WO2019097774A1 - バンドパスフィルタ - Google Patents

バンドパスフィルタ Download PDF

Info

Publication number
WO2019097774A1
WO2019097774A1 PCT/JP2018/029329 JP2018029329W WO2019097774A1 WO 2019097774 A1 WO2019097774 A1 WO 2019097774A1 JP 2018029329 W JP2018029329 W JP 2018029329W WO 2019097774 A1 WO2019097774 A1 WO 2019097774A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
conductor pattern
parallel resonator
connection point
parallel
Prior art date
Application number
PCT/JP2018/029329
Other languages
English (en)
French (fr)
Inventor
智史 浅田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880074588.1A priority Critical patent/CN111357198B/zh
Priority to JP2019553694A priority patent/JP6904433B2/ja
Publication of WO2019097774A1 publication Critical patent/WO2019097774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a band pass filter.
  • Patent Document 1 discloses a capacitor electrode between input and output for connecting an input electrode and an output electrode with a capacitance to a predetermined electrode layer among a plurality of electrode layers.
  • a band pass filter is disclosed. Due to the capacitor electrode between the input and the output, an attenuation pole is generated on the high band side of the pass band and two attenuation poles are generated on the low band side of the pass band. As a result, it is possible to make both the attenuation characteristic from the passband to the low band side and the attenuation characteristic from the passband to the high band side sharp.
  • Patent Document 1 does not change the frequency of the attenuation pole generated in the frequency band lower than the pass band, but specifically illustrates the configuration capable of changing the frequency of the attenuation pole generated in the frequency higher than the pass band. Not disclosed.
  • the present invention has been made to solve the problems as described above, and its object is to bring the frequency characteristics of a band pass filter close to the desired frequency characteristics.
  • One aspect of the multilayer bandpass filter according to the present invention includes a first terminal and a second terminal, a first LC parallel resonator, a second LC parallel resonator, a third LC parallel resonator, a fourth LC parallel resonator, and a first capacitor , A second capacitor, and a third capacitor.
  • the first LC parallel resonator is electrically connected to the first terminal at the first connection point.
  • the first LC parallel resonator includes a first inductor and a fourth capacitor. The first inductor and the fourth capacitor are connected in parallel between the first connection point and the ground point.
  • the second LC parallel resonator is electrically connected to the second terminal at the second connection point.
  • the second LC parallel resonator includes a second inductor and a fifth capacitor.
  • the second inductor and the fifth capacitor are connected in parallel between the second connection point and the ground point.
  • the third LC parallel resonator is magnetically coupled to the first LC parallel resonator.
  • the fourth LC parallel resonator is magnetically coupled to the second LC parallel resonator and the third LC parallel resonator.
  • the first capacitor and the second capacitor are connected in series between the first connection point and the second connection point.
  • the third capacitor is connected between the ground point and a third connection point of the first capacitor and the second capacitor.
  • the third capacitor connected between the ground point and the third connection point of the first and second capacitors makes it possible to reduce the attenuation pole generated in the frequency band lower than the pass band. It is possible to change the frequency of the attenuation pole that occurs at frequencies higher than the passband with little change in frequency. As a result, the frequency characteristics of the band pass filter can be made close to the desired frequency characteristics.
  • FIG. 1 is an equivalent circuit diagram of a band pass filter 1 according to the embodiment.
  • the band pass filter 1 includes input / output terminals P10 and P100, LC parallel resonators 11 to 14, and capacitors 103, 108 and 111 to 113.
  • the LC parallel resonator 11 is electrically connected to the input / output terminal P10 at the connection point 114, and a signal is transmitted between the LC parallel resonator 11 and the input / output terminal P10 without magnetic coupling.
  • the LC parallel resonator 11 includes an inductor 101 and a capacitor 102. The inductor 101 and the capacitor 102 are connected in parallel between the connection point 114 and the ground point GND.
  • the capacitor 103 is connected between the LC parallel resonator 12 and the connection point 114.
  • the LC parallel resonator 12 includes an inductor 104 and a capacitor 105.
  • the inductor 104 and the capacitor 105 are connected in parallel between the ground point GND and a connection point 115 of the LC parallel resonator 12 and the capacitor 103.
  • the LC parallel resonator 14 is electrically connected to the input / output terminal P100 at the connection point 117, and a signal is transmitted between the LC parallel resonator 14 and the input / output terminal P100 without magnetic coupling.
  • the LC parallel resonator 14 includes an inductor 109 and a capacitor 110. The inductor 109 and the capacitor 110 are connected in parallel between the connection point 117 and the ground point GND.
  • the capacitor 108 is connected between the LC parallel resonator 13 and the connection point 117.
  • the LC parallel resonator 13 includes an inductor 106 and a capacitor 107. Inductor 106 and capacitor 107 are connected in parallel between ground point GND and connection point 116 of LC parallel resonator 13 and capacitor 108.
  • Capacitors 111 and 112 are connected in series between connection points 114 and 117.
  • Capacitor 113 is connected between ground GND and connection point 118 of capacitors 111 and 112.
  • a magnetic coupling M15 occurs between the inductors 101 and 104.
  • a magnetic coupling M16 occurs between the inductors 104 and 106.
  • a magnetic coupling M17 occurs between the inductors 106 and 109.
  • the signal When a signal is input to the input / output terminal P10, the signal is transmitted to the LC parallel resonator 11 without magnetic coupling.
  • the signal transmitted to the LC parallel resonator 11 is transmitted to the LC parallel resonator 12 via the magnetic coupling M15, is transmitted to the LC parallel resonator 13 via the magnetic coupling M16, and is LC parallel via the magnetic coupling M17. It is transmitted to the resonator 14.
  • the signal transmitted to the LC parallel resonator 14 is transmitted to the input / output terminal P100 without magnetic coupling, and is output from the input / output terminal P100.
  • the signal When a signal is input to the input / output terminal P100, the signal is transmitted to the LC parallel resonator 14 without magnetic coupling.
  • the signal transmitted to the LC parallel resonator 14 is transmitted to the LC parallel resonator 13 via the magnetic coupling M17, is transmitted to the LC parallel resonator 12 via the magnetic coupling M16, and is LC parallel via the magnetic coupling M15. It is transmitted to the resonator 11.
  • the signal transmitted to the LC parallel resonator 11 is transmitted to the input / output terminal P10 without magnetic coupling, and is output from the input / output terminal P10.
  • an LC parallel resonator electrically connected to the input terminal to which the signal is input and to which the signal is transmitted without magnetic coupling with the input terminal.
  • LC parallel resonator on the input side and an LC parallel connected to an output terminal to which a signal from the input terminal is output and to which a signal is transmitted without magnetic coupling with the output terminal
  • the resonator (LC parallel resonator on the output side) is called an LC parallel resonator at both ends.
  • an LC parallel resonator that transmits signals from the LC parallel resonators at both ends through magnetic coupling is disposed between the LC parallel resonators at both ends. It is called LC parallel resonator.
  • the impedance of the signal path from the input terminal to the LC parallel resonator on the input side is from the impedance of each signal path from the input terminal to the LC parallel resonator disposed between the LC parallel resonators at both ends, and from the input terminal Less than either of the impedances of the signal path leading to the LC parallel resonator on the output side.
  • the impedance of the signal path from the input / output terminal P10 to the LC parallel resonator 11 is smaller than the impedance of each signal path from the input / output terminal P10 to the LC parallel resonators 12-14.
  • the impedance of the signal path from the input / output terminal P100 to the LC parallel resonator 14 is smaller than the impedance of each signal path from the input / output terminal P100 to the LC parallel resonators 13-11.
  • FIG. 2 is an external perspective view of the band pass filter 1 of FIG. Regarding the coordinate axes, the X axis and the Y axis are orthogonal, and the Z axis (stacking direction) is orthogonal to the X axis and the Y axis. The same applies to the coordinate axes shown in FIG.
  • the band pass filter 1 has, for example, a rectangular parallelepiped shape.
  • the surface of the outermost layer of the bandpass filter 1 perpendicular to the stacking direction is referred to as a top surface UF and a bottom surface BF.
  • a direction identification mark DM is formed on the upper surface UF.
  • Input / output terminals P10 and P100 and a ground terminal G120 are formed on the bottom surface BF.
  • the ground terminal G120 forms a ground point GND.
  • the input / output terminals P10 and P100 and the ground terminal G120 are, for example, LGA (Land Grid Array) terminals in which plane electrodes are regularly arranged on the bottom surface BF.
  • the bottom surface BF is connected to a substrate (not shown).
  • FIG. 3 is an exploded perspective view showing an example of the laminated structure of the band pass filter 1 of FIG.
  • the band pass filter 1 is a laminate in which a plurality of dielectric layers 121 to 132 are stacked in the Z-axis direction.
  • Capacitor conductor patterns 141 and 143 and a line conductor pattern 142 are formed in the dielectric layer 121.
  • the capacitor conductor pattern 141 is connected to the input / output terminal P10 by the via conductor pattern 181.
  • the capacitor conductor pattern 141 is connected to the via conductor pattern 184.
  • the line conductor pattern 142 is connected to the ground terminal G120 by the via conductor pattern 182.
  • the capacitor conductor pattern 143 is connected to the input / output terminal P100 by the via conductor pattern 183.
  • the capacitor conductor pattern 143 is connected to the via conductor pattern 187.
  • a ground conductor pattern 144 is formed on the dielectric layer 122.
  • the ground conductor pattern 144 is connected to the line conductor pattern 142 by via conductor patterns 185 and 186.
  • the capacitor conductor pattern 141 and the ground conductor pattern 144 form a capacitor 102.
  • the capacitor conductor pattern 143 and the ground conductor pattern 144 form a capacitor 110.
  • Capacitor conductor patterns 145 and 146 are formed on the dielectric layer 123.
  • the ground conductor pattern 144 and the capacitor conductor pattern 145 form a capacitor 105.
  • the ground conductor pattern 144 and the capacitor conductor pattern 146 form a capacitor 107.
  • Capacitor conductor patterns 147 to 149 are formed on the dielectric layer 124.
  • the capacitor conductor pattern 147 is connected to the via conductor pattern 184 by the via conductor pattern 188.
  • Capacitor conductor patterns 145 and 147 form a capacitor 103.
  • the ground conductor pattern 144 and the capacitor conductor pattern 148 form a capacitor 113.
  • the capacitor conductor pattern 149 is connected to the via conductor pattern 187 by the via conductor pattern 190.
  • Capacitor conductor patterns 146 and 149 form a capacitor 108.
  • a capacitor conductor pattern 150 is formed on the dielectric layer 125.
  • the capacitor conductor pattern 150 is connected to the capacitor conductor pattern 148 by the via conductor pattern 196.
  • the capacitor conductor patterns 147 and 150 form a capacitor 111.
  • Capacitor conductor patterns 149 and 150 form a capacitor 112.
  • the connection portion between capacitor conductor pattern 150 and via conductor pattern 196 includes a connection point 118.
  • the dielectric layer 124 in which the capacitor conductor pattern 148 is formed is disposed between the dielectric layer 122 in which the ground conductor pattern is formed and the dielectric layer 125 in which the capacitor conductor pattern 150 is formed.
  • Line conductor patterns 151 to 153 are formed on the dielectric layer 126.
  • the line conductor pattern 151 is connected to the capacitor conductor pattern 147 by the via conductor pattern 188.
  • the line conductor pattern 152 is connected to the ground conductor pattern 144 by the via conductor pattern 186.
  • the line conductor pattern 153 is connected to the capacitor conductor pattern 149 by the via conductor pattern 190.
  • Line conductor patterns 154 to 156 are formed on the dielectric layer 127.
  • the line conductor pattern 154 is connected to the line conductor pattern 151 by via conductor patterns 188 and 197.
  • the line conductor pattern 155 is connected to the line conductor pattern 152 by via conductor patterns 186, 194 and 195.
  • the line conductor pattern 156 is connected to the line conductor pattern 153 by via conductor patterns 190 and 198.
  • Line conductor patterns 157 to 159 are formed on the dielectric layer 128.
  • the line conductor pattern 157 is connected to the line conductor pattern 154 by the via conductor patterns 188 and 197.
  • the line conductor pattern 158 is connected to the line conductor pattern 155 by via conductor patterns 186, 194 and 195.
  • the line conductor pattern 159 is connected to the line conductor pattern 156 by via conductor patterns 190 and 198.
  • Line conductor patterns 160 to 163 are formed on the dielectric layer 129.
  • the line conductor pattern 160 is connected to the line conductor pattern 157 by the via conductor pattern 197.
  • the line conductor pattern 160 is connected to the ground conductor pattern 144 by the via conductor pattern 189.
  • the line conductor pattern 161 is connected to the capacitor conductor pattern 145 by the via conductor pattern 192.
  • the line conductor pattern 161 is connected to the line conductor pattern 158 by a via conductor pattern 194.
  • the line conductor pattern 162 is connected to the capacitor conductor pattern 146 by the via conductor pattern 193.
  • the line conductor pattern 162 is connected to the line conductor pattern 158 by a via conductor pattern 195.
  • the line conductor pattern 163 is connected to the line conductor pattern 159 by a via conductor pattern 198.
  • the line conductor pattern 163 is connected to the ground conductor pattern 144 by the via conductor pattern 191.
  • Line conductor patterns 164 to 167 are formed on the dielectric layer 130.
  • the line conductor pattern 164 is connected to the line conductor pattern 160 by via conductor patterns 189 and 197.
  • the line conductor pattern 165 is connected to the line conductor pattern 161 by via conductor patterns 192 and 194.
  • the line conductor pattern 166 is connected to the line conductor pattern 162 by via conductor patterns 193 and 195.
  • the line conductor pattern 167 is connected to the line conductor pattern 163 by via conductor patterns 191 and 198.
  • Line conductor patterns 168 to 171 are formed on the dielectric layer 131.
  • the line conductor pattern 168 is connected to the line conductor pattern 164 by via conductor patterns 189 and 197.
  • the line conductor pattern 169 is connected to the line conductor pattern 165 by via conductor patterns 192 and 194.
  • the line conductor pattern 170 is connected to the line conductor pattern 166 by via conductor patterns 193 and 195.
  • the line conductor pattern 171 is connected to the line conductor pattern 167 by via conductor patterns 191 and 198.
  • the via conductor patterns 184 and 188, the line conductor patterns 151, 154 and 157, the via conductor pattern 197, the line conductor patterns 160, 164 and 168, and the via conductor pattern 189 form an inductor 101.
  • the via conductor pattern 192, the line conductor patterns 161, 165, 169 and the via conductor pattern 194 form an inductor 104.
  • the via conductor pattern 193, the line conductor patterns 162, 166, 170 and the via conductor pattern 195 form an inductor 106.
  • the via conductor patterns 187 and 190, the line conductor patterns 153, 156 and 159, the via conductor pattern 198, the line conductor patterns 163, 167 and 171, and the via conductor pattern 191 form an inductor 109.
  • FIG. 4 is an equivalent circuit diagram of the band pass filter 9 according to the comparative example.
  • the equivalent circuit diagram of the band pass filter 9 is an equivalent circuit diagram in which the capacitor 113 is removed from the equivalent circuit diagram of FIG.
  • the other configuration is the same, so the description will not be repeated.
  • FIG. 5 is a diagram showing the insertion loss IL20 of the band pass filter 1 of FIG. 1 and the insertion loss IL90 of the band pass filter 9 of FIG.
  • the pass bands of the band pass filters 1 and 9 are assumed to be frequency bands f41 to f42 (> f41).
  • the frequencies f51 to f55 at which the attenuation pole is generated are higher in this order.
  • the attenuation (dB) on the vertical axis is a negative value.
  • the insertion loss is an index indicating the ratio of the signal transmitted to the other terminal of the electronic component out of the signals input to the certain terminal of the electronic component. The larger the insertion loss, the larger the proportion of the signal input to the electronic component that is lost inside the electronic component.
  • Attenuation poles occur at frequencies f51 ( ⁇ f41) and f52 ( ⁇ f41) in a frequency band lower than the pass band. In the frequency band higher than the pass band, attenuation poles occur at frequencies f53 (> f42) and f55.
  • the capacitances of the capacitors 111 and 112 in FIG. 4 the frequency of the attenuation pole generated in the insertion loss IL 90 can be changed.
  • the capacitances of the capacitors 111 and 112 are changed, the frequency of the attenuation pole generated in the frequency band lower than the passband and the frequency of the attenuation pole generated in the frequency band higher than the passband change to the same extent.
  • a capacitor is connected between the connection point of two capacitors connected in series between LC parallel resonators at both ends and the ground point.
  • the capacitor makes it possible to change the frequency of the attenuation pole generated in the frequency band higher than the pass band, while hardly changing the frequency of the attenuation pole generated in the frequency band lower than the pass band.
  • FIG. 6 is an equivalent circuit diagram of a band pass filter 1A according to a modification of the embodiment.
  • the equivalent circuit diagram of the band pass filter 1A is an equivalent circuit diagram in which the capacitors 103 and 108 are removed from the equivalent circuit diagram of FIG.
  • the other configuration is the same, so the description will not be repeated.
  • the frequency characteristic can be made close to the desired frequency characteristic.
  • 1, 1 A, 9 band pass filters 11 to 14 LC parallel resonators, 101, 104, 106, 109 inductors, 102, 103, 105, 107, 108, 110, 111 to 113 capacitors, 121 to 132 dielectric layers, 141, 143, 145 to 150 capacitor conductor patterns, 142, 151 to 171 line conductor patterns, 144 ground conductor patterns, 181 to 198 via conductor patterns, DM direction identification marks, G120 ground terminals, P10, P100 input / output terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

バンドパスフィルタの周波数特性を所望の周波数特性に近づける。第1LC並列共振器(11)は、第1端子(P10)に第1接続点(114)において電気的に接続される。第2LC並列共振器(14)は、第2端子(P100)に第2接続点(117)において電気的に接続される。第1キャパシタ(111)および第2キャパシタ(112)は、第1接続点(114)と第2接続点(117)との間において直列に接続されている。第3キャパシタ(113)は、接地点(GND)と、第1キャパシタ(111)および第2キャパシタ(112)の第3接続点(118)との間に接続されている。

Description

バンドパスフィルタ
 本発明は、バンドパスフィルタに関する。
 従来、バンドパスフィルタが知られている。たとえば、国際公開第2007/119356号(特許文献1)には、複数の電極層のうちの所定の電極層に、入力電極と出力電極との間を容量で接続するための入出力間キャパシタ電極が設けられたバンドパスフィルタが開示されている。入出力間キャパシタ電極によって、通過帯域の高域側に減衰極が生じるとともに通過帯域の低域側に2つの減衰極が生じる。その結果、通過帯域から低域側への減衰特性および通過帯域から高域側への減衰特性をともに急峻にすることができる。
国際公開第2007/119356号
 バンドパスフィルタの周波数特性を所望の周波数特性に近づけるために、通過帯域よりも低い周波数帯に生じる減衰極の周波数を変化させずに、通過帯域よりも高い周波数に生じる減衰極を変化させることが必要になり得る。しかし、特許文献1には、通過帯域よりも低い周波数帯に生じる減衰極の周波数を変化させずに、通過帯域よりも高い周波数において生じる減衰極の周波数を変化させることが可能な構成については具体的に開示されていない。
 本発明は上記のような課題を解決するためになされたものであり、その目的はバンドパスフィルタの周波数特性を所望の周波数特性に近づけることである。
 本発明に係る積層帯域通過フィルタの一態様は、第1端子および第2端子と、第1LC並列共振器,第2LC並列共振器,第3LC並列共振器,第4LC並列共振器と、第1キャパシタ,第2キャパシタ,第3キャパシタとを備える。第1LC並列共振器は、第1端子に第1接続点において電気的に接続される。第1LC並列共振器は、第1インダクタおよび第4キャパシタを含む。第1インダクタおよび第4キャパシタは、第1接続点と接地点との間で並列に接続されている。第2LC並列共振器は、第2端子に第2接続点において電気的に接続される。第2LC並列共振器は、第2インダクタおよび第5キャパシタを含む。第2インダクタおよび第5キャパシタは、第2接続点と接地点との間で並列に接続されている。第3LC並列共振器は、第1LC並列共振器と磁気結合する。第4LC並列共振器は、第2LC並列共振器および第3LC並列共振器と磁気結合する。第1キャパシタおよび第2キャパシタは、第1接続点と第2接続点との間において直列に接続されている。第3キャパシタは、接地点と、第1キャパシタおよび第2キャパシタの第3接続点との間に接続されている。
 本発明に係るバンドパスフィルタによれば、接地点と第1および第2キャパシタの第3接続点との間に接続されている第3キャパシタにより、通過帯域よりも低い周波数帯に生じる減衰極の周波数をほとんど変化させずに、通過帯域よりも高い周波数において生じる減衰極の周波数を変化させることができる。その結果、バンドパスフィルタの周波数特性を所望の周波数特性に近づけることができる。
実施の形態に係るバンドパスフィルタの等価回路図である。 図1のバンドパスフィルタの外観斜視図である。 図2のバンドパスフィルタの積層構造の一例を示す分解斜視図である。 比較例に係るバンドパスフィルタの等価回路図である。 図1のバンドパスフィルタの挿入損失、および図4のバンドパスフィルタの挿入損失を併せて示す図である。 実施の形態の変形例に係るバンドパスフィルタの等価回路図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 図1は、実施の形態に係るバンドパスフィルタ1の等価回路図である。図1に示されるように、バンドパスフィルタ1は、入出力端子P10,P100と、LC並列共振器11~14と、キャパシタ103,108,111~113とを備える。
 LC並列共振器11は、入出力端子P10に接続点114において電気的に接続され、入出力端子P10との間で磁気結合を介さずに信号が伝達される。LC並列共振器11は、インダクタ101およびキャパシタ102を含む。インダクタ101およびキャパシタ102は、接続点114と接地点GNDとの間で並列に接続されている。
 キャパシタ103は、LC並列共振器12と接続点114との間に接続されている。LC並列共振器12は、インダクタ104およびキャパシタ105を含む。インダクタ104およびキャパシタ105は、接地点GNDと、LC並列共振器12およびキャパシタ103の接続点115との間で並列に接続されている。
 LC並列共振器14は、入出力端子P100に接続点117において電気的に接続され、入出力端子P100との間で磁気結合を介さずに信号が伝達される。LC並列共振器14は、インダクタ109およびキャパシタ110を含む。インダクタ109およびキャパシタ110は、接続点117と接地点GNDとの間で並列に接続されている。
 キャパシタ108は、LC並列共振器13と接続点117との間に接続されている。LC並列共振器13は、インダクタ106およびキャパシタ107を含む。インダクタ106およびキャパシタ107は、接地点GNDと、LC並列共振器13およびキャパシタ108の接続点116との間で並列に接続されている。
 キャパシタ111および112は、接続点114と117との間において直列に接続されている。キャパシタ113は、接地点GNDと、キャパシタ111および112の接続点118との間に接続されている。
 インダクタ101と104との間には、磁気結合M15が生じる。インダクタ104と106との間には、磁気結合M16が生じる。インダクタ106と109との間には、磁気結合M17が生じる。
 入出力端子P10に信号が入力された場合、当該信号は磁気結合を介さずにLC並列共振器11に伝達される。LC並列共振器11に伝達された信号は、磁気結合M15を介してLC並列共振器12に伝達され、磁気結合M16を介してLC並列共振器13に伝達され、磁気結合M17を介してLC並列共振器14に伝達される。LC並列共振器14に伝達された信号は、磁気結合を介さずに入出力端子P100に伝達され、入出力端子P100から出力される。
 入出力端子P100に信号が入力された場合、当該信号は磁気結合を介さずにLC並列共振器14に伝達される。LC並列共振器14に伝達された信号は、磁気結合M17を介してLC並列共振器13に伝達され、磁気結合M16を介してLC並列共振器12に伝達され、磁気結合M15を介してLC並列共振器11に伝達される。LC並列共振器11に伝達された信号は、磁気結合を介さずに入出力端子P10に伝達され、入出力端子P10から出力される。
 以下では、LC並列共振器11,14のように、信号が入力される入力端子に電気的に接続されるとともに入力端子との間で磁気結合を介さずに信号が伝達されるLC並列共振器(入力側のLC並列共振器)、および、入力端子からの信号が出力される出力端子に電気的に接続されるとともに出力端子との間で磁気結合を介さずに信号が伝達されるLC並列共振器(出力側のLC並列共振器)を、両端のLC並列共振器と呼ぶ。また、LC並列共振器12,13のように、両端のLC並列共振器からの信号を、磁気結合を介して伝達するLC並列共振器を、両端のLC並列共振器の間に配置されているLC並列共振器と呼ぶ。
 入力端子から入力側のLC並列共振器に至る信号経路のインピーダンスは、入力端子から両端のLC並列共振器の間に配置されているLC並列共振器に至る各信号経路のインピーダンス、および入力端子から出力側のLC並列共振器に至る信号経路のインピーダンスのいずれよりも小さい。
 バンドパスフィルタ1においては、入出力端子P10からLC並列共振器11に至る信号経路のインピーダンスは、入出力端子P10からLC並列共振器12~14に至る各信号経路のインピーダンスよりも小さい。入出力端子P100からLC並列共振器14に至る信号経路のインピーダンスは、入出力端子P100からLC並列共振器13~11に至る各信号経路のインピーダンスよりも小さい。
 なお、2つの回路要素が電気的に接続されている場合には、2つの回路要素が直接に接続されている場合、および他の回路要素(たとえばキャパシタ)を介して間接的に接続されている場合の双方が含まれる。
 図2は、図1のバンドパスフィルタ1の外観斜視図である。座標軸に関して、X軸およびY軸は直交し、Z軸(積層方向)はX軸およびY軸に直交している。図3に示される座標軸についても同様である。
 図2に示されるように、バンドパスフィルタ1は、たとえば直方体状である。積層方向に垂直なバンドパスフィルタ1の最外層の面を上面UFおよび底面BFとする。
 上面UFには、方向識別マークDMが形成されている。底面BFには、入出力端子P10,P100、および接地端子G120が形成されている。接地端子G120は、接地点GNDを形成している。入出力端子P10,P100、および接地端子G120は、たとえば底面BFに平面電極が規則的に配置されたLGA(Land Grid Array)端子である。底面BFは、不図示の基板に接続される。
 図3は、図2のバンドパスフィルタ1の積層構造の一例を示す分解斜視図である。図3に示されるように、バンドパスフィルタ1は、複数の誘電体層121~132がZ軸方向に積層された積層体である。
 誘電体層121には、キャパシタ導体パターン141,143、および線路導体パターン142が形成されている。キャパシタ導体パターン141は、ビア導体パターン181によって入出力端子P10に接続されている。キャパシタ導体パターン141は、ビア導体パターン184に接続されている。線路導体パターン142は、ビア導体パターン182によって接地端子G120に接続されている。キャパシタ導体パターン143は、ビア導体パターン183によって入出力端子P100に接続されている。キャパシタ導体パターン143は、ビア導体パターン187に接続されている。
 誘電体層122には、接地導体パターン144が形成されている。接地導体パターン144は、ビア導体パターン185,186によって線路導体パターン142に接続されている。キャパシタ導体パターン141および接地導体パターン144は、キャパシタ102を形成している。キャパシタ導体パターン143および接地導体パターン144は、キャパシタ110を形成している。
 誘電体層123には、キャパシタ導体パターン145,146が形成されている。接地導体パターン144およびキャパシタ導体パターン145は、キャパシタ105を形成している。接地導体パターン144およびキャパシタ導体パターン146は、キャパシタ107を形成している。
 誘電体層124には、キャパシタ導体パターン147~149が形成されている。キャパシタ導体パターン147は、ビア導体パターン188によって、ビア導体パターン184に接続されている。キャパシタ導体パターン145,147は、キャパシタ103を形成している。接地導体パターン144およびキャパシタ導体パターン148は、キャパシタ113を形成している。キャパシタ導体パターン149は、ビア導体パターン190によってビア導体パターン187に接続されている。キャパシタ導体パターン146,149は、キャパシタ108を形成している。
 誘電体層125には、キャパシタ導体パターン150が形成されている。キャパシタ導体パターン150は、ビア導体パターン196によってキャパシタ導体パターン148に接続されている。キャパシタ導体パターン147,150は、キャパシタ111を形成している。キャパシタ導体パターン149,150は、キャパシタ112を形成している。キャパシタ導体パターン150とビア導体パターン196との接続部分は、接続点118を含む。キャパシタ導体パターン148が形成された誘電体層124は、接地導体パターンが形成された誘電体層122と、キャパシタ導体パターン150が形成された誘電体層125との間に配置されている。
 誘電体層126には、線路導体パターン151~153が形成されている。線路導体パターン151は、ビア導体パターン188によってキャパシタ導体パターン147に接続されている。線路導体パターン152は、ビア導体パターン186によって接地導体パターン144に接続されている。線路導体パターン153は、ビア導体パターン190によってキャパシタ導体パターン149に接続されている。
 誘電体層127には、線路導体パターン154~156が形成されている。線路導体パターン154は、ビア導体パターン188,197によって線路導体パターン151に接続されている。線路導体パターン155は、ビア導体パターン186,194,195によって線路導体パターン152に接続されている。線路導体パターン156は、ビア導体パターン190,198によって線路導体パターン153に接続されている。
 誘電体層128には、線路導体パターン157~159が形成されている。線路導体パターン157は、ビア導体パターン188,197によって線路導体パターン154に接続されている。線路導体パターン158は、ビア導体パターン186,194,195によって線路導体パターン155に接続されている。線路導体パターン159は、ビア導体パターン190,198によって線路導体パターン156に接続されている。
 誘電体層129には、線路導体パターン160~163が形成されている。線路導体パターン160は、ビア導体パターン197によって線路導体パターン157に接続されている。線路導体パターン160は、ビア導体パターン189によって接地導体パターン144に接続されている。
 線路導体パターン161は、ビア導体パターン192によってキャパシタ導体パターン145に接続されている。線路導体パターン161は、ビア導体パターン194によって線路導体パターン158に接続されている。
 線路導体パターン162は、ビア導体パターン193によってキャパシタ導体パターン146に接続されている。線路導体パターン162は、ビア導体パターン195によって線路導体パターン158に接続されている。
 線路導体パターン163は、ビア導体パターン198によって線路導体パターン159に接続されている。線路導体パターン163は、ビア導体パターン191によって接地導体パターン144に接続されている。
 誘電体層130には、線路導体パターン164~167が形成されている。線路導体パターン164は、ビア導体パターン189,197によって線路導体パターン160に接続されている。線路導体パターン165は、ビア導体パターン192,194によって線路導体パターン161に接続されている。線路導体パターン166は、ビア導体パターン193,195によって線路導体パターン162に接続されている。線路導体パターン167は、ビア導体パターン191,198によって線路導体パターン163に接続されている。
 誘電体層131には、線路導体パターン168~171が形成されている。線路導体パターン168は、ビア導体パターン189,197によって線路導体パターン164に接続されている。線路導体パターン169は、ビア導体パターン192,194によって線路導体パターン165に接続されている。線路導体パターン170は、ビア導体パターン193,195によって線路導体パターン166に接続されている。線路導体パターン171は、ビア導体パターン191,198によって線路導体パターン167に接続されている。
 ビア導体パターン184,188、線路導体パターン151,154,157、ビア導体パターン197、線路導体パターン160,164,168、およびビア導体パターン189は、インダクタ101を形成している。
 ビア導体パターン192、線路導体パターン161,165,169、およびビア導体パターン194は、インダクタ104を形成している。
 ビア導体パターン193、線路導体パターン162,166,170、およびビア導体パターン195は、インダクタ106を形成している。
 ビア導体パターン187,190、線路導体パターン153,156,159、ビア導体パターン198、線路導体パターン163,167,171、およびビア導体パターン191は、インダクタ109を形成している。
 図4は、比較例に係るバンドパスフィルタ9の等価回路図である。バンドパスフィルタ9の等価回路図は、図1の等価回路図からキャパシタ113が除かれた等価回路図である。それ以外の構成は同様であるため、説明を繰り返さない。
 図5は、図1のバンドパスフィルタ1の挿入損失IL20、および図4のバンドパスフィルタ9の挿入損失IL90を併せて示す図である。バンドパスフィルタ1よび9の通過帯域は、周波数帯f41~f42(>f41)であるとする。減衰極が生じている周波数f51~f55は、この順に高い。
 図5において縦軸の減衰量(dB)はマイナスの値である。減衰量の絶対値が大きいほど挿入損失は大きい。挿入損失とは、電子部品の或る端子に入力された信号のうち、電子部品の他の端子に伝達された信号の割合を示す指標である。挿入損失が大きい程、電子部品に入力された信号のうち当該電子部品の内部で失われた信号の割合が大きいことを意味する。
 図5に示されるように、挿入損失IL90において、通過帯域より低い周波数帯では、周波数f51(<f41),f52(<f41)で減衰極が生じている。通過帯域より高い周波数帯では、周波数f53(>f42),f55で減衰極が生じている。図4のキャパシタ111,112の容量を変化させることにより、挿入損失IL90に生じている減衰極の周波数を変化させることができる。しかし、キャパシタ111,112の容量を変化させると、通過帯域より低い周波数帯で生じている減衰極の周波数および通過帯域より高い周波数帯で生じている減衰極の周波数が同程度変化する。バンドパスフィルタの周波数特性を所望の周波数特性に近づけるために、通過帯域よりも低い周波数帯に生じる減衰極の周波数を変化させずに、通過帯域よりも高い周波数に生じる減衰極を変化させることが必要になり得る。
 そこで、実施の形態においては、両端のLC並列共振器の間に直列に接続された2つのキャパシタの接続点と接地点との間にキャパシタを接続する。当該キャパシタにより、通過帯域よりも低い周波数帯に生じる減衰極の周波数をほとんど変化させることなく、通過帯域よりも高い周波数帯に生じる減衰極の周波数を変化させることができる。
 再び図5を参照しながら、挿入損失IL20において、通過帯域より低い周波数帯では、挿入損失IL90と同様に、周波数f51,f52付近で減衰極が生じている。通過帯域より高い周波数帯では、挿入損失IL90と同様に周波数f53付近で減衰極が生じているとともに、周波数f54(>f42)で減衰極が生じている。図1のバンドパスフィルタ1によれば、キャパシタ113の容量を変化させることにより、通過帯域よりも低い周波数帯に生じる減衰極の周波数をほとんど変化させることなく、通過帯域よりも高い周波数帯に生じる減衰極の周波数を変化させることができる。
 図6は、実施の形態の変形例に係るバンドパスフィルタ1Aの等価回路図である。バンドパスフィルタ1Aの等価回路図は、図1の等価回路図からキャパシタ103,108が除かれた等価回路図である。それ以外の構成は同様であるため、説明を繰り返さない。
 以上、実施の形態および変形例に係るバンドパスフィルタによれば、周波数特性を所望の周波数特性に近づけることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,9 バンドパスフィルタ、11~14 LC並列共振器、101,104,106,109 インダクタ、102,103,105,107,108,110,111~113 キャパシタ、121~132 誘電体層、141,143,145~150 キャパシタ導体パターン、142,151~171 線路導体パターン、144 接地導体パターン、181~198 ビア導体パターン、DM 方向識別マーク、G120 接地端子、P10,P100 入出力端子。

Claims (3)

  1.  第1端子および第2端子と、
     前記第1端子に第1接続点において電気的に接続される第1LC並列共振器と、
     前記第2端子に第2接続点において電気的に接続される第2LC並列共振器と、
     前記第1LC並列共振器と磁気結合する第3LC並列共振器と、
     前記第2LC並列共振器および前記第3LC並列共振器と磁気結合する第4LC並列共振器と、
     第1キャパシタ、第2キャパシタ、および第3キャパシタとを備え、
     前記第1LC並列共振器は、前記第1接続点と接地点との間で並列に接続された第1インダクタおよび第4キャパシタを含み、
     前記第2LC並列共振器は、前記第2接続点と前記接地点との間で並列に接続された第2インダクタおよび第5キャパシタを含み、
     前記第1キャパシタおよび前記第2キャパシタは、前記第1接続点と前記第2接続点との間において直列に接続され、
     前記第3キャパシタは、前記接地点と、前記第1キャパシタおよび前記第2キャパシタの第3接続点との間に接続されている、バンドパスフィルタ。
  2.  前記第3LC並列共振器と前記第1接続点との間に接続された第6キャパシタと、
     前記第4LC並列共振器と前記第2接続点との間に接続された第7キャパシタとをさらに備え、
     前記第3LC並列共振器は、並列に接続された第3インダクタおよび第8キャパシタを含み、前記第1接続点と前記接地点との間に接続され、
     前記第4LC並列共振器は、並列に接続された第4インダクタおよび第9キャパシタを含み、前記第2接続点と前記接地点との間に接続されている、請求項1に記載のバンドパスフィルタ。
  3.  前記バンドパスフィルタは、複数の誘電体層の積層体として形成され、
     前記複数の誘電体層は、
     接地導体パターンが形成された第1誘電体層と、
     第1キャパシタ導体パターンが形成された第2誘電体層と、
     前記第1キャパシタ導体パターンに接続された第2キャパシタ導体パターンが形成された第3誘電体層とを含み、
     前記第2誘電体層は、前記第1誘電体層と前記第3誘電体層との間に配置され、
     前記第2キャパシタ導体パターンは、前記第3接続点を含み、
     前記第3キャパシタは、前記第1キャパシタ導体パターンおよび前記接地導体パターンから形成される、請求項1または2に記載のバンドパスフィルタ。
PCT/JP2018/029329 2017-11-20 2018-08-06 バンドパスフィルタ WO2019097774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880074588.1A CN111357198B (zh) 2017-11-20 2018-08-06 带通滤波器
JP2019553694A JP6904433B2 (ja) 2017-11-20 2018-08-06 バンドパスフィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222760 2017-11-20
JP2017222760 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019097774A1 true WO2019097774A1 (ja) 2019-05-23

Family

ID=66539635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029329 WO2019097774A1 (ja) 2017-11-20 2018-08-06 バンドパスフィルタ

Country Status (3)

Country Link
JP (1) JP6904433B2 (ja)
CN (1) CN111357198B (ja)
WO (1) WO2019097774A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005928A1 (ja) * 2019-07-09 2021-01-14 株式会社村田製作所 Lcフィルタ
WO2022071191A1 (ja) * 2020-10-02 2022-04-07 株式会社村田製作所 フィルタ装置およびそれを備える高周波フロントエンド回路
US11362635B2 (en) 2020-01-31 2022-06-14 Taiyo Yuden Co., Ltd. Filter, multiplexer and communication module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151243A (ja) * 1992-11-12 1994-05-31 Tdk Corp 積層型フィルタ
JP2001352224A (ja) * 2000-06-09 2001-12-21 Toko Inc バンドパスフィルタ
WO2007119356A1 (ja) * 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. 積層帯域通過フィルタ
JP2014057277A (ja) * 2012-09-14 2014-03-27 Murata Mfg Co Ltd 高周波フィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151243A (ja) * 1992-11-12 1994-05-31 Tdk Corp 積層型フィルタ
JP2001352224A (ja) * 2000-06-09 2001-12-21 Toko Inc バンドパスフィルタ
WO2007119356A1 (ja) * 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. 積層帯域通過フィルタ
JP2014057277A (ja) * 2012-09-14 2014-03-27 Murata Mfg Co Ltd 高周波フィルタ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005928A1 (ja) * 2019-07-09 2021-01-14 株式会社村田製作所 Lcフィルタ
JPWO2021005928A1 (ja) * 2019-07-09 2021-01-14
JP7156533B2 (ja) 2019-07-09 2022-10-19 株式会社村田製作所 Lcフィルタ
US11817843B2 (en) 2019-07-09 2023-11-14 Murata Manufacturing Co., Ltd. LC filter
US11362635B2 (en) 2020-01-31 2022-06-14 Taiyo Yuden Co., Ltd. Filter, multiplexer and communication module
JP7424849B2 (ja) 2020-01-31 2024-01-30 太陽誘電株式会社 フィルタ、マルチプレクサおよび通信用モジュール
WO2022071191A1 (ja) * 2020-10-02 2022-04-07 株式会社村田製作所 フィルタ装置およびそれを備える高周波フロントエンド回路

Also Published As

Publication number Publication date
CN111357198B (zh) 2023-05-16
CN111357198A (zh) 2020-06-30
JPWO2019097774A1 (ja) 2020-11-19
JP6904433B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
TWI729327B (zh) 積層帶通濾波器
CN103166588B (zh) 带通滤波器
US9722567B2 (en) Variable-frequency resonance circuit and variable-frequency filter
JP4569571B2 (ja) Lc複合部品
JP5741783B1 (ja) 複合lc共振器および帯域通過フィルタ
WO2019097774A1 (ja) バンドパスフィルタ
JP2011077566A (ja) 積層型バンドパスフィルタ
JP2009218756A (ja) 積層型バンドパスフィルタ
WO2015059963A1 (ja) 複合lc共振器および帯域通過フィルタ
JP2018074346A (ja) バラン
TW201807879A (zh) 積層濾波器
US10461716B2 (en) Low-pass filter
JPWO2012127952A1 (ja) 電子部品
JPWO2010106840A1 (ja) 電子部品
US20230083216A1 (en) Multilayer electronic component
US20230318560A1 (en) Band-pass filter
TWI818720B (zh) 積層型電子零件
US20220294410A1 (en) Band-pass filter
JP2023121294A (ja) フィルタ
JP2023128837A (ja) 積層型フィルタ装置
JP2023104308A (ja) 積層型バンドパスフィルタ
KR101579856B1 (ko) 적층구조를 갖는 공진소자
JP2021175151A (ja) バンドパスフィルタ
CN116706476A (zh) 滤波电路
JP2019050460A (ja) 積層型電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553694

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18878014

Country of ref document: EP

Kind code of ref document: A1