WO2019095659A1 - 微元件的巨量转移方法 - Google Patents

微元件的巨量转移方法 Download PDF

Info

Publication number
WO2019095659A1
WO2019095659A1 PCT/CN2018/087801 CN2018087801W WO2019095659A1 WO 2019095659 A1 WO2019095659 A1 WO 2019095659A1 CN 2018087801 W CN2018087801 W CN 2018087801W WO 2019095659 A1 WO2019095659 A1 WO 2019095659A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
photosensitive material
substrate
material layer
components
Prior art date
Application number
PCT/CN2018/087801
Other languages
English (en)
French (fr)
Inventor
钟志白
李佳恩
郑锦坚
郑建森
徐宸科
康俊勇
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to JP2020526189A priority Critical patent/JP6937911B2/ja
Priority to KR1020207014293A priority patent/KR102348435B1/ko
Publication of WO2019095659A1 publication Critical patent/WO2019095659A1/zh
Priority to US15/929,677 priority patent/US11127723B2/en
Priority to US17/447,325 priority patent/US11557580B2/en
Priority to US18/153,256 priority patent/US20230163115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Definitions

  • the invention belongs to the field of semiconductor manufacturing, and in particular relates to a method for transferring a large amount of micro components.
  • Micro-element technology refers to an array of tiny-sized components that are integrated at a high density on a substrate.
  • micro-light-emitting diode (Micro LED) technology has gradually become a hot research topic, and the industry expects high-quality micro-component products to enter the market.
  • High-quality micro-pitch LED products can have a profound impact on traditional display products such as LCD/OLED that are already on the market.
  • the micro-element is first formed on the donor package substrate, and then the micro-element is transferred onto the receiving package substrate.
  • the receiving package substrate is, for example, a display screen.
  • One difficulty in the fabrication of microcomponents is how to transfer the microcomponents from the donor package substrate to the receiving package substrate.
  • a conventional method of transferring a micro-element is to transfer the micro-element from the transfer package substrate to the receiving package substrate by Wafer Bonding.
  • One of the implementation methods of the transfer method is direct transfer, that is, the micro-element array is directly bonded from the transfer package substrate to the receiving package substrate, and then the transfer package substrate is removed by stripping or etching, and the transfer is often sacrificed to eliminate excess epitaxy.
  • Another method of implementation is indirect transfer. First, the transfer medium extracts the array of microelements, then transfers the medium and then bonds the array of microelements to the receiving package substrate, and then removes the transfer medium. Transfer media requires high temperature resistance.
  • micro-component transfer includes Van der Waals force, electrostatic adsorption, phase change transfer and laser ablation.
  • van der Waals force, electrostatic adsorption and laser ablation are the development direction of many manufacturers.
  • various transfer methods have their own advantages and disadvantages.
  • some highly elastic and easy-to-process polymers are often used, and these polymers can be solidified at room temperature after spin coating.
  • the polymer material is poured into the mold, the mold is solidified, the transfer micro-column is formed, and the micro-component is grasped by the alignment of the column, and the micro-column is crushed by mechanical force after the transfer, however, this method
  • the process is more complicated, and more importantly, when micro-pillars are used to grasp micro-components, precise alignment is required, which tends to cause a drop in product yield.
  • an object of the present invention is to provide a method for transferring a large amount of micro-components, which is used to solve the problem that the micro-component transfer process in the prior art is complicated and the yield is low.
  • the present invention provides a method for transferring a large amount of micro-components, the method comprising: 1) providing a substrate, forming a photosensitive material layer on the surface of the substrate, and at first The photosensitive material layer is subjected to a semi-curing treatment at a temperature, wherein the first temperature is lower than a full curing temperature of the photosensitive material layer to ensure that the photosensitive material layer has viscosity; 2) providing an array of micro-components, An array of the micro-components is captured on a surface of the photosensitive material layer based on surface tack of the photosensitive material layer; 3) self-aligning exposure of the photosensitive material layer with the micro-component as a photomask Processing and development processing, the photosensitive material layer is divided into a plurality of support structures corresponding to the micro-components, the support structure comprising a first support portion bonded to the micro-component and connecting the first support portion a second support portion of the substrate, and a radi
  • the first support portion after the development process has a trapezoidal structure to increase the first support portion and the micro-component Bonding area
  • the second support portion has a micro-cylinder structure to facilitate separation of the micro-component from the substrate.
  • the radial width of the micro-cylinder structure is not greater than the radial width of the top surface of the trapezoidal structure, and the radial width of the micro-cylinder structure is not less than the minimum width required to stably support the micro-element .
  • the self-aligned exposure process includes an ultraviolet exposure process, and the light of the self-aligned exposure process is incident perpendicular to a surface of the micro-element such that the second support portion is connected to the first A central region of a support to avoid deflection of the position of the microcomponent.
  • the photosensitive material layer comprises a photosensitive polymethyl methacrylate (PMMA) or a photopolymer such as polydimethylsiloxane (PDMS) or polyimide (PI), and the complete curing temperature is between Between 150 ° C and 250 ° C, the first temperature is between 60 ° C and 140 ° C to ensure that the photosensitive material layer is sticky.
  • PMMA photosensitive polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • PI polyimide
  • the array of microelements is of a suspended structure such that it is easily grasped by the adhesive surface of the layer of photosensitive material.
  • the floating structure includes: a support layer; a plurality of stabilizing columns on the surface of the support layer; and an array of microelements, each micro-element in the array being supported by a plurality of the stabilizing columns.
  • step 2) grasping the array of microcomponents on the surface of the photosensitive material layer, further comprising the step of further curing the photosensitive material layer to increase the microcomponent and the photosensitive material layer Adhesion.
  • the eutectic metal comprises one of the group consisting of AgSnCu, In and BiSn alloys, the temperature of the eutectic treatment is not higher than 300 ° C, and the eutectic treatment time Not more than 1 min to maintain the stability of the support structure during the eutectic treatment.
  • step 5 an oblique mechanical pressure is applied to the substrate to break the second support portion to separate the micro-component from the substrate.
  • the substrate comprises one of a group consisting of a glass substrate, a ceramic substrate, a polymer substrate, a silicon substrate, and a sapphire substrate.
  • the array of microelements comprises a micro-pitch LED array.
  • the giant amount transfer method of the micro-component of the present invention has the following beneficial effects:
  • the invention adopts the whole surface photosensitive material to grasp the micro component, and can avoid the problem that the micro component capture precision is insufficient;
  • the invention utilizes the micro-component as a lithography mask, and forms the photosensitive material into a trapezoidal structure and supports the micro-column, which is beneficial to the stability of the micro-component and the ease of subsequent separation;
  • the invention only needs to use mechanical force to break the supporting microcolumn to realize the huge transfer of the micro components, and the process is simple, and the process cost can be effectively reduced.
  • the overall process of the invention is simple, can effectively improve the transfer yield of the micro component, and has broad application prospects in the field of semiconductor manufacturing.
  • Fig. 1 is a flow chart showing the steps of the method for transferring a large amount of microcomponents of the present invention.
  • FIGS. 2 to 10 are views showing the structure of each step of the method for transferring a large amount of microcomponents of the present invention.
  • the embodiment provides a method for transferring a large amount of micro components, and the method for transferring a massive amount includes the following steps:
  • steps 1) to S11 are performed to provide a substrate 101, a photosensitive material layer 102 is formed on the surface of the substrate 101, and the photosensitive material layer 102 is semi-cured at a first temperature.
  • the first temperature is lower than a full curing temperature of the photosensitive material layer 102 to ensure that the photosensitive material layer 102 has a viscosity.
  • the substrate 101 comprises one of a group consisting of a glass substrate, a ceramic substrate, a polymer substrate, a silicon substrate, and a sapphire substrate.
  • the substrate 101 is selected as a glass substrate, and the glass substrate and the photosensitive material layer 102 have good adhesion properties, can avoid cracking caused by subsequent processes, and compared to a sapphire substrate and a silicon substrate. Etc., the choice of glass substrate can effectively reduce the process cost.
  • a polymer substrate having a lower light reflectivity can also be selected, based on its lower light reflectivity, which can effectively reduce the reflection of light on the substrate during exposure, thereby avoiding unnecessary light transmission to the photosensitive material layer 102.
  • the joint reaction allows the subsequent support structure 106 to maintain a good topography.
  • the photosensitive material layer 102 comprises a photosensitive polymer such as photosensitive polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS) or polyimide (PI), the photosensitive material layer
  • PMMA photosensitive polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • PI polyimide
  • the first temperature used for the semi-curing may be selected to be between 60 ° C and 140 ° C, such as 60 ° C, 80 ° C, 100 ° C, 120 ° C, and the like. To ensure that the photosensitive material layer is sticky.
  • steps 2) S12 are then performed to provide an array of micro-elements 103, which are captured based on the surface tack of the photosensitive material layer 102.
  • the surface of the photosensitive material layer 102 is then performed to provide an array of micro-elements 103, which are captured based on the surface tack of the photosensitive material layer 102.
  • the array of microelements 103 comprises a micro-pitch LED array.
  • other micro-elements 103 such as photodetection diode (PDA) arrays, MOS devices, MEMS devices, etc., can also be transferred using the transfer method of the present embodiment, and are not limited to the examples listed herein.
  • PDA photodetection diode
  • MOS devices MOS devices
  • MEMS devices etc.
  • the array of microelements 103 employs a floating structure to be easily grasped by the adhesive surface of the photosensitive material layer 102.
  • the floating structure includes: a support layer 104; a plurality of stabilizing pillars 105 on the surface of the support layer 104; and an array of microelements 103, each of the microelements 103 in the array by a plurality of The stabilizing column 105 is supported.
  • the stabilizing column 105 can ensure that the micro-element 103 can be stably supported, the area of the stabilizing post 105 is designed to be as small as possible, so that the micro-element 103 can be easily used by the photosensitive material layer. 102 crawling.
  • a step of further curing the photosensitive material layer 102 is further included to increase the micro-elements 103 and the photosensitive material.
  • the adhesion of layer 102 is further included.
  • the invention adopts the whole surface photosensitive material to grasp the micro-element 103, and can avoid the problem that the micro-element 103 captures insufficient alignment precision.
  • step 3 S13 is followed, and the micro-element 103 is used as a photomask, and the photosensitive material layer 102 is subjected to self-aligned exposure processing and development processing to make the
  • the photosensitive material layer 102 is divided into a plurality of support structures 106 corresponding to the micro-element 103, the support structure 106 includes a first support portion 108 bonded to the micro-element 103 and connected to the first support portion 108 and The second support portion 107 of the substrate 101 has a radial width smaller than a radial width of the first support portion 108.
  • the first support portion 108 after the development process has a trapezoidal structure to increase the adhesion of the first support portion 108 to the micro-element 103.
  • the area is such that the second support portion 107 has a micro-cylinder structure to facilitate separation of the micro-element 103 from the substrate 101.
  • the radial width of the micro-cylinder structure is not greater than the radial width of the top surface of the trapezoidal structure, and the radial width of the micro-cylinder structure is not less than the minimum required to stably support the micro-element 103. Width, the stable support means that the micro-element does not shift and sway.
  • the self-aligned exposure process includes an ultraviolet exposure process, and the light of the self-aligned exposure process is incident perpendicular to a surface of the micro-element 103, and is incident through a gap between adjacent micro-elements 103.
  • the second support portion 107 is connected to the central region of the first support portion 108 to avoid the displacement of the position of the micro-element 103.
  • the invention utilizes the micro-element 103 as a photolithographic mask, and forms the photosensitive material into a trapezoidal structure and supports the microcolumn, which is beneficial to the stability of the micro-element 103 and the ease of subsequent separation.
  • steps 4) to S14 are performed to provide a package substrate 109 having a eutectic metal 110 corresponding to the array of micro-elements 103 on the surface of the package substrate 109.
  • the array is aligned with the eutectic metal 110 and subjected to eutectic treatment;
  • the eutectic metal 110 includes one of a group consisting of AgSnCu, In, and BiSn alloys, the temperature of the eutectic treatment is not higher than 300 ° C, and the time of the eutectic treatment is not more than 1 min. The stability of the support structure 106 is maintained during the eutectic process.
  • steps 5) S15 are performed, the micro-element 103 and the substrate 101 are separated from the second support portion 107, and the photosensitive material on the micro-element 103 is removed. Layer 102 is used to effect a substantial transfer of the micro-elements 103.
  • an oblique mechanical pressure is applied to the substrate 101 to break the second support portion 107 to separate the micro-element 103 from the substrate 101.
  • the invention only needs to use mechanical force to break the supporting microcolumn to realize the huge transfer of the micro component 103, and the process is simple, and the process cost can be effectively reduced.
  • the second support portion 107 may also be broken by mechanical cutting or the like to separate the micro-element 103 from the substrate 101, and is not limited to the examples listed herein.
  • the giant amount transfer method of the micro-component of the present invention has the following beneficial effects:
  • the invention adopts the whole surface photosensitive material to grasp the micro-element 103, which can avoid the problem that the micro-element 103 captures insufficient alignment precision;
  • the present invention utilizes the micro-element 103 as a photolithographic mask to form the photosensitive material into a trapezoidal structure and support the microcolumn, which is advantageous for the stability of the micro-element 103 and the ease of subsequent separation;
  • the invention only needs to mechanically compress and support the microcolumn to realize the huge transfer of the micro-component 103, and the process is simple, and the process cost can be effectively reduced.
  • the overall process of the invention is simple, can effectively improve the transfer yield of the micro-element 103, and has broad application prospects in the field of semiconductor manufacturing.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Micromachines (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Materials For Photolithography (AREA)
  • Led Device Packages (AREA)
  • Wire Bonding (AREA)

Abstract

本发明提供一种微元件的巨量转移方法,包括步骤:1)采用整面光敏材料抓取微元件;2)利用微元件作为光刻掩膜版,将光敏材料制作成梯形结构及支撑微柱;3)采用机械力压断支撑微柱,实现所述微元件的巨量转移。本发明采用整面的光敏材料抓取微元件,可以避免微元件抓取对准精度不足的问题;本发明利用微元件作为光刻掩膜版,将光敏材料制作成梯形结构及支撑微柱,有利于微元件的稳定性以及后续分离的简易性;本发明只需要采用机械力压断支撑微柱便可实现微元件的巨量转移,工艺简单,可有效降低工艺成本。

Description

微元件的巨量转移方法 技术领域
本发明属于半导体制造领域,特别是涉及一种微元件的巨量转移方法。
背景技术
微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。目前,微间距发光二极管(Micro LED)技术逐渐成为研究热门,工业界期待有高品质的微元件产品进入市场。高品质微间距发光二极管产品会对市场上已有的诸如LCD/OLED的传统显示产品产生深刻影响。
在制造微元件的过程中,首先在施体封装基板上形成微元件,接着将微元件转移到接收封装基板上。接收封装基板例如是显示屏。在制造微元件过程中的一个困难在于:如何将微元件从施体封装基板上转移到接收封装基板上。
传统转移微元件的方法为借由封装基板接合(Wafer Bonding)将微元件自转移封装基板转移至接收封装基板。转移方法的其中一种实施方法为直接转移,也就是直接将微元件阵列自转移封装基板接合至接收封装基板,之后通过剥离或者蚀刻将转移封装基板移除,制作转移常常需要牺牲掉多余的外延层。另一种实施方法为间接转移,首先,转移媒质提取微元件阵列,接着转移媒质再将微元件阵列接合至接收封装基板,然后移除转移媒质。转移媒质要求耐高温。
目前微元件的转移的技术包括范德华力、静电吸附、相变化转移和雷射激光烧蚀四大技术。其中范德华力、静电吸附及雷射激光烧蚀方式是目前较多厂商发展的方向。针对不同的应用,各种转移方式各有优缺点。
半导体封装中,常常利用到一些具有高弹性、易加工的聚合物,这些聚合物旋涂后常温即可形成固态。通常通过制作模具后,于模具中灌注聚合物材料,固化后模具,形成转移微柱子,并利用柱子对准来抓取微元件,转移后利用机械力将微柱子压断,然而,这种方法工艺较复杂,更重要的是在使用微柱子抓取微元件时,需要精确对准,容易产生产品良率下降的情况。
基于以上所述,提供一种工艺简单,且可以有效提高产品良率的微元件的巨量 转移方法实属必要。。
发明概述
技术问题
问题的解决方案
技术解决方案
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种微元件的巨量转移方法,用于解决现有技术中微元件转移工艺较复杂,且良率较低的问题。
为实现上述目的及其他相关目的,本发明提供一种微元件的巨量转移方法,所述巨量转移方法包括:1)提供一基底,于所述基底表面形成光敏材料层,并在第一温度下对所述光敏材料层进行半固化处理,其中,所述第一温度低于所述光敏材料层的完全固化温度,以保证所述光敏材料层具有粘性;2)提供微元件的阵列,基于所述光敏材料层的表面粘性,将所述微元件的阵列抓取于所述光敏材料层表面;3)以所述微元件作为光掩膜,对所述光敏材料层进行自对准曝光处理及显影处理,使所述光敏材料层分割成多个与所述微元件对应的支撑结构,所述支撑结构包含粘接于所述微元件的第一支撑部及连接所述第一支撑部与所述基底的第二支撑部,且所述第二支撑部的径向宽度小于所述第一支撑部的径向宽度;4)提供一封装基板,所述封装基板表面具有与所述微元件的阵列对应的共晶金属,将所述微元件的阵列与所述共晶金属对准接合并进行共晶处理;以及5)自所述第二支撑部分离所述微元件与所述基底,并去除所述微元件上的光敏材料层,以实现所述微元件的巨量转移。
优选地,步骤3)中,通过控制所述自对准曝光处理的强度,使得显影处理后的所述第一支撑部呈梯形结构,以增大所述第一支撑部与所述微元件的粘接面积,所述第二支撑部呈微柱体结构,以利于所述微元件与所述基底的分离。
进一步地,所述微柱体结构的径向宽度不大于所述梯形结构顶面的径向宽度,且所述微柱体结构的径向宽度不小于稳定支撑所述微元件所需的最小宽度。
优选地,步骤3)中,所述自对准曝光处理包含紫外线曝光处理,所述自对准曝光处理的光线垂直于所述微元件表面入射,使得所述第二支撑部连接于所述第一支撑部的中心区域,以避免所述微元件位置的偏移。
优选地,所述光敏材料层包含光敏聚甲基丙烯酸甲酯(PMMA)或者聚二甲基硅氧烷(PDMS)或者聚酰亚胺(PI)等光敏聚合物,所述完全固化温度介于150℃~250℃之间,所述第一温度介于60℃~140℃之间,以保证所述光敏材料层具有粘性。
优选地,步骤2)中,所述微元件的阵列采用悬浮式结构,以使其易被所述光敏材料层的粘性表面抓取。
进一步地,所述悬浮式结构包括:支撑层;多个稳定柱,位于所述支撑层表面;以及微元件的阵列,该阵列中的每个微元件藉由若干个所述稳定柱支撑。
优选地,步骤2)将所述微元件的阵列抓取于所述光敏材料层表面后,还包括对所述光敏材料层进一步固化处理的步骤,以增加所述微元件与所述光敏材料层的粘附力。
优选地,步骤4)中,所述共晶金属包含AgSnCu、In及BiSn合金所组成的群组中的一种,所述共晶处理的温度不高于300℃,所述共晶处理的时间不大于1min,以在所述共晶处理的过程中保持所述支撑结构的稳定性。
优选地,步骤5)中,对所述基底施加一斜向的机械压力,将所述第二支撑部压断,以分离所述微元件与所述基底。
优选地,所述基底包含玻璃基底、陶瓷基底、聚合物基底、硅基底及蓝宝石基底所组成群组中的一种。
优选地,所述微元件的阵列包含微间距发光二极管阵列。
发明的有益效果
有益效果
如上所述,本发明的微元件的巨量转移方法,具有以下有益效果:
1)本发明采用整面的光敏材料抓取微元件,可以避免微元件抓取对准精度不足的问题;
2)本发明利用微元件作为光刻掩膜版,将光敏材料制作成梯形结构及支撑微柱,有利于微元件的稳定性以及后续分离的简易性;
3)本发明只需要采用机械力压断支撑微柱便可实现微元件的巨量转移,工艺简单,可有效降低工艺成本。
4)本发明整体工艺简单,可有效提高微元件的转移良率,在半导体制造领域具有广泛的应用前景。
对附图的简要说明
附图说明
图1显示为本发明的微元件的巨量转移方法的步骤流程示意图。
图2~图10显示为本发明的微元件的巨量转移方法各步骤所呈现的结构示意图。
元件标号说明
101基底;102光敏材料层;103微元件;104支撑层;105稳定柱;106支撑结构;107第二支撑部;108第一支撑部;109封装基板;110共晶金属;S11~S15步骤
发明实施例
本发明的实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1~图10所示,本实施例提供一种微元件的巨量转移方法,所述巨量转移方法包括以下步骤:
如图1~图3所示,首先进行步骤1)S11,提供一基底101,于所述基底101表面形成光敏材料层102,并在第一温度下对所述光敏材料层102进行半固化处理,其中,所述第一温度低于所述光敏材料层102的完全固化温度,以保证所述光敏材料层102具有粘性。
所述基底101包含玻璃基底、陶瓷基底、聚合物基底、硅基底及蓝宝石基底所组成群组中的一种。在本实施例中,所述基底101选用为玻璃基底,玻璃基底与所述光敏材料层102具有良好的粘附性能,可避免后续工艺造成的开裂现象,并 且,相比于蓝宝石基底、硅基底等,选用玻璃基底可有效降低工艺成本。
另外,也可以选用具有较低的光反射率的聚合物基底,基于其较低的光反射率,可以有效降低基底在曝光时对光线的反射,避免对光敏材料层102造成不必要的光交联反应,使得后续的支撑结构106保持良好的形貌。
作为示例,所述光敏材料层102包含光敏聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)或者聚酰亚胺(PI)等光敏聚合物,所述光敏材料层的完全固化温度介于150℃~250℃之间,因此,半固化采用的所述第一温度可以选择为介于60℃~140℃之间,如60℃、80℃、100℃、120℃等,以保证所述光敏材料层具有粘性。
当然,其它种类的在半固化状态下具有粘性的光敏材料也同样适用,并不限于此处所列举的示例。
如图1、图4~图5所示,然后进行步骤2)S12,提供微元件103的阵列,基于所述光敏材料层102的表面粘性,将所述微元件103的阵列抓取于所述光敏材料层102表面。
在本实施例中,所述微元件103的阵列包含微间距发光二极管阵列。当然,其它的微元件103,如光电探测二极管(PDA)阵列、MOS器件、MEMS器件等也同样可以采用本实施例的转移方法进行转移,且并不限于此处所列举的示例。
在本实施例中,所述微元件103的阵列采用悬浮式结构,以使其易被所述光敏材料层102的粘性表面抓取。具体地,所述悬浮式结构包括:一支撑层104;多个稳定柱105,位于所述支撑层104表面;以及微元件103的阵列,该阵列中的每个微元件103藉由若干个所述稳定柱105支撑。需要说明的是,所述稳定柱105在保证所述微元件103可以被稳定支撑的情况下,所述稳定柱105的面积设计为尽可能小,以利于微元件103容易被所述光敏材料层102抓取。
作为示例,将所述微元件103的阵列抓取于所述光敏材料层102表面后,还包括对所述光敏材料层102进一步固化处理的步骤,以增加所述微元件103与所述光敏材料层102的粘附力。
本发明采用整面的光敏材料抓取微元件103,可以避免微元件103抓取对准精度不足的问题。
如图1、图6~图7所示,接着进行步骤3)S13,以所述微元件103作为光掩膜,对所述光敏材料层102进行自对准曝光处理及显影处理,使所述光敏材料层102分割成多个与所述微元件103对应的支撑结构106,所述支撑结构106包含粘接于所述微元件103的第一支撑部108及连接所述第一支撑部108与所述基底101的第二支撑部107,且所述第二支撑部107的径向宽度小于所述第一支撑部108的径向宽度。
具体地,通过控制所述自对准曝光处理的强度,使得显影处理后的所述第一支撑部108呈梯形结构,以增大所述第一支撑部108与所述微元件103的粘接面积,同时使得所述第二支撑部107呈微柱体结构,以利于所述微元件103与所述基底101的分离。
优选地,所述微柱体结构的径向宽度不大于所述梯形结构顶面的径向宽度,且所述微柱体结构的径向宽度不小于稳定支撑所述微元件103所需的最小宽度,所述的稳定支撑是指所述微元件不发生位移以及晃动。
在本实施例中,所述自对准曝光处理包含紫外线曝光处理,所述自对准曝光处理的光线垂直于所述微元件103表面入射,通过相邻微元件103之间的间隙入射至所述光敏材料层102中,使得进行显影处理后,所述第二支撑部107连接于所述第一支撑部108的中心区域,以避免所述微元件103位置的偏移。
本发明利用微元件103作为光刻掩膜版,将光敏材料制作成梯形结构及支撑微柱,有利于微元件103的稳定性以及后续分离的简易性。
如图1及图8所示,接着进行步骤4)S14,提供一封装基板109,所述封装基板109表面具有与所述微元件103的阵列对应的共晶金属110,将所述微元件103的阵列与所述共晶金属110对准接合并进行共晶处理;
作为示例,所述共晶金属110包含AgSnCu、In及BiSn合金所组成的群组中的一种,所述共晶处理的温度不高于300℃,所述共晶处理的时间不大于1min,以在所述共晶处理的过程中保持所述支撑结构106的稳定性。
如图1及图9~图10所示,最后进行步骤5)S15,自所述第二支撑部107分离所述微元件103与所述基底101,并去除所述微元件103上的光敏材料层102,以实现所述微元件103的巨量转移。
具体地,对所述基底101施加一斜向的机械压力,将所述第二支撑部107压断,以分离所述微元件103与所述基底101。
本发明只需要采用机械力压断支撑微柱便可实现微元件103的巨量转移,工艺简单,可有效降低工艺成本。
当然,也可以采用机械切割等方法使所述第二支撑部107断裂,以分离所述微元件103与所述基底101,且并不限于此处所列举的示例。
如上所述,本发明的微元件的巨量转移方法,具有以下有益效果:
1)本发明采用整面的光敏材料抓取微元件103,可以避免微元件103抓取对准精度不足的问题;
2)本发明利用微元件103作为光刻掩膜版,将光敏材料制作成梯形结构及支撑微柱,有利于微元件103的稳定性以及后续分离的简易性;
3)本发明只需要采用机械力压断支撑微柱便可实现微元件103的巨量转移,工艺简单,可有效降低工艺成本。
4)本发明整体工艺简单,可有效提高微元件103的转移良率,在半导体制造领域具有广泛的应用前景。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。在此处键入本发明的实施方式描述段落。

Claims (11)

  1. 一种微元件的巨量转移方法,其特征在于,所述巨量转移方法包括:
    1)提供一基底,于所述基底表面形成光敏材料层,并在第一温度下对所述光敏材料层进行半固化处理,其中,所述第一温度低于所述光敏材料层的完全固化温度,以保证所述光敏材料层具有粘性;
    2)提供微元件的阵列,基于所述光敏材料层的表面粘性,将所述微元件的阵列抓取于所述光敏材料层表面;
    3)以所述微元件作为光掩膜,对所述光敏材料层进行自对准曝光处理及显影处理,使所述光敏材料层分割成多个与所述微元件对应的支撑结构,所述支撑结构包含粘接于所述微元件的第一支撑部及连接所述第一支撑部与所述基底的第二支撑部,且所述第二支撑部的径向宽度小于所述第一支撑部的径向宽度;
    4)提供一封装基板,所述封装基板表面具有与所述微元件的阵列对应的共晶金属,将所述微元件的阵列与所述共晶金属对准接合并进行共晶处理;以及
    5)自所述第二支撑部分离所述微元件与所述基底,并去除所述微元件上的光敏材料层,以实现所述微元件的巨量转移。
  2. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:步骤3)中,通过控制所述自对准曝光处理的强度,使得显影处理后的所述第一支撑部呈梯形结构,以增大所述第一支撑部与所述微元件的粘接面积,所述第二支撑部呈微柱体结构,以利于所述微元件与所述基底的分离。
  3. 根据权利要求2所述的微元件的巨量转移方法,其特征在于:所述微柱体结构的径向宽度不大于所述梯形结构顶面的径向宽度,且所述微柱体结构的径向宽度不小于稳定支撑所述微元件所需的最小宽度。
  4. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:步骤3)中,所述自对准曝光处理包含紫外线曝光处理,所述自对准曝光处理的光线垂直于所述微元件表面入射,使得所述第二支撑部连接于所述第一支撑部的中心区域,以避免所述微元件位置的偏移。
  5. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:所述光敏材料层包含光敏聚甲基丙烯酸甲酯(PMMA)或者聚二甲基硅氧烷(PDMS)或者聚酰亚胺(PI),所述完全固化温度介于150℃~250℃之间,所述第一温度介于60℃~140℃之间,以保证所述光敏材料层具有粘性。
  6. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:步骤2)中,所述微元件的阵列采用悬浮式结构,以使其易被所述光敏材料层的粘性表面抓取。
  7. 根据权利要求6所述的微元件的巨量转移方法,其特征在于:所述悬浮式结构包括:
    支撑层;
    多个稳定柱,位于所述支撑层表面;以及
    微元件的阵列,该阵列中的每个微元件藉由若干个所述稳定柱支撑。
  8. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:步骤2)将所述微元件的阵列抓取于所述光敏材料层表面后,还包括对所述光敏材料层进一步固化处理的步骤,以增加所述微元件与所述光敏材料层的粘附力。
  9. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:步骤5)中,对所述基底施加一斜向的机械压力,将所述第二支撑部压断,以分离所述微元件与所述基底。
  10. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:所述基底包含玻璃基底、陶瓷基底、聚合物基底、硅基底及蓝宝石基 底所组成群组中的一种。
  11. 根据权利要求1所述的微元件的巨量转移方法,其特征在于:所述微元件的阵列包含微间距发光二极管阵列、光电探测二极管阵列、MOS阵列及MEMS阵列所组成群组中的一种。
PCT/CN2018/087801 2017-11-20 2018-05-22 微元件的巨量转移方法 WO2019095659A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020526189A JP6937911B2 (ja) 2017-11-20 2018-05-22 マイクロデバイスのマストランスファー方法
KR1020207014293A KR102348435B1 (ko) 2017-11-20 2018-05-22 마이크로 소자의 대량 이송 방법
US15/929,677 US11127723B2 (en) 2017-11-20 2020-05-15 Method for mass transfer of micro semiconductor elements
US17/447,325 US11557580B2 (en) 2017-11-20 2021-09-10 Method and device for mass transfer of micro semiconductor elements
US18/153,256 US20230163115A1 (en) 2017-11-20 2023-01-11 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711153705.7 2017-11-20
CN201711153705.7A CN107978548B (zh) 2017-11-20 2017-11-20 微元件的巨量转移方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/929,677 Continuation-In-Part US11127723B2 (en) 2017-11-20 2020-05-15 Method for mass transfer of micro semiconductor elements

Publications (1)

Publication Number Publication Date
WO2019095659A1 true WO2019095659A1 (zh) 2019-05-23

Family

ID=62010554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087801 WO2019095659A1 (zh) 2017-11-20 2018-05-22 微元件的巨量转移方法

Country Status (5)

Country Link
US (2) US11127723B2 (zh)
JP (1) JP6937911B2 (zh)
KR (1) KR102348435B1 (zh)
CN (1) CN107978548B (zh)
WO (1) WO2019095659A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978548B (zh) * 2017-11-20 2019-07-05 厦门市三安光电科技有限公司 微元件的巨量转移方法
WO2019237228A1 (zh) * 2018-06-11 2019-12-19 厦门三安光电有限公司 发光组件
CN109148652B (zh) * 2018-08-23 2020-08-25 上海天马微电子有限公司 无机发光二极管显示面板及其制作方法和显示装置
CN109496368A (zh) * 2018-10-12 2019-03-19 京东方科技集团股份有限公司 微发光二极管装置及其制造方法
CN109449100B (zh) * 2018-10-16 2019-07-02 广东工业大学 一种电子元件的巨量转移方法及装置
CN111129235B (zh) * 2018-10-31 2021-10-22 成都辰显光电有限公司 一种微元件的批量转移方法
CN109473532B (zh) 2018-11-20 2020-11-06 合肥京东方光电科技有限公司 一种Micro LED显示基板的制作方法
CN112802789B (zh) * 2019-11-14 2022-08-30 成都辰显光电有限公司 一种微元件的转移方法
CN111029360B (zh) * 2019-11-19 2022-06-07 深圳市华星光电半导体显示技术有限公司 micro-LED显示器件的制作方法
CN113330549B (zh) * 2019-12-31 2022-07-22 重庆康佳光电技术研究院有限公司 一种巨量转移装置及其制造方法、以及显示设备
CN111725123B (zh) * 2020-05-22 2022-12-20 深圳市隆利科技股份有限公司 微型发光二极管显示装置的制造方法
US20220199862A1 (en) * 2020-05-28 2022-06-23 Boe Technology Group Co., Ltd. Intermediate substrate and fabrication method of display panel
WO2022006723A1 (zh) * 2020-07-06 2022-01-13 重庆康佳光电技术研究院有限公司 Led芯片转移方法、显示背板及其制作方法及显示装置
CN112967984B (zh) * 2020-09-24 2022-03-25 重庆康佳光电技术研究院有限公司 微芯片的巨量转移方法及显示背板
WO2023218356A1 (en) * 2022-05-09 2023-11-16 Vuereal Inc. Cartridge with internal pillar
WO2024122495A1 (ja) * 2022-12-05 2024-06-13 京セラ株式会社 半導体素子の製造方法および製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089906A1 (en) * 2001-11-13 2003-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
CN101281948A (zh) * 2008-04-29 2008-10-08 北京大学 薄膜型光子晶格结构GaN基发光二极管的制备方法
CN101702401A (zh) * 2009-11-03 2010-05-05 中山大学 一种GaN基LED薄膜器件的制备与批处理式封装方法
CN105575930A (zh) * 2014-10-13 2016-05-11 中芯国际集成电路制造(上海)有限公司 一种半导体器件、制备方法及封装方法
CN107978548A (zh) * 2017-11-20 2018-05-01 厦门市三安光电科技有限公司 微元件的巨量转移方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084631A1 (fr) 2001-04-11 2002-10-24 Sony Corporation Procede de transfert d'element, procede de disposition d'element mettant en oeuvre ce procede et procede de production d'un appareil d'affichage d'image
JP2004079816A (ja) * 2002-08-20 2004-03-11 Sony Corp チップ状電子部品の製造方法及びチップ状電子部品、並びにその製造に用いる疑似ウェーハの製造方法及び疑似ウェーハ、並びに実装構造
US7408566B2 (en) * 2003-10-22 2008-08-05 Oki Data Corporation Semiconductor device, LED print head and image-forming apparatus using same, and method of manufacturing semiconductor device
JP4396472B2 (ja) * 2004-10-06 2010-01-13 パナソニック株式会社 薄膜状素子の転写方法
JP4840371B2 (ja) 2008-01-28 2011-12-21 ソニー株式会社 素子転写方法
US8889485B2 (en) * 2011-06-08 2014-11-18 Semprius, Inc. Methods for surface attachment of flipped active componenets
JP5681043B2 (ja) * 2011-06-14 2015-03-04 キヤノン・コンポーネンツ株式会社 半導体装置の製造方法
US8646505B2 (en) * 2011-11-18 2014-02-11 LuxVue Technology Corporation Micro device transfer head
US8426227B1 (en) * 2011-11-18 2013-04-23 LuxVue Technology Corporation Method of forming a micro light emitting diode array
US9773750B2 (en) * 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
US9548332B2 (en) * 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9035279B2 (en) * 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
CN110265344B (zh) * 2014-07-20 2023-09-12 艾克斯展示公司技术有限公司 用于微转贴印刷的设备及方法
US9633982B2 (en) 2015-02-17 2017-04-25 Chun Yen Chang Method of manufacturing semiconductor device array
TWI581355B (zh) * 2015-11-06 2017-05-01 友達光電股份有限公司 轉置微元件的方法
KR101799656B1 (ko) * 2015-12-31 2017-11-20 한국광기술원 Led 구조체 및 이의 이송방법
JP2016106378A (ja) * 2016-03-11 2016-06-16 住友電気工業株式会社 超電導線及びその製造方法
WO2018082102A1 (en) * 2016-11-07 2018-05-11 Goertek.Inc Micro-led transfer method and manufacturing method
WO2018082100A1 (en) * 2016-11-07 2018-05-11 Goertek. Inc Micro-led transfer method and manufacturing method
EP3750192A4 (en) * 2018-02-08 2022-02-16 Cornell University WIRELESS, OPTICALLY POWERED OPTOELECTRONIC SENSORS AND DEVICES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089906A1 (en) * 2001-11-13 2003-05-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
CN101281948A (zh) * 2008-04-29 2008-10-08 北京大学 薄膜型光子晶格结构GaN基发光二极管的制备方法
CN101702401A (zh) * 2009-11-03 2010-05-05 中山大学 一种GaN基LED薄膜器件的制备与批处理式封装方法
CN105575930A (zh) * 2014-10-13 2016-05-11 中芯国际集成电路制造(上海)有限公司 一种半导体器件、制备方法及封装方法
CN107978548A (zh) * 2017-11-20 2018-05-01 厦门市三安光电科技有限公司 微元件的巨量转移方法

Also Published As

Publication number Publication date
KR20200065078A (ko) 2020-06-08
KR102348435B1 (ko) 2022-01-06
US20200273848A1 (en) 2020-08-27
CN107978548A (zh) 2018-05-01
US11557580B2 (en) 2023-01-17
US20210407978A1 (en) 2021-12-30
CN107978548B (zh) 2019-07-05
US11127723B2 (en) 2021-09-21
JP6937911B2 (ja) 2021-09-22
JP2021503713A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2019095659A1 (zh) 微元件的巨量转移方法
WO2019085444A1 (zh) 微元件的封装方法
CN101097400B (zh) 软模具及其制造方法
WO2018192389A1 (zh) 一种用于微元件转移的转置头
WO2018058747A1 (zh) 用于转移微元件的转置头及微元件的转移方法
JP5448117B2 (ja) 分子結合による結合方法
US20210101316A1 (en) Nanoimprinting by using soft mold and resist spreading
CN102574327A (zh) 压印用模具及其制造方法、压印装置和压印方法
US20210129520A1 (en) Method and device for embossing of a nanostructure
TW201241955A (en) Apparatus and a method for direct wafer bonding
WO2008154473A1 (en) Method of making patterning device, patterning device for making patterned structure, and method of making patterned structure
US9434093B2 (en) Method of manufacturing master mold
JP2014096422A (ja) 基板支持部材、基板処理装置、基板支持部材の製造方法、及び基板処理方法
JP5728139B2 (ja) 多層構造体を基板に製造する方法
TW201339727A (zh) 軟性顯示面板之製造方法
CN111223810A (zh) 一种晶圆键合加压装置、晶圆键合的方法及晶圆键合设备
CN109979876B (zh) 一种利用软光刻技术制备有机半导体材料环形阵列集成光电器件的方法
CN111415901A (zh) 用于半导体器件的临时键合工艺
CN107078075A (zh) 用于对产品衬底进行涂层的方法和装置
KR102230702B1 (ko) 나노 임프린팅 패턴 제작 방법
TW202422847A (zh) Led轉移材料以及製程
TWI463598B (zh) 用於晶圓薄化的載具及其製法
TWI443733B (zh) 晶圓切割方法
Wu et al. Fabrication of a large-area silicon mold with microstructures using a novel recombining technique
JP2016111213A (ja) ステージ装置、リソグラフィ装置及び物品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526189

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014293

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18879255

Country of ref document: EP

Kind code of ref document: A1