WO2019093366A1 - 有機デバイスの製造方法 - Google Patents

有機デバイスの製造方法 Download PDF

Info

Publication number
WO2019093366A1
WO2019093366A1 PCT/JP2018/041319 JP2018041319W WO2019093366A1 WO 2019093366 A1 WO2019093366 A1 WO 2019093366A1 JP 2018041319 W JP2018041319 W JP 2018041319W WO 2019093366 A1 WO2019093366 A1 WO 2019093366A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
light
integrated
light emitting
Prior art date
Application number
PCT/JP2018/041319
Other languages
English (en)
French (fr)
Inventor
光俊 赤津
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/762,027 priority Critical patent/US11145845B2/en
Priority to CN201880072116.2A priority patent/CN111316759A/zh
Priority to EP18877092.9A priority patent/EP3709772A4/en
Priority to KR1020207015322A priority patent/KR20200078600A/ko
Publication of WO2019093366A1 publication Critical patent/WO2019093366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/831Aging

Definitions

  • the present invention relates to a method of manufacturing an organic device.
  • Patent Document 1 As a conventional method of manufacturing an organic device, for example, a method described in Patent Document 1 is known. In the method of manufacturing an organic device described in Patent Document 1, a light emitting layer containing an arylamine compound is wet-film-formed under an environment of light which does not contain a wavelength of 500 nm or less.
  • the characteristics of the light emitting layer may be deteriorated when light is incident. Therefore, as in the conventional method of manufacturing an organic device, the formation of the light emitting layer is performed under an environment of light with a wavelength of 500 nm or less blocked (in the environment of yellow light). Even in such an environment, when yellow light (which may contain other light) is incident on the light emitting layer, the characteristics of the organic device are degraded compared to the case where no yellow light is incident on the light emitting layer, and the reliability is improved. It can decrease. Therefore, in the production of the light emitting layer of the organic device, further improvement is required in the process of forming the organic functional layer including the light emitting layer.
  • An aspect of the present invention aims to provide a method of manufacturing an organic device capable of suppressing a decrease in reliability.
  • a second forming step of forming a two-electrode layer, and light in an environment from the start of the formation of the light emitting layer in the first formation step to the start of the formation of the second electrode layer in the second formation step An upper limit value of integrated illuminance is set, an organic functional layer is formed such that integrated illuminance is equal to or lower than the upper limit, and a product of an organic device set based on relative life and relative current luminous efficiency caused by integrated illuminance From the relationship between the integrated illuminance and the relative life and the relative current luminous efficiency, the upper limit value of the integrated illuminance at which the product life is longer than or equal to a predetermined time is set so that the life is equal to or longer than a predetermined time.
  • the formation of the light emitting layer is started from the relationship between the integrated illuminance, the relative life and the relative current luminous efficiency so that the product life of the organic device becomes a predetermined time or more.
  • the upper limit value of the integrated illuminance of light in an environment from when the formation of the second electrode layer is started until the start of the formation of the second electrode layer is set.
  • an organic functional layer is formed so that integrated illumination intensity may become below the above-mentioned upper limit.
  • the product lifetime of the organic device when the integrated illuminance is 0 is LT 0
  • the relative lifetime of the integrated illuminance when light is incident on the organic device for a predetermined time t is ⁇ LT t
  • the organic device is predetermined for the organic device
  • the product life LT of the organic device may be calculated from the following equation, where ⁇ Efft is the relative current luminous efficiency at integrated illuminance when light is incident for t .
  • LT (LT 0 ) ⁇ ⁇ LT t ⁇ ( ⁇ Eff t ) 2
  • the upper limit value of the integrated illuminance can be set with high accuracy.
  • the upper limit value of the integrated illuminance may be set to 100 lx ⁇ hrs or less. This makes it possible to manufacture an organic device having a product life of, for example, 40,000 hours.
  • a second forming step of forming a two-electrode layer, and light in an environment from the start of the formation of the light emitting layer in the first formation step to the start of the formation of the second electrode layer in the second formation step The organic functional layer is formed such that the integrated illuminance is 100 lx ⁇ hrs or less.
  • the organic light is integrated so that the integrated illuminance of light in the environment from the start of the formation of the light emitting layer to the start of the formation of the second electrode layer is 100 lx ⁇ hrs or less.
  • Form a functional layer in the method of manufacturing an organic device, an organic device having a product life of, for example, 40,000 hours can be manufactured. Therefore, in the method of manufacturing an organic device, the decrease in reliability can be suppressed.
  • a second forming step of forming a two-electrode layer, and light in an environment from the start of the formation of the light emitting layer in the first formation step to the start of the formation of the second electrode layer in the second formation step The upper limit of the integrated absorption irradiance is set to form the organic functional layer so that the integrated absorption irradiance is equal to or less than the upper limit, and the integrated absorption irradiance is for each wavelength of light of the material forming the light emitting layer.
  • Integrated absorption irradiance and relative life so that the product life of the organic device set based on the relative life and relative current luminous efficiency resulting from the integrated absorption irradiance is an integral value of the integrated irradiance becomes equal to or longer than a predetermined time
  • relative current From the relationship between efficiency and sets the upper limit value of the integrated absorption irradiance product life is equal to or greater than a predetermined time.
  • the formation of the light emitting layer is performed based on the relationship between the integrated absorption irradiance, the relative life and the relative current luminous efficiency so that the product life of the organic device becomes a predetermined time or more.
  • the upper limit of the integrated absorption irradiance of light in the environment from the start to the start of the formation of the second electrode layer is set.
  • an organic functional layer is formed so that integrated absorption irradiance may become below the said upper limit.
  • the wavelength of at least one peak of the light emission spectrum may be within the distribution of the absorption spectrum of the material forming the light emitting layer. As described above, when the peak wavelength of the light emission spectrum is included in the distribution of the absorption spectrum of the material forming the light emitting layer, the method for manufacturing the organic device is particularly effective.
  • the light may not include a wavelength range of 500 nm or less.
  • materials sensitive to short wavelengths may be used. Therefore, by using so-called yellow light in which light having a wavelength shorter than 500 nm is cut, it is possible to suppress the reaction of a highly sensitive material in the short wavelength region, so the light affects the characteristics of the organic device. We can suppress giving.
  • the upper limit value of the integrated illuminance may be set based on the spectrum of light incident on the organic functional layer and the absorption spectrum of the material of the organic functional layer. Thereby, the upper limit value of the integrated illuminance can be set more accurately.
  • the decrease in the reliability of the organic device can be suppressed.
  • FIG. 1 is a view showing a cross-sectional configuration of an organic EL element manufactured by the method of manufacturing an organic device according to an embodiment.
  • FIG. 2 is a flowchart showing a method of manufacturing an organic EL element.
  • FIG. 3 is a view showing the relationship between the wavelength of yellow light and the relative power.
  • FIG. 4 is a diagram showing the absorption spectrum distribution of the light emitting layer.
  • FIG. 5 is a view showing the relationship between integrated illuminance and relative life.
  • FIG. 6 is a diagram showing the relationship between integrated illuminance and relative current luminous efficiency.
  • FIG. 7 is a table showing the relationship between integrated illuminance, relative life and relative current luminous efficiency.
  • FIG. 8 is a diagram showing the relationship between the integrated illuminance and the estimated product life.
  • FIG. 9 is a table showing the relationship between the integrated illuminance and the product life.
  • the organic EL element (organic device) 1 includes a support substrate 3, an anode layer (first electrode layer) 5, and a hole injection layer (organic functional layer). 7), hole transport layer (organic functional layer) 9, light emitting layer (organic functional layer) 11, electron injection layer (organic functional layer) 13, and cathode layer (second electrode layer) 15. ing.
  • the organic EL element 1 may have a form in which light is emitted from the side of the support substrate 3 or a form in which light is emitted from the side opposite to the support substrate 3. Below, the form which radiate
  • the support substrate 3 is made of a member having transparency to visible light (light with a wavelength of 400 nm to 800 nm). Examples of the support substrate 3 include glass and the like. When the support substrate 3 is glass, its thickness is, for example, 0.05 mm to 1.1 mm.
  • the support substrate 3 may be made of resin, and may be, for example, a film-like substrate (a flexible substrate, a substrate having flexibility).
  • the thickness of the support substrate 3 is, for example, 30 ⁇ m or more and 500 ⁇ m or less.
  • the thickness is preferably 45 ⁇ m or more from the viewpoint of the deflection, wrinkles, and elongation of the substrate in the continuous roll-to-roll method, and is preferably 125 ⁇ m or less from the viewpoint of flexibility.
  • the material of the support substrate 3 is a resin
  • examples of the material include a plastic film and the like.
  • the material of the support substrate 3 is, for example, polyether sulfone (PES); polyester resin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), cyclic polyolefin, etc.
  • Polyamide resin polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponified ethylene-vinyl acetate copolymer; polyacrylonitrile resin; acetal resin; polyimide resin; epoxy resin and the like.
  • the material of the support substrate 3 is preferably a polyester resin or a polyolefin resin because of high heat resistance, low coefficient of linear expansion and low manufacturing cost, and polyethylene terephthalate or polyethylene naphthalate More preferable.
  • one of these resins may be used alone, or two or more of these resins may be used in combination.
  • a gas barrier layer or a moisture barrier layer may be disposed on one main surface 3 a of the support substrate 3.
  • the other main surface 3b of the support substrate 3 is a light emitting surface.
  • a light extraction film may be provided on the other main surface 3b.
  • the anode layer 5 is disposed on one main surface 3 a of the support substrate 3.
  • an electrode layer exhibiting light transparency is used.
  • an electrode which shows light transmittance thin films of metal oxides, metal sulfides and metals having high electric conductivity can be used, and thin films having high light transmittance are suitably used.
  • ITO indium oxide
  • IZO indium zinc oxide
  • gold platinum, silver, copper, etc.
  • a thin film is used, and among them, a thin film formed of ITO, IZO or tin oxide is preferably used.
  • a transparent conductive film of an organic substance such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used.
  • the thickness of the anode layer 5 can be determined in consideration of light transmittance, electrical conductivity, and the like.
  • the thickness of the anode layer 5 is 10 nm or more and 10 ⁇ m or less, preferably 20 nm or more and 1 ⁇ m or less, and more preferably 50 nm or more and 500 nm or less.
  • Examples of the method for forming the anode layer 5 include a vacuum evaporation method, a sputtering method, an ion plating method, a plating method, and a coating method.
  • Coating methods include spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing, An offset printing method, an inkjet printing method, etc. can be mentioned.
  • the hole injection layer 7 is disposed on the main surface of the anode layer 5 (the side opposite to the surface in contact with the support substrate 3).
  • the hole injection layer 7 is a functional layer having a function of improving the hole injection efficiency from the anode layer 5 to the light emitting layer 11.
  • Examples of the material constituting the hole injection layer 7 include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst type amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline, and the like.
  • polythiophene derivatives such as polyethylenedioxythiophene (PEDOT).
  • a conventionally known organic material having charge transportability can be used as a material of the hole injection layer 7 by combining it with an electron accepting material.
  • an electron accepting material heteropoly acid compounds or aryl sulfonic acids can be suitably used.
  • a heteropoly acid compound is a Keggin-type or Dawson-type chemical structure, which has a structure in which a hetero atom is located at the center of a molecule, and is an oxygen acid such as vanadium (V), molybdenum (Mo) or tungsten (W).
  • V vanadium
  • Mo molybdenum
  • W tungsten
  • the oxygen acids of different elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
  • Specific examples of the heteropoly acid compound include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, lintungstomolybdic acid, silicotungstic acid and the like.
  • arylsulfonic acids include benzenesulfonic acid, tosyl acid, p-styrenesulfonic acid, 2-naphthalenesulfonic acid, 4-hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzenesulfonic acid, dihexylbenzenesulfonic acid, 2 , 5-Dihexylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, 6,7-dibutyl-2-naphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, 3-dodecyl-2-naphthalenesulfonic acid, hexylnaphthalenesulfonic acid, 4-hexyl-1 -Naphthalenesulfonic acid, octylnaphthalenesulfonic acid, 2-octyl
  • the thickness of the hole injection layer 7 is, for example, 1 nm or more and 1 ⁇ m or less, preferably 2 nm or more and 500 nm or less, and more preferably 5 nm or more and 200 nm or less.
  • the hole injection layer 7 is formed, for example, by a coating method using a coating solution containing the above-mentioned material.
  • Coating methods include spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing, An offset printing method, an inkjet printing method, etc. can be mentioned.
  • the hole injection layer 7 can be formed by applying a coating solution on the anode layer 5 using one of these coating methods.
  • the hole transport layer 9 is disposed on the main surface (the surface opposite to the surface in contact with the anode layer 5) of the hole injection layer 7.
  • the hole transport layer 9 is a functional layer having a function of improving the hole injection efficiency from the hole transport layer 9 closer to the hole injection layer 7 or the anode layer 5 to the light emitting layer 11.
  • a known hole transport material can be used for the material of the hole transport layer 9.
  • Examples of the material of the hole transport layer 9 include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, polysiloxane having an aromatic amine in the side chain or main chain or a derivative thereof, pyrazoline or a derivative thereof, arylamine or a derivative thereof Stilbene or derivative thereof, triphenyldiamine or derivative thereof, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylenevinylene) or derivative thereof, poly (2, 5-thienylenevinylene) or a derivative thereof can be mentioned.
  • the optimum value of the thickness of the hole transport layer 9 differs depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency become appropriate values.
  • the thickness of the hole transport layer 9 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • Examples of the method of forming the hole transport layer 9 include a coating method using a coating solution containing the above-mentioned material.
  • the application method the method exemplified for the hole injection layer 7 may be mentioned.
  • the solvent for the coating solution may be any solvent that dissolves the above-mentioned materials.
  • chlorine-containing solvents such as chloroform, methylene chloride and dichloroethane
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and xylene
  • acetone And ketone solvents such as methyl ethyl ketone
  • ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • the light emitting layer 11 is a functional layer that emits light (including visible light), and is disposed on the main surface (the surface opposite to the surface in contact with the hole injection layer 7) of the hole transport layer 9.
  • the light emitting layer 11 usually contains an organic substance that mainly emits fluorescence and / or phosphorescence, or the organic substance and a dopant material for a light emitting layer that assists the organic substance.
  • the dopant material for the light emitting layer is added, for example, to improve the light emission efficiency or to change the light emission wavelength.
  • the organic substance may be a low molecular weight compound or a high molecular weight compound.
  • Examples of the light emitting material forming the light emitting layer 11 include organic materials that emit mainly fluorescence and / or phosphorescence such as the following dye materials, metal complex materials, and polymer materials, and dopant materials for the light emitting layer. .
  • pigment materials include cyclopentamine and its derivatives, tetraphenylbutadiene and its derivatives, triphenylamine and its derivatives, oxadiazole and its derivatives, pyrazoloquinoline and its derivatives, distyrylbenzene and its derivatives, Styryl arylene and its derivative, pyrrole and its derivative, thiophene compound, pyridine compound, perinone and its derivative, perylene and its derivative, oligothiophene and its derivative, oxadiazole dimer, pyrazoline dimer, quinacridone and its derivative, coumarin and its derivative Derivatives and the like can be mentioned.
  • Metal complex material for example, rare earth metals such as Tb, Eu, Dy, etc., or Al, Zn, Be, Pt, Ir etc. as central metals, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline A metal complex having a structure etc. as a ligand can be mentioned.
  • metal complexes having light emission from a triplet excited state such as iridium complex and platinum complex, aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazolyl zinc complex, benzothiazole zinc complex, azomethyl zinc complex And porphyrin zinc complexes, phenanthroline europium complexes and the like.
  • polymer material examples include polyparaphenylene vinylene and its derivatives, polythiophene and its derivatives, polyparaphenylene and its derivatives, polysilane and its derivatives, polyacetylene and its derivatives, polyfluorene and its derivatives, polyvinylcarbazole and its derivatives, The said pigment
  • dopant material for light emitting layer examples include perylene and its derivatives, coumarin and its derivatives, rubrene and its derivatives, quinacridone and its derivatives, squalium and its derivatives, porphyrin and its derivatives, styryl dyes, tetracene and its derivatives, pyrazolone and the like There may be mentioned derivatives thereof, decacyclene and derivatives thereof, phenoxazone and derivatives thereof and the like.
  • the thickness of the light emitting layer 11 is usually about 2 nm to 200 nm.
  • the light emitting layer 11 is formed by, for example, a coating method using a coating solution (for example, ink) containing the light emitting material as described above.
  • the solvent of the coating solution containing the light emitting material is not limited as long as it dissolves the light emitting material.
  • the electron injection layer 13 is disposed on the main surface (the surface opposite to the surface in contact with the hole transport layer 9) of the light emitting layer 11.
  • the electron injection layer 13 is a functional layer having a function of improving the electron injection efficiency from the cathode layer 15 to the light emitting layer 11.
  • a known electron injecting material is used for the material of the electron injecting layer 13.
  • an alkali metal, an alkaline earth metal, an alloy containing one or more of an alkali metal and an alkaline earth metal, an alkali metal or an alkaline earth metal Mention may be made of oxides of similar metals, halides, carbonates or mixtures of these substances.
  • alkali metals, oxides of alkali metals, halides and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, sodium fluoride, potassium oxide, potassium fluoride And rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate and the like.
  • alkaline earth metals and oxides, halides and carbonates of alkaline earth metals magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Barium fluoride, strontium oxide, strontium fluoride, magnesium carbonate and the like can be mentioned.
  • a material obtained by mixing a conventionally known electron-transporting organic material and an organometallic complex of an alkali metal can also be used as the electron injecting material.
  • the thickness of the electron injection layer 13 is, for example, 1 to 50 nm.
  • Examples of the method of forming the electron injection layer 13 include a vacuum evaporation method.
  • the cathode layer 15 is disposed on the main surface (the opposite side of the surface in contact with the light emitting layer 11) of the electron injection layer 13.
  • a material of the cathode layer 15 for example, an alkali metal, an alkaline earth metal, a transition metal, a periodic table group 13 metal or the like can be used.
  • the cathode layer 15 specifically, for example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium , Metals such as europium, terbium, ytterbium, alloys of two or more of the metals, one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Or an alloy with one or more of the foregoing, or graphite or a graphite intercalation compound, or the like.
  • Metals such as europium, terbium, ytterbium, alloys of two or more of the metals, one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin Or an alloy with one or more of the foregoing, or graphite
  • alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminium alloy, indium-silver alloy, lithium-aluminium alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminium alloy, etc. it can.
  • a transparent conductive electrode formed of a conductive metal oxide, a conductive organic substance or the like can be used as the cathode layer 15.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO
  • examples of the conductive organic substance include polyaniline and its derivatives, polythiophene and its derivatives, etc. it can.
  • the cathode layer 15 may be formed of a laminate in which two or more layers are laminated. An electron injection layer may be used as the cathode layer 15.
  • the thickness of the cathode layer 15 is set in consideration of the electrical conductivity and the durability.
  • the thickness of the cathode layer 15 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method of forming the cathode layer 15 include a vacuum evaporation method, a coating method, and the like.
  • a roll-to-roll method can be adopted as a method of manufacturing the organic EL element 1.
  • the long flexible support substrate 3 stretched between the unwinding roll and the winding roll is continuously conveyed by the conveying roll, Each layer is formed in order from the support substrate 3 side.
  • the manufacturing of the organic EL element 1 is performed under a yellow light environment. As shown in FIG. 3, yellow light is light which does not include a wavelength range of 500 nm or less (a wavelength of 500 nm or less is blocked).
  • the support substrate 3 is cleaned (substrate cleaning step S01).
  • the method for cleaning the support substrate 3 include shower cleaning, brush cleaning, dip cleaning and the like.
  • the anode layer 5 is formed on the washed support substrate 3 (anode layer forming step S02).
  • the anode layer 5 can be formed by the formation method exemplified in the description of the anode layer 5.
  • the hole injection layer 7 and the hole transport layer 9 are formed in this order on the anode layer 5 (hole injection layer formation step S03, hole transport layer formation step S04).
  • the hole injection layer 7 and the hole transport layer 9 can be formed by the formation method exemplified in the description of the hole injection layer 7 and the hole transport layer 9.
  • the light emitting layer 11 is formed on the hole transport layer 9 (a light emitting layer forming step (first forming step) S05).
  • the light emitting layer 11 can be formed by the forming method exemplified in the description of the light emitting layer 11. Specifically, the light emitting layer 11 is formed by a coating method using a coating solution in which a light emitting material forming the light emitting layer 11 is dissolved in an organic solvent. The wavelength of at least one peak of the yellow light emission spectrum is within the distribution of the absorption spectrum of the coating solution.
  • FIG. 4 is a diagram showing the absorption spectrum distribution of the light emitting layer. In FIG. 4, the horizontal axis indicates the wavelength [nm] and the vertical axis indicates the degree of absorption.
  • the degree of absorption is log (Io / I). Io is the incident light intensity and I is the transmitted light intensity.
  • FIG. 4 shows an example of a coating solution using 20 ppm or 2000 ppm of THF (tetrahydrofuran: tetrahydrofuran) as an organic solvent.
  • the upper limit of the integrated illuminance of light (incident light) incident on the light emitting layer 11 in an environment from when the formation of the light emitting layer 11 is started (the application liquid is applied) to when the formation of the cathode layer 15 is started A value is set, and the organic functional layer (the light emitting layer 11 and the electron injection layer 13) is formed such that the integrated illuminance is equal to or less than the upper limit value.
  • the integrated illuminance, the relative lifetime and the relative current luminous efficiency are set so that the product life of the organic EL element 1 set based on the relative lifetime and the relative current luminous efficiency caused by the integrated illuminance becomes a predetermined time or more.
  • the upper limit value of the integrated illumination intensity at which the product life becomes equal to or longer than a predetermined time is set from the relationship of
  • the integrated illuminance is the cumulative illuminance value of the incident light (the product of the illuminance of the incident light and the irradiation time).
  • the relative life is a relative value of the life when the life of the organic EL element 1 when the integrated illuminance is “0 (zero)” is 100%.
  • the relative current luminous efficiency is a relative value of the current luminous efficiency when the current luminous efficiency of the organic EL element 1 is 100% when the integrated illuminance is “0 (zero)”.
  • the product life of the organic EL element 1 is calculated from the following equation.
  • LT (LT 0 ) ⁇ ⁇ LT t ⁇ ( ⁇ Eff t ) 2
  • LT [khrs] is the estimated product life of the organic EL element 1.
  • LT 0 is, the accumulated illuminance in under a yellow light environment is a product life of the case is "0".
  • ⁇ LT t is a relative life in integrated illuminance when yellow light is incident on the organic EL element 1 for a predetermined time “t” under a yellow light environment.
  • DerutaEff t is the relative current luminous efficiency in the integral illuminance when the organic EL element 1 for a predetermined time "t” yellow light incident under a yellow light environment.
  • FIG. 5 is a view showing the relationship between the integrated illuminance and the relative life according to the present embodiment.
  • the horizontal axis indicates the integrated illuminance [lx ⁇ hrs], and the vertical axis indicates the relative life [%].
  • FIG. 6 is a diagram showing the relationship between integrated illuminance and relative current luminous efficiency in the present embodiment.
  • the horizontal axis indicates the integrated illuminance [lx ⁇ hrs]
  • the vertical axis indicates the relative current luminous efficiency [%].
  • FIG. 7 is a table showing integrated illuminance, relative life and relative current luminous efficiency in the present embodiment. 7 to 7 show seven samples in one example.
  • the plot in case the integral illumination intensity is "0" shown by “1” in FIG. 7 is abbreviate
  • the product life of the organic EL element 1 is, for example, 140 [khrs].
  • the relationship between the integrated illuminance and the relative life and the relationship between the integrated illuminance and the relative current luminous efficiency can be obtained, for example, by experiments, tests, and the like.
  • the relationship between the integrated illuminance and the relative life, and the relationship between the integrated illuminance and the relative current luminous efficiency may be obtained in the process before forming the organic functional layer (in the present embodiment, the light emitting layer 11 and the electron injection layer 13). .
  • the relative current luminous efficiency and the relative life are “100 (%)".
  • the relative life tends to decrease as the integrated illuminance increases.
  • the relative current luminous efficiency tends to decrease. For example, when the integrated illuminance is “100 (lx ⁇ hrs)”, the relative lifetime is “45 (%)” and the relative current luminous efficiency is “84 (%)”.
  • the relative current luminous efficiency is "84 (%)" in order to output the rated luminance in the organic EL element 1, the current value becomes 1.19 times (1 / 0.84).
  • the life of the organic EL element 1 is shortened by the square of the current value.
  • FIG. 8 is a diagram showing the relationship between the integrated illuminance and the product life.
  • the horizontal axis indicates the integrated illuminance [lx ⁇ hrs]
  • the vertical axis indicates the product life [khrs].
  • FIG. 9 is a table showing the relationship between the integrated illuminance and the product life.
  • the organic EL element 1 When the organic EL element 1 is used for lighting etc., it is preferable that it is a product life of 40 [khrs] (40,000 hours) or more (indicated by a broken line in FIG. 8). As shown in FIG. 9, in the present embodiment, the product life is 40 [khrs] when the integrated illuminance is 100 [lx ⁇ hrs] or less. From the above, in the present embodiment, it is preferable to set the upper limit value of the integrated illuminance to 100 [lx ⁇ hrs] so that the product life of the organic EL element 1 becomes 40 [khrs] or more. That is, it is preferable to set the integrated illuminance of light in the environment from the start of formation of the light emitting layer 11 to the start of formation of the cathode layer 15 to 100 [lx ⁇ hrs] or less.
  • the electron injection layer 13 is formed on the light emitting layer 11 (electron injection layer forming step S06).
  • the electron injection layer 13 can be formed by the formation method exemplified in the description of the electron injection layer 13.
  • the cathode layer 15 is formed on the electron injection layer 13 (a cathode layer forming step (second forming step) S07).
  • the cathode layer 15 can be formed by the formation method exemplified in the description of the cathode layer 15.
  • a sealing member (not shown) is attached onto the cathode layer 15, and the support substrate 3 is cut to separate the organic EL element 1.
  • the organic EL element 1 is manufactured by the above.
  • the upper limit of the integrated illuminance is set such that the product life is equal to or longer than a predetermined time.
  • the organic functional layer (the light emitting layer 11, the electron injection layer 13) is formed so that the integrated illuminance of light incident on the light emitting layer 11 becomes equal to or lower than the upper limit.
  • the light emitting layer 11 to the cathode layer 15 are formed such that the integrated illuminance of light is 100 lx ⁇ hrs or less.
  • the organic EL element 1 having a product life of 40 [khrs] or more can be manufactured.
  • the wavelength of at least one peak of the emission spectrum of light that may enter the light emitting layer 11 is the absorption spectrum of the material forming the light emitting layer 11 dissolved in an organic solvent.
  • the method of manufacturing the organic EL element 1 is particularly effective.
  • the light that can be incident on the light emitting layer 11 does not include a wavelength range of 500 nm or less.
  • a high sensitivity material may be used in the short wavelength range. Therefore, by using so-called yellow light in which light having a wavelength shorter than 500 nm is cut, it is possible to suppress the reaction of a highly sensitive material in the short wavelength region. It is possible to suppress the influence.
  • the organic EL element 1 by which the anode layer 5, the positive hole injection layer 7, the positive hole transport layer 9, the light emitting layer 11, the electron injection layer 13, and the cathode layer 15 were arrange
  • the configuration of the organic EL element 1 is not limited to this.
  • the organic EL element 1 may have the following configuration.
  • A anode layer / light emitting layer / cathode layer
  • b anode layer / hole injection layer / light emitting layer / cathode layer
  • c anode layer / hole injection layer / light emitting layer / electron injection layer / cathode layer
  • d Anode layer / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode layer
  • e anode layer / hole injection layer / hole transport layer / light emitting layer / cathode layer
  • f anode layer / holes Injection layer / hole transport layer / light emitting layer / electron injection layer / cathode layer
  • g anode layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode layer
  • i anode Layer / emission layer / electron
  • the electron transport layer is a functional layer having a function of improving the electron injection efficiency from the electron transport layer closer to the cathode layer, the electron injection layer or the cathode to the light emitting layer.
  • the thickness of the electron transport layer is appropriately set in consideration of electrical characteristics and / or ease of film formation, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. It is.
  • a well-known material can be used for the electron transport material which comprises an electron carrying layer.
  • an electron transport material constituting the electron transport layer oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinone or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, Examples thereof include fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxalines or derivatives thereof, polyfluorene or derivatives thereof, and the like.
  • anode layer 5 As a formation method of an electron transport layer, the method illustrated with anode layer 5 is mentioned, for example.
  • the organic EL element 1 may have one organic functional layer or may have a multilayer (two or more layers) organic functional layer. Assuming that the laminated structure disposed between the anode layer 5 and the cathode layer 15 in any one of the layer configurations (a) to (i) is “structural unit A”, the organic function of two layers As a structure of the organic EL element which has a layer, the layer structure shown to following (j) can be mentioned, for example. The layer configurations of two (structural unit A) may be the same as or different from each other.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • charge generation layer for example, a thin film formed of vanadium oxide, ITO, molybdenum oxide or the like can be mentioned.
  • (structural unit A) / charge generation layer is “structural unit B”, for example, the layer configuration shown in the following (k) may be used as the configuration of the organic EL element having three or more light emitting layers 11 It can be mentioned.
  • (structural unit B) x represents a laminate in which (structural units B) are stacked in x stages.
  • the layer configurations of a plurality of (structural unit B) may be the same or different.
  • a plurality of organic functional layers may be stacked directly to form an organic EL element without providing a charge generation layer.
  • the form which manufactures the organic EL element 1 in the environment of the yellow light which does not contain a wavelength range 500 nm or less was demonstrated as an example.
  • the organic device may be manufactured under an environment of light other than yellow light.
  • the upper limit value of the integrated illuminance may be set based on the light emission spectrum of light and the absorption spectrum of the light emitting layer.
  • the first electrode layer is the anode layer 5 and the second electrode layer is the cathode layer 15 has been described as an example.
  • the first electrode layer may be a cathode layer
  • the second electrode layer may be an anode layer.
  • the electron injection layer 13 is formed after the light emitting layer 11 is formed, and the cathode layer 15 is formed after the electron injection layer 13 is formed.
  • the support substrate 3 on which the organic functional layer is formed may be temporarily stored until the formation of the cathode layer 15 is started. In this case, the support substrate 3 on which the organic functional layer is formed may be stored in an environment equal to or less than the upper limit value of the integrated illuminance.
  • the upper limit of the integrated illuminance of light in an environment from the start of the formation of the light emitting layer 11 to the start of the formation of the cathode layer 15 is set, and the organic functional layer is set to be equal to or lower than the upper limit.
  • the form of forming is described as an example. However, even in the step of forming the organic functional layer formed before the formation of the light emitting layer, the upper limit of the integrated illuminance of light is set, and the organic functional layer is formed to be equal to or lower than the upper limit. Good.
  • the upper limit value of the integrated illuminance of light in the environment from the start of the formation of the light emitting layer 11 to the start of the formation of the cathode layer 15 has been described as an example.
  • the upper limit value of the integrated absorption irradiance of light in an environment from the start of formation of the light emitting layer 11 to the start of formation of the cathode layer 15 may be set. Good.
  • the upper limit value of the integrated absorption irradiance of light in the environment from the start of the formation of the light emitting layer 11 to the start of the formation of the cathode layer 15 is set so that the integrated absorption irradiance becomes less than the upper limit
  • the organic functional layer may be formed on
  • the integrated absorption irradiance is an integral value of the integrated irradiance with respect to each wavelength of the light of the material forming the light emitting layer 11.
  • the cumulative irradiance for each wavelength of the light of the material forming the light emitting layer 11 is an absorptivity for the light of each wavelength of the material forming the light emitting layer 11 and the formation of the light emitting layer 11 is started to form the cathode layer 15
  • the integrated irradiance is multiplied by a weight for each wavelength of light in the environment until the start of the.
  • the integrated irradiance is the cumulative irradiance value of light (the product of the irradiance of light and the irradiation time).
  • the integrated absorption irradiance can be calculated by integrating the integrated irradiance for each wavelength of the light of the material forming the light emitting layer 11 at all wavelengths.
  • the upper limit value of the integrated absorption irradiance is such that the product life of the organic device set based on the relative lifetime and the relative current luminous efficiency resulting from the integrated absorption irradiance becomes equal to or longer than a predetermined time. From the relationship between the relative life and the relative current luminous efficiency, the product life is set to be a predetermined time or more.
  • the relationship between the integrated absorption irradiance, the relative life, and the relative current luminous efficiency can be obtained by experiments, tests, etc., as in the case of the integrated illuminance described above.
  • the relationship between the integrated absorption irradiance and the relative life and the relationship between the integrated absorption irradiance and the relative current luminous efficiency are the same as those before the formation of the organic functional layer (in the present embodiment, the light emitting layer 11 and the electron injection layer 13). Can be obtained in the process of
  • the organic EL element was demonstrated to an example as an organic device.
  • the organic device may be an organic thin film transistor, an organic photodetector, an organic thin film solar cell or the like.
  • SYMBOLS 1 organic EL element (organic device), 3 ... support substrate, 5 ... anode layer (1st electrode layer), 7 ... hole injection layer (organic functional layer), 9 ... hole transport layer (organic functional layer), 11: light emitting layer (organic functional layer), 13: electron injection layer (organic functional layer), 15: cathode layer (second electrode layer).

Abstract

有機デバイスの製造方法は、基板3上に配置された第1電極層5上に、少なくとも発光層11を含む有機機能層を形成する第1形成工程と、有機機能層上に第2電極層15を形成する第2形成工程と、を含み、発光層11の形成を開始してから、第2電極層15の形成を開始するまでの環境における光の積算照度の上限値を設定して、積算照度が当該上限値以下となるように有機機能層を形成し、積算照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイス1の製品寿命が所定時間以上となるように、積算照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となる積算照度の上限値を設定する。

Description

有機デバイスの製造方法
 本発明は、有機デバイスの製造方法に関する。
 従来の有機デバイスの製造方法として、例えば、特許文献1に記載された方法が知られている。特許文献1に記載の有機デバイスの製造方法では、アリールアミン化合物を含む発光層を、500nm以下の波長を含まない光の環境下で湿式成膜する。
国際公開第2010/104184号
 発光層は、光が入射すると、特性が劣化するおそれがある。そのため、上記従来の有機デバイスの製造方法のように、発光層の形成は、500nm以下の波長を遮断した光の環境下(イエロー光の環境下)で行われる。このような環境下においても、発光層にイエロー光(その他の光を含み得る)が入射すると、発光層にイエロー光が全く入射しない場合に比べて、有機デバイスの特性が低下し、信頼性が低下し得る。そのため、有機デバイスの発光層の製造においては、発光層を含む有機機能層の形成工程について、更なる改善が求められている。
 本発明の一側面は、信頼性の低下を抑制できる有機デバイスの製造方法を提供することを目的とする。
 本発明に一側面に係る有機デバイスの製造方法は、基板上に配置された第1電極層上に、少なくとも発光層を含む有機機能層を形成する第1形成工程と、有機機能層上に第2電極層を形成する第2形成工程と、を含み、第1形成工程において発光層の形成を開始してから、第2形成工程において第2電極層の形成を開始するまでの環境における光の積算照度の上限値を設定して、積算照度が当該上限値以下となるように有機機能層を形成し、積算照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイスの製品寿命が所定時間以上となるように、積算照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となる積算照度の上限値を設定する。
 本発明の一側面に係る有機デバイスの製造方法では、有機デバイスの製品寿命が所定時間以上となるように、積算照度と相対寿命及び相対電流発光効率との関係から、発光層の形成を開始してから第2電極層の形成を開始するまでの環境における光の積算照度の上限値を設定する。そして、積算照度が上記上限値以下となるように、有機機能層を形成する。これにより、有機デバイスの製造方法では、製品寿命が所定時間以上となる有機デバイスを製造できる。したがって、有機デバイスの製造方法では、信頼性の低下を抑制できる。
 一実施形態においては、積算照度が0である場合の有機デバイスの製品寿命をLT、有機デバイスに所定時間tだけ光が入射した場合の積算照度における相対寿命をΔLT、有機デバイスに所定時間tだけ光が入射した場合の積算照度における相対電流発光効率をΔEffとした場合において、以下の式から有機デバイスの製品寿命LTを算出してもよい。
LT=(LT)×ΔLT×(ΔEff
 これにより、有機デバイスの製品寿命LTを制度良く算出できるため、積算照度の上限値を制度良く設定できる。
 一実施形態においては、積算照度の上限値を100lx・hrs以下としてもよい。これにより、製品寿命が例えば40,000時間となる有機デバイスを製造できる。
 本発明の一側面に係る有機デバイスの製造方法では、基板上に配置された第1電極層上に、少なくとも発光層を含む有機機能層を形成する第1形成工程と、有機機能層上に第2電極層を形成する第2形成工程と、を含み、第1形成工程において発光層の形成を開始してから、第2形成工程において第2電極層の形成を開始するまでの環境における光の積算照度が100lx・hrs以下となるように、有機機能層を形成する。
 本発明の一側面に係る有機デバイスの製造方法では、発光層の形成を開始してから第2電極層の形成を開始するまでの環境における光の積算照度が100lx・hrs以下となるように有機機能層を形成する。これにより、有機デバイスの製造方法では、製品寿命が例えば40,000時間となる有機デバイスを製造できる。したがって、有機デバイスの製造方法では、信頼性の低下を抑制できる。
 本発明の一側面に係る有機デバイスの製造方法は、基板上に配置された第1電極層上に、少なくとも発光層を含む有機機能層を形成する第1形成工程と、有機機能層上に第2電極層を形成する第2形成工程と、を含み、第1形成工程において発光層の形成を開始してから、第2形成工程において第2電極層の形成を開始するまでの環境における光の積算吸収放射照度の上限値を設定して、積算吸収放射照度が当該上限値以下となるように有機機能層を形成し、積算吸収放射照度は、発光層を形成する材料の光の各波長に対する積算放射照度の積分値であり、積算吸収放射照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイスの製品寿命が所定時間以上となるように、積算吸収放射照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となる積算吸収放射照度の上限値を設定する。
 本発明の一側面に係る有機デバイスの製造方法では、有機デバイスの製品寿命が所定時間以上となるように、積算吸収放射照度と相対寿命及び相対電流発光効率との関係から、発光層の形成を開始してから第2電極層の形成を開始するまでの環境における光の積算吸収放射照度の上限値を設定する。そして、積算吸収放射照度が上記上限値以下となるように、有機機能層を形成する。これにより、有機デバイスの製造方法では、製品寿命が所定時間以上となる有機デバイスを製造できる。したがって、有機デバイスの製造方法では、信頼性の低下を抑制できる。
 一実施形態においては、光の発光スペクトルの少なくとも1つのピークの波長は、発光層を形成する材料の吸収スペクトルの分布内であってもよい。このように、発光層を形成する材料の吸収スペクトルの分布内に光の発光スペクトルのピーク波長が含まれる場合には、上記有機デバイスの製造方法が特に有効である。
 一実施形態においては、光は、500nm以下の波長域を含まなくてもよい。有機デバイスの製造においては、短波長域に高感度な材料を使うことがある。そのため、500nmよりも短波長の光がカットされたいわゆるイエロー光を用いることにより、短波長域に高感度な材料が反応することを抑制することができるため、光が有機デバイスの特性に影響を与えることを抑制できる。
 一実施形態においては、積算照度の上限値を、有機機能層に入射する光のスペクトルと有機機能層の材料の吸収スペクトルとに基づいて設定してもよい。これにより、積算照度の上限値をより精度良く設定できる。
 本発明の一側面によれば、有機デバイスの信頼性の低下を抑制できる。
図1は、一実施形態に係る有機デバイスの製造方法により製造された有機EL素子の断面構成を示す図である。 図2は、有機EL素子の製造方法を示すフローチャートである。 図3は、イエロー光における波長と相対パワーとの関係を示す図である。 図4は、発光層の吸収スペクトル分布を示す図である。 図5は、積算照度と相対寿命との関係を示す図である。 図6は、積算照度と相対電流発光効率との関係を示す図である。 図7は、積算照度と相対寿命及び相対電流発光効率との関係を示す表である。 図8は、積算照度と推定製品寿命との関係を示す図である。 図9は、積算照度と製品寿命との関係を示す表である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 本発明の一実施形態において、図1に示されるように、有機EL素子(有機デバイス)1は、支持基板3と、陽極層(第1電極層)5と、正孔注入層(有機機能層)7と、正孔輸送層(有機機能層)9と、発光層(有機機能層)11と、電子注入層(有機機能層)13と、陰極層(第2電極層)15と、を備えている。
 有機EL素子1は、支持基板3側から光を出射する形態、又は、支持基板3と反対側から光を出射する形態を取り得る。以下では、有機EL素子1として、支持基板3側から光を出射する形態について説明する。
[支持基板]
 支持基板3は、可視光(波長400nm~800nmの光)に対して透光性を有する部材から構成されている。支持基板3としては、例えば、ガラス等が挙げられる。支持基板3がガラスである場合、その厚さは、例えば、0.05mm~1.1mmである。
 支持基板3は、樹脂から構成されていてもよく、例えば、フィルム状の基板(フレキシブル基板、可撓性を有する基板)であってもよい。この場合、支持基板3の厚さは、例えば、30μm以上500μm以下である。支持基板3が樹脂の場合は、その厚さは、ロールツーロール方式の連続時の基板のヨレ、シワ、及び伸びの観点からは45μm以上が好ましく、可撓性の観点から125μm以下が好ましい。
 支持基板3が樹脂である場合、その材料としては、例えば、プラスチックフィルム等が挙げられる。支持基板3の材料は、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂等が挙げられる。
 支持基板3の材料は、上記樹脂の中でも、耐熱性が高く、線膨張率が低く、かつ、製造コストが低いことから、ポリエステル樹脂、又はポリオレフィン樹脂が好ましく、ポリエチレンレテフタレート、又はポリエチレンナフタレートが更に好ましい。また、これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 支持基板3の一方の主面3a上には、ガスバリア層、或いは、水分バリア層(バリア層)が配置されていてもよい。支持基板3の他方の主面3bは、発光面である。他方の主面3bには、光取出しフィルムが設けられていてもよい。
[陽極層]
 陽極層5は、支持基板3の一方の主面3a上に配置されている。陽極層5には、光透過性を示す電極層が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、及び銅等で形成されている薄膜が用いられ、これらの中でもITO、IZO、又は酸化スズで形成されている薄膜が好適に用いられる。陽極層5として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物の透明導電膜を用いてもよい。
 陽極層5の厚さは、光の透過性、電気伝導度等を考慮して決定することができる。陽極層5の厚さは、10nm以上10μm以下であり、好ましくは20nm以上1μm以下であり、更に好ましくは50nm以上500nm以下である。
 陽極層5の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及び塗布法等を挙げることができる。塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及び、インクジェットプリント法等を挙げることができる。
[正孔注入層]
 正孔注入層7は、陽極層5の主面(支持基板3に接する面とは反対側)上に配置されている。正孔注入層7は、陽極層5から発光層11への正孔注入効率を向上させる機能を有する機能層である。正孔注入層7を構成する材料の例としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、及び、酸化アルミニウム等の酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、及び、ポリエチレンジオキシチオフェン(PEDOT)のようなポリチオフェン誘導体等を挙げることができる。
 電荷輸送性を有する従来知られた有機材料は、これと電子受容性材料とを組み合わせることにより、正孔注入層7の材料として用いることができる。電子受容性材料としては、ヘテロポリ酸化合物又はアリールスルホン酸を好適に用いることができる。
 ヘテロポリ酸化合物とは、Keggin型あるいはDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。ヘテロポリ酸化合物の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸、及び、ケイタングステン酸等が挙げられる。
 アリールスルホン酸としては、ベンゼンスルホン酸、トシル酸、p-スチレンスルホン酸、2-ナフタレンスルホン酸、4-ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、p-ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5-ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7-ジブチル-2-ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3-ドデシル-2-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4-ヘキシル-1-ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2-オクチル-1-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7-へキシル-1-ナフタレンスルホン酸、6-ヘキシル-2-ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7-ジノニル-4-ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、及び、2,7-ジノニル-4,5-ナフタレンジスルホン酸、等が挙げられる。ヘテロポリ酸化合物と、アリールスルホン酸を混合して用いてもよい。
 正孔注入層7の厚さは、例えば1nm以上1μm以下であり、好ましくは2nm以上500nm以下であり、更に好ましくは5nm以上200nm以下である。
 正孔注入層7は、例えば、上記材料を含む塗布液を用いた塗布法によって形成される。
 塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、及び、インクジェットプリント法等を挙げることができる。これら塗布法のうちの1つを用いて、陽極層5上に塗布液を塗布することによって、正孔注入層7を形成することができる。
[正孔輸送層]
 正孔輸送層9は、正孔注入層7の主面(陽極層5に接する面とは反対側の面)上に配置されている。正孔輸送層9は、正孔注入層7又は陽極層5により近い正孔輸送層9から発光層11への正孔注入効率を向上させる機能を有する機能層である。正孔輸送層9の材料には、公知の正孔輸送材料が用いられ得る。正孔輸送層9の材料の例は、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン若しくはその誘導体、ピラゾリン若しくはその誘導体、アリールアミン若しくはその誘導体、スチルベン若しくはその誘導体、トリフェニルジアミン若しくはその誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 正孔輸送層9の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。正孔輸送層9の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。
 正孔輸送層9の形成方法としては、例えば、上記材料を含む塗布液を用いた塗布法等が挙げられる。塗布法としては、正孔注入層7で例示した方法が挙げられる。塗布液の溶媒としては、上記材料を溶解するものであればよく、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の含塩素溶媒、テトラヒドロフラン等のエーテル溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、及び、エチルセルソルブアセテート等のエステル溶媒を挙げることができる。
[発光層]
 発光層11は、光(可視光を含む)を発する機能層であり、正孔輸送層9の主面(正孔注入層7に接する面とは反対側の面)上に配置されている。発光層11は、通常、主として蛍光及び/又はりん光を発光する有機物、或いは該有機物とこれを補助する発光層用ドーパント材料を含む。発光層用ドーパント材料は、例えば、発光効率を向上させたり、発光波長を変化させたりするために加えられる。なお、有機物は、低分子化合物であってもよいし、高分子化合物であってもよい。発光層11を形成する発光材料としては、例えば、下記の色素材料、金属錯体材料、高分子材料等の主として蛍光及び/又はりん光を発光する有機物、発光層用ドーパント材料等を挙げることができる。
(色素材料)
 色素材料としては、例えば、シクロペンダミン及びその誘導体、テトラフェニルブタジエン及びその誘導体、トリフェニルアミン及びその誘導体、オキサジアゾール及びその誘導体、ピラゾロキノリン及びその誘導体、ジスチリルベンゼン及びその誘導体、ジスチリルアリーレン及びその誘導体、ピロール及びその誘導体、チオフェン化合物、ピリジン化合物、ペリノン及びその誘導体、ペリレン及びその誘導体、オリゴチオフェン及びその誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン及びその誘導体、クマリン及びその誘導体等を挙げることができる。
(金属錯体材料)
 金属錯体材料としては、例えば、Tb、Eu、Dy等の希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体を挙げることができる。金属錯体としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等を挙げることができる。
(高分子材料)
 高分子材料としては、例えば、ポリパラフェニレンビニレン及びその誘導体、ポリチオフェン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリシラン及びその誘導体、ポリアセチレン及びその誘導体、ポリフルオレン及びその誘導体、ポリビニルカルバゾール及びその誘導体、上記色素材料、又は金属錯体材料を高分子化した材料等を挙げることができる。
(発光層用ドーパント材料)
 発光層用ドーパント材料としては、例えば、ペリレン及びその誘導体、クマリン及びその誘導体、ルブレン及びその誘導体、キナクリドン及びその誘導体、スクアリウム及びその誘導体、ポルフィリン及びその誘導体、スチリル色素、テトラセン及びその誘導体、ピラゾロン及びその誘導体、デカシクレン及びその誘導体、フェノキサゾン及びその誘導体等を挙げることができる。
 発光層11の厚さは、通常約2nm~200nmである。発光層11は、例えば、上記のような発光材料を含む塗布液(例えばインク)を用いる塗布法により形成される。発光材料を含む塗布液の溶媒としては、発光材料を溶解するものであれば、限定されない。
[電子注入層]
 電子注入層13は、発光層11の主面(正孔輸送層9と接する面とは反対側の面)上に配置されている。電子注入層13は、陰極層15から発光層11への電子注入効率を向上させる機能を有する機能層である。電子注入層13の材料には、公知の電子注入材料が用いられ、例えば、アルカリ金属、アルカリ土類金属、アルカリ金属及びアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、及び炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。
 従来知られた電子輸送性の有機材料と、アルカリ金属の有機金属錯体を混合した材料も、電子注入材料として利用することができる。
 電子注入層13の厚さは、例えば、1~50nmである。
 電子注入層13の形成方法としては、真空蒸着法等が挙げられる。
[陰極層]
 陰極層15は、電子注入層13の主面(発光層11に接する面の反対側)上に配置されている。陰極層15の材料としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属及び周期表第13族金属等を用いることができる。陰極層15の材料としては、具体的には、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、又はグラファイト若しくはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等を挙げることができる。
 また、陰極層15としては、例えば、導電性金属酸化物及び導電性有機物等で形成されている透明導電性電極を用いることができる。導電性金属酸化物としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、ITO、及びIZOを挙げることができ、導電性有機物としてポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等を挙げることができる。なお、陰極層15は、2層以上を積層した積層体で構成されていてもよい。なお、電子注入層が陰極層15として用いられる場合もある。
 陰極層15の厚さは、電気伝導度、耐久性を考慮して設定される。陰極層15の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは50nm~500nmである。陰極層15の形成方法としては、例えば、真空蒸着法、塗布法等を挙げることができる。
[有機EL素子の製造方法]
 続いて、上記構成を有する有機EL素子1の製造方法について、図2を参照しながら説明する。
 支持基板3が可撓性を有し、長手方向に延在する基板である形態では、有機EL素子1の製造方法には、ロールツーロール方式が採用され得る。ロールツーロール方式で有機EL素子1を製造する場合、巻出しロールと巻取りロールとの間に張り渡された長尺の可撓性の支持基板3を連続的に搬送ロールで搬送しながら、各層を支持基板3側から順に形成する。また、本実施形態では、有機EL素子1の製造は、イエロー光環境下で行われる。図3に示されるように、イエロー光は、500nm以下の波長域を含まない(500nm以下の波長が遮断された)光である。
 有機EL素子1を製造する場合、図2に示されるように、支持基板3を洗浄する(基板洗浄工程S01)。支持基板3の洗浄方法としては、例えば、シャワー洗浄、ブラシ洗浄、ディップ洗浄等が挙げられる。次に、洗浄した支持基板3上に、陽極層5を形成する(陽極層形成工程S02)。陽極層5は、陽極層5の説明の際に例示した形成方法で形成し得る。続いて、陽極層5上に正孔注入層7及び正孔輸送層9をこの順番で形成する(正孔注入層形成工程S03、正孔輸送層形成工程S04)。正孔注入層7及び正孔輸送層9は、正孔注入層7及び正孔輸送層9の説明の際に例示した形成方法で形成し得る。
 次に、正孔輸送層9上に発光層11を形成する(発光層形成工程(第1形成工程)S05)。発光層11は、発光層11の説明の際に例示した形成方法で形成し得る。具体的には、発光層11を形成する発光材料を有機溶媒に溶解させた塗布液を用いて、塗布法によって発光層11を形成する。イエロー光の発光スペクトルの少なくとも1つのピークの波長は、上記塗布液の吸収スペクトルの分布内である。図4は、発光層の吸収スペクトル分布を示す図である。図4では、横軸が波長[nm]を示し、縦軸が吸収度を示している。吸収度は、log(Io/I)である。Ioは、入射光強度であり、Iは、透過光強度である。図4では、有機溶媒として、THF(tetrahydrofuran:テトラヒドロフラン)を20ppm又は2000ppm用いた塗布液の一例を示している。
 本実施形態では、発光層11の形成を開始(上記塗布液を塗布)してから陰極層15の形成を開始するまでの環境における発光層11に入射する光(入射光)の積算照度の上限値を設定して、積算照度が当該上限値以下となるように有機機能層(発光層11及び電子注入層13)を形成する。具体的には、積算照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機EL素子1の製品寿命が所定時間以上となるように、積算照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となる積算照度の上限値を設定する。積算照度は、入射光の累積の照度値(入射光の照度と照射時間との積)である。相対寿命は、積算照度が「0(ゼロ)」である場合の有機EL素子1の寿命を100%としたときの、寿命の相対値である。相対電流発光効率は、積算照度が「0(ゼロ)」である場合の有機EL素子1の電流発光効率を100%としたときの、電流発光効率の相対値である。
 有機EL素子1の製品寿命は、以下の式から算出される。
LT=(LT)×ΔLT×(ΔEff
 上記式において、LT[khrs]は、有機EL素子1の推定される製品寿命である。LTは、イエロー光環境下において積算照度が「0」である場合の製品寿命である。ΔLTは、イエロー光環境下において有機EL素子1に所定時間「t」だけイエロー光が入射した場合の積算照度における相対寿命である。ΔEffは、イエロー光環境下において有機EL素子1に所定時間「t」だけイエロー光が入射した場合の積算照度における相対電流発光効率である。
 図5は、本実施形態における積算照度と相対寿命との関係を示す図である。図5では、横軸が積算照度[lx・hrs]を示し、縦軸が相対寿命[%]を示している。図6は、本実施形態における積算照度と相対電流発光効率との関係を示す図である。図6では、横軸が積算照度[lx・hrs]を示し、縦軸が相対電流発光効率[%]を示している。図7は、本実施形態における積算照度と相対寿命及び相対電流発光効率とを示す表である。図5~図7では、7つのサンプルを一例に示している。図5及び図6では、図7において「1」で示される、積算照度が「0」の場合のプロットを省略している。図9に示されるように、積算照度が「0」の場合、有機EL素子1の製品寿命は、例えば、140[khrs]である。積算照度と相対寿命との関係、及び、積算照度と相対電流発光効率との関係は、例えば、実験、試験等により得られる。積算照度と相対寿命との関係、及び、積算照度と相対電流発光効率との関係は、有機機能層(本実施形態では発光層11及び電子注入層13)を形成する前の工程で取得され得る。
 図7に示されるように、積算照度が「0」の場合には、相対電流発光効率及び相対寿命は「100(%)」である。図5及び図7に示されるように、積算照度が高くなると、相対寿命が低下する傾向にある。図6及び図7に示されるように、積算照度が高くなると、相対電流発光効率が低下する傾向にある。例えば、積算照度が「100(lx・hrs)」の場合には、相対寿命が「45(%)」になり、相対電流発光効率が「84(%)」になる。相対電流発光効率が「84(%)」となると、有機EL素子1において定格輝度を出力するためには、電流値が1.19倍(1/0.84)となる。有機EL素子1に高電流を供給すると、電流値の2乗で、有機EL素子1の寿命が短くなる。
 図5~図7に示される相対電流発光効率及び相対寿命に基づいて、上記式から算出される製品寿命を図8及び図9に示す。図8は、積算照度と製品寿命との関係を示す図である。図8では、横軸が積算照度[lx・hrs]を示し、縦軸が製品寿命[khrs]を示している。図9は、積算照度と製品寿命との関係を示す表である。
 有機EL素子1が照明等に用いられる場合、40[khrs](40,000時間)以上の製品寿命であることが好ましい(図8において破線で示す)。図9に示されるように、本実施形態において、製品寿命が40[khrs]となるのは、積算照度が100[lx・hrs]以下の場合である。以上により、本実施形態では、有機EL素子1の製品寿命が40[khrs]以上となるように、積算照度の上限値を100[lx・hrs]と設定することが好ましい。つまり、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の積算照度を100[lx・hrs]以下とすることが好ましい。
 続いて、図2に示されるように、発光層11上に電子注入層13を形成する(電子注入層形成工程S06)。電子注入層13は、電子注入層13の説明の際に例示した形成方法で形成し得る。そして、電子注入層13上に陰極層15を形成する(陰極層形成工程(第2形成工程)S07)。陰極層15は、陰極層15の説明の際に例示した形成方法で形成し得る。その後、陰極層15上に封止部材(図示省略)を貼り合わせ、支持基板3を切断することにより有機EL素子1を個片化する。以上により、有機EL素子1が製造される。
 以上説明したように、本実施形態に係る有機EL素子1の製造方法では、有機EL素子1の製品寿命が所定時間以上となるように、積算照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となる積算照度の上限値を設定する。そして、有機EL素子1の製造方法では、発光層11に入射する光の積算照度が上限値以下となるように、有機機能層(発光層11、電子注入層13)を形成する。これにより、有機EL素子1の製造方法では、製品寿命が所定時間以上となる有機EL素子1を製造できる。したがって、有機EL素子1の製造方法では、信頼性の低下を抑制できる。
 具体的には、本実施形態に係る有機EL素子1の製造方法では、光の積算照度が100lx・hrs以下となるように、発光層11から陰極層15までを形成する。これにより、有機EL素子1の製造方法では、製品寿命が40[khrs]以上となる有機EL素子1を製造できる。
 本実施形態に係る有機EL素子1の製造方法では、発光層11に入斜し得る光の発光スペクトルの少なくとも1つのピークの波長は、有機溶媒に溶解した発光層11を形成する材料の吸収スペクトルの分布内である。このように、発光層11を形成する材料の吸収スペクトルの分布内に光の発光スペクトルのピーク波長が含まれる場合には、上記有機EL素子1の製造方法が特に有効である。
 本実施形態に係る有機EL素子1の製造方法では、発光層11に入射し得る光は、500nm以下の波長域を含まない。有機EL素子1の製造においては、短波長域に高感度な材料を使うことがある。そのため、500nmよりも短波長の光がカットされたいわゆるイエロー光を用いることにより、短波長域に高感度な材料が反応することを抑制することができるため、光が有機EL素子1の特性に影響を与えることを抑制できる。
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 例えば、上記実施形態では、陽極層5、正孔注入層7、正孔輸送層9、発光層11、電子注入層13及び陰極層15がこの順番で配置された有機EL素子1を例示した。しかし、有機EL素子1の構成はこれに限定されない。有機EL素子1は、以下の構成を有していてもよい。
(a)陽極層/発光層/陰極層
(b)陽極層/正孔注入層/発光層/陰極層
(c)陽極層/正孔注入層/発光層/電子注入層/陰極層
(d)陽極層/正孔注入層/発光層/電子輸送層/電子注入層/陰極層
(e)陽極層/正孔注入層/正孔輸送層/発光層/陰極層
(f)陽極層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極層
(g)陽極層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極層
(h)陽極層/発光層/電子注入層/陰極層
(i)陽極層/発光層/電子輸送層/電子注入層/陰極層
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。上記(f)は、上記実施形態の構成を示している。
 電子輸送層は、陰極層、電子注入層又は陰極により近い電子輸送層から発光層への電子注入効率を向上させる機能を有する機能層である。電子輸送層の厚さは、電気的な特性及び/又は成膜の容易性などを勘案して適宜設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 電子輸送層を構成する電子輸送材料には、公知の材料が用いられ得る。電子輸送層を構成する電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、または8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などが挙げられる。
 電子輸送層の形成方法としては、例えば、陽極層5で例示した方法が挙げられる。
 有機EL素子1は、一層の有機機能層を有していてもよいし、複層(2層以上)の有機機能層を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極層5と陰極層15との間に配置された積層構造を「構造単位A」とすると、2層の有機機能層を有する有機EL素子の構成として、例えば、下記(j)に示す層構成を挙げることができる。2個ある(構造単位A)の層構成は、互いに同じであっても、異なっていてもよい。電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデン等で形成されている薄膜を挙げることができる。
(j)陽極層/(構造単位A)/電荷発生層/(構造単位A)/陰極層
 また、「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層11を有する有機EL素子の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極層/(構造単位B)x/(構造単位A)/陰極層
 記号「x」は、2以上の整数を表し、「(構造単位B)x」は、(構造単位B)がx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 電荷発生層を設けずに、複数の有機機能層を直接的に積層させて有機EL素子を構成してもよい。
 上記実施形態では、500nm以下の波長域を含まないイエロー光の環境下において有機EL素子1を製造する形態を一例に説明した。しかし、イエロー光以外の光の環境下において有機デバイスを製造してもよい。この場合、光の発光スペクトルと発光層の吸収スペクトルとに基づいて、積算照度の上限値を設定すればよい。
 上記実施形態では、第1電極層が陽極層5であり、第2電極層が陰極層15である形態を一例に説明した。しかし、第1電極層が陰極層であり、第2電極層が陽極層であってもよい。
 上記実施形態では、発光層11を形成した後で電子注入層13を形成し、電子注入層13を形成した後で陰極層15を形成する形態を一例に説明した。しかし、発光層11(電子注入層13)を形成した後、陰極層15の形成を開始するまでに、有機機能層が形成された支持基板3が一時的に保管されてもよい。この場合、有機機能層が形成された支持基板3は、積算照度の上限値以下となる環境において保管されればよい。
 上記実施形態では、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の積算照度の上限値を設定して、当該上限値以下となるように有機機能層を形成する形態を一例に説明した。しかし、発光層を形成する前に形成される有機機能層を形成する工程においても、光の積算照度の上限値を設定して、当該上限値以下となるように有機機能層を形成してもよい。
 上記実施形態では、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の積算照度の上限値を設定する形態を一例に説明した。しかし、上記積算照度の上限値を設定する代わりに、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の積算吸収放射照度の上限値を設定してもよい。すなわち、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の積算吸収放射照度の上限値を設定して、積算吸収放射照度が当該上限値以下となるように有機機能層を形成してもよい。
 上記積算吸収放射照度は、発光層11を形成する材料の光の各波長に対する積算放射照度の積分値である。発光層11を形成する材料の光の各波長に対する積算放射照度は、発光層11を形成する材料の光の各波長に対する吸収率を、発光層11の形成を開始してから陰極層15の形成を開始するまでの環境における光の各波長に対する積算放射照度に重みとして掛け合わせたものである。なお、積算放射照度とは、光の累積の放射照度値(光の放射照度と照射時間との積)である。発光層11を形成する材料の光の各波長に対する積算放射照度を全波長で積分することにより、積算吸収放射照度を算出することができる。当該積算吸収放射照度の上限値は、当該積算吸収放射照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイスの製品寿命が所定時間以上となるように、当該積算吸収放射照度と相対寿命及び相対電流発光効率との関係から、製品寿命が所定時間以上となるように設定する。当該積算吸収放射照度と相対寿命及び相対電流発光効率との関係は、前述の積算照度と同様、実験、試験等により得られる。また、積算吸収放射照度と相対寿命との関係、及び、積算吸収放射照度と相対電流発光効率との関係は、有機機能層(本実施形態では発光層11及び電子注入層13)を形成する前の工程で取得され得る。
 上記実施形態では、有機デバイスとして、有機EL素子を一例に説明した。有機デバイスは、有機薄膜トランジスタ、有機フォトディテクタ、有機薄膜太陽電池等であってもよい。
 1…有機EL素子(有機デバイス)、3…支持基板、5…陽極層(第1電極層)、7…正孔注入層(有機機能層)、9…正孔輸送層(有機機能層)、11…発光層(有機機能層)、13…電子注入層(有機機能層)、15…陰極層(第2電極層)。

Claims (6)

  1.  基板上に配置された第1電極層上に、少なくとも発光層を含む有機機能層を形成する第1形成工程と、
     前記有機機能層上に第2電極層を形成する第2形成工程と、を含み、
     前記第1形成工程において前記発光層の形成を開始してから、前記第2形成工程において前記第2電極層の形成を開始するまでの環境における光の積算照度の上限値を設定して、前記積算照度が当該上限値以下となるように前記有機機能層を形成し、
     前記積算照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイスの製品寿命が所定時間以上となるように、前記積算照度と前記相対寿命及び前記相対電流発光効率との関係から、前記製品寿命が前記所定時間以上となる前記積算照度の前記上限値を設定する、有機デバイスの製造方法。
  2.  前記積算照度が0である場合の前記有機デバイスの製品寿命をLT、前記有機デバイスに所定時間tだけ前記光が入射した場合の前記積算照度における相対寿命をΔLT、前記有機デバイスに前記所定時間tだけ前記光が入射した場合の前記積算照度における相対電流発光効率をΔEffとした場合において、以下の式から前記有機デバイスの前記製品寿命LTを算出する、請求項1に記載の有機デバイスの製造方法。
    LT=(LT)×ΔLT×(ΔEff
  3.  前記積算照度の上限値を100lx・hrs以下とする、請求項1又は2に記載の有機デバイスの製造方法。
  4.  基板上に配置された第1電極層上に、少なくとも発光層を含む有機機能層を形成する第1形成工程と、
     前記有機機能層上に第2電極層を形成する第2形成工程と、を含み、
     前記第1形成工程において前記発光層の形成を開始してから、前記第2形成工程において前記第2電極層の形成を開始するまでの環境における光の積算吸収放射照度の上限値を設定して、前記積算吸収放射照度が当該上限値以下となるように前記有機機能層を形成し、
     前記積算吸収放射照度は、前記発光層を形成する材料の前記光の各波長に対する積算放射照度の積分値であり、
     前記積算吸収放射照度に起因する相対寿命及び相対電流発光効率に基づいて設定される有機デバイスの製品寿命が所定時間以上となるように、前記積算吸収放射照度と前記相対寿命及び前記相対電流発光効率との関係から、前記製品寿命が前記所定時間以上となる前記積算吸収放射照度の前記上限値を設定する、有機デバイスの製造方法。
  5.  前記光の発光スペクトルの少なくとも1つのピークの波長は、前記発光層を形成する材料の吸収スペクトルの分布内である、請求項1~4のいずれか一項に記載の有機デバイスの製造方法。
  6.  前記光は、500nm以下の波長域を含まない、請求項1~5のいずれか一項に記載の有機デバイスの製造方法。
PCT/JP2018/041319 2017-11-08 2018-11-07 有機デバイスの製造方法 WO2019093366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/762,027 US11145845B2 (en) 2017-11-08 2018-11-07 Organic device manufacturing method
CN201880072116.2A CN111316759A (zh) 2017-11-08 2018-11-07 有机器件的制造方法
EP18877092.9A EP3709772A4 (en) 2017-11-08 2018-11-07 ORGANIC DEVICE MANUFACTURING PROCESS
KR1020207015322A KR20200078600A (ko) 2017-11-08 2018-11-07 유기 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215643A JP6440802B1 (ja) 2017-11-08 2017-11-08 有機デバイスの製造方法
JP2017-215643 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093366A1 true WO2019093366A1 (ja) 2019-05-16

Family

ID=64668528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041319 WO2019093366A1 (ja) 2017-11-08 2018-11-07 有機デバイスの製造方法

Country Status (7)

Country Link
US (1) US11145845B2 (ja)
EP (1) EP3709772A4 (ja)
JP (1) JP6440802B1 (ja)
KR (1) KR20200078600A (ja)
CN (1) CN111316759A (ja)
TW (1) TW201924039A (ja)
WO (1) WO2019093366A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055333A (ja) * 2002-07-19 2004-02-19 Fuji Photo Film Co Ltd 発光素子用塗布液及び発光素子の製造方法
WO2010104184A1 (ja) 2009-03-13 2010-09-16 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011096509A1 (ja) * 2010-02-05 2011-08-11 住友化学株式会社 有機エレクトロルミネッセンス素子、その製造方法及び製造装置
JP2017022068A (ja) * 2015-07-15 2017-01-26 セイコーエプソン株式会社 有機el素子の製造方法、有機el素子の製造装置、電気光学装置および電子機器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138364B2 (en) * 2001-08-27 2012-03-20 Northwestern University Transparent conducting oxide thin films and related devices
JP4239560B2 (ja) * 2002-08-02 2009-03-18 セイコーエプソン株式会社 組成物とこれを用いた有機導電性膜の製造方法
JP4250576B2 (ja) * 2004-08-24 2009-04-08 株式会社東芝 半導体発光素子
KR20070093076A (ko) * 2004-12-28 2007-09-17 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자
WO2008108430A1 (ja) * 2007-03-07 2008-09-12 Mitsubishi Chemical Corporation 有機デバイス用組成物、高分子膜および有機電界発光素子
JP5531843B2 (ja) * 2009-07-31 2014-06-25 大日本印刷株式会社 正孔注入輸送層用デバイス材料、正孔注入輸送層形成用インク、正孔注入輸送層を有するデバイス、及びその製造方法
JP5779051B2 (ja) * 2011-09-08 2015-09-16 株式会社Joled 表示装置およびその製造方法、並びに電子機器
WO2014083938A1 (ja) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 透明電極の製造方法および有機el素子
WO2014178248A1 (ja) * 2013-04-30 2014-11-06 シャープ株式会社 窒化物半導体発光素子
KR101692182B1 (ko) * 2013-06-18 2017-01-02 코니카 미놀타 가부시키가이샤 유기 발광 소자
DE102014106952A1 (de) * 2014-05-16 2015-11-19 Osram Oled Gmbh Optoelektronisches Bauelement, Verfahren zum Herstellen eines optoelektronischen Bauelements
CN106576411B (zh) * 2014-08-04 2018-09-21 株式会社日本有机雷特显示器 有机发光器件的制造方法、其制造系统及其制造装置
WO2016039129A1 (ja) * 2014-09-11 2016-03-17 ヘレウス株式会社 硬化した光硬化性樹脂組成物の製造方法及び装置
EP3313150A4 (en) * 2015-06-22 2019-03-06 Sumitomo Chemical Company Limited METHOD FOR PRODUCING AN ORGANIC ELECTRONIC ELEMENT AND METHOD FOR DRYING A SUBSTRATE
JPWO2016208597A1 (ja) * 2015-06-22 2018-04-05 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JP7043733B2 (ja) * 2017-03-13 2022-03-30 セイコーエプソン株式会社 発光素子、発光装置、光源、認証装置および電子機器
JP7039414B2 (ja) * 2018-07-26 2022-03-22 株式会社東芝 放射線検出素子の作製方法および放射線検出素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055333A (ja) * 2002-07-19 2004-02-19 Fuji Photo Film Co Ltd 発光素子用塗布液及び発光素子の製造方法
WO2010104184A1 (ja) 2009-03-13 2010-09-16 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011096509A1 (ja) * 2010-02-05 2011-08-11 住友化学株式会社 有機エレクトロルミネッセンス素子、その製造方法及び製造装置
JP2017022068A (ja) * 2015-07-15 2017-01-26 セイコーエプソン株式会社 有機el素子の製造方法、有機el素子の製造装置、電気光学装置および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709772A4

Also Published As

Publication number Publication date
KR20200078600A (ko) 2020-07-01
US11145845B2 (en) 2021-10-12
JP6440802B1 (ja) 2018-12-19
JP2019087451A (ja) 2019-06-06
TW201924039A (zh) 2019-06-16
CN111316759A (zh) 2020-06-19
EP3709772A4 (en) 2021-08-04
EP3709772A1 (en) 2020-09-16
US20200381673A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US20180175298A1 (en) Method for manufacturing organic electronic element, and method for forming organic thin film
US10333067B2 (en) Method for manufacturing organic electronic element, and method for forming electron hole injection layer
JP2010040512A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
KR20170008683A (ko) 유기 el 소자
US20180198095A1 (en) Method for manufacturing organic electronic element, and method for drying substrate
JP6661272B2 (ja) 有機el素子
JP6440802B1 (ja) 有機デバイスの製造方法
US9923164B2 (en) Method for manufacturing transparent electrode, transparent electrode, and organic electroluminescence device provided with the same
WO2019093335A1 (ja) 色温度の調整方法及び有機el素子の製造方法
JP6383772B2 (ja) 有機el素子
US11527743B2 (en) Organic electronic device manufacturing method
JP2018117035A (ja) 有機エレクトロルミネッセンス素子
JP6945983B2 (ja) 有機elデバイス、表示素子及び有機elデバイスの製造方法
JP6781568B2 (ja) 有機電子デバイスの製造方法
WO2018146950A1 (ja) 有機電子デバイスの製造方法
WO2019088262A1 (ja) 有機エレクトロルミネッセンス素子
JP2020116526A (ja) 薄膜の製造方法及び電子デバイスの製造方法
CN111952465A (zh) 有机el元件及其制造方法、有机el显示面板
JP2007242938A (ja) 有機el素子
JP2017174598A (ja) 有機el素子
JP2016081803A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015322

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018877092

Country of ref document: EP

Effective date: 20200608