WO2019098084A1 - オルガノポリシロキサン組成物 - Google Patents

オルガノポリシロキサン組成物 Download PDF

Info

Publication number
WO2019098084A1
WO2019098084A1 PCT/JP2018/041117 JP2018041117W WO2019098084A1 WO 2019098084 A1 WO2019098084 A1 WO 2019098084A1 JP 2018041117 W JP2018041117 W JP 2018041117W WO 2019098084 A1 WO2019098084 A1 WO 2019098084A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
atom
groups
component
Prior art date
Application number
PCT/JP2018/041117
Other languages
English (en)
French (fr)
Inventor
大輔 野田
晃司 作田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP18877562.1A priority Critical patent/EP3712212B1/en
Priority to CN201880073693.3A priority patent/CN111344356B/zh
Priority to KR1020207016392A priority patent/KR102648018B1/ko
Priority to JP2019554176A priority patent/JP7103371B2/ja
Priority to US16/764,198 priority patent/US11299628B2/en
Publication of WO2019098084A1 publication Critical patent/WO2019098084A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5475Silicon-containing compounds containing nitrogen containing at least one C≡N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to organopolysiloxane compositions, and more particularly to organopolysiloxane compositions to which isocyanide compounds have been added.
  • hydrosilylation reaction which is an addition reaction of a compound having an unsaturated group and a compound having an Si—H bond
  • silicone materials are manufactured industrially using a platinum catalyst.
  • curing is performed by crosslinking by the addition reaction described above, whereby a material having physical properties unique to silicone can be obtained.
  • the silicone materials mentioned above are either one-component type or two-component type depending on the application, but particularly when obtaining a cured product by the above addition reaction, the reaction is often started immediately after addition of the catalyst because the platinum catalyst is highly active.
  • a platinum catalyst reaction control agent (or reaction inhibitor) is added, and the curability and pot life are adjusted according to the application.
  • the reaction control agent for example, acetylene compounds (patent document 1), acetylene alcohol compounds (patent documents 2 to 5), organic nitrogen compounds such as diamines, cyclic azoethers and imino compounds, thiophenes and thioether compounds, etc.
  • Organic sulfur compounds Patent Documents 6 to 8
  • other compounds Patent Document 9 and the like can be mentioned.
  • Patent Document 10 a new isocyanide compound modified with silicone is reported as a ligand for a catalyst for hydrosilylation reaction, but it is used in metals other than platinum and is intended to improve the activity of the catalyst, a platinum catalyst It has not been studied as a control agent for
  • the present invention has been made in view of such circumstances, and it is an organopolysiloxane composition containing an isocyanide compound capable of controlling a small amount of reaction of a platinum catalyst, wherein the isocyanide compound has little offensive odor and the like.
  • An object of the present invention is to provide an organopolysiloxane composition having excellent solubility in the composition.
  • the present invention provides the following organopolysiloxane composition.
  • A an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule
  • B an organohydrogenpolysiloxane having at least two hydrogen atoms bonded to a silicon atom in one molecule
  • C a platinum hydrosilylation catalyst
  • D the following formula (1-1) or (1-2) R 1 -Si (R 1 ) a ⁇ [X-Si (R 1 ) 2 ] b -R 1 ⁇ c (1-1) R 1 -Si (R 1 ) a ⁇ (Z i ) ⁇ c (1-2)
  • R 1 's independently of each other may be substituted, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus may be intervened, each having 1 to 30 carbon atoms
  • Organic group and the following formula (2) -Y-NC (2) (Where
  • R 1 is a monovalent organic group selected from organic groups represented by and 1 to 3 of all R 1 groups are organic groups represented by the formula (2), X is, independently of one another, an oxygen atom, or may be substituted, and an atom selected from oxygen, nitrogen, sulfur and phosphorus may have one or more intervening divalent carbon atoms of 1 to 30 carbon atoms It is an organic group, and two of R 1 may combine to form a bridging group Z to form a ring structure (provided that Z has the same meaning as X).
  • a is an integer of 0 to 3
  • c is an integer of 0 to 3
  • a + c is 3
  • b is an integer of 1 to 300
  • Z i is -X-Si (R 1 ) j (Z i + 1 ) ( It is a group represented by 3-j) .
  • the component (A) has the following average composition formula (3) R 2 d R 3 e SiO (4-de) / 2 (3) Wherein R 2 is an identical or different alkenyl group, R 3 is an organic group bonded to a silicon atom other than the same or different alkenyl group, d is 0 ⁇ d ⁇ 3, e is 0 ⁇ e ⁇ 3 and 0 ⁇ d + e ⁇ 3, provided that they are selected to have at least two alkenyl groups of R 2 per molecule.) And the (B) component is the following average composition formula (4) R 4 g H h SiO (4-gh) / 2 (4) (Wherein R 4 is an organic group other than a hydrogen atom bonded to the same or different silicon atoms, and 0 ⁇ g ⁇ 3, 0 ⁇ h ⁇ 3, 0 ⁇ g + h ⁇ 3), provided that one molecule Have at least two hydrogen atoms bonded to silicon atoms per ring)
  • the compounding amount of the component (D) is an amount such that the group represented by the formula (2) of the component (D) becomes 2 to 20 equivalents with respect to 1 atom of platinum in the component (C) Organopolysiloxane composition according to any one of the preceding claims.
  • the organopolysiloxane composition of the present invention is formulated with a specific isocyanide compound, which is compared to isocyanide compounds as exemplified in Patent Document 8 and Non-patent Documents 1 and 2 Because it contains an organosilicon skeleton, it has a high boiling point, and there is little offensive odor specific to isocyanide groups. Furthermore, since it contains an organosilicon skeleton, it becomes a liquid and easy-to-handle compound, and is excellent in solubility in the composition. Thereby, by adjusting the addition amount according to the application of the organopolysiloxane composition, it is possible to adjust the curability and the pot life, and also in comparison with the control agent etc. of acetylene alcohol type frequently used. The addition of a small amount is very useful because the reaction control of the platinum catalyst is possible.
  • the component (A) is an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule, and can be used singly or in appropriate combination of two or more.
  • an organopolysiloxane represented by the following average composition formula (3) can be mentioned.
  • R 2 d R 3 e SiO (4-de) / 2 (3) Wherein R 2 is an identical or different alkenyl group, R 3 is an organic group bonded to a silicon atom other than an alkenyl group, d is 0 ⁇ d ⁇ 3, e is 0 ⁇ e ⁇ 3. And 0 ⁇ d + e ⁇ 3, provided that at least two alkenyl groups of R 2 are contained per molecule.
  • R 2 examples include vinyl, allyl, n-1-butenyl, n-1-pentenyl, n-1-hexenyl and the like, with a vinyl group being particularly preferred.
  • the bonding position of the alkenyl group in (A) may be any of molecular chain terminal, molecular chain side chain, molecular chain terminal and molecular chain side chain.
  • R 3 is an identical or different organic group bonded to a silicon atom other than the alkenyl group of R 2 .
  • R 3 include, for example, a monovalent hydrocarbon group having 1 to 30 carbon atoms which does not have an optionally substituted aliphatic unsaturated bond or a hydroxyl group, and a monovalent hydrocarbon group having 1 to 10 carbon atoms is preferable.
  • the monovalent hydrocarbon group may, for example, be an alkyl group, an aryl group or an aralkyl group.
  • d is 0 ⁇ d ⁇ 3
  • e is 0 ⁇ e ⁇ 3
  • the molecular structure of the component (A) may be linear, branched or cyclic.
  • organopolysiloxane represented by the average composition formula (3), dimethylvinylsiloxy end-capped dimethylpolysiloxane, dimethylvinylsiloxy end-capped methylvinylpolysiloxane, dimethylvinylsiloxy if linear End-capped (dimethyl siloxane ⁇ diphenyl siloxane) copolymer, dimethyl-vinylsiloxy end-capped (dimethyl siloxane ⁇ methyl vinyl siloxane) copolymer, dimethyl-vinylsiloxy end-capped (dimethyl siloxane ⁇ methyl vinyl siloxane ⁇ diphenyl siloxane) co Polymer, trimethylsiloxy end-capped methyl vinyl polysiloxane, trimethylsiloxy end-capped (dimethylsiloxane / methyl vinyl siloxane) copolymer, trimethylsiloxy end-capped (dimethyl siloxane San diphenyl
  • methyl groups of the illustrated organopolysiloxane by alkyl groups, such as an ethyl group and a propyl group, and aryl groups, such as a phenyl group, is mentioned.
  • the component (A) is appropriately selected according to the application and physical properties of the cured product obtained by curing the organopolysiloxane composition by heating or the like, but the viscosity at 25 ° C. is from the viewpoint of the handling workability of the composition, etc. preferably 10 ⁇ 500,000mm 2 / s, more preferably 300 ⁇ 100,000mm 2 / s.
  • the kinematic viscosity can be measured by an Ostwald meter (the same applies hereinafter).
  • the component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms bonded to a silicon atom in one molecule, and can be used singly or in appropriate combination of two or more.
  • the component (B) those represented by the following average composition formula (4) can be mentioned.
  • R 4 g H h SiO (4-gh) / 2 (4) (Wherein R 4 is an organic group other than a hydrogen atom bonded to the same or different silicon atoms, and 0 ⁇ g ⁇ 3, 0 ⁇ h ⁇ 3, 0 ⁇ g + h ⁇ 3), provided that one molecule Have at least two hydrogen atoms bonded to silicon atoms per ring)
  • the bonding position of the hydrogen atom bonded to the silicon atom may be any of molecular chain terminal, molecular chain side chain, molecular chain terminal and molecular chain side chain.
  • R 4 is an organic group other than a hydrogen atom bonded to the same or different silicon atom, and is, for example, a monovalent hydrocarbon group having 1 to 30 carbon atoms which has no aliphatic unsaturated bond which may be substituted. It can be mentioned. Among them, a monovalent hydrocarbon group having 1 to 10 carbon atoms which has no aliphatic unsaturated bond is preferable. Specific examples of R 4 include those similar to R 3 .
  • organohydrogenpolysiloxane represented by the average composition formula (4) include dimethylhydrogensiloxy end-capped dimethylpolysiloxane and dimethyl hydrogensiloxy end-capped methyl hydrogen Siloxane, dimethylhydrogensiloxy group end-capped (dimethylsiloxane / diphenylsiloxane) copolymer, dimethylhydrogensiloxy end-capped (dimethylsiloxane / methylhydrogensiloxane) copolymer, dimethylhydrogensiloxy end-capped (dimethylsiloxane) ⁇ Methyl hydrogen siloxane diphenyl siloxane copolymer, trimethylsiloxy end-capped methyl hydrogen polysiloxane, trimethylsiloxy end-capped (dimethyl siloxane San-methyl hydrogen siloxane) copolymer, trimethylsiloxy group end-capped (dimethyl siloxane ⁇ diphenyl siloxane ⁇
  • the methyl groups of the illustrated organohydrogenpolysiloxane by alkyl groups, such as an ethyl group and a propyl group, and aryl groups, such as a phenyl group, is mentioned.
  • the mixture containing 2 or more types of the illustrated organohydrogenpolysiloxane is mentioned.
  • the said end block includes one end and both ends.
  • the component (B) is adjusted according to the use and physical properties of a cured product obtained by curing the organopolysiloxane composition by heating or the like, but the viscosity at 25 ° C. is 0 from the viewpoint of the handling workability of the composition, etc. 1 to 10,000 mm 2 / s is preferable, and 5 to 500 mm 2 / s is more preferable.
  • the compounding amount of the component (B) is preferably such that the Si-H group derived from the component (B) is 0.1 to 10 moles relative to 1 mole of the alkenyl group derived from the component (A), more preferably 0 4 to 5 moles, preferably 0.5 to 4 moles.
  • [(C) ingredient] (C) in the present invention is a platinum hydrosilylation catalyst having activity in a hydrosilylation reaction.
  • a platinum hydrosilylation catalyst known catalysts can be used, and examples thereof include chloroplatinic acid, a modified product of chloroplatinic acid with an alcohol, and complexes of platinum with various olefins.
  • a complex of a siloxane having a plurality of alkenyl groups and platinum is preferable.
  • the compounding amount of the component (C) is not particularly limited, but is preferably in the range of 1 to 1,000 ppm based on the total amount of the components (A) and (B) from the viewpoint of curability and economy.
  • the component (D) of the present invention is (1-1) or (1-2) R 1 -Si (R 1 ) a ⁇ [X-Si (R 1 ) 2 ] b -R 1 ⁇ c (1-1) R 1 -Si (R 1 ) a ⁇ (Z i ) ⁇ c (1-2) [In the Formula, R 1 's independently of each other may be substituted, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus may be intervened, each having 1 to 30 carbon atoms] Organic group, and the following formula (2) -Y-NC (2) (Wherein Y is an unsubstituted or substituted divalent organic group having 1 to 30 carbon atoms in which one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus may be present.) And R 1 is a monovalent organic group selected from organic groups represented by and 1 to 3 of all R 1 groups are organic groups represented by the formula (2), X is, independently of one another, an oxygen
  • R 1 's may be independently substituted with each other, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus may be present at 1 to 30 carbon atoms.
  • a monovalent organic group selected from organic groups of the following formula (2).
  • the monovalent organic group having 1 to 30 carbon atoms is not particularly limited, but is preferably a monovalent hydrocarbon group having 1 to 30 carbon atoms or an organooxy group.
  • Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group and an aralkyl group.
  • the alkyl group may be linear, branched or cyclic, and is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n Straight or branched chain such as -decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadec
  • the alkenyl group is preferably an alkenyl group having a carbon number of 2 to 20. Specific examples thereof include ethenyl (vinyl), n-1-propenyl (allyl), n-2-propenyl, 1-methylethenyl, n-1-butenyl , N-2-butenyl, n-3-butenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n -1-pentenyl, n-1-hexenyl, n-1-decenyl, n-1-eicosenyl and the like.
  • the alkynyl group is preferably an alkynyl group having a carbon number of 2 to 20. Specific examples thereof include ethynyl, n-1-propynyl, n-2-propynyl, n-1-butynyl, n-2-butynyl and n-3 -Butynyl, 1-methyl-2-propynyl, n-1-pentynyl, n-2-pentynyl, n-3-pentynyl, n-4-pentynyl, 1-methyl-n-butynyl, 2-methyl-n-butynyl And 3-methyl-n-butynyl, 1,1-dimethyl-n-propynyl, n-1-hexynyl, n-1-decynyl, n-1-pentadecynyl, n-1-eicosynyl group and the like.
  • the aryl group is preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 20 carbon atoms.
  • Specific examples include phenyl, 1-naphthyl, 2-naphthyl, anthryl, phenanthryl, o-biphenylyl, m-biphenylyl, p-biphenylyl, tolyl, 2,6-dimethylphenyl, 2,6-diisopropylphenyl, mesityl group and the like Can be mentioned.
  • an aralkyl group having 7 to 30 carbon atoms is preferable, and an aralkyl group having 7 to 20 carbon atoms is more preferable.
  • Specific examples thereof include benzyl, phenylethyl, phenylpropyl, naphthylmethyl, naphthylethyl and naphthylpropyl groups.
  • the organooxy group is preferably an organooxy group having a carbon number of 1 to 10, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy and n- Straight or branched alkoxy groups such as pentyloxy, n-hexyloxy, 2-ethylhexyloxy, n-heptyloxy, n-octyloxy; cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy, norbornyloxy, adamantyl And cycloalkoxy groups such as oxy group; aryloxy groups such as phenoxy; aralkyloxy groups such as benzooxy; and the like.
  • organooxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, phenoxy and benzooxy, phenyl
  • organooxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, phenoxy and benzooxy, phenyl
  • organooxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, phenoxy and benzooxy, phenyl
  • aryl group such as
  • the alkyl group, the alkenyl group, the alkynyl group, the aryl group, the aralkyl group and the organooxy group may be substituted, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus are interposed.
  • the substituent in R 1 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group, ethoxy group and propoxy group, and amino groups such as dialkylamino group. It can be mentioned.
  • X is, independently of one another, an oxygen atom, or may be substituted, and an atom selected from oxygen, nitrogen, sulfur and phosphorus may have one or more intervening divalent carbon atoms of 1 to 30 carbon atoms It is an organic group. Among them, oxygen atom is preferable.
  • the divalent organic group having 1 to 30 carbon atoms is not particularly limited, but is preferably a divalent hydrocarbon group having 1 to 30 carbon atoms, and may be linear, branched or cyclic.
  • Examples of the divalent hydrocarbon group include an alkylene group, an arylene group and an aralkylene group.
  • the alkylene group may be linear, branched or cyclic, and is preferably an alkylene group having 1 to 20 carbon atoms, and more preferably an alkylene group having 1 to 10 carbon atoms. Specific examples thereof include methylene, ethylene, propylene, trimethylene, n-butylene, isobutylene, s-butylene, n-octylene, 2-ethylhexylene, n-decylene, n-undecylene, n-dodecylene, n-tridecylene, n -Linear or branched alkylene groups such as -tetradecylene, n-pentadecylene, n-hexadecylene, n-heptadecylene, n-octadecylene, n-nonadecylene, n-eicosanylene groups; and cycloalkylene groups such as 1,4-cyclohex
  • the arylene group is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 20 carbon atoms.
  • o-phenylene, m-phenylene, p-phenylene, 1,2-naphthylene, 1,8-naphthylene, 2,3-naphthylene, 4,4'-biphenylene group and the like can be mentioned.
  • the aralkylene group is preferably an aralkylene group having 7 to 30 carbon atoms, and more preferably an aralkylene group having 7 to 20 carbon atoms.
  • aralkylene group having 7 to 30 carbon atoms, and more preferably an aralkylene group having 7 to 20 carbon atoms.
  • k is an integer of 1 to 10
  • -Ar- (CH 2 ) k- (Ar and k have the same meaning as above.)
  • -(CH 2 ) k -Ar- (CH 2 ) k- (Ar has the same meaning as above, and k is independently of each other the same meaning as above. And the like.
  • substituent of X include a halogen atom such as fluorine atom, chlorine atom, bromine atom and iodine atom, an alkoxy group such as methoxy group, ethoxy group and propoxy group, and an amino group such as dialkylamino group. .
  • 1 to 3 of all R 1 groups are organic groups represented by Formula (2), but this isocyanide compound may be single or plural kinds of different types. It may be It is preferable that 1 to 2 of all R 1 groups is an organic group containing an isocyanide represented by the formula (2), and one of all R 1 groups is an organic group containing an isocyanide represented by the formula (2) It is more preferable that
  • Y in the formula (2) is a divalent C 1-30 organic group which may be substituted and may have one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus .
  • the divalent organic group having 1 to 30 carbon atoms is not particularly limited, but those exemplified for X are similarly exemplified. Moreover, the above-mentioned thing is similarly illustrated about a substituent.
  • Y a divalent hydrocarbon group having 1 to 30 carbon atoms is preferable, and Y is more preferably a divalent hydrocarbon group having 1 to 10 carbon atoms, and may be linear, branched or cyclic.
  • R 1 may combine to form a crosslinking group Z to form a ring structure to form a ring structure.
  • Z has the same meaning as X, and may be an oxygen atom, or may be substituted, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus may be intervened, each having 1 to 30 carbon atoms And an oxygen atom is preferred.
  • A is an integer of 0 to 3
  • c is an integer of 0 to 3
  • a + c is 3.
  • a is 3
  • tetraorganosilane is shown
  • an organo (poly) siloxane compound having a siloxane group in the molecule is shown.
  • the monovalent organic group represented by the formula (2) may be bonded to either the end of the organo (poly) siloxane skeleton or the side chain.
  • (poly) siloxane represents the case of one siloxy group as a siloxane and represents the case of two or more siloxy groups as a polysiloxane.
  • b is an integer of 1 to 300, preferably 1 to 10.
  • the residue excluding the monovalent organic group represented by Formula (2) represents a silyl group or a (poly) organosiloxane group, and specific examples thereof include a trimethylsilyl group and triethylsilyl group.
  • Formula (1-2) is one having a polyorganosiloxy group, and may be a polyorganosiloxy group containing a highly branched siloxane group via a silethylene group.
  • isocyanide compounds of the present invention those mentioned above are exemplified, but trimethylsilylmethylisocyanide, bis (trimethylsilyl) methylisocyanide and tris (trimethylsilyl) methylisocyanide may be excluded.
  • the isocyanide compound of component (D) can be synthesized by a known method. For example, a method of obtaining a formyl compound from an amine compound and formic acid, and then reacting it with phosphoryl chloride in the presence of an organic amine for isocyanidation (see Synthetic method 1. Organometallics, 2004, 23, p3976-3981); mild conditions Formic acid anhydride can be obtained by forming acetic acid formic acid from acetic anhydride and formic acid, and reacting with an amine compound to obtain a formyl compound (Synthesis method 2. Org. Synth., 2013, 90, See 358-366).
  • the obtained formyl compound can be isocyanidated by the method described in the same synthesis method 1 as described above.
  • formamide can be obtained by anionizing formamide with sodium hydride and reacting with a halogen compound to obtain a formylide (see Synthetic Method 3. Synthetic Communications, 1986, 16, p865-869).
  • the obtained formyl compound can be isocyanidated by the method described in the same synthesis method 1 as described above.
  • R 0 may be independently substituted with each other, and one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus
  • R 1 is a monovalent organic group selected from and 1 to 3 of all R 0 groups is an organic group represented by the formula (2 ′)
  • X is, independently of one another, an oxygen atom, or may be substituted, and an atom selected from oxygen, nitrogen, sulfur and phosphorus may have one or more intervening divalent carbon atoms of 1 to 30 carbon atoms It is an organic group, and two of R 1 may combine to form a bridging group Z to form a ring structure (provided that Z has the same meaning as X).
  • Y is a divalent C 1-30 organic group which may be substituted and may have one or more atoms selected from oxygen, nitrogen, sulfur and phosphorus.
  • G is NH 2 in the case of an amine compound and a halogen atom in the case of a halogen compound. a, b and c are as described above.
  • Formylation according to synthesis method 2 Formic acid (2 equivalents relative to acetic anhydride) is added to acetic anhydride to obtain a formylating agent (acetic formic anhydride). Meanwhile, the amine compound is dissolved in THF (tetrahydrofuran) and cooled to -15.degree. The formylating agent is added dropwise so that the internal temperature does not exceed -5 ° C, and the mixture is further stirred for 2 hours. After work-up to obtain the desired product, isocyanidation is carried out.
  • THF tetrahydrofuran
  • Isocyanidation according to synthesis method 4 Amine compound, chloroform, phase transfer catalyst (benzyl triethyl ammonium chloride), methylene chloride are mixed. An aqueous solution of 50% by mass sodium hydroxide is added and stirred for 2 hours under reflux of methylene chloride. Work up gives the isocyanide compound.
  • formylation can be performed according to synthesis method 3 as follows. That is, sodium hydride (60% by mass paraffin dispersion) is dispersed in DMF (dimethylformamide), formamide is added, and the mixture is stirred at 120 ° C. for 45 minutes.
  • the compounds represented by the formula (1) can be used alone or in appropriate combination of two or more. Further, the component (D) may be a compound containing the compound represented by the formula (1). For example, a solution mixed with an organic solvent such as toluene, xylene, n-hexane or the like may be prepared and used.
  • the reaction control agent may be added in a small amount depending on the purpose or application. Examples of the reaction control agent include those described above, for example, acetylene compounds; acetylene alcohol compounds; organic nitrogen compounds such as diamines, cyclic azoethers and imino compounds; and organic sulfur compounds such as thiophene and thioether compounds.
  • the compounding amount of the component (D) in the present invention can be adjusted by the addition amount, depending on the application of the organopolysiloxane composition, although the temperature and conditions to be cured can be adjusted by the addition amount. 2) to 20 equivalents of the organic group (isocyanide group) represented by the formula (2) of the component) is preferable.
  • the organopolysiloxane composition in the present invention can be obtained by blending the components (A) to (D) and other components according to the purpose. For example, a method of mixing the component (C) and the component (D) in advance to obtain a catalyst mixture and mixing it with the other components, mixing the component (A) with the component (B) and the other components
  • the component (C) may be added to and mixed with a method of adding a catalyst mixture, in which components other than the component (C) are previously mixed.
  • a mixture of components other than the component (B) and a component (B) may be mixed and used immediately before curing. In addition, it is preferable to make mixing uniform.
  • a catalyst mixture in which the (C) component and the (D) component are mixed in advance.
  • the method for preparing the catalyst mixture is not particularly limited, a solution of the component (C) and the component (D) may be mixed.
  • the mixing temperature is not particularly limited, and may be room temperature.
  • the mixing time is also not particularly limited as long as both are in a uniform mixing state.
  • the effect of the isocyanide compound disappears by heating, and the addition reaction proceeds by activating the platinum catalyst, whereby a cured product can be obtained.
  • the conditions depend on the amount of addition of (D), and for example, a cured product can be obtained by heating at a heating temperature of 40 to 250 ° C. for 1 minute to 1 hour.
  • the organopolysiloxane composition of the present invention can also be cured by light irradiation.
  • a mercury lamp, an LED or a halogen lamp can be used, and as the light to be irradiated, UV irradiation having a wavelength of preferably 200 to 400 nm is preferable, and the irradiation time is preferably within 1 hour. .
  • UV irradiation having a wavelength of preferably 200 to 400 nm is preferable, and the irradiation time is preferably within 1 hour.
  • Synthesis Example 1 In a 300 mL flask, 57.1 g (0.56 mol) of acetic anhydride was charged, and the internal temperature was cooled to 5 ° C. To this was dropped 51.5 g (1.12 mol) of formic acid. Stir for 30 minutes with cooling, then raise the internal temperature to 40 ° C. and stir for 2 hours, and then cool to room temperature to obtain a reaction solution. In a 500 mL flask, 106.0 g (0.30 mol) of 3-aminopropyl-tristrimethylsiloxysilane and 120.0 g of tetrahydrofuran were charged, and the internal temperature was cooled to -15.degree.
  • Synthesis Example 3 A 300 mL flask was charged with 60.9 g (0.60 mol) of acetic anhydride, and the internal temperature was cooled to 5 ° C. To this was dropped 55.0 g (1.20 mol) of formic acid. Stir for 30 minutes with cooling, then raise the internal temperature to 40 ° C. and stir for 2 hours, and then cool to room temperature to obtain a reaction solution. In a 500 mL flask, 135.6 g (0.32 mol) of 1,3,5,7-tetramethyl-3,5,7-tripropyl-3-aminopropyl cyclotetrasiloxane and 200 mL of tetrahydrofuran are charged, and the internal temperature is -20.
  • Example 1 To a 0.5 mass% toluene solution (100 mg) of a platinum hydrosilylation catalyst, which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane, 1.9 mg of the isocyanide compound obtained in Synthesis Example 1 is added, and 1 at room temperature Stirring time gave a catalyst mixture.
  • a platinum hydrosilylation catalyst which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane
  • Example 2 The same operation and measurement as in Example 1 were performed except that the amount of the isocyanide compound obtained in Synthesis Example 1 was increased to 3.8 mg in Example 1. The results are shown in Table 1.
  • Example 3 The same operation and measurement as in Example 1 were carried out except that, in Example 1, the amount of the isocyanide compound obtained in Synthesis Example 1 was increased to 7.4 mg, that is, 1.9 mg. The results are shown in Table 1.
  • Example 4 The same operation and measurement as in Example 1 were performed except that the amount of the isocyanide compound obtained in Synthesis Example 1 was increased to 18.6 mg in Example 1. The results are shown in Table 1.
  • Example 5 0.187 g of the isocyanide compound obtained in Synthesis Example 1 was added to a 0.5 mass% toluene solution (5.00 g) of a platinum hydrosilylation catalyst, which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane, at room temperature The mixture was stirred for 1 hour to obtain a catalyst mixture. Next, in a 500 mL separable flask, (B) trimethylsiloxy end-capped methyl hydrogen polysiloxane (8.61 g) described in Example 1; (A) dimethylvinylsiloxy end-capped dimethylpolysiloxane (390) .24 g) were added and stirred at room temperature for 12 hours.
  • a platinum hydrosilylation catalyst which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane
  • Example 6 The same operation and measurement as in Example 5 were carried out except that the amount of isocyanide compound obtained in Synthesis Example 1 was increased to 0.372 g, 0.187 g. The results are shown in Table 2.
  • Example 7 0.099 g of the isocyanide compound obtained in Synthesis Example 2 was added to a platinum catalyst 0.5 mass% toluene solution (2.00 g) described in Example 1 and stirred at room temperature for 1 hour to obtain a catalyst mixture. .
  • 10.00 g of a mixture of both terminal trimethylsiloxy group-blocked polymethylhydrogensiloxane (8.61 g) and both terminal dimethylvinylsiloxy group-blocked polydimethylsiloxane (390.24 g) described in Example 1 and the above example 0.2 g of the catalyst mixture prepared in 5 was added to a 100 mL separable flask and stirred at room temperature for 30 minutes. The mixture was a pale yellow clear solution. Using this, DSC measurement and 50 ° C. stability test were conducted. The results are shown in Table 2. A small amount of this was added to an aluminum pan and heated at 150 ° C. for 1 hour to obtain a cured product.
  • Example 8 The same operation and measurement as in Example 7 were performed, except that 0.089 g of the isocyanide compound obtained in Synthesis Example 3 was used instead of the isocyanide compound obtained in Synthesis Example 2. The results are shown in Table 2.
  • Example 9 The same operation and measurement as in Example 7 were performed except that 0.122 g of the isocyanide compound obtained in Synthesis Example 4 was used instead of the isocyanide compound obtained in Synthesis Example 2. The results are shown in Table 2.
  • Example 10 The same operation and measurement as in Example 7 were performed except that 0.027 g of the isocyanide compound obtained in Synthesis Example 5 was used instead of the isocyanide compound obtained in Synthesis Example 2. The results are shown in Table 2.
  • Example 11 Using the composition obtained in Example 5, rheometer measurement under light irradiation was performed using Discovery DHR from TA Instrument and Omnicure R2000 from Lumen Dynamics. As a result of performing on conditions of 42 mW / cm ⁇ 2 > of light quantity, the composition hardened
  • Comparative Example 2 As a result of measuring using the composition obtained in Comparative Example 1 under the same conditions as in Example 11, the composition did not cure even when irradiated for 1,200 seconds.
  • Comparative Example 3 0.012 g of commercially available t-butyl isocyanide (manufactured by Tokyo Chemical Industry Co., Ltd.) is added to a 0.5 mass% toluene solution (2.00 g) of a platinum catalyst which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane The mixture was stirred at room temperature for 1 hour to obtain a catalyst. The catalyst smelled unpleasant.
  • Comparative Example 4 A 0.5 mass% toluene solution (2.00 g) of a platinum catalyst, which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane, was synthesized by a known method from commercially available stearylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.036 g of stearyl isocyanide was added and stirred at room temperature for 1 hour to obtain a catalyst mixture. The adjusted catalyst mixture formed a precipitate after 2 days.
  • a platinum catalyst which is a reaction product of chloroplatinic acid and tetramethyldivinylsiloxane
  • the component (D) of the present invention is a platinum control agent, and the amount as the control agent may be less than that of acetylene alcohol. Furthermore, the component (D) of the present invention has no or only a slight unpleasant odor specific to isocyanide compounds, is of low volatility, and has excellent solubility in silicone compositions. The blended silicone composition was excellent in stability at 50 ° C. On the other hand, in Comparative Example 3, the volatility of the component (D) was high, reaction control was insufficient, and in Comparative Example 4, the solubility of the component (D) was poor, and precipitation of the catalyst was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するオルガノポリシロキサン、 (B)ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、 (C)白金触媒、及び (D)特定のイソシアニド化合物を含有するオルガノポリシロキサン組成物。

Description

オルガノポリシロキサン組成物
 本発明は、オルガノポリシロキサン組成物に関するもので、さらに詳しくは、イソシアニド化合物を添加したオルガノポリシロキサン組成物に関するものである。
 不飽和基を有する化合物とSi-H結合を有する化合物の付加反応であるヒドロシリル化反応は、工業的には白金触媒を用いることで、多種多様なシリコーン材料が製造されている。特に、アルケニル基をもつオルガノポリシロキサン及びSi-H結合をもつオルガノポリシロキサンを用いた場合において、上記付加反応により架橋することで硬化し、これによりシリコーン特有の物性をもつ材料が得られることが知られている。
 上記シリコーン材料ではその用途により一液型や二液型があるが、特に上記付加反応により硬化物を得る場合、白金触媒が高活性なために触媒添加直後から反応が開始してしまうため、しばしば白金触媒の反応制御剤(もしくは反応抑制剤)が添加され、その用途に応じて硬化性と可使時間の調整が行われる。その反応制御剤としては、例えば、アセチレン系化合物(特許文献1)、アセチレンアルコール系化合物(特許文献2~5)、ジアミンや環状アゾエーテル、イミノ化合物等の有機窒素系化合物、チオフェンやチオエーテル化合物等の有機硫黄系化合物(特許文献6~8)、その他の化合物(特許文献9)等が挙げられる。
 この中でも、イソシアニド化合物(もしくはイソニトリル化合物)は、他の反応制御剤と比較して、少量で制御性を発現することができることが知られている(特許文献8、非特許文献1,2)。しかしながら、これらに記載されている化合物を含め、イソシアニド基をもつ化合物は、一般的には揮発性が高く悪臭物質であり、硬化時や硬化後に異臭がするといった問題が考えられ、上記の用途のようなシリコーン材料への添加剤としては不向きであった。
 また、様々なオルガノポリシロキサン組成物に対して目的に応じて反応を制御する場合に、白金に対してイソシアニド化合物の添加量が少量では反応を制御することが困難であるため、過剰の添加が必要となるが、イソシアニド化合物は微量成分であっても異臭がするため、実用的ではなかった。
 特許文献10においてヒドロシリル化反応用触媒の配位子として、シリコーンで変性された新規イソシアニド化合物が報告されているが、白金以外の金属において使用され、また触媒の活性向上を目的としており、白金触媒の制御剤としての検討はされていなかった。
特開平6-248084号公報 特開2010-18754号公報 特開2000-178210号公報 特開平6-329917号公報 特開平5-247348号公報 特開平7-292255号公報 特開平8-143777号公報 特許第3528969号公報 特開2008-255343号公報 国際公開第2017/126562号 T.Endo,et al.,Macromolecules, 1998,31,p9392 T.Endo,et al.,Int.J.Adhesion and Adhesives,2000,20,p253
 本発明は、このような事情に鑑みてなされたものであり、白金触媒の反応制御が少量で可能なイソシアニド化合物が配合されたオルガノポリシロキサン組成物であって、イソシアニド化合物が、異臭等が少なく、組成物に対して溶解性に優れるオルガノポリシロキサン組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、所定のイソシアニド化合物を使用することにより、上記の目的を達成できることを知見し、本発明をなすに至った。
 従って、本発明は下記オルガノポリシロキサン組成物を提供する。
1.(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するオルガノポリシロキサン、
(B)ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)白金ヒドロシリル化触媒、及び
(D)下記式(1-1)又は(1-2)
 R1-Si(R1a{〔X-Si(R12b-R1c (1-1)
 R1-Si(R1a{(Zi)}c          (1-2)
[式中、R1は、互いに独立して、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の1価有機基、及び下記式(2)
 -Y-NC     (2)
(式中、Yは、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基である。)
で表される有機基から選ばれる1価有機基であり、かつ全R1基の中の1~3個が式(2)で示される有機基であり、
 Xは、互いに独立して、酸素原子、又は置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基であり、R1の2つが結合して架橋基Zとなって環構造を形成してもよい(但し、ZはXと同じ意味である。)。
 aは0~3の整数、cは0~3の整数、かつa+cは3、bは1~300の整数であり、Ziは-X-Si(R1j(Zi+1(3-j)で表される基である。
(式中、iは階層を示し、i=1~10、jは0~3の整数であり、全階層のうち少なくとも1つのjは0又は1であり、最下階層はj=3である。)]
で表される化合物
を含有するオルガノポリシロキサン組成物。
2.(A)成分が、下記平均組成式(3)
 R2 d3 eSiO(4-d-e)/2         (3)
(式中、R2は同一又は異種のアルケニル基であり、R3は同一又は異種のアルケニル基以外のケイ素原子に結合する有機基である。dは0<d≦3、eは0≦e<3であり、0<d+e≦3である。ただし、1分子あたりR2のアルケニル基を少なくとも2つを有するように選択される。)
で表されるオルガノポリシロキサンであり、(B)成分が、下記平均組成式(4)
 R4 ghSiO(4-g-h)/2         (4)
(式中、R4は、同一又は異種のケイ素原子に結合する水素原子以外の有機基であり、0<g<3、0<h<3、0<g+h≦3である。但し、1分子あたりケイ素原子に結合する水素原子を少なくとも2つを有する。)
で表されるオルガノハイドロジェンポリシロキサンである請求項1記載のオルガノポリシロキサン組成物。
3.上記式(1-1)において、aが0、1又は2である1又は2記載のオルガノポリシロキサン組成物。
4.上記(1-1)又は(1-2)において、全R1基の中の1個が式(2)で示される有機基である1~3のいずれかに記載のオルガノポリシロキサン組成物。
5.上記(1-1)において、R1の2つが結合して形成する架橋基Zが、酸素原子である1~4のいずれかに記載のオルガノポリシロキサン組成物。
6.上記式(1-1)又は(1-2)において、Xが酸素原子である1~5のいずれか1項記載のオルガノポリシロキサン組成物。
7.上記式(2)において、Yが炭素数1~30の2価炭化水素基である1~6のいずれかに記載のオルガノポリシロキサン組成物。
8.(D)成分の配合量が、(C)成分における白金1原子に対して、(D)成分の式(2)で表される基が2~20当量となる量である1~7のいずれかに記載のオルガノポリシロキサン組成物。
 本発明のオルガノポリシロキサン組成物は、特定のイソシアニド化合物を配合するもので、この特定のイソシアニド化合物は、特許文献8や非特許文献1,2で例示されているようなイソシアニド化合物と比較して、有機ケイ素骨格を含むために高沸点となり、イソシアニド基特有の異臭等が少ない。さらには、有機ケイ素骨格を含むために液状で取り扱いやすい化合物となり、組成物に対して溶解性に優れる。これにより、オルガノポリシロキサン組成物の用途に応じて添加量を調整することで、硬化性と可使時間の調整が可能であり、また、多用されるアセチレンアルコール系の制御剤等と比較して、少量添加することにより白金触媒の反応制御が可能であるため、極めて有用性が高い。
 以下、本発明について詳細に説明する。
[(A)成分]
 (A)成分は、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するオルガノポリシロキサンであり、1種単独で又は2種以上を適宜組み合わせて用いることができる。(A)成分としては、下記平均組成式(3)で表されるオルガノポリシロキサンが挙げられる。
 R2 d3 eSiO(4-d-e)/2     (3)
(式中、R2は同一又は異種のアルケニル基であり、R3はアルケニル基以外のケイ素原子に結合する有機基である。dは0<d≦3、eは0≦e<3であり、0<d+e≦3である。ただし、1分子あたりR2のアルケニル基を少なくとも2つを有する。)
 R2としては、ビニル、アリル、n-1-ブテニル、n-1-ペンテニル、n-1-ヘキセニル基等が挙げられ、特にビニル基が好ましい。(A)におけるアルケニル基の結合位置としては、分子鎖末端、分子鎖側鎖、分子鎖末端及び分子鎖側鎖のいずれでもよい。
 R3は同一又は異種の、R2のアルケニル基以外のケイ素原子に結合する有機基である。R3としては、例えば、置換されてもよい脂肪族不飽和結合を有しない炭素数1~30の1価炭化水素基もしくは水酸基が挙げられ、炭素数1~10の1価炭化水素基が好ましい。1価炭化水素基としては、アルキル基、アリール基、アラルキル基等が挙げられる。その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロヘキシル等のシクロアルキル基;フェニル、ナフチル基等のアリール基;ベンジル基等のアラルキル基等が挙げられ、メチル基又はフェニル基が好ましい。
 dは0<d≦3、eは0≦e<3であり、0<d+e≦3である。ただし、1分子あたりR2のアルケニル基を少なくとも2つを有するように選択される。(A)成分の分子構造は、直鎖状、分岐状、環状のいずれであってもよい。
 平均組成式(3)で表されるオルガノポリシロキサンの具体例としては、直鎖状であれば、ジメチルビニルシロキシ基末端封鎖ジメチルポリシロキサン、ジメチルビニルシロキシ基末端封鎖メチルビニルポリシロキサン、ジメチルビニルシロキシ基末端封鎖(ジメチルシロキサン・ジフェニルシロキサン)共重合体、ジメチルビニルシロキシ基末端封鎖(ジメチルシロキサン・メチルビニルシロキサン)共重合体、ジメチルビニルシロキシ基末端封鎖(ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン)共重合体、トリメチルシロキシ基末端封鎖メチルビニルポリシロキサン、トリメチルシロキシ基末端封鎖(ジメチルシロキサン・メチルビニルシロキサン)共重合体、トリメチルシロキシ基末端封鎖(ジメチルシロキサン・ジフェニルシロキサン・メチルビニルシロキサン)共重合体、末端ヒドロキシ基封鎖(ジメチルシロキサン・メチルビニルシロキサン)共重合体等が挙げられる。なお、上記末端封鎖は片末端及び両末端を含む。
 分岐状であれば上記直鎖状の一部に式:R2 f3 (1-f)SiO3/2(fは、0又は1である。)、SiO4/2、又はその両方のシロキサン繰り返し単位が少なくとも1つ含まれたものが挙げられる。環状であれば2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン、2,4,6-トリメチル-2,4,6-トリアリルシクロトリシロキサン、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン等が挙げられる。また、例示したオルガノポリシロキサンのメチル基の一部もしくはすべてが、エチル基やプロピル基等のアルキル基や、フェニル基等のアリール基に置換したものが挙げられる。
 (A)成分はオルガノポリシロキサン組成物を加熱等により硬化した硬化物の用途や、物性に応じて適宜選択されるが、その25℃における粘度は、組成物の取扱作業性等の観点から、10~500,000mm2/sが好ましく、300~100,000mm2/sがより好ましい。なお、本発明において、動粘度はオストワルド計により測定できる(以下、同じ)。
[(B)成分]
 (B)成分は、ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンであり、1種単独で又は2種以上を適宜組み合わせて用いることができる。(B)成分としては、下記平均組成式(4)で表されるものが挙げられる。
 R4 ghSiO(4-g-h)/2         (4)
(式中、R4は、同一又は異種のケイ素原子に結合する水素原子以外の有機基であり、0<g<3、0<h<3、0<g+h≦3である。但し、1分子あたりケイ素原子に結合する水素原子を少なくとも2つを有する。)
 ケイ素原子に結合した水素原子の結合位置としては、分子鎖末端、分子鎖側鎖、分子鎖末端及び分子鎖側鎖のいずれでもよい。
 R4は、同一又は異種のケイ素原子に結合する水素原子以外の有機基であり、例えば、置換されてもよい脂肪族不飽和結合を有しない炭素数1~30の1価の炭化水素基が挙げられる。中でも、脂肪族不飽和結合を有しない炭素数1~10の1価の炭化水素基が好ましい。R4の具体例としては、R3と同様のものが挙げられる。
 0<g<3、0<h<3、0<g+h≦3である。但し、1分子あたりケイ素原子に結合する水素原子を少なくとも2つを有するように選択される。
 平均組成式(4)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、直鎖状であれば、ジメチルハイドロジェンシロキシ基末端封鎖ジメチルポリシロキサン、ジメチルハイドロジェンシロキシ基末端封鎖メチルハイドロジェンポリシロキサン、ジメチルハイドロジェンシロキシ基末端封鎖(ジメチルシロキサン・ジフェニルシロキサン)共重合体、ジメチルハイドロジェンシロキシ基末端封鎖(ジメチルシロキサン・メチルハイドロジェンシロキサン)共重合体、ジメチルハイドロジェンシロキシ基末端封鎖(ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン)共重合体、トリメチルシロキシ基末端封鎖メチルハイドロジェンポリシロキサン、トリメチルシロキシ基末端封鎖(ジメチルシロキサン・メチルハイドロジェンシロキサン)共重合体、トリメチルシロキシ基末端封鎖(ジメチルシロキサン・ジフェニルシロキサン・メチルハイドロジェンシロキサン)共重合体、末端ヒドロキシ基封鎖(ジメチルシロキサン・メチルハイドロジェンシロキサン)共重合体等が挙げられる。分岐状であれば、上記直鎖状の一部に式:R4SiO1.5、式:HSiO1.5又はSiO2又はこれらを2種以上含むシロキサン繰り返し単位が少なくとも1つ含まれたものが挙げられる。環状であれば、2,4,6-トリメチルシクロトリシロキサン、2,4,6,8-テトラメチルシクロテトラシロキサン、2,4,6,8,10-ペンタメチルシクロペンタシロキサン等が挙げられる。また、例示したオルガノハイドロジェンポリシロキサンのメチル基の一部もしくは全てが、エチル基やプロピル基等のアルキル基や、フェニル基等のアリール基に置換したものが挙げられる。また、例示したオルガノハイドロジェンポリシロキサンを2種以上含有する混合物が挙げられる。なお、上記末端封鎖は片末端及び両末端を含む。
 (B)成分は、オルガノポリシロキサン組成物を加熱等により硬化した硬化物の用途や物性に応じて調整されるが、その25℃における粘度は、組成物の取扱作業性等の観点から、0.1~10,000mm2/sが好ましく、5~500mm2/sがより好ましい。
 (B)成分の配合量としては、(B)成分由来のSi-H基が(A)成分由来のアルケニル基1モルに対して0.1~10モルとなる量が好ましく、より好ましくは0.4~5モルとなる量、さらに好ましくは0.5~4モルとなる量である。
[(C)成分]
 本発明における(C)は、ヒドロシリル化反応に活性を持つ白金ヒドロシリル化触媒である。このような白金ヒドロシリル化触媒は公知のものが使用でき、例えば、塩化白金酸、塩化白金酸のアルコールによる変性物、白金の各種オレフィンとの錯体等が挙げられる。特に、触媒活性の点から、アルケニル基を複数有するシロキサン類と白金との錯体が好ましい。(C)成分の配合量としては、特に制限はないが、硬化性と経済的な観点から、(A)成分及び(B)成分の合計量に対して1~1,000ppmの範囲が好ましい。
 [(D)成分]
 本発明の(D)成分は、(1-1)又は(1-2)
 R1-Si(R1a{〔X-Si(R12b-R1c     (1-1)
 R1-Si(R1a{(Zi)}c              (1-2)
[式中、R1は、互いに独立して、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の1価有機基、及び下記式(2)
 -Y-NC     (2)
(式中、Yは、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい、非置換又は置換の炭素数1~30の2価有機基である。)
で表される有機基から選択される1価有機基であり、かつ全R1基の中の1~3個が式(2)で示される有機基であり、
 Xは、互いに独立して、酸素原子、又は酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい、非置換又は置換の炭素数1~30の2価有機基であり、R1の2つが結合して架橋基Zとなって環構造を形成してもよく(但し、ZはXと同じ意味である。)、
 aは0~3の整数、cは0~3の整数、かつa+cは3、bは1~300の整数であり、Ziは-X-Si(R1j(Zi+1(3-j)で表される基である。
(式中、iは階層を示し、i=1~10、jは0~3の整数であり、全階層のうち少なくとも1つのjは0又は1であり、最下階層はj=3である。)]
で表される化合物であり、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 以下、式(1-1)及び(1-2)の場合は、式(1)と表記する。
 式(1)において、R1は、互いに独立して、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の1価有機基、及び下記式(2)の有機基から選ばれる1価有機基である。
 炭素数1~30の1価の有機基としては、特に限定されるものではないが、炭素数1~30の1価炭化水素基又はオルガノオキシ基が好ましい。1価炭化水素基としては、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
 アルキル基としては、直鎖、分岐鎖、環状のいずれでもよく、炭素数1~20のアルキル基が好ましく、1~10のアルキル基がより好ましい。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコサニル基等の直鎖又は分岐鎖アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、ノルボルニル、アダマンチル基等のシクロアルキル基等が挙げられる。
 アルケニル基としては、炭素数2~20のアルケニル基が好ましく、具体例としては、エテニル(ビニル)、n-1-プロペニル(アリル)、n-2-プロペニル、1-メチルエテニル、n-1-ブテニル、n-2-ブテニル、n-3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-エチルエテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、n-1-ペンテニル、n-1-ヘキセニル、n-1-デセニル、n-1-エイコセニル基等が挙げられる。
 アルキニル基としては、炭素数2~20のアルキニル基が好ましく、具体例としては、エチニル、n-1-プロピニル、n-2-プロピニル、n-1-ブチニル、n-2-ブチニル、n-3-ブチニル、1-メチル-2-プロピニル、n-1-ペンチニル、n-2-ペンチニル、n-3-ペンチニル、n-4-ペンチニル、1-メチル-n-ブチニル、2-メチル-n-ブチニル、3-メチル-n-ブチニル、1,1-ジメチル-n-プロピニル、n-1-ヘキシニル、n-1-デシニル、n-1-ペンタデシニル、n-1-エイコシニル基等が挙げられる。
 アリール基としては、炭素数6~30のアリール基が好ましく、炭素数6~20のアリール基が好ましい。具体例としては、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、o-ビフェニリル、m-ビフェニリル、p-ビフェニリル、トリル、2,6-ジメチルフェニル、2,6-ジイソプロピルフェニル、メシチル基等が挙げられる。
 アラルキル基としては、炭素数7~30のアラルキル基が好ましく、炭素数7~20のアラルキル基がより好ましい。具体例としては、ベンジル、フェニルエチル、フェニルプロピル、ナフチルメチル、ナフチルエチル、ナフチルプロピル基等が挙げられる。
 オルガノオキシ基としては、炭素数1~10のオルガノオキシ基が好ましく、具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペンチルオキシ、n-ヘキシルオキシ、2-エチルヘキシルオキシ、n-ヘプチルオキシ、n-オクチルオキシ等の直鎖又は分岐鎖アルコキシ基;シクロプロポキシ、シクロブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、ノルボルニルオキシ、アダマンチルオキシ基等のシクロアルコキシ基;フェノキシ等のアリールオキシ基;ベンゾオキシ等のアラルキルオキシ基等が挙げられる。
 これらの中でも、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチルのアルキル基;メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、フェノキシ、ベンゾオキシ等のオルガノオキシ基、フェニル等のアリール基等が特に好ましい。
 上記アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、オルガノオキシ基は、置換されていてもよく、かつ、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい。上記R1における置換基の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、ジアルキルアミノ基等のアミノ基等が挙げられる。
 Xは、互いに独立して、酸素原子、又は置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基である。中でも、酸素原子が好ましい。
 炭素数1~30の2価有機基としては、特に限定されるものではないが、炭素数1~30の2価炭化水素基が好ましく、直鎖、分岐状又は環状のいずれでもよい。2価炭化水素基としては、アルキレン基、アリーレン基、アラルキレン基等が挙げられる。
 アルキレン基としては、直鎖、分岐鎖、環状のいずれでもよく、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。具体例としては、メチレン、エチレン、プロピレン、トリメチレン、n-ブチレン、イソブチレン、s-ブチレン、n-オクチレン、2-エチルヘキシレン、n-デシレン、n-ウンデシレン、n-ドデシレン、n-トリデシレン、n-テトラデシレン、n-ペンタデシレン、n-ヘキサデシレン、n-ヘプタデシレン、n-オクタデシレン、n-ノナデシレン、n-エイコサニレン基等の直鎖又は分岐鎖アルキレン基;1,4-シクロへキシレン基等のシクロアルキレン基等が挙げられる。
 アリーレン基としては、炭素数6~30のアリーレン基が好ましく、炭素数6~20のアリーレン基がより好ましい。具体例としては、o-フェニレン、m-フェニレン、p-フェニレン、1,2-ナフチレン、1,8-ナフチレン、2,3-ナフチレン、4,4′-ビフェニレン基等が挙げられる。
 アラルキレン基としては、炭素数7~30のアラルキレン基が好ましく、炭素数7~20のアラルキレン基がより好ましい。具体例としては、-(CH2k-Ar-(Arは、炭素数6~20のアリーレン基であり、kは1~10の整数である。)、-Ar-(CH2k-(Ar及びkは上記と同じ意味である。)、-(CH2k-Ar-(CH2k-(Arは上記と同じ意味を表し、kは互いに独立して上記と同じ意味を表す。)等が挙げられる。
 Xの置換基の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、ジアルキルアミノ基等のアミノ基等が挙げられる。
 式(1)において、全R1基の中の1~3個が式(2)で示される有機基であるが、このイソシアニド化合物は単一であってもよいし、種類の異なる複数のものであってもよい。全R1基中の1~2個が式(2)で示されるイソシアニドを含む有機基であることが好ましく、全R1基中の1個が式(2)で示されるイソシアニドを含む有機基であることがより好ましい。
 式(2)におけるYは、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基である。炭素数1~30の2価有機基としては、特に限定されるものではないが、Xで挙げられたものが同様に例示される。また、置換基についても前述のものが同様に例示される。Yとしては、炭素数1~30の2価炭化水素基が好ましく、Yが炭素数1~10の2価炭化水素基がより好ましく、直鎖、分岐状又は環状のいずれでもよい。
 また、R1の2つが結合して架橋基Zとなって環構造を形成し、環構造を形成してもよい。ZはXと同じ意味であり、酸素原子、又は置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基であり、中でも酸素原子が好ましい。
 aは0~3の整数、cは0~3の整数、かつa+cは3である。aが3のときはテトラオルガノシランを、aが0、1又は2のときは分子内にシロキサン基を有するオルガノ(ポリ)シロキサン化合物を示している。また、aが0、1又は2であるとき、式(2)で示される1価有機基は、オルガノ(ポリ)シロキサン骨格の末端、側鎖のいずれに結合していてもよい。なお、本発明において、(ポリ)シロキサンとは、シロキシ基1個の場合をシロキサンとして表し、シロキシ基が2個以上の場合をポリシロキサンとして表す。bは1~300の整数であり、1~10が好ましい。
 式(1-1)において、式(2)で示される1価有機基を除いた残基は、シリル基、又は(ポリ)オルガノシロキサン基を示し、その具体例としては、トリメチルシリル基、トリエチルシリル基、フェニルジメチルシリル基、トリメトキシシリル基、トリエトキシシリル基、ペンタメチルジシロキシ基、ビストリメチルシロキシメチルシリル基、トリストリメチルシロキシシリル基、-Si(Me)2{OSi(Me)2(b-1)OSiMe3(bは上記と同じ。)で表されるポリジメチルシロキシ基、-Si(Me)2{OSi(Me)2(b-1)OSiMe2nBu(bは上記と同じ。)で表される(ポリ)ジメチルシロキシ基、-Si(Me)2{OSi(Me)2(b-1)OSiMe2-で表される(ポリ)ジメチルシロキシ基等が挙げられる。R1の2つが結合して架橋基Zとなって環構造を形成している場合は、1,3,5,7-テトラメチル-3,5,7-トリプロピル-シクロテトラシロキシ基等が挙げられる。
 式(1-2)は、ポリオルガノシロキシ基を有するものであり、また、シルエチレン基を介して高度に分岐したシロキサン基を含むポリオルガノシロキシ基であってもよい。
 R1-Si(R1a{(Zi)}c               (1-2)
(式中、Ziは-X-Si(R1j(Zi+1(3-j)で表される基であり、iは階層を示し、i=1~10、好ましくはi=1~3であり、jは0~3の整数であり、全階層のうち少なくとも1つのjは0又は1であり、最下階層はj=3である。)
 例えば、Zi=1~4のものとしては、下記のもの挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1、X、a、c、jは上記と同じである。)
 本発明のイソシアニド化合物としては上記のものが例示されるが、トリメチルシリルメチルイソシアニド、ビス(トリメチルシリル)メチルイソシアニド及びトリス(トリメチルシリル)メチルイソシアニドを除いてもよい。
 (D)成分のイソシアニド化合物は公知の方法によって合成することができる。例えば、アミン化合物とギ酸からホルミル化物を得、次いで有機アミンの存在下、塩化ホスホリルと反応させてイソシアニド化する方法(合成方法1。Organometallics,2004,23,p3976-3981参照);温和な条件下でホルミル化物を得る方法として、無水酢酸とギ酸から酢酸ギ酸無水物を形成し、これをアミン化合物と反応させてホルミル化物を得ることができる(合成方法2。Org.Synth.,2013,90,358-366参照)。得られたホルミル化物は上記と同じ合成方法1に記載されている方法によってイソシアニド化することができる。又は、ホルムアミドをナトリウムハイドライドでアニオン化し、ハロゲン化合物と反応させてホルミル化物を得ることもできる(合成方法3。Synthetic Communications,1986,16,p865-869参照)。得られたホルミル化物は上記と同じ合成方法1に記載されている方法によってイソシアニド化することができる。
 さらに、ホルミル化を経由しない方法として、アミン化合物とジクロルカルベンを反応させてイソシアニド化する方法によっても合成することができる(合成方法4。Tetrahedron Letters,1972,17,1637-1640参照)。
 目的とするイソシアニド化合物がシロキサン骨格を有する場合、市販のアミノ基含有シロキサン化合物又は特開2017-71581号公報記載の方法により得られたアミノ基含有シロキサン化合物を、上記合成方法2による温和な条件下でホルミル化した後、合成方法1にある方法でイソシアニド化すること、又は合成方法4による方法で得ることが好ましい。
 この場合、アミン化合物又はハロゲン化合物としては、下記式(1’-1)又は(1’-2)
 R0-Si(R0a{〔(XSi(R02)〕b-R0c   (1’-1)
 R0-Si(R0a{(Z0 i)}c            (1’-2)
(式中、Z0 iは-X-Si(R0j(Z0 i+1(3-j)であり、iは階層を示し、i=1~10、好ましくはi=1~3であり、jは0~3、全階層のうち少なくとも1つのjは0又は1であり、最下階層はj=3である。)
で示されるものを用いることができる。
 式(1’-1)及び式(1’-2)において、R0は互いに独立して、置換されていてもよく、かつ、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の1価有機基、及び式(2’)の有機基
 -Y-G     (2’)
から選択される1価有機基であり、かつ全R0基の中の1~3個が式(2’)で示される有機基であり、
 Xは、互いに独立して、酸素原子、又は置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基であり、R1の2つが結合して架橋基Zとなって環構造を形成してもよい(但し、ZはXと同じ意味である。)。
 Yは、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基である。
 Gはアミン化合物の場合NH2、ハロゲン化合物の場合ハロゲン原子である。a、b、cは上記の通りである。
 以下に、アミン化合物からの合成条件の概略を示す。
(i)合成方法1によるホルミル化:アミン化合物に過剰量のギ酸を加え、還流下に脱水してホルミル化する。
(ii)合成方法1によるホルミル体のイソシアニド化:ホルミル体とジイソプロピルアミンを塩化メチレンに溶解し、0℃に冷却し、塩化ホスホリルを滴下し、さらに2時間撹拌する。炭酸ナトリウム水溶液を加え、室温で1晩放置し、後処理を行って目的物を得る。必要に応じて蒸留又は昇華精製する。
(iii)合成方法2によるホルミル化:無水酢酸にギ酸(無水酢酸に対して2当量)を加え、ホルミル化剤(酢酸ギ酸無水物)を得る。一方、アミン化合物をTHF(テトラヒドロフラン)に溶解し、-15℃に冷却する。ホルミル化剤を内温が-5℃を超えないように滴下し、さらに2時間撹拌する。後処理を行って目的物を得た後、イソシアニド化する。
(iv)合成方法4によるイソシアニド化:アミン化合物、クロロホルム、相関移動触媒(ベンジルトリエチルアンモニウムクロライド)、塩化メチレンを混合する。50質量%水酸化ナトリウム水溶液を加え、塩化メチレンの還流下に2時間撹拌する。後処理してイソシアニド化合物を得る。
 ハロゲン化合物から合成する場合、以下のように合成方法3によるホルミル化を行うことができる。即ち、ナトリウムハイドライド(60質量%パラフィンディスパージョン)をDMF(ジメチルホルムアミド)に分散し、ホルムアミドを加えて120℃で45分撹拌する。60℃に冷却後、ハロゲン化合物を加え、120℃で24時間撹拌する。塩をろ過した後、溶媒(DMF)を溜去してホルミル化物を得る。なお、イソシアニド化は合成方法1と同じである。
 (D)成分としては、式(1)で表される化合物を1種単独で又は2種以上を適宜組み合わせて用いることができる。また、(D)成分は、式(1)で示される化合物を含む化合物であってもよく、例えば、トルエン、キシレン、n-ヘキサン等の有機溶剤等に混合した溶液を調製して使用してもよく、目的や用途に応じて反応制御剤を少量添加してもよい。反応制御剤としては、前述したもの、例えば、アセチレン系化合物;アセチレンアルコール系化合物;ジアミン、環状アゾエーテル、イミノ化合物等の有機窒素系化合物;チオフェン、チオエーテル化合物等の有機硫黄系化合物等が挙げられる。
 本発明における(D)成分の配合量は、オルガノポリシロキサン組成物の用途に応じて、硬化させる温度や条件を添加量により調整できるが、(C)成分における白金1原子に対して、(D)成分の式(2)で表される有機基(イソシアニド基)が2~20当量となる量が好ましい。
[任意成分]
 本発明において、目的や用途に応じて、本発明の効果を妨げない範囲で、(A)~(D)以外のその他の成分を任意に添加してもよい。
[製造方法]
 本発明におけるオルガノポリシロキサン組成物は、(A)~(D)成分、さらに目的に応じてその他の成分を配合することにより得られる。例えば、(C)成分と(D)成分を予め混合して触媒混合物を得て、他の成分と混合する方法、(A)成分と(B)成分及びその他の成分を混合したものに、上記触媒混合物を添加する方法、(C)成分を除く成分を予め混合したものに、(C)成分を添加して混合してもよい。また、2液型のように、例えば(B)成分を除く成分を混合したものと、(B)成分とを硬化させる直前に混合して使用してもよい。なお、混合は均一にすることが好ましい。中でも、(C)成分と(D)成分を予め混合した触媒混合物を用いることが好ましい。触媒混合物の調製方法は特に限定されないが、(C)成分の溶液と(D)成分とを混合すればよい。混合温度は特に限定されず、室温でもよい。混合時間も特に限定されず、両者が均一混合状態となればよい。
[硬化方法及び硬化物]
 本発明におけるオルガノポリシロキサン組成物は、加熱することによりイソシアニド化合物の効果が消失し、白金触媒が活性化することで付加反応が進行し、硬化物を得ることができる。その条件としては(D)の添加量に依存するが、例えば、加熱温度としては40~250℃の間で、1分~1時間加熱することで硬化物が得られる。
 また、本発明におけるオルガノポリシロキサン組成物は、光を照射することにより硬化することもできる。例えば、水銀ランプ、LED又はハロゲンランプを使用することができ、照射する光としては、波長が好ましくは200~400nmの間にあるUV照射がよく、照射時間としては、好ましくは1時間以内である。さらには、加熱による硬化と併用することも可能である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、Meはメチル基を示す。
  [合成例1]
 300mLのフラスコに、無水酢酸57.1g(0.56mol)を仕込み、内温を5℃まで冷却した。これにギ酸51.5g(1.12mol)を滴下した。冷却したままさらに30分撹拌し、次いで内温を40℃まで上げて2時間撹拌した後、室温まで冷却し、反応液を得た。
 500mLのフラスコに3-アミノプロピル-トリストリメチルシロキシシラン106.0g(0.30mol)とテトラヒドロフラン120.0gを仕込み、内温を-15℃に冷却した。これに上記の反応液を内温が-5℃を超えない速度で滴下した。滴下終了後、-15℃でさらに2時間撹拌した。次いでエバポレーターで揮発分を除去し、N-ホルミル化された粗生成物118.2gを得た。
 2Lのフラスコに上記のN-ホルミル化粗生成物118.2g、塩化メチレン120.0g、ジイソプロピルアミン109.5g(1.08mol)を仕込み、内温を5℃まで冷却した。これに塩化ホスホリル52.3g(0.34mol)を滴下した。その後、冷却したまま2時間撹拌した。炭酸ナトリウム20質量%水溶液750.0gを、内温が20℃を超えないように滴下し、滴下終了後室温で15時間撹拌した。生成した塩をろ過除去し、水層を分離した。有機層を3回水洗し、硫酸マグネシウムを加えて脱水、ろ過後に蒸留して目的物(Me3SiO)3SiCH2CH2CH2NCを得た。収量62.7g、収率57.6%、沸点95.5~96.0℃/0.3kPa、ガスクロマトグラフィーによる純度は99.6%で、無臭であった。
  [合成例2]
 300mLのフラスコに、無水酢酸26.5g(0.26mol)を仕込み、内温を5℃まで冷却した。これにギ酸23.9g(0.52mol)を滴下した。冷却したままさらに30分撹拌し、次いで内温を40℃まで上げて2時間撹拌した後、室温まで冷却し、反応液を得た。
 500mLのフラスコにnBu(Me2)SiO(Me2SiO)3Si(Me2)CH2CH2CH2NH265.4g(0.14mol)とテトラヒドロフラン100.0gを仕込み、内温を-15℃に冷却した。これに上記の反応液を内温が-5℃を超えない速度で滴下した。滴下終了後、-15℃でさらに2時間撹拌した。次いでエバポレーターで揮発分を除去し、N-ホルミル化された粗生成物69.1gを得た。
 1Lのフラスコに上記のN-ホルミル化粗生成物69.1g、塩化メチレン120.0g、ジイソプロピルアミン49.3g(0.49mol)を仕込み、内温を5℃まで冷却した。これに塩化ホスホリル23.6g(0.15mol)を滴下した。その後、冷却したまま2時間撹拌した。炭酸ナトリウム20質量%水溶液350.0gを、内温が20℃を超えないように滴下し、滴下終了後室温で15時間撹拌した。生成した塩をろ過除去し、水層を分離した。有機層を3回水洗し、硫酸マグネシウムを加えて脱水、ろ過後に蒸留して目的物nBu(Me2)SiO(Me2SiO)3Si(Me2)CH2CH2CH2NCを得た。収量52.2g、収率77.8%、沸点145~147℃/0.3kPa、ガスクロマトグラフィーによる純度は97.2%で、無臭であった。
  [合成例3]
 300mLのフラスコに、無水酢酸60.9g(0.60mol)を仕込み、内温を5℃まで冷却した。これにギ酸55.0g(1.20mol)を滴下した。冷却したままさらに30分撹拌し、次いで内温を40℃まで上げて2時間撹拌した後、室温まで冷却し、反応液を得た。
 500mLのフラスコに1,3,5,7-テトラメチル-3,5,7-トリプロピル-3-アミノプロピルシクロテトラシロキサン135.6g(0.32mol)とテトラヒドロフラン200mLを仕込み、内温を-20℃に冷却した。これに上記の反応液を内温が-5℃を超えない速度で滴下した。滴下終了後、-15℃でさらに2時間撹拌した。次いでエバポレーターで揮発分を除去し、N-ホルミル化された粗生成物145.7gを得た。
 2Lのフラスコに上記のN-ホルミル化粗生成物145.7g、塩化メチレン200mL、ジイソプロピルアミン113.1g(1.12mol)を仕込み、内温を5℃まで冷却した。これに塩化ホスホリル54.0g(0.35mol)を滴下した。その後、冷却したまま2時間撹拌した。炭酸ナトリウム20質量%水溶液802.0gを滴下し、滴下終了後室温で15時間撹拌した。生成した塩をろ過除去し、水層を分離した。有機層を3回水洗し、硫酸ナトリウムを加えて脱水、ろ過後に蒸留して1,3,5,7-テトラメチル-3,5,7-トリプロピル-3-イソシアノプロピルシクロテトラシロキサンを得た。収量92.8g、収率67.0%、沸点132.0~133.5℃/0.3kPa、ガスクロマトグラフィーによる純度は99.4%で、無臭であった。
  [合成例4]
 100mLのフラスコに、無水酢酸13.54g(0.133mol)を仕込み、内温を-10℃まで冷却した。これにギ酸12.26g(0.266mol)を滴下した。冷却したままさらに30分撹拌し、次いで内温を40℃まで上げて3時間撹拌した後、室温まで冷却し、反応液を得た。
 200mLのフラスコに[(Me3SiO)2Si(Me)O]2Si(Me)CH2CH2CH2NH263.29g(0.110mol)とテトラヒドロフラン100.0gを仕込み、内温を-20℃に冷却した。これに上記の反応液を内温が-5℃を超えない速度で滴下した。滴下終了後、-15℃でさらに2時間撹拌した。次いでエバポレーターで揮発分を除去し、N-ホルミル化された粗生成物56.36gを得た。
 100mLのフラスコに上記のN-ホルミル化粗生成物55.46g、塩化メチレン151.6g、ジイソプロピルアミン34.25g(0.339mol)を仕込み、内温を5℃まで冷却した。これに塩化ホスホリル19.84g(0.130mol)を滴下した。その後、冷却したまま2時間撹拌した。炭酸ナトリウム20質量%水溶液175.0gを滴下し、滴下終了後5℃で1時間撹拌した。生成した塩をろ過除去し、水層を分離した。有機層を3回水洗し、硫酸ナトリウムを加えて脱水、ろ過後に蒸留して目的物[(Me3SiO)2Si(Me)O]2Si(Me)CH2CH2CH2NCを得た。収量36.75g、収率57.8%、沸点115℃/0.3kPa、無臭であった。
  [合成例5]
 300mLのフラスコに、無水酢酸57.1g(0.56mol)を仕込み、内温を5℃まで冷却した。これにギ酸51.5g(1.12mol)を滴下した。冷却したままさらに30分撹拌し、次いで内温を40℃まで上げて2時間撹拌した後、室温まで冷却し、反応液を得た。
 500mLのフラスコにH2NCH2CH2CH2(Me2)SiOSi(Me2)CH2CH2CH2NH237.2g(0.15mol)とテトラヒドロフラン100.0gを仕込み、内温を-15℃に冷却した。これに上記の反応液を内温が-5℃を超えない速度で滴下した。滴下終了後、-15℃でさらに2時間撹拌した。次いでエバポレーターで揮発分を除去し、N-ホルミル化された粗生成物46.7gを得た。
 2Lのフラスコに上記のN-ホルミル化粗生成物46.7g、塩化メチレン120.0g、ジイソプロピルアミン106.1g(1.05mol)を仕込み、内温を5℃まで冷却した。これに塩化ホスホリル50.7g(0.33mol)を滴下した。その後、冷却したまま2時間撹拌した。炭酸ナトリウム20質量%水溶液750.0gを、内温が20℃を超えないように滴下し、滴下終了後室温で15時間撹拌した。生成した塩をろ過除去し、水層を分離した。有機層を3回水洗し、硫酸マグネシウムを加えて脱水、ろ過後に蒸留して目的物CNCH2CH2CH2(Me2)SiOSi(Me2)CH2CH2CH2NCを得た。収量17.4g、収率43.3%、沸点133~134℃/0.3kPa、ガスクロマトグラフィーによる純度は97.8%で、僅かに不快臭があった。
  [実施例1]
 塩化白金酸とテトラメチルジビニルシロキサンとの反応生成物である白金ヒドロシリル化触媒の0.5質量%トルエン溶液(100mg)に、合成例1で得られたイソシアニド化合物を1.9mg加え、室温で1時間撹拌して触媒混合物を得た。
 次に、100mLセパラブルフラスコに、(B)トリメチルシロキシ基両末端封鎖メチルハイドロジェンポリシロキサン(粘度20mm2/s)(2.15g)と、(A)ジメチルビニルシロキシ基両末端封鎖ジメチルポリシロキサン(粘度381mm2/s)(97.56g)を加え、室温で3時間撹拌した。この混合物10.00gと上記で調製した触媒混合物0.02gを加え、室温で30分撹拌した。この混合物は淡黄色透明溶液であった。これを用いて、DSC(示差走差熱量)測定を行った。この結果を表1に記載した。
  [実施例2]
 実施例1において、合成例1で得られたイソシアニド化合物の量1.9mgを、3.8mgに増やした以外は、実施例1と同様の操作及び測定を行った。この結果を表1に記載した。
  [実施例3]
 実施例1において、合成例1で得られたイソシアニド化合物の量1.9mgを、7.4mgに増やした以外は、実施例1と同様の操作及び測定を行った。この結果を表1に記載した。
  [実施例4]
 実施例1において、合成例1で得られたイソシアニド化合物の量1.9mgを、18.6mgに増やした以外は、実施例1と同様の操作及び測定を行った。この結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000002
  [実施例5]
 塩化白金酸とテトラメチルジビニルシロキサンとの反応生成物である白金ヒドロシリル化触媒の0.5質量%トルエン溶液(5.00g)に、合成例1で得られたイソシアニド化合物を0.187g加え、室温で1時間撹拌して触媒混合物を得た。
 次に、500mLセパラブルフラスコに、実施例1記載の(B)トリメチルシロキシ基両末端封鎖メチルハイドロジェンポリシロキサン(8.61g)と、(A)ジメチルビニルシロキシ基両末端封鎖ジメチルポリシロキサン(390.24g)を加え、室温で12時間撹拌した。この混合物10.00gと上記で調製した触媒混合物0.2gを100mLセパラブルフラスコに加え、室温で30分撹拌した。この混合物は淡黄色透明溶液であった。これを用いて、DSC測定、50℃安定性試験(得られた淡黄色透明溶液(サンプル)5gを25gビンにいれ、蓋をして50℃に保存し、保存開始から流動性が消失するまでの時間を測定した。以下同様)を行った。この結果を表2に記載する。また、これをアルミ皿に少量加え、150℃で1時間加熱すると硬化物が得られた。
  [実施例6]
 合成例1で得られたイソシアニド化合物量0.187gを0.372gに増やした以外は、実施例5と同様の操作及び測定を行った。この結果を表2に記載した。
  [実施例7]
 実施例1記載の白金触媒0.5質量%トルエン溶液(2.00g)に、合成例2で得られたイソシアニド化合物を0.099g加え、室温で1時間撹拌して触媒混合物を得た。。
 次に、実施例1記載の両末端トリメチルシロキシ基封鎖ポリメチルハイドロジェンシロキサン(8.61g)と両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン(390.24g)の混合物10.00gと、上記実施例5で調製した触媒混合物0.2gを100mLセパラブルフラスコに加え、室温で30分撹拌した。この混合物は淡黄色透明溶液であった。これを用いて、DSC測定、50℃安定性試験を行った。この結果を表2に記載した。また、これをアルミ皿に少量加え、150℃で1時間加熱すると硬化物が得られた。
  [実施例8]
 合成例2で得られたイソシアニド化合物の代わりに、合成例3で得られたイソシアニド化合物0.089gを用いた以外は、実施例7と同様の操作及び測定を行った。この結果を表2に記載した。
  [実施例9]
 合成例2で得られたイソシアニド化合物の代わりに、合成例4で得られたイソシアニド化合物0.122gを用いた以外は、実施例7と同様の操作及び測定を行った。この結果を表2に記載した。
  [実施例10]
 合成例2で得られたイソシアニド化合物の代わりに、合成例5で得られたイソシアニド化合物0.027gを用いた以外は、実施例7と同様の操作及び測定を行った。この結果を表2に記載した。
  [比較例1]
 100mLセパラブルフラスコに、実施例1に記載の(B)トリメチルシロキシ基両末端封鎖メチルハイドロジェンポリシロキサン(8.61g)と、(A)ジメチルビニルシロキシ基両末端封鎖ジメチルポリシロキサン(390.24g)の混合物99.71gに、1-エチニル-1-シクロヘキサノール(0.29g)を加え、室温で3時間撹拌した。この後、実施例1記載の白金触媒0.5質量%トルエン溶液を0.20g加え、さらに1時間撹拌した。この混合物は無色透明溶液であった。これを用いて、DSC測定、50℃安定性試験を行った。この結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000003
  [実施例11]
 実施例5で得られた組成物を用いて、TA Instrument社のDiscovery DHRとLumen Dynamics社のOmnicure R2000を用いて、光照射下でのレオメーター測定を行った。光量42mW/cm2の条件で行った結果、480秒後に組成物は硬化した。
  [比較例2]
 比較例1で得られた組成物を用いて、実施例11の条件と同様の条件で測定を行った結果、1,200秒照射しても組成物は硬化しなかった。
  [比較例3]
 塩化白金酸とテトラメチルジビニルシロキサンとの反応生成物である白金触媒の0.5質量%トルエン溶液(2.00g)に、市販のt-ブチルイソシアニド(東京化成工業社製)を0.012g加え、室温で1時間撹拌して触媒を得た。この触媒は、不快臭がした。
 次に、100mLセパラブルフラスコに、実施例1記載の両末端トリメチルシロキシ基封鎖ポリメチルハイドロジェンシロキサン(8.61g)と両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン(390.24g)の混合物5.00gに、上記で調製した触媒0.10gを100mLセパラブルフラスコに加え、室温で30分撹拌した。この混合物は淡黄色透明溶液であった。この混合物は、上記イソシアニドが高揮発性のため、室温で30分以内に硬化してしまった。
  [比較例4]
 塩化白金酸とテトラメチルジビニルシロキサンとの反応生成物である白金触媒の0.5質量%トルエン溶液(2.00g)に、市販のステアリルアミン(東京化成工業社製)から公知の方法で合成したステアリルイソシアニドを0.036g加え、室温で1時間撹拌して触媒混合物を得た。調整した触媒混合物は、2日後に沈殿物が生成した。
 次に、100mLセパラブルフラスコに、実施例1記載の(B)トリメチルシロキシ基両末端封鎖メチルハイドロジェンポリシロキサン(8.61g)と、(A)ジメチルビニルシロキシ基両末端封鎖ジメチルポリシロキサン(390.24g)の混合物5.00gに、上記で調製した触媒0.10gを100mLセパラブルフラスコに加え、室温で30分撹拌したところ、この混合物は微濁してしまった。
 実施例と比較例1,2のDSCの結果から明らかであるように、本発明の(D)成分は白金の制御剤となり、制御剤としての量はアセチレンアルコール系のものよりも少なくてよい。さらに、本発明の(D)成分は、イソシアニド化合物特有の臭いが無いか、又は僅かに不快臭であり、低揮発性のものであり、シリコーン組成物に対しての溶解性に優れ、これを配合したシリコーン組成物は、50℃での安定性に優れるものであった。
 一方、比較例3では、(D)成分の揮発性が高く、反応制御が不十分であり、比較例4では(D)成分の溶解性が悪く、触媒の析出が見られた。

Claims (8)

  1.  (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するオルガノポリシロキサン、
    (B)ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
    (C)白金ヒドロシリル化触媒、及び
    (D)下記式(1-1)又は(1-2)
     R1-Si(R1a{〔X-Si(R12b-R1c (1-1)
     R1-Si(R1a{(Zi)}c          (1-2)
    [式中、R1は、互いに独立して、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の1価有機基、及び下記式(2)
     -Y-NC     (2)
    (式中、Yは、置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基である。)
    で表される有機基から選ばれる1価有機基であり、かつ全R1基の中の1~3個が式(2)で示される有機基であり、
     Xは、互いに独立して、酸素原子、又は置換されていてもよく、酸素、窒素、硫黄及びリンから選ばれる原子が1個又はそれ以上介在していてもよい炭素数1~30の2価有機基であり、R1の2つが結合して架橋基Zとなって環構造を形成してもよい(但し、ZはXと同じ意味である。)。
     aは0~3の整数、cは0~3の整数、かつa+cは3、bは1~300の整数であり、Ziは-X-Si(R1j(Zi+1(3-j)で表される基である。
    (式中、iは階層を示し、i=1~10、jは0~3の整数であり、全階層のうち少なくとも1つのjは0又は1であり、最下階層はj=3である。)]
    で表される化合物
    を含有するオルガノポリシロキサン組成物。
  2.  (A)成分が、下記平均組成式(3)
     R2 d3 eSiO(4-d-e)/2         (3)
    (式中、R2は同一又は異種のアルケニル基であり、R3は同一又は異種のアルケニル基以外のケイ素原子に結合する有機基である。dは0<d≦3、eは0≦e<3であり、0<d+e≦3である。ただし、1分子あたりR2のアルケニル基を少なくとも2つを有するように選択される。)
    で表されるオルガノポリシロキサンであり、(B)成分が、下記平均組成式(4)
     R4 ghSiO(4-g-h)/2         (4)
    (式中、R4は、同一又は異種のケイ素原子に結合する水素原子以外の有機基であり、0<g<3、0<h<3、0<g+h≦3である。但し、1分子あたりケイ素原子に結合する水素原子を少なくとも2つを有する。)
    で表されるオルガノハイドロジェンポリシロキサンである請求項1記載のオルガノポリシロキサン組成物。
  3.  上記式(1-1)において、aが0、1又は2である請求項1又は2記載のオルガノポリシロキサン組成物。
  4.  上記(1-1)又は(1-2)において、全R1基の中の1個が式(2)で示される有機基である請求項1~3のいずれか1項記載のオルガノポリシロキサン組成物。
  5.  上記(1-1)において、R1の2つが結合して形成する架橋基Zが、酸素原子である請求項1~4のいずれか1項記載のオルガノポリシロキサン組成物。
  6.  上記式(1-1)又は(1-2)において、Xが酸素原子である請求項1~5のいずれか1項記載のオルガノポリシロキサン組成物。
  7.  上記式(2)において、Yが炭素数1~30の2価炭化水素基である請求項1~6のいずれか1項記載のオルガノポリシロキサン組成物。
  8.  (D)成分の配合量が、(C)成分における白金1原子に対して、(D)成分の式(2)で表される基が2~20当量となる量である請求項1~7のいずれか1項記載のオルガノポリシロキサン組成物。
PCT/JP2018/041117 2017-11-15 2018-11-06 オルガノポリシロキサン組成物 WO2019098084A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18877562.1A EP3712212B1 (en) 2017-11-15 2018-11-06 Organopolysiloxane composition
CN201880073693.3A CN111344356B (zh) 2017-11-15 2018-11-06 有机聚硅氧烷组合物
KR1020207016392A KR102648018B1 (ko) 2017-11-15 2018-11-06 오르가노폴리실록산 조성물
JP2019554176A JP7103371B2 (ja) 2017-11-15 2018-11-06 オルガノポリシロキサン組成物
US16/764,198 US11299628B2 (en) 2017-11-15 2018-11-06 Organopolysiloxane composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219910 2017-11-15
JP2017-219910 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098084A1 true WO2019098084A1 (ja) 2019-05-23

Family

ID=66539561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041117 WO2019098084A1 (ja) 2017-11-15 2018-11-06 オルガノポリシロキサン組成物

Country Status (7)

Country Link
US (1) US11299628B2 (ja)
EP (1) EP3712212B1 (ja)
JP (1) JP7103371B2 (ja)
KR (1) KR102648018B1 (ja)
CN (1) CN111344356B (ja)
TW (1) TWI787387B (ja)
WO (1) WO2019098084A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118043331A (zh) * 2021-10-06 2024-05-14 陶氏环球技术有限责任公司 制备氨基官能化有机硅化合物

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528969B2 (ja) 1972-02-14 1977-03-12
JPH01210461A (ja) * 1988-02-18 1989-08-24 Shin Etsu Chem Co Ltd 硬化性組成物
JPH05247348A (ja) 1990-03-19 1993-09-24 Dow Corning Corp 貯蔵安定性の一液型オルガノシロキサン組成物
JPH06248084A (ja) 1993-02-25 1994-09-06 Toshiba Silicone Co Ltd エチニル基含有有機ケイ素化合物
JPH06329917A (ja) 1993-04-30 1994-11-29 Rhone Poulenc Chim ヒドロシリル化反応の抑制剤としての長鎖α−アセチレンアルコール及びその、安定な硬化性シリコーン組成物調製での応用
JPH07292255A (ja) 1994-04-25 1995-11-07 Shin Etsu Chem Co Ltd シリコーンゴム組成物
JPH08143777A (ja) 1994-11-18 1996-06-04 Kanegafuchi Chem Ind Co Ltd 有機系硬化剤の製造方法
JP2000178210A (ja) 1998-12-17 2000-06-27 Ge Toshiba Silicones Co Ltd 反応抑制剤およびそれを配合した硬化性ポリオルガノシロキサン組成物
JP2000328042A (ja) * 1999-05-19 2000-11-28 Three Bond Co Ltd シール剤組成物
JP3528969B2 (ja) * 1996-12-20 2004-05-24 株式会社スリーボンド オルガノポリシロキサン組成物
JP2008255343A (ja) 2007-03-12 2008-10-23 Shin Etsu Chem Co Ltd ヒドロシリル化反応制御剤、ヒドロシリル化触媒組成物、及び硬化性組成物
JP2010018754A (ja) 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd 付加反応触媒及び付加硬化型オルガノポリシロキサン組成物
JP2017071581A (ja) 2015-10-09 2017-04-13 信越化学工業株式会社 モノ官能性分岐型オルガノシロキサン化合物及びその製造方法
WO2017126562A1 (ja) 2016-01-22 2017-07-27 信越化学工業株式会社 新規イソシアニド化合物及びヒドロシリル化反応触媒
WO2018159599A1 (ja) * 2017-02-28 2018-09-07 国立大学法人九州大学 遷移金属-イソシアニド錯体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975204A (en) * 1958-11-17 1961-03-14 Union Carbide Corp (cyanophenyl) alkoxysilanes
JPS6128574A (ja) * 1984-07-19 1986-02-08 Shin Etsu Chem Co Ltd 帯電防止組成物
US4558109A (en) * 1984-07-25 1985-12-10 Sws Silicones Corporation Curable organopolysiloxane compositions
JPH0645649B2 (ja) * 1985-04-09 1994-06-15 日東紡績株式会社 新規なイソニトリル基含有重合体の製造方法
EP0654497B1 (en) 1993-11-18 1999-02-10 Shin-Etsu Chemical Co., Ltd. Cure control of silicone rubber compositions
JP4513945B2 (ja) * 2001-03-14 2010-07-28 信越化学工業株式会社 高誘電付加型硬化性組成物
JP4524565B2 (ja) * 2004-01-22 2010-08-18 信越化学工業株式会社 湿式シリカ含有シリコーンゴム硬化物の発泡を抑制する方法
JP2012526178A (ja) * 2009-05-06 2012-10-25 ダウ コーニング コーポレーション ビニル水素ポリシロキサン接着剤組成物
US9616418B2 (en) * 2013-03-14 2017-04-11 National Institute Of Advanced Industrial Science And Technology Metal complex and supported metal complex having disiloxane as ligand, method for production therefor, and supported metal catalyst prepared by using the same
WO2016024607A1 (ja) * 2014-08-12 2016-02-18 国立大学法人九州大学 ヒドロシリル化反応触媒
EP3323505A4 (en) * 2015-07-14 2019-03-20 Kyushu University, National University Corporation hydrosilylation reaction catalyst

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528969B2 (ja) 1972-02-14 1977-03-12
JPH01210461A (ja) * 1988-02-18 1989-08-24 Shin Etsu Chem Co Ltd 硬化性組成物
JPH05247348A (ja) 1990-03-19 1993-09-24 Dow Corning Corp 貯蔵安定性の一液型オルガノシロキサン組成物
JPH06248084A (ja) 1993-02-25 1994-09-06 Toshiba Silicone Co Ltd エチニル基含有有機ケイ素化合物
JPH06329917A (ja) 1993-04-30 1994-11-29 Rhone Poulenc Chim ヒドロシリル化反応の抑制剤としての長鎖α−アセチレンアルコール及びその、安定な硬化性シリコーン組成物調製での応用
JPH07292255A (ja) 1994-04-25 1995-11-07 Shin Etsu Chem Co Ltd シリコーンゴム組成物
JPH08143777A (ja) 1994-11-18 1996-06-04 Kanegafuchi Chem Ind Co Ltd 有機系硬化剤の製造方法
JP3528969B2 (ja) * 1996-12-20 2004-05-24 株式会社スリーボンド オルガノポリシロキサン組成物
JP2000178210A (ja) 1998-12-17 2000-06-27 Ge Toshiba Silicones Co Ltd 反応抑制剤およびそれを配合した硬化性ポリオルガノシロキサン組成物
JP2000328042A (ja) * 1999-05-19 2000-11-28 Three Bond Co Ltd シール剤組成物
JP2008255343A (ja) 2007-03-12 2008-10-23 Shin Etsu Chem Co Ltd ヒドロシリル化反応制御剤、ヒドロシリル化触媒組成物、及び硬化性組成物
JP2010018754A (ja) 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd 付加反応触媒及び付加硬化型オルガノポリシロキサン組成物
JP2017071581A (ja) 2015-10-09 2017-04-13 信越化学工業株式会社 モノ官能性分岐型オルガノシロキサン化合物及びその製造方法
WO2017126562A1 (ja) 2016-01-22 2017-07-27 信越化学工業株式会社 新規イソシアニド化合物及びヒドロシリル化反応触媒
WO2018159599A1 (ja) * 2017-02-28 2018-09-07 国立大学法人九州大学 遷移金属-イソシアニド錯体の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ORG. SYNTH., vol. 90, 2013, pages 358 - 366
ORGANOMETALLICS, vol. 23, 2004, pages 3976 - 3981
See also references of EP3712212A4
SYNTHETIC COMMUNICATIONS, vol. 16, 1986, pages 865 - 869
T. ENDO ET AL., INT. J. ADHESION AND ADHESIVES, vol. 20, 2000, pages 253
T. ENDO ET AL., MACROMOLECULES, vol. 31, 1998, pages 9392
TETRAHEDRON LETTERS, vol. 17, 1972, pages 1637 - 1640

Also Published As

Publication number Publication date
CN111344356B (zh) 2022-04-19
US20200392336A1 (en) 2020-12-17
JP7103371B2 (ja) 2022-07-20
KR20200074230A (ko) 2020-06-24
CN111344356A (zh) 2020-06-26
US11299628B2 (en) 2022-04-12
EP3712212A1 (en) 2020-09-23
TW201936793A (zh) 2019-09-16
KR102648018B1 (ko) 2024-03-18
EP3712212B1 (en) 2022-10-26
TWI787387B (zh) 2022-12-21
JPWO2019098084A1 (ja) 2020-11-19
EP3712212A4 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6019034B2 (ja) 多価不飽和化合物の金属触媒モノヒドロシリル化
TWI812618B (zh) 矽氫化可固化聚矽氧樹脂
JPH0237211B2 (ja)
JP2005523980A (ja) オルガノハイドロジェンシリコン化合物
US10392479B2 (en) Platinum complexes and their use in compounds that can be cross-linked by a hydrosilylation reaction
WO2006023234A2 (en) Synthesis of elastomeric carborane-siloxanes by hydrosilation reactions
JP6327426B2 (ja) ヒドロシリル化反応触媒
JP6620823B2 (ja) 新規イソシアニド化合物及びヒドロシリル化反応触媒
EP3194469B1 (en) Platinum (ii) diene complexes for controlled siloxane crosslinking
JP7103371B2 (ja) オルガノポリシロキサン組成物
JP2017501976A (ja) コバルト触媒並びにヒドロシリル化及び脱水素シリル化のためのその使用
JP4155820B2 (ja) 酸素原子が含まれている炭化水素環を少なくとも1個含有するシントンを触媒金属錯体の存在下にヒドロシリル化することによってシリコーンオイルを製造する方法
JP6983995B2 (ja) 貴金属触媒の安定化
US10513584B2 (en) Platinum catalyzed hydrosilylation reactions utilizing cyclodiene additives
JP7107636B2 (ja) シクロジエン添加剤を使用する白金触媒ヒドロシリル化反応
US20240009659A1 (en) Internal Diene Compounds And Their Periodic Group IX, X and Pt Group Metal Complexes For Catalyzed Reactions Including Hydrosilylation
TW202340379A (zh) 雙(炔氧基矽烷基)烷烴、其製造方法以及固化性聚矽氧組成物
JPH0218451A (ja) ポリオルガノシロキサン組成物
de Vekki et al. METAL COMPLEX CATALYZED HYDROSILYLATION OF VINYLWITH HYDROSILOXANES (A REVIEW)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016392

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018877562

Country of ref document: EP

Effective date: 20200615