全地球測位システムなどから得た自車両の位置情報を基に、自車両がどのエリアに位置しているのかを判断し、地図上での自車両の位置を運転者に報知する。また、ナビゲーション装置32は、取得した自車両の位置情報、及び、自車両が位置するエリアを特定する情報などを制御装置50に出力する。
車速検出系33は、各車輪FL,FR,RL,RRの車輪速度などを基に、車両の移動速度である車体速度VSを演算する。加速度検出系34は、加速度センサの検出信号などを基に、車両の前後方向加速度である車体加速度GSを演算する。ピッチ角検出系35は、車両幅方向に延びる軸線回り方向における車両の回転量を検出するセンサの検出信号などを基に、車両のピッチ角PRを演算する。車両重量検出系36は、車両の重量Weを演算する。路面勾配検出系37は、車両の走行する路面の勾配SRを演算する。そして、これら各検出系33~37によって得られた情報は、制御装置50に出力される。
図2に示すように、制御装置50は、機能部として、駐車支援部60、駆動装置10を制御する駆動制御部51、及び制動装置20を制御する制動制御部52を備えている。駐車支援部60は、車輪FL,FR,RL,RRが乗り上げることが可能な段差が存在するエリア(駐車場など)での車両の走行を支援する「走行支援装置」の一例である。このような段差としては、例えば、車両を停止させるための段差である車止め用の段差、コインパーキングなどに設置されるロック板を挙げることができる。なお、本実施形態では、コインパーキングにおけるロック板などのように、駐車位置に向けて車両が走行しているときには車輪FL,FR,RL,RRが乗り越えてもよい段差のことを、「乗り越え許可段差」ともいう。また、車止め用の段差とは、駐車位置を規定するための段差であり、車両を駐車させる際には車輪FL,FR,RL,RRが乗り越えるのは好ましくない段差のことである。
駆動制御部51は、車両の運転者によるアクセルペダルの操作量であるアクセル操作量ACRを基に駆動装置10を制御する。また、駐車支援部60から駆動力要求値FXdRを受信している場合、駆動制御部51は、受信した駆動力要求値FXdRを基に駆動装置10を制御する。すなわち、駆動制御部51は、駆動力要求値FXdRが大きいほど、車両の駆動力FXdが大きくなるように駆動装置10を制御する。
制動制御部52は、車両の運転者によるブレーキペダルの操作量である制動操作量BPRを基に制動装置20を制御する。また、駐車支援部60から制動力要求値FXbRを受信している場合、制動制御部52は、受信した制動力要求値FXbRを基に制動装置20を制御する。すなわち、制動制御部52は、制動力要求値FXbRが大きいほど、車両の制動力FXbが大きくなるように制動装置20を制御する。
駐車支援部60は、段差接触判定部61、高さ推定部62、段差判定部63、実施決定部64、レベル推定部65及び制駆動力設定部66を有している。
段差接触判定部61は、各車輪FL,FR,RL,RRのうちの少なくとも1つの車輪が段差に接触したか否かを判定する。例えば、段差接触判定部61は、車両の駆動力FXd、車両の車体速度VS、車両の重量We及び車両のピッチ角PRを基に、当該判定を行う。当該判定の具体的な方法については、図3を用いて後述する。
段差接触判定部61は、各車輪FL,FR,RL,RRのうちの少なくとも1つの車輪が段差に接触したか否かを判定する。例えば、段差接触判定部61は、車両の駆動力FXd、車両の車体速度VS、車両の重量We及び車両のピッチ角PRを基に、当該判定を行う。当該判定の具体的な方法については、図3を用いて後述する。
高さ推定部62は、各車輪FL,FR,RL,RRのうちの少なくとも1つの車輪が段差に接触したと段差接触判定部61によって判定されているときに、車輪が接触した段差の高さの推定値である高さ推定値Heを演算する。例えば、高さ推定部62は、車両の駆動力FXd、車両の車体速度VS、車両の重量We及び車両のピッチ角PRを基に、高さ推定値Heを演算する。高さ推定値Heの具体的な演算方法については、図4及び図5を用いて後述する。
段差判定部63は、第1の段差判定部631及び第2の段差判定部632を含んでいる。第1の段差判定部631は、各車輪FL,FR,RL,RRのうちの少なくとも1つの車輪が段差に接触したと段差接触判定部61によって判定されているときに、車輪が接触した段差が車止め用の段差であるか否かを判定する第1の判定処理を実施する。この第1の判定処理が、「判定処理」の一例に相当する。例えば、第1の段差判定部631は、高さ推定部62によって演算された高さ推定値He及び車体速度VSを基に、第1の判定処理を実施する。この第1の判定処理の具体的な内容については、図6を用いて後述する。
第2の段差判定部632は、各車輪FL,FR,RL,RRのうちの少なくとも1つの車輪が車輪止め用の段差を乗り越えたか否かを判定する第2の判定処理を実施する。この第2の判定処理が、「他の判定処理」の一例に相当する。例えば、第2の段差判定部632は、車両の車体加速度GSを基に、第2の判定処理を実施する。この第2の判定処理の具体的な内容については、図7を用いて後述する。
実施決定部64は、ナビゲーション装置32から自車両の位置情報、及び、自車両が位置するエリアを特定する情報を取得し、当該情報を基に段差判定部63による各判定処理の実施を許可するか否かを決める。例えば、道路などのように、車止め用の段差が存在しないエリアを車両が走行している場合、車両の走行支援の一例である車両の駐車支援を行う必要がない。そのため、実施決定部64は、ナビゲーション装置32から取得した情報を基に、車両の駐車支援が必要であるか否かを判定する。そして、実施決定部64は、駐車場などのように、車止め用の段差が存在する可能性のあるエリアを車両が走行している場合、及び、当該エリアに車両が進入する場合には、駐車支援が必要であると判定し、各判定処理の実施を許可する。一方、実施決定部64は、車両が道路を走行している場合などのように駐車支援が必要であると判定しないときには、各判定処理の実施を許可しない。
レベル推定部65は、アクセル操作の履歴及び制動操作の履歴を基に、運転者の車両操作レベルを推定する。例えば、レベル推定部65は、車両を加速させるべくアクセル操作量ACRを増大させるに際し、車両が急加速するようなアクセル操作を行う頻度が高い場合、当該頻度が低い場合よりも車両操作レベルが低くなるように、車両操作レベルを推定する。また、レベル推定部65は、車両を減速させるべく制動操作量BPRを増大させるに際し、車両が急減速するような制動操作を行う頻度が高い場合、当該頻度が低い場合よりも車両操作レベルが低くなるように、車両操作レベルを推定する。また、レベル推定部65は、アクセルペダル及びブレーキペダルの一方のペダルの操作を終了してから他方のペダルの操作を開始するまでのインターバル時間が短い場合、インターバル時間が長い場合よりも車両操作レベルが低くなるように、車両操作レベルを推定する。そして、レベル推定部65は、車両操作レベルの推定値がレベル判定値以上であるときには、運転者の車両操作レベルが高いと判定する。一方、レベル推定部65は、車両操作レベルの推定値がレベル判定値未満であるときには、運転者の車両操作レベルが低いと判定する。
制駆動力設定部66は、段差判定部63での各判定処理の結果、レベル推定部65によって判定された運転者の車両操作レベル、車両の車体加速度GS、及びアクセル操作量ACRを基に、停止要求制御又は加速抑制要求制御を実施する。停止要求制御は、車両の制動力の増大によって車両を停止させることを要求する制御である。加速抑制要求制御は、車両の加速が抑制されるように、車両の制動力を増大させること、及び、車両の駆動力を減少させることのうちの少なくとも一方を要求する制御である。停止要求制御又は加速抑制要求制御を実施するか否かの判定の方法、及び、実施する制御の具体的な内容については、図8を用いて後述する。
次に、図3を参照し、車輪が段差に接触したか否か、具体的には車輪が段差に乗り上げたか否かを判定する際に段差接触判定部61が実行する処理について説明する。図3(a),(b)には、車両が一定速度で走行しているときに車輪が段差に接触した場合の駆動力FXd及び車体速度VSの推移が図示されている。
図3(a),(b)に示すように、一定速度で走行している車両の車輪がタイミングt11で段差に接触すると、車体速度VSが減少する。そして、アクセル操作量ACRが増大され、車両の駆動力FXdが増大されると、タイミングt12で車輪が段差に乗り上げる。すると、車体速度VSが大きくなる。
そこで、段差接触判定部61は、車体速度VSが減少しているにも拘わらず駆動力FXdが増大していることを検出すること、及び、その直後において車体速度VSの増大開始時点における駆動力FXdが判定駆動力FXdTh以上であることの何れもが成立したときに、車輪が段差に接触した、すなわち車輪が段差に乗り上げたと判定する。なお、判定駆動力FXdThは、駆動力FXdを用い、車輪が段差に乗り上げたか否かを判定するための基準値である。
ところで、車輪が段差に接触した際における車体速度VSが大きいほど、車輪が段差に接触したときにおける車両の慣性力が大きい。また、段差が設置されている路面の勾配が下り勾配である場合、路面の勾配が下り勾配ではない場合よりも、車輪が段差に接触したときにおける車両の慣性力が大きい。そして、車両の慣性力が大きいほど、車輪が段差に乗り上げるに際して必要な駆動力が小さくなる。そこで、段差接触判定部61は、車体速度VSが大きいときには車体速度VSが小さいときよりも判定駆動力FXdThが小さくなるとともに、路面の勾配が下り勾配であるときには勾配が下り勾配ではないときよりも判定駆動力FXdThが小さくなるように、判定駆動力FXdThを演算する。
次に、図4及び図5を参照し、車輪が接触した段差の高さ推定値Heを演算する際に高さ推定部62が実行する処理について説明する。
車輪が段差に乗り上げる際、段差の高さが高いほど、車輪を段差に乗り上げさせる際の駆動力FXdの最小値が大きくなりやすい。そのため、高さ推定部62は、段差接触判定部61によって車輪が段差に乗り上げたと判定された時点の車両の駆動力FXdが大きいほど高さ推定値Heが大きくなるように、高さ推定値Heを演算する。
車輪が段差に乗り上げる際、段差の高さが高いほど、車輪を段差に乗り上げさせる際の駆動力FXdの最小値が大きくなりやすい。そのため、高さ推定部62は、段差接触判定部61によって車輪が段差に乗り上げたと判定された時点の車両の駆動力FXdが大きいほど高さ推定値Heが大きくなるように、高さ推定値Heを演算する。
ちなみに、従動輪が段差に乗り上げたときと、駆動輪が段差に乗り上げたときとでは、駆動力と段差の高さとの関係が多少相違する。そのため、本実施形態では、従動輪が段差に乗り上げた場合と、駆動輪が段差に乗り上げた場合とで、段差の高さ推定値Heの演算方法を変えている。
図4には、従動輪である前輪FL,FRが段差100に接触している様子が図示されている。両前輪FL,FRが段差に接触している状態では、前輪FL,FRにおいて段差100に接触している部位を接触点Pとした場合、前輪FL,FRに作用する重力の合計「mg」が接触点Pに生じさせるモーメントMsは、以下に示す関係式(式1)で表すことができる。また、車輪を段差100側に押す力である駆動力FXdが接触点Pに生じさせるモーメントMfは、以下に示す関係式(式2)で表すことができる。関係式(式1)及び(式2)において、「H」は段差100の実際の高さであり、「R」は前輪FL,FRの半径である。
なお、上述のように演算した段差100の高さ推定値Heは、車両が水平路上に位置しており、且つ、車体速度VSが「0」と等しい状態で車輪が段差100に接触している状況下から車輪が段差100に乗り上げたことを前提に演算される値である。実際にはある速度で車両が走行している状況下で車輪が段差100に接触することもある。そして、車両の車体速度VSが大きいほど、車両が走行している状況下で車輪が段差100に接触した場合に発生する車両の慣性力が大きいため、小さい駆動力FXdで車輪を段差100に乗り上げさせることができる。そのため、高さ推定部62は、上記のように演算した高さ推定値Heを、そのときの車体速度VSに基づいて補正する。具体的には、高さ推定部62は、車体速度VSが大きいときには車体速度VSが小さいときよりも高さ推定値Heが大きくなるように、高さ推定値Heを補正する。
また、下り勾配の路面で車両が走行している場合には、車両の慣性力と、重力のうち、車両の進行方向に作用する成分(進行方向へ加速させる力)との双方が車両に加わるため、段差100が下り勾配ではない路面で車両が走行している場合よりも小さい駆動力FXdで車輪を段差100に乗り上げさせることができる。そのため、高さ推定部62は、上記のように演算した高さ推定値Heを、路面の勾配SRに基づいて補正する。具体的には、高さ推定部62は、路面が下り勾配であるときには、勾配SRの絶対値が大きいほど高さ推定値Heが大きくなるように、高さ推定値Heを補正する。また、高さ推定部62は、路面が上がり勾配であるときには、勾配SRの絶対値が大きいほど高さ推定値Heが小さくなるように、高さ推定値Heを補正する。
また、車輪が段差100に乗り上げるときにおける駆動力FXdと、段差100の高さとの関係は、車両の重量Weによっても変わる。車体速度VSが「0」である状態で車輪が段差100に接触している状況下から車輪を段差100に乗り上げさせる場合、車両の重量Weが大きいほど、車輪が段差100に乗り上がりにくい。一方、車両が走行している場合、車両の重量Weが大きいほど、車輪が段差100に接触した場合に発生する車両の慣性力が大きくなる。そのため、ある速度以上で走行する車両の車輪が段差100に接触し、この車輪を段差100に乗り上げさせる際、車両の慣性力の影響が大きいため、車両の重量Weが大きいほど車両の駆動力FXdが小さい状態で車輪が段差100に乗り上がるようになる。一方、ある速度未満で走行する車両の車輪が段差100に接触し、この車輪を段差100に乗り上げさせる際、車両の慣性力の影響が小さいため、車両の重量Weが大きいほど車両の駆動力FXdが大きい状態で車輪が段差100に乗り上げるようになる。そのため、車輪が段差100に接触した時点における車体速度VSが基準速度以上である場合、高さ推定部62は、車両の重量Weが大きいほど高さ推定値Heが大きくなるように、高さ推定値Heを補正する。一方、車輪が段差100に接触した時点における車体速度VSが基準速度未満である場合、高さ推定部62は、車両の重量Weが大きいほど高さ推定値Heが小さくなるように、高さ推定値Heを補正する。
次に、図6を参照し、第1の段差判定部631が実行する処理ルーチンについて説明する。なお、この処理ルーチンは、段差接触判定部61によって車輪が段差100に接触したと判定されて高さ推定部62によって段差100の高さ推定値Heが演算されたことを契機に実行される。
図6に示すように、本処理ルーチンにおいて、第1の段差判定部631は、実施決定部64によって第1の判定処理の実施が許可されているか否かを判定する(S11)。第1の判定処理の実施が許可されていない場合(S11:NO)、第1の段差判定部631は、本処理ルーチンを終了する。一方、第1の判定処理の実施が許可されている場合(S11:YES)、第1の段差判定部631は、車両の車体速度VSが車体速度判定値VSTh以上であるか否かを判定する(S12)。駐車支援は、車両が低速で走行しているときに実施する制御である。よって、ある程度の速度以上で車両が走行している場合、車両が駐車を行っていない可能性があると判断することができる。そのため、車体速度判定値VSThは、車両が駐車を行っている可能性があるか否かを車体速度VSに基づいて判断できるように設定されている。車体速度VSが車体速度判定値VSTh以上であるときには、車両が駐車を行っていない可能性があると判断する。一方、車体速度VSが車体速度判定値VSTh未満であるときには、車両が駐車を行っている可能性があると判断する。
そのため、車体速度VSが車体速度判定値VSTh以上である場合(S12:YES)、第1の段差判定部631は、本処理ルーチンを終了する。一方、車体速度VSが車体速度判定値VSTh未満である場合(S12:NO)、第1の段差判定部631は、高さ推定部62によって演算された段差100の高さ推定値Heが高さ判定値HeTh以上であるか否かを判定する第1の判定処理を実施する(S13)。高さ判定値HeThは、車輪が接触した段差100が車止め用の段差であるか否かを判定するための基準である。
高さ推定値Heが高さ判定値HeTh以上である場合(S13:YES)、第1の段差判定部631は、車輪が接触した段差100が車止め用の段差であると判定し(S14)、その後、本処理ルーチンを終了する。一方、高さ推定値Heが高さ判定値HeTh未満である場合(S13:NO)、第1の段差判定部631は、車輪が接触した段差100が乗り越え許可段差であると判定し(S15)、その後、本処理ルーチンを終了する。
次に、図7を参照し、第2の段差判定部632が実行する第2の判定処理について説明する。なお、第2の段差判定部632は、第1の段差判定部631によって車輪の接触した段差100が車止め用の段差であると判定されていないこと、車両の車体速度VSが車体速度判定値VSTh未満であること、及び、実施決定部64によって第2の判定処理の実施が許可されていることの何れもが成立しているときに、第2の判定処理を実施する。
車輪が段差100を乗り越え、タイミングt21で車輪が路面に着地した場合、車輪が路面から受ける反力、すなわち衝撃が振動するため、図7に示すように車両の車体加速度GSが振動する。このときの車体加速度GSの振動幅AGSは、車輪が乗り上げた段差100が高いほど大きくなる。
そこで、第2の段差判定部632は、車体加速度GSの振動幅AGSを取得し、この振動幅AGSが判定振動幅AGSTh以上であるときに、車輪が車止め用の段差を乗り越えたと判定する。一方、第2の段差判定部632は、取得した振動幅AGSが判定振動幅AGSTh未満であるときに、車輪が車止め用の段差を乗り越えたと判定しない。すなわち、判定振動幅AGSThは、車体加速度GSの振動幅AGSを基に、車輪が車止め用の段差を乗り越えたか否かを判定するための基準である。
次に、図8を参照し、制駆動力設定部66によって実行される処理ルーチンについて説明する。なお、本処理ルーチンは、段差判定部63(631,632)での判定の結果が制駆動力設定部66に入力されたことを契機に実行される。
図8に示すように、本処理ルーチンにおいて、制駆動力設定部66は、レベル推定部65によって運転者の車両操作レベルが高いと判定されているか否かを判定する(S21)。車両操作レベルが高いと判定されている場合(S21:YES)、制駆動力設定部66は、本処理ルーチンを終了する。一方、車両操作レベルが高いと判定されていない場合(S21:NO)、制駆動力設定部66は、第2の段差判定部632によって車輪が車止め用の段差を乗り越えたと判定されているか否かを判定する(S22)。車輪が車止め用の段差を乗り越えたと判定されている場合(S22:YES)、制駆動力設定部66は、後述する停止要求制御を実施する、すなわち処理を後述するステップS25に移行する。
一方、車輪が車止め用の段差を乗り越えたと判定されていない場合(S22:NO)、制駆動力設定部66は、段差接触判定部61によって車輪が段差に乗り上げたと判定されているか否かを判定する(S23)。車輪が段差100に乗り上げたと判定されていない場合(S23:NO)、制駆動力設定部66は、本処理ルーチンを終了する。一方、車輪が段差100に乗り上げたと判定されている場合(S23:YES)、制駆動力設定部66は、第1の段差判定部631によって車輪の乗り上げた段差100が車止め用の段差であると判定されているか否かを判定する(S24)。段差100が車止め用の段差であると判定されている場合(S24:YES)、制駆動力設定部66は、停止要求制御を実施する。
停止要求制御では、制駆動力設定部66は、駆動力要求値FXdRを「0」と等しくし、この駆動力要求値FXdRを駆動制御部51に送信する(S25)。続いて、車両を停止させるのに必要な制動力を停止制動力FXb1とした場合、制駆動力設定部66は、制動力要求値FXbRを停止制動力FXb1と等しくし、この制動力要求値FXbRを制動制御部52に送信する(S26)。なお、停止制動力FXb1は、予め設定された所定値であってもよいし、車体速度VSや路面の勾配SRなどによって可変する値であってもよい。そして、車両が停止すると、制駆動力設定部66は、本処理ルーチンを終了する。
その一方で、ステップS24において、車輪の乗り上げた段差100が車止め用の段差であると判定されていない場合(NO)、制駆動力設定部66は、加速抑制要求制御を実施する。加速抑制要求制御では、制駆動力設定部66は、要求加速度GRから車体加速度GSを減じた値を加速度偏差ΔGとして演算する(S27)。車体加速度GSは、現時点の車両の実際の加速度又は実際の加速度に即した値である。要求加速度GRは、現時点の車両の駆動力FXdから想定される加速度の予測値である。車輪が段差100に接触することにより、車両の加速度は一時的に減少する。そのため、車輪が段差100に接触した場合、加速度偏差ΔGが「0」よりも大きくなる。そして、加速度偏差ΔGが大きい場合ほど、車輪が段差100を乗り越えた直後における車両の加速度が大きくなりやすい、すなわち車両の飛び出し感が強くなりやすい。
続いて、制駆動力設定部66は、演算した加速度偏差ΔGを基に、加速抑制制御量SFXを演算する(S28)。すなわち、制駆動力設定部66は、加速度偏差ΔGが大きいほど加速抑制制御量SFXが大きくなるように、加速抑制制御量SFXを演算する。そして、制駆動力設定部66は、演算した加速抑制制御量SFXを基に駆動力要求値FXdR及び制動力要求値FXbRを演算し、駆動力要求値FXdRを駆動制御部51に送信し、且つ、制動力要求値FXbRを制動制御部52に送信する(S29)。すなわち、制駆動力設定部66は、加速抑制制御量SFXが大きいほど駆動力要求値FXdRが小さくなるように、駆動力要求値FXdRを演算する。また、制駆動力設定部66は、車両が停止しない程度の制動力が車両に付与されるように制動力要求値FXbRを演算する。
続いて、制駆動力設定部66は、車両の車体振動が収まったか否かを判定する(S30)。すなわち、車輪が段差100を乗り越えた直後では、路面から車輪を通じて車体に入力される反力が振動するため、車体が振動する。このように車体が振動する場合、車体加速度GSもまた振動する。そのため、制駆動力設定部66は、車体加速度GSを監視することにより、車体振動が収まったか否かを判定することができる。そして、車体振動が未だ収まっていない場合(S30:NO)、制駆動力設定部66は、その処理を前述したステップS28に移行する、すなわち加速抑制要求制御の実施を継続する。一方、車体振動が収まった場合(S30:YES)、制駆動力設定部66は、加速抑制要求制御の実施を終了し、本処理ルーチンを終了する。
次に、本実施形態の作用及び効果について説明する。ここでは、駐車場で車両を駐車させる際における作用を効果とともに説明する。
車両が道路から駐車場に進入すると、ナビゲーション装置32から制御装置50に入力される情報を基に、第1の判定処理及び第2の判定処理の実施が許可される。しかし、駐車場の駐車位置に向かって車両が移動している場合、車両の車体速度VSが車体速度判定値VSTh以上であると、制御装置50による駐車支援が未だ必要ではないと判断できるため、停止要求制御や加速抑制要求制御が実施されることはない。すなわち、制御装置50による駐車支援が未だ必要ではないときに、停止要求制御や加速抑制要求制御が誤って実施されることを抑制できる。
車両が道路から駐車場に進入すると、ナビゲーション装置32から制御装置50に入力される情報を基に、第1の判定処理及び第2の判定処理の実施が許可される。しかし、駐車場の駐車位置に向かって車両が移動している場合、車両の車体速度VSが車体速度判定値VSTh以上であると、制御装置50による駐車支援が未だ必要ではないと判断できるため、停止要求制御や加速抑制要求制御が実施されることはない。すなわち、制御装置50による駐車支援が未だ必要ではないときに、停止要求制御や加速抑制要求制御が誤って実施されることを抑制できる。
そして、車両が駐車位置の周辺まで移動すると、車体速度VSが車体速度判定値VSTh未満となるように車両が走行する。例えば車両を後退させて駐車位置に駐車させる場合、車両の後輪RL,RRの少なくとも一方の後輪が段差100に乗り上げる。この場合、図3に示すように、車両の車体速度VSは例えば「0」又は「0」付近まで減少するにも拘わらず、車両の駆動力FXdが大きくなる。そして、後輪が段差100に乗り上げると、車体速度VSが増大し始める。こうした駆動力FXdの変化と車体速度VSの変化とを監視することにより、後輪が段差100に接触したと判定することができる。
本実施形態では、後輪(車輪)が段差100に接触したか否かの判定に用いる判定駆動力FXdThは、車両の車体速度VS及び段差100が設置されている路面の勾配SRを基に可変される。そのため、判定駆動力FXdThが一定値で固定されている場合と比較し、後輪が段差100に接触したか否か、すなわち後輪が段差100に乗り上げたか否かを精度良く判定することができる。
そして、後輪が段差100に乗り上げたと判定されると、段差100の高さ推定値Heが演算される。すなわち、高さ推定値Heは、後輪が段差100に乗り上げた状態での駆動力FXdを基に演算される。本実施形態では、段差100に接触した車輪が駆動輪(後輪)であるのか従動輪(前輪)であるのかによって、高さ推定値Heの演算方法を異ならせている。そのため、段差100の高さ推定値Heの演算精度を高くすることができる。
さらに、本実施形態では、後輪(車輪)が段差100に乗り上げた際の車体速度VS及び重量Weと、路面の勾配SRによって、高さ推定値Heが補正される。すなわち、駆動力FXdが一定である場合、車体速度VSが大きいときには、車体速度VSが小さいときよりも高さ推定値Heが大きくなるように高さ推定値Heが演算される。また、駆動力FXdが一定である場合、路面の勾配が下り勾配であるときには、路面の勾配が下り勾配ではないときよりも高さ推定値Heが大きくなるように高さ推定値Heが演算される。つまり、駆動力FXdが一定である場合、車輪が段差100に接触したときの車両の慣性力が大きいときには、慣性力が小さいときよりも高さ推定値Heが大きくなるように高さ推定値Heが演算される。したがって、段差100の高さ推定値Heの演算精度をさらに高くすることができる。
このように演算された段差100の高さ推定値Heが高さ判定値HeTh以上であるときには、段差100が車止め用段差であると判定される。すなわち、車両の車体速度VSが大きいときには、車体速度VSが小さいときよりも車両の駆動力FXdが小さい状態で段差100が車止め用の段差であると判定されるようになる。また、車両の走行する路面の勾配が下り勾配であるときには、路面の勾配が下り勾配ではないときよりも車両の駆動力FXdが小さい状態で段差100が車止め用の段差であると判定されるようになる。すなわち、車輪が段差100に接触した時点の車両の慣性力と重力とを考慮して段差100が車止め用の段差であるか否かの判定を行うことができる。そのため、段差100が車止め用の段差であるか否かの判定の精度を高くすることができる。
そして、段差100の高さ推定値Heが高さ判定値HeTh未満である場合、後輪の接触した段差100が乗り越え許可段差であると判定される。そして、運転者の車両操作レベルが低いと判定されていると、加速抑制要求制御が実施される。
加速抑制要求制御が実施されると、車両の駆動力FXdが小さくされる。また、車両に制動力FXbが付与されるようになる。その結果、加速抑制要求制御が実施されない場合と比較し、車両が加速しにくくなる。これにより、後輪が段差100を乗り越えるに際し、アクセル操作量ACRが過大となるようにアクセルペダルが操作されたり、ブレーキペダルの操作開始が遅れたりした場合であっても、車両の加速を抑えることができる。すなわち、後輪が段差100を乗り越えた際における車両の飛び出し感を弱くすることができる。
本実施形態では、加速度偏差ΔG(=GR-GS)に基づいた加速抑制制御量SFXに応じ、駆動力要求値FXdRが演算される。すなわち、加速度偏差ΔGが大きく、後輪が段差100を乗り越えた際における車両の飛び出し感が強くなりやすい場合ほど、駆動力要求値FXdRが小さくなるように駆動力要求値FXdRが演算される。そして、この駆動力要求値FXdRを基に駆動装置10の駆動が制御される。そのため、車輪が段差100を乗り越えた際における車両の飛び出し感の低減効果をより高くすることができる。
ここで、車両操作レベルの高い運転者が車両を運転している場合、車輪が乗り越え許可段差を乗り越えた際の車両の飛び出し感が強くならないように、運転者はアクセル操作や制動操作を行うことができる。すなわち、加速抑制要求制御の実施の必要性は低いと判断することができる。この点、本実施形態では、運転者の車両操作レベルが高いと判定されているときには、車輪が乗り越え許可段差に乗り上げた際でも加速抑制要求制御が実施されない。したがって、加速抑制要求制御の不要な実施を抑制することができる。
後輪が乗り越え許可段差を乗り越えた後、車体振動が収まると、加速抑制要求制御の実施が終了される。その後の車両の後退によって、後輪が別の段差100(今度は、車止め用の段差)に接触する。この場合であっても、後輪が乗り越え許可段差に接触した場合と同様に、駆動力FXdや車体速度VSが変化するため(図3参照)、後輪が段差100に接触したと判定することができる。
そして、後輪が段差100に乗り上げた時点の駆動力FXdに基づいて演算された高さ推定値Heが高さ判定値HeTh以上であると、段差100が車止め用の段差であると判定されるため、停止要求制御が実施される。すると、車両の駆動力FXdが「0」と等しくされ、又は、駆動力FXdが、段差100に接触した後輪と路面との接地が維持されるような所定の駆動力(例えば、アクセルオフの状態で発生する駆動力であるクリープトルクなど)に設定され、且つ、車両の制動力FXbが増大されるため、車両が自動的に停止される。そのため、後輪が車止め用の段差に乗り上げた際に運転者が適切な車両操作を行うことができない場合であっても、車両を停止させることができるため、車両の安全性の低下を抑制することができる。
本実施形態では、車両の駆動力FXdを基に、後輪(車輪)が段差100に乗り上げたか否かを判定したり、後輪の乗り上げた段差100の高さ推定値Heを演算したりするようにしている。そのため、例えば段差100の車輪との接触面になだらかな傾斜が設けられているような場合では、実際には車輪が段差100に乗り上げたにも拘わらず、車輪が段差100に乗り上げたと判定されないこともある。また、車輪が段差100に乗り上げたと判定された場合であっても、段差100の高さ推定値Heが段差100の実際の高さHよりも低めに演算され、段差100が車止め用の段差であると判定されないこともあり得る。この場合、停止要求制御が実施されないおそれがある。
この点、本実施形態では、第1の判定処理とは別に第2の判定処理が実施される。すなわち、車両の車体加速度GSの推移を把握し、車体加速度GSの振動幅AGSが判定振動幅AGSTh以上であるときには、後輪(車輪)が車止め用の段差を乗り越えたと判定するようにしている。そして、第2の判定処理によって、後輪が車止め用の段差を乗り越えたと判定されたときには、停止要求制御が実施される。したがって、後輪が車止め用の段差を乗り越えた直後に車両を停止させることができ、ひいては車両の安全性の低下を抑制することができる。
また、本実施形態では、ナビゲーション装置32から入力された位置情報などを基に、車両が道路を走行していると判断できるときには、停止要求制御や加速抑制要求制御が実施されないようになっている。そのため、比較的路面の凹凸の大きい路面、いわゆる悪路を車両が走行しているときに、停止要求制御や加速抑制要求制御が誤って実施されることを抑制できる。
なお、車両を前進させて駐車位置に車両を駐車させることもある。この場合の作用は、車両を後退させて駐車位置に駐車させる場合と略同等であるため、説明を省略するものとする。
上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、アクセル操作の履歴及び制動操作の履歴を用いて車両操作レベルを推定するようにしている。しかし、これに限らず、アクセル操作の履歴を用いるのであれば、制動操作の履歴を用いることなく、車両操作レベルを推定するようにしてもよい。また、ステアリング操作の履歴を用いて車両操作レベルを推定するようにしてもよい。さらに、自車両と障害物との衝突を回避するための緊急制動制御を実施可能な車両にあっては、緊急制動制御の実施頻度が低いほど車両操作レベルが高いと推定するようにしてもよい。
・上記実施形態では、アクセル操作の履歴及び制動操作の履歴を用いて車両操作レベルを推定するようにしている。しかし、これに限らず、アクセル操作の履歴を用いるのであれば、制動操作の履歴を用いることなく、車両操作レベルを推定するようにしてもよい。また、ステアリング操作の履歴を用いて車両操作レベルを推定するようにしてもよい。さらに、自車両と障害物との衝突を回避するための緊急制動制御を実施可能な車両にあっては、緊急制動制御の実施頻度が低いほど車両操作レベルが高いと推定するようにしてもよい。
・上記実施形態では、車両操作レベルが高いと判定されているときには、加速抑制要求制御だけではなく停止要求制御も実施しないようにしている。しかし、車両操作レベルが高いと判定されている場合であっても、第2の判定処理によって車輪が車止め用の段差を乗り越えたと判定されたり、第1の判定処理によって車輪の接触した段差が車止め用の段差であると判定されたりしたときには、停止要求制御を実施するようにしてもよい。
・車両操作レベルが高いと判定されている場合でも、加速抑制要求制御を実施するようにしてもよい。例えば、車両操作レベルが高いと判定されている場合に実施される加速抑制要求制御では、車両操作レベルが低いと判定されている場合よりも加速抑制制御量SFXが小さくなるように加速抑制制御量SFXを演算するようにしてもよい。
・車両操作レベルに拘わらず、加速抑制要求制御や停止要求制御を実施するようにしてもよい。
・加速抑制制御を実施する場合、加速抑制制御量SFXを、加速度偏差ΔGとは異なる他のパラメータによって可変させるようにしてもよい。例えば、車両操作レベルに拘わらず加速抑制要求制御を実施する場合、車両操作レベルの推定値が低いほど加速抑制制御量SFXが大きくなるように、加速抑制制御量SFXを演算するようにしてもよい。また、加速抑制制御量SFXを、段差100の高さ推定値Heが大きいほど大きくなるように演算してもよい。
・加速抑制制御を実施する場合、加速抑制制御量SFXを、加速度偏差ΔGとは異なる他のパラメータによって可変させるようにしてもよい。例えば、車両操作レベルに拘わらず加速抑制要求制御を実施する場合、車両操作レベルの推定値が低いほど加速抑制制御量SFXが大きくなるように、加速抑制制御量SFXを演算するようにしてもよい。また、加速抑制制御量SFXを、段差100の高さ推定値Heが大きいほど大きくなるように演算してもよい。
・加速抑制制御を実施する場合、加速抑制制御量SFXを、予め設定された所定値で固定してもよい。
・車体速度VSが車体速度判定値VSTh以上であるときには、各判定処理を実施しないようにしているのであれば、自車両の位置情報を基に各判定処理の実施を許可するか否かを決める処理を省略してもよい。
・車体速度VSが車体速度判定値VSTh以上であるときには、各判定処理を実施しないようにしているのであれば、自車両の位置情報を基に各判定処理の実施を許可するか否かを決める処理を省略してもよい。
・自車両の位置情報などに基づいて各判定処理の実施が許可されている場合、車体速度VSが車体速度判定値VSTh以上であっても、各判定処理を実施するようにしてもよい。
・上記実施形態では、車載のナビゲーション装置32から得た情報を基に、自車両がどのようなエリアを走行しているか否かを判定するようにしている。しかし、車載のナビゲーション装置32などのような車載装置ではなく、車載ではない他の装置から情報を得ることができる場合、当該他の装置から得た情報を基に、自車両がどのようなエリアを走行しているか否かを判定するようにしている。他の装置としては、例えば、車外に設置されたサーバ(クラウド)、車両の乗員が所有するタブレット端末を挙げることができる。
・車両が駐車位置に駐車されていた状態から運転者による車両操作によって車両を発進させることがある。この場合、例えば、本来はシフトレンジを前進レンジに設定して車両を前進させる必要があるにも拘わらず、シフトレンジを誤って後退レンジに設定してアクセル操作が行われた場合、車両が後退するため、後輪RL,RRが車止め用の段差に乗り上げてしまうことがある。そこで、車両が駐車位置に駐車されていた状態から運転者による車両操作によって車両を発進させる場合、シフトレンジが駐車レンジから走行用のレンジ(前進レンジ又は後退レンジ)に変更された直後に車輪が段差100に接触したと判定されたときには、当該段差100が車止め用の段差であると判定し、停止要求制御を実施するようにしてもよい。また、車両が駐車位置に駐車されていた状態から運転者による車両操作によって車両を発進させる場合、シフトレンジが、前進レンジ及び後退レンジのうちの一方のレンジから他方のレンジに変更された直後に車輪が段差100に接触したと判定されたときには、当該段差100が車止め用の段差であると判定し、停止要求制御を実施するようにしてもよい。
・第2の判定処理では、段差100を乗り越えた後の路面と車輪との接触による衝撃と相関するパラメータであれば、車体加速度GSとは異なる他のパラメータを用いるようにしてもよい。他のパラメータとしては、例えば、車両の上下方向の加速度、車輪速度を時間微分した値、車輪におけるタイヤの空気圧、サスペンションの伸縮、車輪が路面上に着地した際の音の大きさを挙げることができる。
・監視装置31が取得した情報を基に車両の進行方向前側に存在する段差100を検出できたときには、車輪が段差100に接触する前に、段差100に関する情報を解析し、当該段差100が車止め用の段差であるか否かを判断するようにしてもよい。そして、車輪が段差100に接触した場合、当該段差100が車止め用の段差であると判定していたときには、停止要求制御を実施するようにしてもよい。また、車輪が段差100に接触した場合、当該段差100が車止め用の段差であると判定していないとき、すなわち当該段差100が乗り越え許可段差であると判定されていたときには、加速抑制要求制御を実施するようにしてもよい。
・上記実施形態では、車両の駆動力FXdに基づいた高さ推定値Heを、車両の車体速度VS及び重量Weと、路面の勾配SRとによって補正し、補正後の高さ推定値Heが高さ判定値HeTh以上であるか否かを判定するようにしている。しかし、車両の駆動力FXdに基づいた高さ推定値Heを、車両の車体速度VS及び重量Weと、路面の勾配SRとによって補正しなくてもよい。この場合、高さ推定値Heを補正しない代わりに、高さ判定値HeThを、車両の車体速度VS及び重量Weと、路面の勾配SRとによって補正するようにしてもよい。この場合であっても、上記実施形態と同等の作用効果を得ることができる。
・前輪FL,FR及び後輪RL,RRの何れか一方の車輪が段差100に乗り上げた場合、車両が路面に対して傾斜する。すなわち、車両のピッチ角PRが変化する。具体的には、段差100が高いほど、ピッチ角PRの変化量が大きくなる。そこで、車輪が段差100に接触したと判定された場合における車両のピッチ角PRを基に、段差100の高さ推定値Heを演算し、この高さ推定値Heが高さ判定値HeTh以上であるときには段差100が車止め用の段差であると判定するようにしてもよい。一方、高さ推定値Heが高さ判定値HeTh以下であるときには段差100が乗り越え許可段差であると判定するようにしてもよい。
・加速抑制要求制御では、車両の加速を抑えることができるのであれば、制動力FXbの増大を制動制御部52に要求することなく、駆動力FXdの減少を駆動制御部51に要求するようにしてもよい。また、加速抑制要求制御では、車両の加速を抑えることができるのであれば、駆動力FXdの減少を駆動制御部51に要求することなく、制動力FXbの増大を制動制御部52に要求するようにしてもよい。
・車輪の接触した段差100が乗り越え許可段差であると判定されている場合であっても、運転者による制動操作、又は、アクセル操作量ACRの減少が検出されたときには、加速抑制要求制御を実施しなくてもよい。
・車輪の接触した段差100が車止め用の段差であると判定されている場合であっても、運転者による制動操作が検出されたときには、停止要求制御を実施しなくてもよい。
・車輪が段差100に接触したか否かは、車両の駆動力FXdを用いて判定される。そのため、車両に制動力FXbが付与されている状態では、当該判定の精度が低くなる。そのため、常用ブレーキの作動によって車両に制動力FXbが付与されている場合、及び、駐車ブレーキの作動によって車両に制動力FXbが付与されている場合、当該判定を実施しないようにしてもよい。
・車輪が段差100に接触したか否かは、車両の駆動力FXdを用いて判定される。そのため、車両に制動力FXbが付与されている状態では、当該判定の精度が低くなる。そのため、常用ブレーキの作動によって車両に制動力FXbが付与されている場合、及び、駐車ブレーキの作動によって車両に制動力FXbが付与されている場合、当該判定を実施しないようにしてもよい。
・車輪が段差100に接触したと判定されても運転者が制動操作を行っている場合には、車両を停止させる意志、又は、車両の加速を抑制する意志が運転者にあると判断できるため、停止要求制御や加速抑制要求制御を実施しないようにしてもよい。
・上記実施形態では、第1の判定処理によって、車輪の接触した段差100が車止め用の段差であると判定されなかった場合、加速抑制要求制御を実施するようにしている。しかし、第1の判定処理によって、車輪の接触した段差100が車止め用の段差であると判定された場合に停止要求制御を実施するのであれば、段差100が車止め用の段差であると判定されなかった場合に加速抑制要求制御を実施しないようにしてもよい。
・停止要求制御では、各車輪FL,FR,RL,RRに制動力を付与する常用ブレーキではなく、後輪RL,RRに対してのみ制動力を付与する駐車ブレーキを作動させるようにしてもよい。
・車輪が段差100に接触したか否かの判定は、上記実施形態で説明した方法とは別の方法で行ってもよい。例えば、車両の車体加速度GSの変動、ピッチ角PRの変動などを用い、車輪が段差100に接触したか否かを判定するようにしてもよい。
・走行支援装置としての機能も有する制御装置50を備える車両は、駆動装置10から出力された駆動力FXdが前輪FL,FRにのみ伝達される前輪駆動車であってもよいし、当該駆動力FXdが前輪FL,FR及び後輪RL,RRの双方に伝達される四輪駆動車であってもよい。
・上記実施形態では、運転者が運転操作を行っていたが、例えば、自動駐車制御や衝突防止制御など、運転者の運転操作に代わって、車両の駆動装置10や制動装置20に指示を出力して車両の進行を制御する他の制御装置と、上記の制御装置50とを組み合わせることも可能である。例えば、自動駐車制御では、カメラなどの撮像手段から得た段差100の位置や駐車スペースのエリアなどの外部情報を基に車両の停止位置を設定し、停止位置まで車両を移動させ、停止位置で車両を停止させる。このため、例えば段差100を認識できなかった場合や、自車の駐車スペースに隣接した向こう側の駐車スペースの段差100を自車両の駐車スペースの段差100と誤認識したような場合には、自動駐車制御からの不適切な駆動装置10への指示や不適切な制動装置20への指示によって、車両の車輪が段差100を乗り越えて進行してしまうおそれがある。しかし、上記の制御装置50による駐車支援を当該自動駐車制御に組み合わせることにより、設定した駐車スペースで車両を停止させやすくすることができる。
また、車両が停止する際には段差100が車体の陰になり撮像手段では正確な位置が認識できないことがある。したがって、段差100以外に有効な目標物の無い場合、自動駐車制御は事前の情報から段差100と車両との相対位置を推定して停止するように車両の駆動装置10や制動装置20に指示を出力することとなる。しかし、極低速での車両速度の検出精度の低下などにより、実際の停止位置に想定以上の誤差が生じるおそれもある。この場合も、上記の制御装置50による駐車支援を当該自動駐車制御に組み合わせることにより、設定した駐車スペースで車両を停止させやすくすることができる。
また、レーダを用いた衝突防止制御では、進行方向に車両や建物などの障害物の無い駐車スペースでは、誤操作による段差100の乗り越しを防止できない。しかし、上記の制御装置50による駐車支援を当該衝突防止制御に組み合わせることにより、設定した駐車スペースで車両を停止させやすくすることができる。
次に、上記実施形態及び変更例から把握できる技術的思想について記載する。
(イ)車両の車輪の接触した段差の高さを推定する段差高さ推定装置であって、
車輪の接触した段差の高さの推定値を、車輪が段差に接触したときにおける車両の駆動力が大きいほど大きくなるように演算する高さ推定部を備える段差高さ推定装置。
(イ)車両の車輪の接触した段差の高さを推定する段差高さ推定装置であって、
車輪の接触した段差の高さの推定値を、車輪が段差に接触したときにおける車両の駆動力が大きいほど大きくなるように演算する高さ推定部を備える段差高さ推定装置。
Claims (12)
- 車両の走行を支援する車両の走行支援装置であって、
車輪が接触したことを検出できる段差のうち、車両を停止させるための段差のことを車止め用の段差とした場合、
車輪が接触した前記段差が前記車止め用の段差であるか否かを判定する判定処理を実施する段差判定部と、
前記判定処理によって前記段差が前記車止め用の段差であると判定されたときには、車両の制動力の増大によって車両を停止させることを要求する停止要求制御を実施する制駆動力設定部と、を備える
車両の走行支援装置。 - 前記制駆動力設定部は、前記判定処理によって、車両が接触した前記段差が前記車止め用の段差であると判定されないときには、車両の加速が抑制されるように、車両の制動力を増大させること、及び、車両の駆動力を減少させることのうちの少なくとも一方を要求する加速抑制要求制御を実施する
請求項1に記載の車両の走行支援装置。 - 前記段差判定部は、車輪が前記段差に接触したときにおける車両の駆動力を基に、前記判定処理を実施する
請求項2に記載の車両の走行支援装置。 - 車輪が前記段差に接触したときにおける車両の駆動力が大きいほど同段差の高さの推定値が大きくなるように、同段差の高さの推定値を演算する高さ推定部を備え、
前記段差判定部は、前記判定処理では、前記高さ推定部によって演算された前記段差の高さの推定値が高さ判定値以上であるときに、前記段差が前記車止め用の段差であると判定する
請求項3に記載の車両の走行支援装置。 - 前記段差判定部は、前記判定処理では、車両の車体速度が大きいときには、同車体速度が小さいときよりも車両の駆動力が小さい状態で同段差が前記車止め用の段差であると判定する
請求項3又は請求項4に記載の車両の走行支援装置。 - 前記段差判定部は、前記判定処理では、車両の走行する路面の勾配が下り勾配であるときには、同路面の勾配が下り勾配ではないときよりも車両の駆動力が小さい状態で前記段差が前記車止め用の段差であると判定する
請求項3又は請求項4に記載の車両の走行支援装置。 - 前記段差判定部は、車輪が前記段差に接触したときにおける車両のピッチ角を基に、前記判定処理を実施する
請求項1又は請求項2に記載の車両の走行支援装置。 - 車両には、車両の周辺を監視する監視装置が設けられており、
前記段差判定部は、前記監視装置によって検出された前記段差の解析結果を基に、前記判定処理を実施する
請求項1又は請求項2に記載の車両の走行支援装置。 - 前記段差判定部は、車輪に入力される衝撃の大きさを基に、車輪が前記車止め用の段差を乗り越えたか否かを判定する他の判定処理を実施するようになっており、
前記制駆動力設定部は、前記他の判定処理によって車輪が前記車止め用の段差を乗り越えたと判定されたときには、前記停止要求制御を実施する
請求項1~請求項8のうち何れか一項に記載の車両の走行支援装置。 - 車両の位置情報を取得し、当該位置情報を基に、前記段差判定部による前記各判定処理の実施を許可するか否かを決める実施決定部を備える
請求項9に記載の車両の走行支援装置。 - 前記段差判定部は、車両の車体速度が車体速度判定値以上であるときには、前記各判定処理を実施しない
請求項9又は請求項10に記載の車両の走行支援装置。 - アクセル操作の履歴を基に、運転者の車両操作レベルを推定するレベル推定部を備え、
前記制駆動力設定部は、前記レベル推定部によって推定された車両操作レベルを基に、前記加速抑制要求制御の実施の許可又は禁止を決める、又は、前記レベル推定部によって推定された車両操作レベルが高いときには同車両操作レベルが低いときよりも前記加速抑制要求制御の制御量を少なくする
請求項2に記載の車両の走行支援装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/764,820 US11440547B2 (en) | 2017-11-17 | 2018-11-16 | Vehicle travel assistance device |
DE112018005598.1T DE112018005598T5 (de) | 2017-11-17 | 2018-11-16 | Fahrzeugfahrunterstützungsvorrichtung |
CN201880074137.8A CN111356616B (zh) | 2017-11-17 | 2018-11-16 | 车辆的行驶支援装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-222113 | 2017-11-17 | ||
JP2017222113A JP6981196B2 (ja) | 2017-11-17 | 2017-11-17 | 車両の走行支援装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098324A1 true WO2019098324A1 (ja) | 2019-05-23 |
Family
ID=66539826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042468 WO2019098324A1 (ja) | 2017-11-17 | 2018-11-16 | 車両の走行支援装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11440547B2 (ja) |
JP (1) | JP6981196B2 (ja) |
CN (1) | CN111356616B (ja) |
DE (1) | DE112018005598T5 (ja) |
WO (1) | WO2019098324A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021141712A (ja) * | 2020-03-05 | 2021-09-16 | 株式会社Subaru | 車両の制御装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6949096B2 (ja) * | 2019-12-13 | 2021-10-13 | 本田技研工業株式会社 | 駐車支援システム |
JP7549941B2 (ja) * | 2021-03-17 | 2024-09-12 | パナソニックオートモーティブシステムズ株式会社 | 運転支援装置および運転支援方法 |
JP2023161109A (ja) * | 2022-04-25 | 2023-11-07 | 株式会社デンソー | 制御装置及びプログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342787A (ja) * | 2005-05-10 | 2006-12-21 | Toyota Motor Corp | 内燃機関システムの制御装置 |
JP2012116360A (ja) * | 2010-12-01 | 2012-06-21 | Nippon Soken Inc | 運転支援装置 |
JP2013049389A (ja) * | 2011-08-31 | 2013-03-14 | Nissan Motor Co Ltd | 車両の制駆動力制御装置及び制駆動力制御方法 |
JP2013075621A (ja) * | 2011-09-30 | 2013-04-25 | Mazda Motor Corp | 駐車支援装置 |
JP2013244852A (ja) * | 2012-05-25 | 2013-12-09 | Sharp Corp | 駐車支援装置、駐車支援方法およびそのプログラム |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3740007B2 (ja) * | 2000-09-28 | 2006-01-25 | トヨタ自動車株式会社 | 車両用ブレーキの制御装置 |
US7317980B2 (en) * | 2002-07-30 | 2008-01-08 | Adivics Co., Ltd. | Automatic brake device for controlling movement of vehicle in direction opposite to intended direction of movement of driver |
JP4557817B2 (ja) * | 2005-06-17 | 2010-10-06 | アイシン精機株式会社 | 運転支援装置 |
JP2007008415A (ja) * | 2005-07-04 | 2007-01-18 | Fuji Heavy Ind Ltd | 車両用運転支援装置 |
JP2007030581A (ja) | 2005-07-25 | 2007-02-08 | Toyota Motor Corp | 車両制動装置およびオーバーラン予防方法 |
DE102007061234A1 (de) | 2007-12-19 | 2009-06-25 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Anpassen der Führung eines Fahrzeuges |
WO2012137278A1 (ja) * | 2011-04-01 | 2012-10-11 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
WO2013121587A1 (ja) * | 2012-02-17 | 2013-08-22 | トヨタ自動車株式会社 | 運転支援装置 |
JP5542178B2 (ja) * | 2012-07-18 | 2014-07-09 | 富士重工業株式会社 | 車両の駆動力抑制装置 |
JP5764103B2 (ja) * | 2012-09-07 | 2015-08-12 | 株式会社アドヴィックス | 車両の制動制御装置 |
JP2014226194A (ja) * | 2013-05-20 | 2014-12-08 | シャープ株式会社 | 障害物認識装置およびそれを備えた電動車両 |
DE102013220931A1 (de) | 2013-10-16 | 2015-04-16 | Ford Global Technologies, Llc | Verfahren und Vorrichtung zum Unterstützen des Auffahrens eines Kraftfahrzeuges auf einen Bordstein |
JP6156270B2 (ja) * | 2014-06-30 | 2017-07-05 | 株式会社アドヴィックス | 車両制動装置 |
JP6439322B2 (ja) * | 2014-08-27 | 2018-12-19 | 三菱自動車工業株式会社 | ハイブリッド車両の回生制御装置 |
DE102015112311A1 (de) | 2015-07-28 | 2017-02-02 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs mit Erkennung eines Bordsteinkontakts, Fahrerassistenzsystem sowie Kraftfahrzeug |
DE102015220467A1 (de) | 2015-10-21 | 2017-04-27 | Robert Bosch Gmbh | Verfahren zum Unterstützen eines Fahrers beim Parken eines Fahrzeuges und Parkassistenzsystem |
DE102015118471A1 (de) | 2015-10-29 | 2017-05-04 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs mit aktivem Fahrwerksystem, Fahrerassistenzsystem sowie Kraftfahrzeug |
JP6717591B2 (ja) * | 2015-12-01 | 2020-07-01 | パイオニア株式会社 | 段差検出装置 |
-
2017
- 2017-11-17 JP JP2017222113A patent/JP6981196B2/ja active Active
-
2018
- 2018-11-16 DE DE112018005598.1T patent/DE112018005598T5/de active Pending
- 2018-11-16 WO PCT/JP2018/042468 patent/WO2019098324A1/ja active Application Filing
- 2018-11-16 US US16/764,820 patent/US11440547B2/en active Active
- 2018-11-16 CN CN201880074137.8A patent/CN111356616B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006342787A (ja) * | 2005-05-10 | 2006-12-21 | Toyota Motor Corp | 内燃機関システムの制御装置 |
JP2012116360A (ja) * | 2010-12-01 | 2012-06-21 | Nippon Soken Inc | 運転支援装置 |
JP2013049389A (ja) * | 2011-08-31 | 2013-03-14 | Nissan Motor Co Ltd | 車両の制駆動力制御装置及び制駆動力制御方法 |
JP2013075621A (ja) * | 2011-09-30 | 2013-04-25 | Mazda Motor Corp | 駐車支援装置 |
JP2013244852A (ja) * | 2012-05-25 | 2013-12-09 | Sharp Corp | 駐車支援装置、駐車支援方法およびそのプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021141712A (ja) * | 2020-03-05 | 2021-09-16 | 株式会社Subaru | 車両の制御装置 |
JP7526568B2 (ja) | 2020-03-05 | 2024-08-01 | 株式会社Subaru | 車両の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111356616B (zh) | 2022-06-14 |
CN111356616A (zh) | 2020-06-30 |
US20200361464A1 (en) | 2020-11-19 |
DE112018005598T5 (de) | 2020-06-25 |
US11440547B2 (en) | 2022-09-13 |
JP6981196B2 (ja) | 2021-12-15 |
JP2019093761A (ja) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3208167B1 (en) | A vehicle control apparatus | |
WO2019098324A1 (ja) | 車両の走行支援装置 | |
KR101864938B1 (ko) | 충돌 회피 지원 장치 | |
JP6497349B2 (ja) | 車両走行制御装置 | |
US8195371B2 (en) | Motion control device for vehicle | |
JP4596459B2 (ja) | 自動車における非常制動プロセスを自動的に開始する方法および装置 | |
JP3927265B2 (ja) | 車両の自動制動制御装置 | |
JP6380309B2 (ja) | 車両の制御装置 | |
US20090093938A1 (en) | Speed control system for vehicles | |
JP2003206780A (ja) | 走行制御装置および駐車支援装置 | |
US20120221209A1 (en) | Accelerator pedal erroneous operation responding apparatus and storage medium | |
JP2009096349A (ja) | 車両用運転支援装置 | |
WO2008020290A1 (en) | Braking control system and braking control method | |
US11001255B2 (en) | Driving assistance apparatus and driving assistance method | |
JPH1178953A (ja) | 車両用操舵装置 | |
JP6809023B2 (ja) | 操舵補助装置及び操舵補助方法 | |
WO2019098325A1 (ja) | 車両の走行支援装置 | |
CN111497843A (zh) | 驾驶辅助系统及其制动控制单元和制动控制方法 | |
US20220089150A1 (en) | Turning controller for vehicle, computer-readable medium storing turning control program, and turning control method for vehicle | |
JP2008285095A (ja) | 車両操作支援装置 | |
JP2022159668A (ja) | 車両衝突回避支援装置 | |
JP2022021309A (ja) | 前方にあるカーブを通過する際に、エゴ・車両の車両運転手をサポートするための方法 | |
JP2015071366A (ja) | 駐車支援装置 | |
KR102717372B1 (ko) | 차량 충돌 회피 지원 장치 | |
JP7569227B2 (ja) | 車両衝突回避支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18877772 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18877772 Country of ref document: EP Kind code of ref document: A1 |