WO2014178248A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2014178248A1
WO2014178248A1 PCT/JP2014/059122 JP2014059122W WO2014178248A1 WO 2014178248 A1 WO2014178248 A1 WO 2014178248A1 JP 2014059122 W JP2014059122 W JP 2014059122W WO 2014178248 A1 WO2014178248 A1 WO 2014178248A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
type
light emitting
emitting device
Prior art date
Application number
PCT/JP2014/059122
Other languages
English (en)
French (fr)
Inventor
渡辺 昌規
聡 駒田
知也 井上
昴佑 川畑
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480004398.4A priority Critical patent/CN104919604B/zh
Priority to JP2015514786A priority patent/JPWO2014178248A1/ja
Priority to US14/653,703 priority patent/US9324908B2/en
Publication of WO2014178248A1 publication Critical patent/WO2014178248A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor light emitting device.
  • the group III-V compound semiconductor material containing nitrogen (hereinafter referred to as “nitride semiconductor material”) has a band gap corresponding to the energy of light having a wavelength in the infrared region to the ultraviolet region. Therefore, the nitride semiconductor material is useful as a material for a light emitting element that emits light having a wavelength in the infrared region to the ultraviolet region, a material for a light receiving element that receives light having a wavelength in that region, and the like.
  • nitride semiconductor materials have strong interatomic bonding strength, high dielectric breakdown voltage, and high saturation electron velocity. Therefore, the nitride semiconductor material is also useful as a material for electronic devices such as high-frequency transistors with high temperature resistance and high output. Furthermore, the nitride semiconductor material has attracted attention as an easy-to-handle material that hardly harms the environment.
  • a quantum well structure is generally adopted for the light emitting layer.
  • a voltage is applied to the nitride semiconductor light emitting device that employs a quantum well structure in the light emitting layer, light is generated by recombination of electrons and holes in the quantum well layer of the light emitting layer.
  • the light-emitting layer having a quantum well structure may be a single quantum well (SQW) structure, but a multiple quantum well in which quantum well layers and barrier layers are alternately stacked (Multiple Quantum Well; MQW) structure is often used.
  • InGaN is used as the quantum well layer of the light emitting layer
  • GaN is used as the barrier layer.
  • a blue LED (Light Emitting Device) having an emission peak wavelength of about 450 nm can be produced, and a white LED can also be produced in combination with a yellow phosphor.
  • AlGaN is used as the barrier layer
  • the band gap energy difference between the barrier layer and the quantum well layer is increased, which may increase the light emission efficiency.
  • a higher quality crystal is obtained with AlGaN than with GaN. It also has the problem of being difficult.
  • GaN or InGaN is generally used as the n-type nitride semiconductor layer.
  • Patent Document 1 discloses an LED element having an n-side multilayer film layer having a nitride semiconductor layer containing In under an active layer. According to the LED element described in Patent Document 1, the n-side multilayer film layer under the active layer performs some action and improves the output of the light-emitting element. The reason is that the crystallinity of the active layer It is presumed that this is due to the improvement.
  • Patent Document 2 discloses a spacer layer and an active region on a smooth layer doped with Si in a range of 2 ⁇ 10 17 cm ⁇ 3 to 2 ⁇ 10 19 cm ⁇ 3. Are stacked in this order, and a III-nitride LED is disclosed in which the smoothing layer is doped much more heavily than the spacer layer.
  • the smooth layer has a function of recovering flat two-dimensional growth of the low temperature group III nitride semiconductor layer, and the efficiency and reliability of the group III nitride LED are improved. It is said that both can be enhanced.
  • Patent Document 3 discloses a buffer layer made of a Si-doped GaN semiconductor and a third AlGaN made of a Si-doped Al 0.18 Ga 0.82 N semiconductor on a support substrate made of a GaN substrate.
  • a light-emitting diode that has a semiconductor layer 9 and a light-emitting region including well layers 35a to 35c and barrier layers 37a to 37d made of InAlGaN semiconductor and emits light having a peak wavelength of 359 nanometers is disclosed.
  • Patent Document 4 discloses a high carrier concentration n + made of silicon-doped GaN having a film thickness of about 2.0 ⁇ m and an electron concentration of 2 ⁇ 10 18 / cm 3 on an AlN buffer layer.
  • a light emitting diode having an emission peak wavelength of 380 nm is disclosed in which a contact layer made of magnesium-doped GaN having a magnesium concentration of 2 ⁇ 10 20 / cm 3 and ⁇ 10 17 / cm 3 is laminated.
  • Patent Document 5 Japanese Unexamined 10-173231
  • Patent Document 5 the carrier concentration of 1 ⁇ 10 of 19 / cm 3 Si-doped n + GaN layer, Si-doped carrier concentration of 1 ⁇ 10 18 / cm 3
  • Patent Document 5 A light emitting device having a structure in which an nGaN layer and an n-type In 0.15 Ga 0.85 N layer are grown in this order is disclosed.
  • a uniform current flows through the entire active layer, and uniform light emission is obtained.
  • JP 2004-343147 A Japanese Patent Laid-Open No. 2002-299685 JP 2005-203520 A JP-A-9-153645 Japanese Patent Laid-Open No. 10-173231
  • An object of the present invention is to provide a nitride semiconductor light emitting device capable of increasing the luminous efficiency even when the operating current density is high.
  • the present invention includes a first n-type nitride semiconductor layer, a second n-type nitride semiconductor layer, an n-type electron injection layer, a light emitting layer, and a p-type nitride semiconductor layer in this order,
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer is 0.53 times or less the average n-type dopant concentration of the first n-type nitride semiconductor layer, and the average n-type of the n-type electron injection layer
  • the dopant concentration is 1.5 times or more the average n-type dopant concentration of the second n-type nitride semiconductor layer. This is because, as a result of intensive studies by the present inventors, it has been found that the luminous efficiency of the nitride semiconductor light emitting device can be increased even when the operating current density is high when the above configuration is adopted. It is.
  • nitride semiconductor light emitting device capable of increasing the light emission efficiency even when the operating current density is high.
  • FIG. 2 is a schematic plan view when the nitride semiconductor light emitting device of the embodiment is viewed from above. Band gap energies of the first n-type nitride semiconductor layer, the second n-type nitride semiconductor layer, the n-type electron injection layer, the light emitting layer, and the p-type nitride semiconductor layer of the nitride semiconductor light emitting device of the embodiment It is a figure which shows an example of n-type dopant density
  • FIG. 3 is a schematic cross-sectional view of the nitride semiconductor light emitting device of Example 1.
  • FIG. 6 is a schematic cross-sectional view of a nitride semiconductor light-emitting element according to Example 2.
  • FIG. 6 is a schematic cross-sectional view of a nitride semiconductor light emitting device of Example 3.
  • FIG. 6 is a schematic cross-sectional view of a nitride semiconductor light emitting device of Example 4.
  • FIG. 6 is a schematic cross-sectional view of a nitride semiconductor light emitting device of Example 5.
  • barrier layer means a layer sandwiched between quantum well layers.
  • first barrier layer or “last barrier layer”, and the description is different from a layer sandwiched between quantum well layers.
  • dopant concentration and the term “carrier concentration”, which is the concentration of electrons and holes generated by doping with an n-type dopant or a p-type dopant, are used. The relationship will be described later.
  • the “carrier gas” means a gas other than the group III source gas, the group V source gas, and the dopant source gas.
  • the atoms constituting the carrier gas are not taken into the nitride semiconductor layer or the like.
  • undoped means that doping is not intentionally performed, and even an undoped layer may contain a dopant due to diffusion of the dopant from an adjacent layer.
  • the “n-type nitride semiconductor layer” may include a low carrier concentration n-type layer or an undoped layer with a thickness that does not impede the flow of electrons in practice. “Not practically hindered” means that the operating voltage of the nitride semiconductor light emitting device is at a practical level.
  • the “p-side nitride semiconductor layer” may also include a p-type layer or an undoped layer having a low carrier concentration with a thickness that does not impede the flow of holes in practice. “Not practically hindered” means that the operating voltage of the nitride semiconductor light emitting device is at a practical level.
  • AlGaN means that Al, Ga and N are included as atoms, and the composition is not particularly limited. The same applies to InGaN, AlGaInN, and AlON.
  • nitride semiconductor ideally has an atomic ratio of 1: 1 between nitrogen (N) and other elements (Al, Ga, In), but includes a dopant. In some cases, the substance actually formed is not necessarily ideal, and the atomic ratio may deviate from 1: 1. Further, in this specification, even if it is described as Al x Ga 1-x N, the atomic ratio of nitrogen (N) and other elements (Al, Ga) is only 1: 1. Is not intended. The deviation from the atomic ratio of 1: 1 is ignored for the purpose of description in the present specification.
  • FIG. 1 is a schematic cross-sectional view of a nitride semiconductor light-emitting device according to an embodiment which is an example of the nitride semiconductor light-emitting device of the present invention.
  • FIG. 2 illustrates the nitride semiconductor light-emitting device according to the embodiment from above. A schematic plan view when viewed is shown.
  • the nitride semiconductor light-emitting device of the embodiment includes a substrate 101, a buffer layer 102, a nitride semiconductor base layer 106, a first n-type nitride semiconductor layer 108, and a first layer provided on the substrate 101 sequentially.
  • n-type nitride semiconductor layer 110 n-type electron injection layer 112, light emitting layer 114, p-type nitride semiconductor layer 116, and p-type nitride semiconductor layer 118.
  • the transparent electrode layer 122 is provided on the p-type nitride semiconductor layer 118, and the p electrode 124 is provided on the transparent electrode layer 122.
  • An n electrode 126 is provided on the first n-type nitride semiconductor layer 108. Further, the surface of the nitride semiconductor light emitting element is covered with a transparent insulating protective film 128 so that a part of the surface of the n electrode 126 and a part of the surface of the p electrode 124 are exposed.
  • the substrate 101 for example, a substrate such as sapphire, GaN, SiC, Si, or ZnO can be used.
  • the thickness of the substrate 101 is not particularly limited, but the thickness of the substrate 101 during the growth of the nitride semiconductor layer is preferably 900 ⁇ m or more and 1200 ⁇ m, and the thickness of the substrate 101 when using the nitride semiconductor light emitting device is 50 ⁇ m.
  • the thickness is preferably 300 ⁇ m or less.
  • a concavo-convex shape having convex portions 101a and concave portions 101b may be formed on the upper surface of the substrate 101, and at least a part of the upper surface may be flat.
  • the shape of the convex portion 101a and the concave portion 101b on the upper surface of the substrate 101 is not particularly limited, but the convex portion 101a is preferably a substantially circular shape arranged at the apex of a substantially equilateral triangle in plan view, and adjacent convex portions.
  • the interval between the vertices of 101a is more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the cross-sectional shape of the convex part 101a may be trapezoidal, and in this case, it is more preferable that the apex part of the trapezoid is rounded.
  • the substrate 101 is removed after the growth of the nitride semiconductor layer on the substrate 101, so that the nitride semiconductor light emitting device of the present invention is a nitride semiconductor light emitting device that does not have the substrate 101. Good.
  • buffer layer for example, an AlON layer (the ratio of O to N is about several atomic%) or Al s0 Gat0 O u0 N 1-u0 (0 ⁇ s0 ⁇ 1, 0 ⁇ t0 ⁇ 1, 0 ⁇ u0 ⁇ ).
  • a nitride semiconductor layer represented by a formula of 1, s0 + t0 ⁇ 0) can be used.
  • the AlON layer constituting the buffer layer 102 it is preferable that a small part of N (0.5 atomic% or more and 2 atomic% or less) is replaced with oxygen.
  • the buffer layer 102 since the buffer layer 102 is formed so as to extend in the normal direction of the growth surface of the substrate 101, the buffer layer 102 made of an aggregate of columnar crystals with uniform crystal grains can be obtained.
  • the thickness of the buffer layer 102 is not particularly limited, but is preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 50 nm or less.
  • the buffer layer 102 In order to improve the half width of the X-ray rocking curve of the nitride semiconductor underlayer 106, it is preferable to use an AlON layer formed by a known sputtering method as the buffer layer 102.
  • buffer layer 102 for example, a GaN layer grown by MOCVD at a low temperature of about 500 ° C. may be used.
  • nitride semiconductor underlayer 106 for example, a group III nitride represented by the formula: Al x0 Ga y0 In z0 N (0 ⁇ x0 ⁇ 1, 0 ⁇ y0 ⁇ 1, 0 ⁇ z0 ⁇ 1, x0 + y0 + z0 ⁇ 0) A layer made of a semiconductor can be used.
  • nitride semiconductor layers including the nitride semiconductor underlayer 106 can be formed by, for example, MOCVD (Metal Organic Chemical Vapor Deposition) method, but is not limited to this, for example, MBE (Molecular Beam Epitaxy) It can also be formed by a method or a VPE (Vapor Phase Epitaxy) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • VPE Vapor Phase Epitaxy
  • nitride semiconductor underlayer 106 for example, a nitride semiconductor layer containing Ga as a group III element is used so as not to inherit crystal defects such as dislocations in the buffer layer 102 made of an aggregate of columnar crystals. It is preferable to use it.
  • the nitride semiconductor underlayer 106 may be an undoped layer, and for example, an n-type dopant may be doped in the range of 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 20 / cm 3 .
  • the n-type dopant for example, at least one selected from the group consisting of Si, Ge and Sn can be used, and among these, Si is preferably used.
  • Si is used as the n-type dopant, it is preferable to use silane or disilane as the n-type doping gas. The same applies to each n-type doped nitride semiconductor layer described later.
  • the temperature of the substrate 101 during the growth of the nitride semiconductor underlayer 106 is preferably 800 ° C. or higher and 1250 ° C. or lower, and more preferably 900 ° C. or higher and 1150 ° C. or lower.
  • the temperature of the substrate 101 during the growth of the nitride semiconductor underlayer 106 is 800 ° C. or more and 1250 ° C. or less, particularly when it is 900 ° C. or more and 1150 ° C. or less, the nitride semiconductor having excellent crystallinity with few crystal defects
  • the underlayer 106 can be grown.
  • the thickness of the nitride semiconductor underlayer 106 is preferably 1 ⁇ m or more and 8 ⁇ m or less, and more preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the first n-type nitride semiconductor layer 108 is represented by, for example, an expression of Al x1 Ga y1 In z1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ z1 ⁇ 1, x1 + y1 + z1 ⁇ 0).
  • a layer made of a group III nitride semiconductor may be a layer doped with an n-type dopant.
  • Al x1 Ga 1-x1 N (0 ⁇ x1 ⁇ 1, preferably 0 ⁇ x1 ⁇ 0.5, More preferably, a layer in which an n-type dopant is doped in the layer of 0 ⁇ x1 ⁇ 0.1) is used.
  • the n-type dopant concentration of the first n-type nitride semiconductor layer 108 is 2 ⁇ 10 18 / cm 3 or more. It is preferable. In addition, even when the operating current density is high, the n-type dopant concentration of the first n-type nitride semiconductor layer 108 is 5 ⁇ 10 19 / cm 3 or less from the viewpoint of increasing the light emission efficiency of the nitride semiconductor light-emitting device. It is preferable that
  • the resistance of the first n-type nitride semiconductor layer 108 decreases as the thickness of the first n-type nitride semiconductor layer 108 is as large as possible.
  • the thickness of the first n-type nitride semiconductor layer 108 is increased, the manufacturing cost of the nitride semiconductor light emitting device is increased.
  • the thickness of the first n-type nitride semiconductor layer 108 is preferably 1 ⁇ m or more and 10 ⁇ m or less, but is not limited thereto.
  • the first n-type nitride semiconductor layer 108 may be a single layer or a plurality of two or more layers that differ in composition, doping concentration, and both.
  • each layer may have the same composition, or at least one layer may have a different composition.
  • each layer may have the same thickness, or at least one layer may have a different thickness.
  • an n-type nitride semiconductor layer which is an n-type GaN layer, is first grown, removed from the growth furnace, and then the n-type, which is the same n-type GaN layer, in another furnace.
  • the first n-type nitride semiconductor layer 108 may be formed by two growth processes of growing the nitride semiconductor layer again.
  • the configuration of the first n-type nitride semiconductor layer 108 is not particularly limited.
  • the first n-type nitride semiconductor layer 108 also serves as an n-electrode contact layer, which will be described later, at least a portion serving as the contact layer of the n-electrode 126 has a high doping concentration of 1 ⁇ 10 18 / cm 3 or more. Preferably there is.
  • the second n-type nitride semiconductor layer 110 is represented by, for example, an expression of Al x2 Ga y2 In z2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z2 ⁇ 1, x2 + y2 + z2 ⁇ 0).
  • a layer made of a group III nitride semiconductor can be a layer doped with an n-type dopant.
  • Al x2 Ga 1-x2 N (0 ⁇ x2 ⁇ 1, preferably 0 ⁇ x2 ⁇ 0.3, More preferably 0 ⁇ x2 ⁇ 0.1) layer or In z2 Ga 1 -z2 N (0 ⁇ z2 ⁇ 1, preferably 0 ⁇ z2 ⁇ 0.3, more preferably 0 ⁇ z2 ⁇ 0.1) layer It is preferable to use a layer doped with an n-type dopant.
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer 110 is 0.53 times or less, preferably 0.5 times or less than the average n-type dopant concentration of the first n-type nitride semiconductor layer 108. It is said.
  • the thickness of the second n-type nitride semiconductor layer 110 is not particularly limited, but is preferably 50 nm or more and 500 nm or less.
  • the second n-type nitride semiconductor layer 110 may be a single layer or a plurality of two or more layers that differ in composition, doping concentration, and both.
  • each layer may have the same composition, or at least one layer may have a different composition.
  • each layer may have the same thickness, or at least one layer may have a different thickness.
  • an undoped nitride semiconductor layer manufactured in the same manner as the second n-type nitride semiconductor layer 110 except that the n-type dopant is not doped is used. Also good.
  • the n-type electron injection layer 112 is, for example, a group III nitride semiconductor represented by the formula of Al x3 Ga y3 In z3 N (0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1, 0 ⁇ z3 ⁇ 1, x3 + y3 + z3 ⁇ 0).
  • a layer doped with an n-type dopant can be used for the layer made of, and preferably has a larger band gap than the second n-type nitride semiconductor layer 110.
  • the n-type electron injection layer 112 has a band gap greater than that of the second n-type nitride semiconductor layer 110.
  • the Al composition ratio x3 is larger than x2 in the range of 0.01 to 0.1. It is preferable to make it larger than x2 in the range of 0.05 or less.
  • the n-type dopant concentration of the n-type electron injection layer 112 is 1.5 times or more, preferably 2 times or more of the n-type dopant concentration of the second n-type nitride semiconductor layer 110.
  • the average n-type dopant concentration of the n-type electron injection layer 112 is equal to the average n-type dopant concentration of the second n-type nitride semiconductor layer 110.
  • the dopant concentration is 1.5 times or more, preferably 2 times or more.
  • the n-type electron injection layer 112 may be a single layer or a plurality of layers having different compositions and / or dopant concentrations.
  • the n-type electron injection layer 112 having a thickness of about 5 nm adjacent to the light emitting layer 114 may be a layer that is not intentionally doped in consideration of dopant diffusion during manufacturing.
  • the thickness of the n-type electron injection layer 112 is preferably 10 nm or more and 100 nm or less.
  • the thickness of the n-type electron injection layer 112 is 10 nm or more, the function of the n-type electron injection layer 112 as an n-type electron injection layer tends to be improved.
  • the thickness is 100 nm or less, a depletion layer is formed.
  • the second n-type nitride semiconductor layer 110 is difficult to spread, and the electrostatic withstand voltage may be lowered.
  • n-type electron injection layer 112 functions as an n-type cladding layer that sandwiches the light emitting layer 114.
  • [Light emitting layer] 3 shows the first n-type nitride semiconductor layer 108, the second n-type nitride semiconductor layer 110, the n-type electron injection layer 112, the light-emitting layer 114, and the p-type nitridation of the nitride semiconductor light-emitting device according to the embodiment.
  • An example of the band gap energy and n-type dopant concentration of the physical semiconductor layer 116 is shown.
  • the vertical axis in FIG. 3 indicates the thickness in the stacking direction, and the upper direction means the side closer to the p-type nitride semiconductor layer 116. Also, the horizontal axis of FIG.
  • FIG. 3 shows the magnitude of the band gap energy and the height of the n-type dopant concentration
  • the right line in FIG. 3 shows the magnitude of the band gap energy
  • the left line in FIG. The height of the n-type dopant concentration is shown, and the right direction of the horizontal axis in FIG. 3 means that the band gap energy is large and the n-type dopant concentration is high.
  • the light emitting layer 114 includes a quantum well layer 14W (14W1 to 14W8) and a barrier layer 14B (14B0, 14B1 to 14B7, 14BZ).
  • the quantum well layers 14W and the barrier layers 14B (14B0, 14B1 to 14B7, 14BZ) are alternately stacked, and each quantum well layer 14W is interposed between the barrier layers 14B (14B0, 14B1 to 14B7, 14BZ), respectively.
  • the barrier layers 14B (14B1 to 14B5) are sandwiched between the quantum well layers 14W (14W1 to 14W8), respectively.
  • the first barrier layer 14BZ is provided immediately above the n-type electron injection layer 112.
  • the last barrier layer 14B0 is provided immediately above the first quantum well layer 14W1 located closest to the p-type nitride semiconductor layer 116 side.
  • a number is assigned from the p-type nitride semiconductor layer 116 toward the n-type electron injection layer 112.
  • One or more semiconductor layers different from the barrier layer 14B (14B0, 14B1 to 14B7, 14BZ) and the quantum well layer 14W are included between the barrier layer 14B (14B0, 14B1 to 14B7, 14BZ) and the quantum well layer 14W. It may be. Further, the length of one cycle of the light emitting layer 114 (the sum of the thickness of the barrier layer 14B (14B0, 14B1 to 14B7, 14BZ) and the thickness of the quantum well layer 14W) can be set to, for example, 5 nm to 100 nm. .
  • the quantum well layer 14W for example, a nitride semiconductor layer represented by an expression of Al c1 Ga d1 In (1-c1-d1) N (0 ⁇ c1 ⁇ 1, 0 ⁇ d1 ⁇ 1) is used. be able to.
  • the quantum well layer 14W is preferably In e1 Ga (1-e1) N (0 ⁇ e1 ⁇ 1) not containing Al.
  • the band gap energy of the quantum well layer 14W can be adjusted. For example, when emitting ultraviolet light having a wavelength of 375 nm or less, it is necessary to increase the band gap energy of the light emitting layer 114, and thus each quantum well layer 14W contains Al.
  • some of the quantum well layers 14W located on the substrate 101 side may contain an n-type dopant. As a result, the driving voltage of the nitride semiconductor light emitting device tends to decrease.
  • each quantum well layer 14W is not particularly limited, but is preferably the same as each other.
  • the quantum levels of the quantum well layers 14W are also the same. Therefore, the quantum well layers are formed by recombination of electrons and holes in the quantum well layers 14W. Light of the same wavelength is generated at 14W. This is preferable because the emission spectrum width of the nitride semiconductor light emitting device is narrowed.
  • the composition and / or thickness of each quantum well layer 14W is intentionally varied, the emission spectrum width of the nitride semiconductor light emitting device can be broadened.
  • each quantum well layer 14W is preferably 1 nm or more and 7 nm or less.
  • the thickness of each quantum well layer 14W is in the range of 1 nm or more and 7 nm or less, the light emission efficiency of the nitride semiconductor light emitting device during driving at a large current density can be further improved.
  • each barrier layer 14B (14B0, 14B1 to 14B7, 14BZ), for example, a nitride semiconductor material having a larger band gap energy than the nitride semiconductor material constituting each quantum well layer 14W can be used.
  • a nitride semiconductor layer represented by the formula of Al f Ga g In (1-fg) N (0 ⁇ f ⁇ 1, 0 ⁇ g ⁇ 1), and Al h Ga (1 containing Al -h)
  • a nitride semiconductor layer represented by the formula of Al f Ga g In (1-fg) N (0 ⁇ f ⁇ 1, 0 ⁇ g ⁇ 1)
  • Al h Ga (1 containing Al -h) It is more preferable to use a nitride semiconductor layer represented by a formula of
  • each barrier layer 14B (14B1 to 14B7) is not particularly limited, but is preferably 1 nm or more and 10 nm or less, and more preferably 3 nm or more and 7 nm or less.
  • the operating voltage decreases as the thickness of each barrier layer 14B (14B1 to 14B7) decreases. However, if the thickness of each barrier layer 14B (14B1 to 14B7) is extremely reduced, the nitride during operation at a large current density The light emission efficiency of the semiconductor light emitting element tends to decrease.
  • the thickness of the first barrier layer 14BZ is not particularly limited, and is preferably 1 nm or more and 10 nm or less.
  • the thickness of the last barrier layer 14B0 is not particularly limited, but is preferably 1 nm or more and 40 nm or less.
  • the barrier layer 14B (14B1 to 14B7) and the first barrier layer 14BZ are undoped, but the n-type dopant concentration is not particularly limited and is preferably set as necessary.
  • the barrier layer 14B (14B1 to 14B7) located on the substrate 101 side is doped with an n-type dopant, and the barrier located on the p-type nitride semiconductor layer 116 side.
  • the layer 14B (14B1 to 14B7) is preferably doped with an n-type dopant having a lower concentration than the barrier layer 14B (14B1 to 14B7) located on the substrate 101 side, or is not doped with the n-type dopant.
  • Each of the barrier layers 14B (14B1 to 14B7), the first barrier layer 14BZ, and the last barrier layer 14B0 is p-type due to thermal diffusion during the growth of the p-type nitride semiconductor layer 116 and the p-type nitride semiconductor layer 118.
  • the dopant may be doped.
  • the number of quantum well layers 14W is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 3 or more and 15 or less, and still more preferably 4 or more and 12 or less. .
  • the p-type nitride semiconductor layers 116 and 118 are independently formed on, for example, an Al x4 Ga y4 In z4 N (0 ⁇ x4 ⁇ 1, 0 ⁇ y4 ⁇ 1, 0 ⁇ z4 ⁇ 1, x4 + y4 + z4 ⁇ 0) layer. It is preferable to use a layer doped with a type dopant.
  • the p-type nitride semiconductor layer 116 Al x4 Ga (1-x4) N (0 ⁇ x4 ⁇ 0.4, preferably As the 0.1 ⁇ x4 ⁇ 0.3) layer and the p-type nitride semiconductor layer 118, a layer having a smaller band gap is preferably used.
  • the carrier concentration in the p-type nitride semiconductor layers 116 and 118 is preferably 1 ⁇ 10 17 / cm 3 or more. Since the activity rate of the p-type dopant is about 0.01, the p-type dopant concentration (different from the carrier concentration) in the p-type nitride semiconductor layers 116 and 118 is 1 ⁇ 10 19 / cm 3 or more. Is preferred.
  • the total thickness of the p-type nitride semiconductor layers 116 and 118 is not particularly limited, but is preferably 50 nm or more and 300 nm or less. By reducing the total thickness of the p-type nitride semiconductor layers 116 and 118, the heating time during the growth of the p-type nitride semiconductor layers 116 and 118 can be shortened. Thereby, diffusion of the p-type dopant into the light emitting layer 114 in the p-type nitride semiconductor layers 116 and 118 can be suppressed.
  • the p-type nitride semiconductor layer 116 functions as a p-type cladding layer that sandwiches the light emitting layer 114.
  • the transparent electrode layer 122, the p electrode 124, and the n electrode 126 are electrodes for supplying driving power to the nitride semiconductor light emitting device. As shown in FIG. 2, the p-electrode 124 and the n-electrode 126 are composed only of the pad electrode portion. However, for example, an elongated protrusion (branch electrode) for current diffusion may be connected.
  • the transparent electrode layer 122 is preferably made of a transparent conductive film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), and preferably has a thickness of 20 nm to 200 nm.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the p-electrode 124 and the n-electrode 126 are preferably configured by, for example, a nickel layer, an aluminum layer, a titanium layer, and a gold layer laminated in this order. There may be. Assuming that wire bonding is performed on the p electrode 124 and the n electrode 126, the thickness of the p electrode 124 and the n electrode 126 is preferably 1 ⁇ m or more.
  • an insulating layer is provided below the p-electrode 124, preferably below the transparent electrode 122, for preventing current from being injected directly under the p-electrode 124. Thereby, the light emission amount shielded by the p-electrode 124 is reduced, and the light extraction efficiency is improved.
  • the carrier concentration means the concentration of electrons or holes, and is not determined only by the amount of n-type dopant or the amount of p-type dopant. Such carrier concentration is calculated based on the result of the voltage-capacitance characteristics of the nitride semiconductor light emitting device, and refers to the carrier concentration in a state where no current is injected. The total number of carriers generated from the crystal defects formed and the acceptor crystal defects.
  • the n-type carrier concentration is almost the same as the n-type dopant concentration since the activation rate of Si or the like which is an n-type dopant is high.
  • the n-type dopant concentration can be easily obtained by measuring the concentration distribution in the depth direction by SIMS (Secondary Ion Mass Spectroscopy).
  • the relative relationship (ratio) of the dopant concentration is almost the same as the relative relationship (ratio) of the carrier concentration. From these facts, in the present invention, it is defined by a dopant concentration that is actually easy to measure. And an average n-type dopant density
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer 110 is 0.53 times the average n-type dopant concentration of the first n-type nitride semiconductor layer 108.
  • the average n-type dopant concentration of the n-type electron injection layer 112 is 1.5 times or more the average n-type dopant concentration of the second n-type nitride semiconductor layer 110.
  • the carrier concentration of the n-type electron injection layer 112 closest to the light emitting layer 114 is increased, the light emission of the nitride semiconductor is achieved even when the operating current density is high. It has been found that the light emitting efficiency of the device can be increased and the deterioration of the electrostatic withstand voltage can be suppressed by providing the second n-type nitride semiconductor layer having a low carrier concentration below the n-type electron injection layer 112. It is because.
  • the n-type electron injection layer 112 preferably has a larger band gap than the second n-type nitride semiconductor layer 110. In this case, since electrons and holes can be confined more favorably in the light emitting layer 114, the light emission efficiency of the nitride semiconductor light emitting device can be further increased even when the operating current density is high.
  • the light emitting layer 114 preferably includes a nitride semiconductor containing Ga and Al, including a quantum well layer and a barrier layer.
  • a nitride semiconductor containing Ga and Al including a quantum well layer and a barrier layer.
  • the thickness of the n-type electron injection layer 112 is preferably 10 nm or more and 100 nm or less.
  • the operating voltage can be reduced while suppressing the deterioration of the electrostatic withstand voltage, and the electrons / electrons in the light emitting layer 114 can be reduced. Since the hole can be confined more favorably, the light emission efficiency of the nitride semiconductor light emitting device can be further increased even when the operating current density is high.
  • the emission peak wavelength (wavelength corresponding to the peak of the emission spectrum) of the nitride semiconductor light emitting device of the present invention is preferably 250 nm or more and 445 nm or less.
  • the present invention is very effective for a nitride semiconductor light emitting device that emits light having a short wavelength such as an emission peak wavelength of 250 nm or more and 445 nm or less.
  • the emission peak wavelength of the nitride semiconductor light emitting device of the present invention is preferably 250 nm or more and 445 nm or less.
  • the present invention is very effective for a nitride semiconductor light emitting device that emits light having a short wavelength such as an emission peak wavelength of 250 nm or more and 445 nm or less.
  • Example 1 a method for manufacturing the nitride semiconductor light-emitting element of Example 1 shown in the schematic cross-sectional view of FIG. 4 will be described.
  • a substrate 101 which is a sapphire substrate having a diameter of 100 mm, having a concavo-convex process including a convex portion 101a and a concave portion 101b on its upper surface was prepared.
  • the shape of the convex portion 101a is substantially circular in plan view, and the three adjacent convex portions 101a are arranged so as to be located at the apexes of a substantially equilateral triangle in plan view.
  • the interval between the apexes of adjacent convex portions 101a was 2 ⁇ m
  • the diameter of the substantially circular shape in a plan view of the convex portions 101a was about 1.2 ⁇ m
  • the height of the convex portions 101a was about 0.6 ⁇ m.
  • the convex portion 101a and the concave portion 101b on the upper surface of the substrate 101 had a cross section shown in FIG. 4, and the convex portion 101a had a tip portion.
  • RCA cleaning was performed on the upper surface of the substrate 101 after the formation of the convex portions 101a and the concave portions 101b. Then, the substrate 101 after RCA cleaning is installed in the chamber, N 2 , O 2, and Ar are introduced, the substrate 101 is heated to 650 ° C., and the protrusions 101a and On the surface of the substrate 101 having the recess 101b, a 35 nm thick buffer layer 102 made of an AlON crystal made of an aggregate of columnar crystals with aligned crystal grains extending in the normal direction of the surface of the substrate 101 was formed.
  • the substrate 101 on which the buffer layer 102 was formed was accommodated in the first MOCVD apparatus.
  • a nitride semiconductor underlayer 106 made of undoped GaN was grown on the buffer layer 102 by MOCVD, and then a first n-type nitride semiconductor layer 108A made of Si-doped n-type GaN was grown.
  • the thickness of the nitride semiconductor underlayer 106 is 3.8 ⁇ m
  • the thickness of the first n-type nitride semiconductor layer 108A is 3 ⁇ m
  • the n-type dopant concentration in the first n-type nitride semiconductor layer 108A is set.
  • the thickness of the nitride semiconductor underlayer 106 is preferably 1 ⁇ m or more and 8 ⁇ m or less, and more preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the substrate 101 taken out from the first MOCVD apparatus was accommodated in the second MOCVD apparatus.
  • the temperature of the substrate 101 is set to 1250 ° C., and a first n-type nitride semiconductor layer 108B (n-type dopant concentration: 1 ⁇ 10 19 / cm 3 ) made of an n-type GaN layer having a thickness of 1.5 ⁇ m is grown.
  • the first n-type nitride semiconductor layer 108 (average n-type dopant concentration) composed of a two-layer stack of the first n-type nitride semiconductor layer 108A and the first n-type nitride semiconductor layer 108B is formed. : 1 ⁇ 10 19 / cm 3 ).
  • the second n-type nitride semiconductor layer 110 made of Si-doped n-type GaN having a thickness of 360 nm (average n-type dopant concentration: 1 ⁇ 10 18 / cm 3 ) Growing up.
  • an n-type electron injection layer 112 (average n-type dopant concentration: 1.5 ⁇ 10 19 / cm 3 ) made of Si-doped n-type Al 0.03 Ga 0.97 N having a thickness of 20 nm was grown.
  • each barrier layer 14B (14BZ, 14B1 to 14B7, 14B0) made of undoped Al 0.05 Ga 0.95 N and a quantum well layer 14W (14W1 to 14W0) made of undoped In 0.11 Ga 0.89 N 14W8) were grown alternately layer by layer.
  • the thickness of the barrier layers 14BZ and 14B1 to 14B7 was 4.3 nm
  • the thickness of each quantum well layer (14W1 to 14W8) was 2.9 nm
  • the thickness of the barrier layer 14B0 was set to 8 nm.
  • the temperature of the substrate 101 is raised to 1200 ° C., and a p-type Al 0.2 Ga 0.8 N layer and a p-type GaN layer are formed on the upper surface of the last barrier layer 14B0 as p-type nitride semiconductor layers 116 and 118, respectively.
  • Grew. In order to finally obtain a target p-type dopant concentration, the p-type dopant raw material flow rate was not constant, but was appropriately changed.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • TMI trimethylindium
  • NH 3 was used as the N source gas
  • SiH 4 was used as a source gas for Si as an n-type dopant
  • Cp 2 Mg was used as a source gas for Mg as a p-type dopant.
  • the source gas is not limited to the above gas, and any gas that can be used as a MOCVD source gas can be used without limitation.
  • TEG triethylgallium
  • TEA triethylaluminum
  • Al aluminum
  • TEI triethylindium
  • An organic nitrogen compound such as DMHy (dimethylhydrazine) can be used as the N source gas
  • Si 2 H 6 or organic Si can be used as the Si source gas.
  • the p-type nitride semiconductor layer 118, the p-type nitride semiconductor layer 116, the light emitting layer 114, and the n-type electron injection layer 112 are exposed so that a part of the surface of the first n-type nitride semiconductor layer 108B is exposed.
  • the second n-type nitride semiconductor layer 110 and a part of the first n-type nitride semiconductor layer 108B were etched.
  • An n-electrode 126 made of Au was formed on the upper surface of the first n-type nitride semiconductor layer 108B exposed by this etching.
  • a transparent electrode layer 122 made of ITO and a p electrode 124 made of Au were sequentially formed on the upper surface of the p-type nitride semiconductor layer 118. Further, a transparent insulating protective film 128 made of SiO 2 was formed so as to mainly cover the transparent electrode layer 122 and the side surfaces of each layer exposed by the etching.
  • the substrate 101 is divided into 440 ⁇ 530 ⁇ m sized chips, each chip is mounted on a surface mount type package, the p-electrode 124 and the n-electrode 126 are connected to the package-side electrode by wire bonding, and the chip is made of resin Sealed.
  • the nitride semiconductor light emitting device of Example 1 was obtained.
  • the light emission peak wavelength of the nitride semiconductor light emitting device of Example 1 was about 405 nm, and a light output (light emission intensity) of 72.5 mW was obtained at an operating current of 50 mA (about 42 mA / cm 2 ).
  • a nitride semiconductor light emitting device of Comparative Example was manufactured in the same manner as Example 1 except that the formation of the n-type electron injection layer 112 was omitted. .
  • the nitride semiconductor light emitting device of Example 1 As a result of operating the nitride semiconductor light emitting device of Example 1 and the nitride semiconductor light emitting device of the comparative example at a large current density of 120 mA / cm 2 , respectively, the nitride semiconductor light emitting device of Example 1 was obtained. It has been confirmed that the luminous efficiency of can be improved by several to 10% compared to the luminous efficiency of the nitride semiconductor light emitting device of the comparative example.
  • the results similar to the above were obtained in any of cm 3 ), but it was confirmed that the effect of improving the luminous efficiency was particularly excellent when the Al composition ratio x3 was 0.01 or more and 0.05 or less.
  • Example 2 a method for manufacturing the nitride semiconductor light-emitting element of Example 2 shown in the schematic cross-sectional view of FIG. 5 will be described.
  • the buffer layer 102, the nitride semiconductor base layer 106, the first n-type nitride semiconductor layer 108A, and the first layer are formed on the upper surface of the substrate 101 after the formation of the convex portions 101a and the concave portions 101b.
  • N-type nitride semiconductor layer 108B was formed in this order.
  • the second n-type nitride semiconductor layer 210A made of Si-doped n-type GaN having a thickness of 295 nm (n-type dopant concentration: 6 ⁇ 10 18 / cm 3) with the temperature of the substrate 101 maintained at 940 ° C.
  • the second n-type nitride semiconductor layer 210C (n-type dopant concentration: 6 ⁇ 10 18 / cm 3 ) in this order by the MOCVD method, the second n-type nitride semiconductor layers 210A, 210B, and 210C A second n-type nitride semiconductor layer 210 made of a three-layer stack was formed.
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer 210 is ⁇ 6 ⁇ 10 18 ⁇ (295 + 15) + 7 ⁇ 10 17 ⁇ 50 ⁇ / (295 + 50 + 15) ⁇ 5.26 ⁇ 10 18 / cm 3 Met.
  • the n-type electron injection layer 112 (average n-type dopant concentration: 1.5 ⁇ 10 19 / cm 3 ) was formed with the Al composition ratio x3 of the composition formula of Al x3 Ga y3 N set to 0.02.
  • the emission peak wavelength of the nitride semiconductor light emitting device of Example 2 was 405 nm.
  • the light emission efficiency of the nitride semiconductor light emitting device of Example 2 is the nitride semiconductor light emitting of the comparative example. It was confirmed that it could be improved by several to 10% compared with the luminous efficiency of the device.
  • the second n-type nitride semiconductor layer 210 is composed of the stacked body, it has been confirmed that the operating voltage can be further reduced without deteriorating the electrostatic withstand voltage of the nitride semiconductor light emitting device.
  • the same results as above were obtained when the thickness of the n-type electron injection layer 112 of the nitride semiconductor light emitting device of Example 2 was changed from 5 to 100 nm (5 nm, 10 nm, 20 nm, 50 nm, and 100 nm). However, when the thickness of the n-type electron injection layer 112 was set to 10 nm or more and 100 nm or less, it was confirmed that the effect of improving the light emission efficiency was particularly excellent.
  • Example 3 the manufacturing method of the nitride semiconductor light-emitting device of Example 3 shown in the schematic cross-sectional view of FIG. 6 will be described.
  • the buffer layer 102, the nitride semiconductor base layer 106, the first n-type nitride semiconductor layer 108A, and the first layer are formed on the upper surface of the substrate 101 after the formation of the convex portions 101a and the concave portions 101b.
  • N-type nitride semiconductor layer 108B was formed in this order.
  • the second n-type nitride semiconductor layer 310A made of Si-doped n-type GaN having a thickness of 64 nm (n-type dopant concentration: 7 ⁇ 10 17 / cm 3).
  • a second n-type nitride semiconductor layer 310B having a superlattice structure which is an alternate stack of undoped In 0.04 Ga 0.96 N layers having a thickness of 2 nm and undoped GaN layers having a thickness of 2 nm.
  • n-type nitride semiconductor layer 310 was grown by MOCVD to form a second n-type nitride semiconductor layer 310 composed of a two-layered stack of second n-type nitride semiconductor layers 310A and 310B.
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer 310 was (7 ⁇ 10 17 ⁇ 64) / (64 + 2 + 2) ⁇ 6.59 ⁇ 10 17 / cm 3 .
  • Example 3 A nitride semiconductor light emitting device of Example 3 was manufactured in the same manner as Example 1 except that the quantum well layer 14W (14W1 to 14W8) made of undoped In 0.18 Ga 0.82 N was formed.
  • the emission peak wavelength of the nitride semiconductor light emitting device of Example 3 was 445 nm.
  • the light emission efficiency of the nitride semiconductor light emitting device of Example 3 is that of the nitrides of Examples 1 and 2. It was confirmed that the luminous efficiency can be further improved by about 2 to 5% as compared with the semiconductor light emitting device. This is because the second n-type nitride semiconductor layer 310 having a superlattice structure can alleviate crystal defects in the nitride semiconductor layer grown on the second n-type nitride semiconductor layer 310. It is believed that there is.
  • Example 3 in a nitride semiconductor light emitting device having an emission peak wavelength of about 445 nm and about 450 nm, the layers immediately below the n-type electron injection layer 112 are alternately laminated with undoped In 0.04 Ga 0.96 N layers and undoped GaN layers.
  • the superlattice structure is the second n-type nitride semiconductor layer 310B, the superlattice structure is applied to a nitride semiconductor light emitting device having a shorter wavelength such as emission peak wavelengths of 405 nm and 385 nm. Good.
  • Example 4 a method for manufacturing the nitride semiconductor light-emitting element of Example 4 shown in the schematic cross-sectional view of FIG. 7 will be described.
  • the buffer layer 102, the nitride semiconductor base layer 106, the first n-type nitride semiconductor layer 108A, and the first layer are formed on the upper surface of the substrate 101 after the formation of the convex portions 101a and the concave portions 101b.
  • N-type nitride semiconductor layer 108B was formed in this order.
  • the second n-type nitride semiconductor layer 410A made of Si-doped n-type GaN having a thickness of 280 nm (n-type dopant concentration: 7 ⁇ 10 17 / cm 3) with the temperature of the substrate 101 maintained at 940 ° C. ) Is grown by MOCVD, and then the second n-type nitride semiconductor layer 410B having a superlattice structure, which is an alternate stack of undoped Al 0.02 Ga 0.98 N layers having a thickness of 2 nm and undoped GaN layers having a thickness of 2 nm.
  • the second n-type nitride semiconductor layer 410 composed of a two-layered structure of the second n-type nitride semiconductor layers 410A and 410B was formed by growing the film by MOCVD.
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer 410 was (7 ⁇ 10 17 ⁇ 280) / (280 + 2 + 2) ⁇ 6.90 ⁇ 10 17 / cm 3 .
  • an n-type electron injection layer 112 (average n-type dopant concentration: 1.5 ⁇ 10 19 / cm 3 ) is formed with an Al composition ratio x3 of the composition formula of Al x3 Ga y3 N set to 0.07,
  • Each barrier layer 14B (14BZ, 14B1 to 14B7, 14B0) is formed from undoped AlGaInN, and further, the quantum well layer 14W (14W1 to 14W8) is formed from undoped In 0.06 Ga 0.94 N.
  • the nitride semiconductor light emitting device of Example 4 was manufactured.
  • the nitride semiconductor light emitting device of Example 4 had an emission peak wavelength of 385 nm and an optical output of 50 mA.
  • the current injection layer 112 having a high carrier concentration achieves good current injection and prevention of hole overflow, and the second n-type nitride semiconductor.
  • InGaN for the layer 410B, it was confirmed that the light absorption amount by the second n-type nitride semiconductor layer 410B can be reduced, so that the light emission efficiency can be improved.
  • each barrier layer 14B (14BZ, 14B1 to 14B7, 14B0) in the light emitting layer 114 is made of AlGaN, but a quaternary mixed crystal further containing In is added.
  • AlGaInN it is possible to reduce the influence of crystal defects due to fluctuations in In composition.
  • the quantum well layer 14W (14W1 to 14W8) in order to reduce crystal defects, the emission peak wavelength becomes longer by mixing In with the GaN layer. The wavelength can be adjusted and the influence of crystal defects can be reduced.
  • Example 5 a method for manufacturing the nitride semiconductor light-emitting element of Example 5 shown in the schematic cross-sectional view of FIG. 8 will be described.
  • a 4-inch diameter Si substrate 501 was used as the substrate. Prior to crystal growth of the nitride-based semiconductor layer, the surface oxide film of the Si substrate 501 was removed with a hydrofluoric acid-based etchant, and then the Si substrate 501 was set in the chamber of the MOCVD apparatus.
  • the Si substrate 501 was heated to 1100 ° C. in the MOCVD apparatus, and the surface ((111) surface) of the Si substrate 501 was cleaned in a hydrogen atmosphere with a chamber internal pressure of 13.3 kPa.
  • the surface of the Si substrate 501 was nitrided by flowing NH 3 (12.5 slm) into the chamber while maintaining the temperature of the Si substrate 501 and the pressure in the chamber. Subsequently, an undoped AlN layer 502 having a thickness of 200 nm is formed on the surface of the Si substrate 501 by MOCVD by flowing TMA having a flow rate of 117 ⁇ mol / min and NH 3 having a flow rate of 12.5 slm into the chamber. Grown up.
  • the temperature of the Si substrate 501 is raised to 1150 ° C., and TMG with a flow rate of 57 ⁇ mol / min, TMA with a flow rate of 97 ⁇ mol / min, and NH 3 with a flow rate of 12.5 slm are flowed into the chamber.
  • TMG with a flow rate of 57 ⁇ mol / min
  • TMA with a flow rate of 97 ⁇ mol / min
  • NH 3 with a flow rate of 12.5 slm
  • a multilayer buffer layer structure 506 in which an AlN layer having a thickness of 5 nm and an Al 0.1 Ga 0.9 N layer having a thickness of 20 nm are alternately stacked for 50 periods one by one is formed as an Al buffer. It was formed on the surface of the 0.1 Ga 0.9 N layer 505 by the MOCVD method. At this time, the AlN layer was grown by flowing TMA having a flow rate of 102 ⁇ mol / min and NH 3 having a flow rate of 12.5 slm into the chamber.
  • the Al 0.1 Ga 0.9 N layer was grown by flowing TMG with a flow rate of 720 ⁇ mol / min, TMA with a flow rate of 80 ⁇ mol / min, and NH 3 with a flow rate of 12.5 slm in the chamber.
  • the n-type electron injection layer 112 (average n-type dopant concentration: 1.5 ⁇ 10 19 / cm 3 ) was formed with an Al composition ratio x3 of the composition formula of Al x3 Ga y3 N set to 0.04.
  • the emission peak wavelength of the nitride semiconductor light emitting device of Example 5 was 405 nm.
  • the light emission efficiency of the nitride semiconductor light emitting device of Example 5 is due to light absorption of the Si substrate 501. Although it was lower than the light emission efficiency of the nitride semiconductor light emitting devices of Examples 1 to 4, it was confirmed that the light emission efficiency of the nitride semiconductor light emitting device of the comparative example could be improved. In the nitride semiconductor light emitting device of Example 5, it is possible to expect further improvement in light emission efficiency by removing the Si substrate 501.
  • Hall blocking effect For example, in a nitride semiconductor light emitting device having a short emission peak wavelength (e.g., about 405 nm of the emission peak wavelength of the nitride semiconductor light emitting devices of Examples 1, 2 and 5 in the case of about 420 nm or less), blue (about As the band gap of the quantum well layer becomes larger than (450 nm), the holes easily move to the n-type nitride semiconductor layer side of the light emitting layer. It is considered that the light emission efficiency of the nitride semiconductor light emitting device is improved because it functions as a hole blocking layer that prevents leakage of holes to the n-type nitride semiconductor layer side. This also leads to improved characteristics of the nitride semiconductor light emitting device at a high temperature of 80 ° C. or higher.
  • a short emission peak wavelength e.g., about 405 nm of the emission peak wavelength of the nitride semiconductor light emitting devices of Examples 1, 2 and 5 in the case of about
  • Electron injection effect An n-type nitride semiconductor layer having an average n-type dopant concentration higher than that of the second n-type nitride semiconductor layer immediately below the n-type electron injection layer is introduced as an n-type electron injection layer adjacent to the light emitting layer. This facilitates injection of electrons into the light emitting layer. This effect becomes more remarkable when the band gap of the n-type electron injection layer is larger. Thereby, the operating voltage can be reduced.
  • a two-dimensional electron layer effect that is, between the n-type electron injection layer and the second n-type nitride semiconductor layer, a two-dimensional electron layer is formed along with the bending of the band. This effect also promotes the spread of electrons in the lateral direction, and may have the effect of reducing the operating voltage.
  • Electrostatic withstand voltage improvement effect The present inventors have made the n-type carrier concentration of the second n-type nitride semiconductor layer lower than the carrier concentration of the n-type electron injection layer, and the n-type electron injection layer is, for example, 20 nm. By reducing the thickness, (i) a barrier for electrons between the n-type electron injection layer and the second n-type nitride semiconductor layer is reduced, and (ii) a voltage is applied to the nitride semiconductor light emitting device.
  • the depletion layer When emitting light, the depletion layer extends beyond the thin n-type electron injection layer to the second n-type nitride semiconductor layer having a low average n-type dopant concentration, thereby reducing the voltage gradient and increasing the electrostatic withstand voltage. It is assumed that there is an effect of.
  • the present invention includes a first n-type nitride semiconductor layer, a second n-type nitride semiconductor layer, an n-type electron injection layer, a light emitting layer, and a p-type nitride semiconductor layer in this order,
  • the average n-type dopant concentration of the second n-type nitride semiconductor layer is 0.53 times or less the average n-type dopant concentration of the first n-type nitride semiconductor layer, and the average n-type of the n-type electron injection layer
  • the dopant concentration is 1.5 times or more the average n-type dopant concentration of the second n-type nitride semiconductor layer.
  • the n-type electron injection layer preferably has a larger band gap than the second n-type nitride semiconductor layer, and more preferably comprises a nitride semiconductor containing Ga and Al. preferable.
  • the n-type electron injection layer preferably has a larger band gap than the second n-type nitride semiconductor layer, and more preferably comprises a nitride semiconductor containing Ga and Al. preferable.
  • the light emitting layer preferably includes a quantum well layer and a barrier layer, and is made of a nitride semiconductor containing Ga and Al.
  • the thickness of the n-type electron injection layer is preferably 10 nm or more and 100 nm or less.
  • the emission peak wavelength of the nitride semiconductor light emitting device of the present invention is preferably 250 nm or more and 445 nm or less.
  • the present invention is very effective for a nitride semiconductor light emitting device that emits light having a short wavelength such as an emission peak wavelength of 250 nm or more and 445 nm or less.
  • the nitride semiconductor light emitting device of the present invention can be used for, for example, general illumination, a backlight for liquid crystal, display, visible light communication, and an ultraviolet light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

 第1のn型窒化物半導体層と、第2のn型窒化物半導体層と、n型電子注入層と、発光層と、をこの順に備え、第2のn型窒化物半導体層の平均n型ドーパント濃度は、第1のn型窒化物半導体層の平均n型ドーパント濃度の0.53倍以下であり、n型電子注入層の平均n型ドーパント濃度は、第2のn型窒化物半導体層の平均n型ドーパント濃度の1.5倍以上である窒化物半導体発光素子である。

Description

窒化物半導体発光素子
 本発明は、窒化物半導体発光素子に関する。
 窒素を含むIII-V族化合物半導体材料(以下、「窒化物半導体材料」と呼ぶ)は、赤外領域から紫外領域の波長を有する光のエネルギに相当するバンドギャップを有している。そのため、窒化物半導体材料は、赤外領域から紫外領域の波長を有する光を発光する発光素子の材料や、その領域の波長を有する光を受光する受光素子の材料などに有用である。
 また、窒化物半導体材料は、原子間の結合力が強く、絶縁破壊電圧が高く、飽和電子速度が大きい。そのため、窒化物半導体材料は、耐高温かつ高出力な高周波トランジスタなどの電子デバイスの材料としても有用である。さらに、窒化物半導体材料は、環境を害することがほとんどなく、取り扱い易い材料としても注目されている。
 上記の特性を有する窒化物半導体材料を用いた窒化物半導体発光素子においては、発光層に量子井戸構造が採用されることが一般的である。発光層に量子井戸構造を採用した窒化物半導体発光素子に電圧が印加されると、発光層の量子井戸層において、電子とホールとが再結合されて光が発生する。量子井戸構造を有する発光層としては、単一量子井戸(Single Quantum Well;SQW)構造であってもよいが、量子井戸層とバリア層とが交互に積層された多重量子井戸(Multiple Quantum Well;MQW)構造とする場合が多い。
 発光層の量子井戸層としてはInGaNを用い、バリア層としてはGaNを用いるのが一般的である。これにより、たとえば、発光ピーク波長が約450nmの青色LED(Light Emitting Device)を作製することができ、黄色蛍光体と組み合わせて白色LEDを作製することもできる。バリア層としてAlGaNを用いた場合には、バリア層と量子井戸層とのバンドギャップエネルギー差が増大するため発光効率が増すとも考えられるが、GaNに比べてAlGaNの方が良質な結晶が得られにくいという問題も有している。
 また、n型窒化物半導体層としては、GaNあるいはInGaNを用いるのが一般的である。
 たとえば、特開2004-343147号公報(特許文献1)には、活性層の下にInを含む窒化物半導体層を有するn側多層膜層を有する構造のLED素子が開示されている。特許文献1に記載のLED素子によれば、活性層の下のn側多層膜層が何らかの作用を行い、発光素子の出力を向上させるとされており、その理由としては、活性層の結晶性を向上させることによるためと推察されている。
 また、特開2002-299685号公報(特許文献2)には、2×1017cm-3~2×1019cm-3の範囲でSiがドープされた平滑層上に、スペーサ層および活性領域がこの順に積層され、平滑層がスペーサ層よりもずっと高濃度にドープされたIII族窒化物LEDが開示されている。特許文献2のIII族窒化物LEDにおいては、平滑層が低温のIII族窒化物半導体層の平坦な二次元成長を回復させる機能を有しており、III族窒化物LEDの効率と信頼性の両方を高めることができるとされている。
 また、特開2005-203520号公報(特許文献3)には、GaN基板からなる支持基板上に、SiドープGaN半導体からなるバッファ層と、SiドープAl0.18Ga0.82N半導体からなる第3のAlGaN半導体層9と、InAlGaN半導体からなる井戸層35a~35cおよびバリア層37a~37dを備えた発光領域とを有し、ピーク波長が359ナノメートルの光を発光する発光ダイオードが開示されている。
 また、特開平9-153645号公報(特許文献4)には、AlNバッファ層上に、膜厚約2.0μmで電子濃度2×1018/cm3のシリコンドープGaNから成る高キャリア濃度n+層と、膜厚約1.0μmで電子濃度2×1018/cm3のシリコンドープのAl0.3Ga0.7Nから成るn層と、全膜厚約0.11μmの発光層と、膜厚約1.0μmでホール濃度5×1017/cm3であって濃度1×1020/cm3にマグネシウムがドープされたAl0.3Ga0.7Nから成るp層と、膜厚約0.2μmでホール濃度7×1017/cm3であってマグネシウム濃度2×1020/cm3のマグネシウムドープのGaNから成るコンタクト層とが積層され発光ピーク波長380nmである発光ダイオードが開示されている。
 さらに、特開平10-173231号公報(特許文献5)には、キャリア濃度が1×1019/cm3のSiドープn+GaN層上に、キャリア濃度が1×1018/cm3のSiドープnGaN層およびn型In0.15Ga0.85N層をこの順に成長させた構造を有する発光素子が開示されている。特許文献5に記載の発光素子においては、活性層全体に均一に電流が流れ、均一な発光が得られるとされている。
特開2004-343147号公報 特開2002-299685号公報 特開2005-203520号公報 特開平9-153645号公報 特開平10-173231号公報
 多重量子井戸発光層中のバリア層としてGaNよりもバンドギャップの大きいAlGaNあるいはInGaAlNを用いた場合に、n側の層がInGaNあるいはGaNであるときには、発光層からn側の層へのホールのオーバーフローが起こりやすくなり、その結果、特に動作電流密度を高くした場合には、窒化物半導体発光素子の投入電流に対する発光量の比である電流-発光効率(W/A)、および投入電力に対する発光量の比である電力-発光効率(W/W)が低下することが問題となっていた。
 本発明の目的は、動作電流密度が高い場合においても発光効率を高くすることができる窒化物半導体発光素子を提供することにある。
 本発明は、第1のn型窒化物半導体層と、第2のn型窒化物半導体層と、n型電子注入層と、発光層と、p型窒化物半導体層と、をこの順に備え、第2のn型窒化物半導体層の平均n型ドーパント濃度は、第1のn型窒化物半導体層の平均n型ドーパント濃度の0.53倍以下であり、n型電子注入層の平均n型ドーパント濃度は、第2のn型窒化物半導体層の平均n型ドーパント濃度の1.5倍以上である窒化物半導体発光素子である。これは、本発明者が鋭意検討した結果、上記の構成を採用した場合には、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率を高くすることができることを見い出したことによるものである。
 本発明によれば、動作電流密度が高い場合においても発光効率を高くすることができる窒化物半導体発光素子を提供することができる。
実施の形態の窒化物半導体発光素子の模式的な断面図である。 実施の形態の窒化物半導体発光素子を上面から見たときの模式的な平面図である。 実施の形態の窒化物半導体発光素子の第1のn型窒化物半導体層、第2のn型窒化物半導体層、n型電子注入層、発光層およびp型窒化物半導体層のバンドギャップエネルギーおよびn型ドーパント濃度の一例を示す図である。 実施例1の窒化物半導体発光素子の模式的な断面図である。 実施例2の窒化物半導体発光素子の模式的な断面図である。 実施例3の窒化物半導体発光素子の模式的な断面図である。 実施例4の窒化物半導体発光素子の模式的な断面図である。 実施例5の窒化物半導体発光素子の模式的な断面図である。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 本明細書において、「バリア層」は、量子井戸層に挟まれた層を意味する。また、量子井戸層に挟まれていないバリア層は、「最初のバリア層」または「最後のバリア層」と表記され、量子井戸層に挟まれた層とは表記を変えるものとする。
 また、本明細書においては、「ドーパント濃度」という用語と、n型ドーパントまたはp型ドーパントのドープに伴って発生する電子およびホールの濃度である「キャリア濃度」という用語とを用いているが、その関係については後述する。
 また、本明細書において、「キャリアガス」とは、III族原料ガス、V族原料ガスおよびドーパント原料ガス以外のガスを意味する。キャリアガスを構成する原子は窒化物半導体層などには取り込まれない。
 また、本明細書において、「アンドープ」とは意図的にドーピングを行なわないことを意味しており、アンドープ層であっても隣接する層からのドーパントの拡散によりドーパントを含むことがある。
 また、本明細書において、「n型窒化物半導体層」は、その中に電子の流れを実用上妨げない程度の厚さの低キャリア濃度のn型層あるいはアンドープ層を含んでいてもよい。「実用上妨げない」とは窒化物半導体発光素子の動作電圧が実用的なレベルであることを言う。
 また、本明細書において、「p側窒化物半導体層」も、ホールの流れを実用上妨げない程度の厚さの低キャリア濃度のp型層あるいはアンドープ層を含んでいてもよい。「実用上妨げない」とは窒化物半導体発光素子の動作電圧が実用的なレベルであることを言う。
 また、本明細書において、「AlGaN」という表記は、原子としてAl、GaおよびNを含んでいるという意味であって、組成は特に限定されていない。InGaN、AlGaInN、およびAlONについても同様である。
 また、本明細書において、「窒化物半導体」は、理想的には、窒素(N)とその他の元素(Al,Ga,In)との原子数比が1:1になるが、ドーパントが含まれている場合もあり、また実際に形成される物質は必ずしも理想的なものではないため、原子数比が1:1からずれることがある。また、本明細書において、AlxGa1-xNと記載する場合であっても、窒素(N)とその他の元素(Al,Ga)との原子数比が完全に1:1だけのものを意図するものではない。原子数比の1:1からのずれは、本願明細書の記載上は、無視するものとする。
 また、本明細書において、窒化物半導体におけるバンドギャップEg(eV)と、InあるいはAlの混晶比xとの関係は、Joachim Piprek, “Semiconductor Optoelectric Devices”, Academic Press, 2003, p.191に記載されている以下の式(I)および(II)を用いることとする。
 Eg(InxGa1-xN)=1.89x+3.42(1-x)-3.8x(1-x) …(I)
 Eg(AlxGa1-xN)=6.28x+3.42(1-x)-1.3x(1-x) …(II)
 [窒化物半導体発光素子の構成]
 図1に、本発明の窒化物半導体発光素子の一例である実施の形態の窒化物半導体発光素子の模式的な断面図を示し、図2に、実施の形態の窒化物半導体発光素子を上面から見たときの模式的な平面図を示す。
 実施の形態の窒化物半導体発光素子は、基板101と、基板101上に順次設けられた、バッファ層102と、窒化物半導体下地層106と、第1のn型窒化物半導体層108と、第2のn型窒化物半導体層110と、n型電子注入層112と、発光層114と、p型窒化物半導体層116と、p型窒化物半導体層118とを備えている。
 p型窒化物半導体層118上には透明電極層122が設けられており、透明電極層122上にはp電極124が設けられている。また、第1のn型窒化物半導体層108上にはn電極126が設けられている。さらに、n電極126の表面の一部およびp電極124の表面の一部を露出させるように、窒化物半導体発光素子の表面は透明絶縁保護膜128で覆われている。
 [基板]
 基板101としては、たとえば、サファイア、GaN、SiC、Si若しくはZnOなどの基板を用いることができる。基板101の厚さは特に限定されないが、窒化物半導体層の成長時における基板101の厚さは900μm以上1200μmであることが好ましく、窒化物半導体発光素子の使用時の基板101の厚さは50μm以上300μm以下であることが好ましい。
 また、基板101の上面には、凸部101aおよび凹部101bを有する凹凸形状が形成されていてもよく、上面の少なくとも一部が平坦であってもよい。また、基板101の上面の凸部101aおよび凹部101bの形状は特に限定されないが、凸部101aは、平面視において略正三角形の頂点に配された略円形であることが好ましく、隣り合う凸部101aの頂点の間隔は1μm以上5μm以下であることがより好ましい。また、凸部101aの断面形状は台形状であってもよく、この場合には、台形の頂点部が丸みを帯びた形状であることがより好ましい。
 なお、基板101は、基板101上への窒化物半導体層の成長後に除去されることによって、本発明の窒化物半導体発光素子は、基板101を有していない窒化物半導体発光素子とされてもよい。
 [バッファ層]
 バッファ層102としては、たとえば、AlON層(Nに対するOの比率が数原子%程度)またはAls0Gat0u01-u0(0≦s0≦1、0≦t0≦1、0≦u0≦1、s0+t0≠0)からなる式で表わされる窒化物半導体層などを用いることができる。
 ここで、バッファ層102を構成するAlON層としては、Nのごく一部(0.5原子%以上2原子%以下)が酸素に置き換えられていることが好ましい。この場合には、基板101の成長面の法線方向に伸長するようにバッファ層102が形成されるため、結晶粒の揃った柱状結晶の集合体からなるバッファ層102を得ることができる。
 また、バッファ層102の厚さは、特に限定されないが、3nm以上100nm以下であることが好ましく、5nm以上50nm以下であることがより好ましい。
 窒化物半導体下地層106のX線ロッキングカーブの半値幅を向上させるために、バッファ層102としては、公知のスパッタ法により形成されたAlON層を用いることが好ましい。
 また、バッファ層102としては、たとえば、500℃程度の低温でMOCVD法によって成長するGaN層を用いてもよい。
 [窒化物半導体下地層]
 窒化物半導体下地層106としては、たとえば、Alx0Gay0Inz0N(0≦x0≦1、0≦y0≦1、0≦z0≦1、x0+y0+z0≠0)の式で表わされるIII族窒化物半導体からなる層などを用いることができる。
 なお、窒化物半導体下地層106を含む以下の窒化物半導体各層は、たとえばMOCVD(Metal Organic Chemical Vapor Deposition)法によって形成することができるが、これに限定されず、たとえば、MBE(Molecular Beam Epitaxy)法またはVPE(Vapor Phase Epitaxy)法などにより形成することもできる。
 また、窒化物半導体下地層106としては、たとえば柱状結晶の集合体からなるバッファ層102中の転位などの結晶欠陥を引き継がないようにするために、III族元素としてGaを含む窒化物半導体層を用いることが好ましい。
 窒化物半導体下地層106は、アンドープ層としてもよく、たとえばn型ドーパントが1×1016/cm3以上1×1020/cm3以下の範囲でドーピングされていてもよい。ここで、n型ドーパントとしては、たとえば、Si、GeおよびSnからなる群から選択された少なくとも1種などを用いることができ、なかでもSiを用いることが好ましい。n型ドーパントにSiを用いた場合には、n型ドーピングガスとしてシランまたはジシランを用いることが好ましい。同様のことが、後述する各n型ドーピング窒化物半導体層にも言える。
 窒化物半導体下地層106の成長時における基板101の温度は、800℃以上1250℃以下であることが好ましく、900℃以上1150℃以下であることがより好ましい。窒化物半導体下地層106の成長時における基板101の温度が800℃以上1250℃以下である場合、特に900℃以上1150℃以下である場合には、結晶欠陥の少ない結晶性に優れた窒化物半導体下地層106を成長させることができる。
 窒化物半導体下地層106の厚さをできるだけ厚くすることによって、窒化物半導体下地層106中の欠陥は減少するが、基板との熱膨張率差に伴うウエハ(基板上に窒化物半導体層を形成したもの)の反りが大きくなるという問題があり、窒化物半導体下地層106の厚さをある程度以上厚くしたとしても窒化物半導体下地層106における欠陥減少効果が飽和する。これにより、窒化物半導体下地層106の厚さは、1μm以上8μm以下であることが好ましく、3μm以上5μm以下であることがより好ましい。
 [第1のn型窒化物半導体層]
 第1のn型窒化物半導体層108としては、たとえば、Alx1Gay1Inz1N(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1≠0)の式で表わされるIII族窒化物半導体からなる層にn型ドーパントがドープされた層を用いることができ、なかでも、Alx1Ga1-x1N(0≦x1≦1、好ましくは0≦x1≦0.5、より好ましくは0≦x1≦0.1)層にn型ドーパントがドープされた層を用いることが好ましい。
 動作電流密度が高い場合においても窒化物半導体発光素子の発光効率を高くする観点からは、第1のn型窒化物半導体層108のn型ドーパント濃度は、2×1018/cm3以上とすることが好ましい。また、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率を高くする観点からは、第1のn型窒化物半導体層108のn型ドーパント濃度は、5×1019/cm3以下とすることが好ましい。
 第1のn型窒化物半導体層108の厚さはできるだけ厚い方が第1のn型窒化物半導体層108の抵抗は減少する。一方、第1のn型窒化物半導体層108の厚さを厚くした場合には窒化物半導体発光素子の製造コストの上昇を招く。両者の兼ね合いから、第1のn型窒化物半導体層108の厚さは、1μm以上10μm以下であることが好ましいが、これに限定されるものではない。
 第1のn型窒化物半導体層108は、単層であってもよく、組成・ドーピング濃度・その両方について異なる2層以上の複数層であってもよい。第1のn型窒化物半導体層108が複数層である場合には、それぞれの層が同一の組成からなっていてもよく、少なくとも1層が異なる組成であってもよい。第1のn型窒化物半導体層108が複数層である場合には、それぞれの層が同一の厚さであってもよく、少なくとも1層が異なる厚さであってもよい。
 なお、後述の実施例に示すように、まずn型GaN層であるn型窒化物半導体層を成長し、一旦成長炉から取り出してから、別の炉で同一のn型GaN層であるn型窒化物半導体層を再び成長させるという2つの成長工程によって、第1のn型窒化物半導体層108を形成してもよい。しかしながら、第1のn型窒化物半導体層108の構成は特に限定されない。
 第1のn型窒化物半導体層108は、後述するn電極のコンタクト層を兼ねているため、少なくともn電極126のコンタクト層となる部分については1×1018/cm3以上の高ドープ濃度であることが好ましい。
 [第2のn型窒化物半導体層]
 第2のn型窒化物半導体層110としては、たとえば、Alx2Gay2Inz2N(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2≠0)の式で表わされるIII族窒化物半導体からなる層にn型ドーパントがドープされた層を用いることができ、なかでも、Alx2Ga1-x2N(0≦x2≦1、好ましくは0≦x2≦0.3、より好ましくは0≦x2≦0.1)層またはInz2Ga1-z2N(0≦z2≦1、好ましくは0≦z2≦0.3、より好ましくは0≦z2≦0.1)層にn型ドーパントがドープされた層を用いることが好ましい。
 第2のn型窒化物半導体層110の平均n型ドーパント濃度は、第1のn型窒化物半導体層108の平均n型ドーパント濃度の0.53倍以下とされ、好ましくは0.5倍以下とされる。
 第2のn型窒化物半導体層110の厚さは特に限定されないが、50nm以上500nm以下であることが好ましい。
 第2のn型窒化物半導体層110は、単層であってもよく、組成・ドーピング濃度・その両方について異なる2層以上の複数層であってもよい。第2のn型窒化物半導体層110が複数層である場合には、それぞれの層が同一の組成からなっていてもよく、少なくとも1層が異なる組成であってもよい。第2のn型窒化物半導体層110が複数層である場合には、それぞれの層が同一の厚さであってもよく、少なくとも1層が異なる厚さであってもよい。
 なお、第2のn型窒化物半導体層110の代わりに、n型ドーパントをドープしないこと以外は第2のn型窒化物半導体層110と同様にして作製したアンドープの窒化物半導体層を用いてもよい。
 [n型電子注入層]
 n型電子注入層112は、たとえば、Alx3Gay3Inz3N(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3≠0)の式で表わされるIII族窒化物半導体からなる層にn型ドーパントがドープされた層を用いることができ、第2のn型窒化物半導体層110よりバンドギャップが大きいことが好ましい。なかでも、GaおよびAlを含む窒化物半導体からなる層にn型ドーパントがドープされた層を用いることが好ましく、n型電子注入層112が第2のn型窒化物半導体層110よりバンドギャップが大きいAlx3Gay3Inz3Nからなる場合には、発光層114に良好に電子を注入する観点などからは、Alの組成比x3をx2よりも0.01以上0.1以下の範囲で大きくすることが好ましく、x2より0.05以下の範囲で大きくすることがより好ましい。
 n型電子注入層112のn型ドーパント濃度は、第2のn型窒化物半導体層110のn型ドーパント濃度の1.5倍以上であり、好ましくは2倍以上である。第2のn型窒化物半導体層110が複数層からなる場合には、n型電子注入層112の平均n型ドーパント濃度は、第2のn型窒化物半導体層110の平均n型ドーパント濃度に対してドーパント濃度の1.5倍以上とされ、好ましくは2倍以上とされる。
 n型電子注入層112は単層であってもよく、組成および/またはドーパント濃度の異なる複数層であってもよい。たとえば、発光層114に隣接する5nm程度の厚さのn型電子注入層112は、製造時におけるドーパントの拡散を想定して意図的にドーピングを行なわない層としてもよい。
 n型電子注入層112の厚さは、10nm以上100nm以下であることが好ましい。n型電子注入層112の厚さが10nm以上である場合には、n型電子注入層112のn型電子注入層としての機能が向上する傾向にあり、100nm以下である場合には空乏層が第2のn型窒化物半導体層110に広がりにくくなり、静電耐圧が低くなる場合がある。
 なお、n型電子注入層112は、発光層114を挟み込むn型クラッド層としての働きを有する。
 [発光層]
 図3に、実施の形態の窒化物半導体発光素子の第1のn型窒化物半導体層108、第2のn型窒化物半導体層110、n型電子注入層112、発光層114およびp型窒化物半導体層116のバンドギャップエネルギーおよびn型ドーパント濃度の一例を示す。図3の縦軸は積層方向の厚さを示しており、上方向がp型窒化物半導体層116に近い側を意味している。また、図3の横軸はバンドギャップエネルギーの大きさおよびn型ドーパント濃度の高さを示しており、図3の右側の線がバンドギャップエネルギーの大きさを示し、図3の左側の線がn型ドーパント濃度の高さを示しており、図3の横軸の右方向がそれぞれバンドギャップエネルギーが大きいことおよびn型ドーパント濃度が高いことを意味している。
 図3に示すように、発光層114は、量子井戸層14W(14W1~14W8)と、バリア層14B(14B0、14B1~14B7、14BZ)とを備えている。量子井戸層14Wとバリア層14B(14B0、14B1~14B7、14BZ)とは交互に積層されており、各量子井戸層14Wは、それぞれ、バリア層14B(14B0、14B1~14B7、14BZ)の間に挟まれており、バリア層14B(14B1~14B5)は、それぞれ、量子井戸層14W(14W1~14W8)の間に挟まれている。
 n型電子注入層112の直上には、最初のバリア層14BZが設けられている。最もp型窒化物半導体層116側に位置する第1の量子井戸層14W1の直上には最後のバリア層14B0が設けられている。
 なお、この説明において、各バリア層および各量子井戸層を識別するために、p型窒化物半導体層116からn型電子注入層112に向かって番号を付し、たとえば、量子井戸層14W1、バリア層14B1、量子井戸層14W2、バリア層14B2・・・などと表記することとする。
 バリア層14B(14B0、14B1~14B7、14BZ)と量子井戸層14Wとの間に、バリア層14B(14B0、14B1~14B7、14BZ)および量子井戸層14Wとは異なる1層以上の半導体層が含まれていてもよい。また、発光層114の一周期(バリア層14B(14B0、14B1~14B7、14BZ)の厚さと量子井戸層14Wの厚さとの和)の長さは、たとえば、5nm以上100nm以下とすることができる。
 量子井戸層14Wとしては、それぞれ独立に、たとえば、Alc1Gad1In(1-c1-d1)N(0≦c1<1、0<d1≦1)の式で表わされる窒化物半導体層を用いることができる。なかでも、量子井戸層14Wとしては、Alを含まないIne1Ga(1-e1)N(0<e1≦1)であることが好ましい。量子井戸層14WのInの組成を変えることにより、量子井戸層14Wのバンドギャップエネルギーを調整することが可能になる。たとえば、波長が375nm以下の紫外光を発光させる場合には、発光層114のバンドギャップエネルギーを大きくする必要があるため、各量子井戸層14Wは、Alを含むことになる。
 複数の量子井戸層14Wのうち、たとえば基板101側に位置する量子井戸層14Wのいくつかにn型ドーパントを含んでいてもよい。これにより、窒化物半導体発光素子の駆動電圧が低下する傾向にある。
 各量子井戸層14Wの厚さは特に限定されないが、互いに同一であることが好ましい。各量子井戸層14Wの厚さが互いに同一である場合には、各量子井戸層14Wの量子準位も同一になるため、各量子井戸層14Wにおける電子とホールとの再結合により各量子井戸層14Wにおいて同じ波長の光が生じる。これにより、窒化物半導体発光素子の発光スペクトル幅が狭くなるため好ましい。一方、各量子井戸層14Wの組成および/または厚さを意図的に異ならせた場合には、窒化物半導体発光素子の発光スペクトル幅をブロードにすることができる。
 各量子井戸層14Wの厚さは1nm以上7nm以下であることが好ましい。各量子井戸層14Wの厚さが1nm以上7nm以下の範囲内にある場合には、大電流密度での駆動時における窒化物半導体発光素子の発光効率をより向上させることができる。
 各バリア層14B(14B0、14B1~14B7、14BZ)としては、それぞれ、たとえば、各量子井戸層14Wを構成する窒化物半導体材料よりもバンドギャップエネルギーが大きい窒化物半導体材料を用いることができ、それぞれ独立に、AlfGagIn(1-f-g)N(0≦f<1、0<g≦1)の式で表わされる窒化物半導体層を用いることが好ましく、Alを含むAlhGa(1-h)N(0<h≦1)の式で表わされる窒化物半導体層を用いることがより好ましく、GaおよびAlを含むAlhGa(1-h)N(0<h<1)の式で表わされる窒化物半導体層を用いることがさらに好ましい。
 各バリア層14B(14B1~14B7)の厚さは特に限定されないが、1nm以上10nm以下であることが好ましく、3nm以上7nm以下であることがより好ましい。各バリア層14B(14B1~14B7)の厚さが薄いほど動作電圧が低下するが、各バリア層14B(14B1~14B7)の厚さを極端に薄くすると、大電流密度での動作時における窒化物半導体発光素子の発光効率が低下する傾向にある。最初のバリア層14BZの厚さは、特に限定されず、1nm以上10nm以下であることが好ましい。最後のバリア層14B0の厚さは、特に限定されないが、1nm以上40nm以下であることが好ましい。
 バリア層14B(14B1~14B7)および最初のバリア層14BZはアンドープとしたが、n型ドーパント濃度は特に限定されず、必要に応じて適宜設定されることが好ましい。また、複数のバリア層14B(14B1~14B7)のうち、基板101側に位置するバリア層14B(14B1~14B7)にはn型ドーパントをドープさせ、p型窒化物半導体層116側に位置するバリア層14B(14B1~14B7)には基板101側に位置するバリア層14B(14B1~14B7)よりも低い濃度のn型ドーパントをドープさせる、またはn型ドーパントをドープさせないことが好ましい。
 また、各バリア層14B(14B1~14B7)、最初のバリア層14BZおよび最後のバリア層14B0には、p型窒化物半導体層116およびp型窒化物半導体層118の成長時の熱拡散によりp型ドーパントがドープされることがある。
 量子井戸層14Wの層数は特に限定されないが、1層以上20層以下であることが好ましく、3層以上15層以下であることがより好ましく、4層以上12層以下であることがさらに好ましい。
 [p型窒化物半導体層]
 p型窒化物半導体層116,118としては、それぞれ独立に、たとえばAlx4Gay4Inz4N(0≦x4≦1、0≦y4≦1、0≦z4≦1、x4+y4+z4≠0)層にp型ドーパントがドープされた層を用いることが好ましく、特にp型窒化物半導体層116としてはp型ドーパントがドープされたAlx4Ga(1-x4)N(0<x4≦0.4、好ましくは0.1≦x4≦0.3)層、p型窒化物半導体層118としてはそれよりもバンドギャップの小さい層を用いることが好ましい。
 p型ドーパントとしては、特に限定されないが、たとえばマグネシウムを用いることが好ましい。p型窒化物半導体層116,118におけるキャリア濃度は1×1017/cm3以上であることが好ましい。p型ドーパントの活性率は、0.01程度であることから、p型窒化物半導体層116,118におけるp型ドーパント濃度(キャリア濃度とは異なる)は1×1019/cm3以上であることが好ましい。
 p型窒化物半導体層116,118の合計の厚さは、特に限定されないが、50nm以上300nm以下であることが好ましい。p型窒化物半導体層116,118の合計の厚さを薄くすることにより、p型窒化物半導体層116,118の成長時における加熱時間を短くすることができる。これにより、p型窒化物半導体層116,118におけるp型ドーパントの発光層114への拡散を抑制することができる。
 なお、p型窒化物半導体層116は、発光層114を挟み込むp型クラッド層としての働きを有する。
 [n電極、透明電極、p電極、透明絶縁保護膜]
 透明電極層122、p電極124およびn電極126は、窒化物半導体発光素子に駆動電力を供給するための電極である。図2に示すように、p電極124およびn電極126は、パッド電極部分のみで構成されているが、たとえば電流拡散を目的とする細長い突出部(枝電極)などが接続されていてもよい。
 透明電極層122は、たとえば、ITO(Indium Tin Oxide)またはIZO(Indium Zinc Oxide)などの透明導電膜からなることが好ましく、20nm以上200nm以下の厚さを有していることが好ましい。
 p電極124およびn電極126は、たとえば、ニッケル層、アルミニウム層、チタン層および金層がこの順序で積層されて構成されていることが好ましいが、同じ構成である必要はなく、別の構成であってもよい。p電極124およびn電極126にワイヤボンディングを行なう場合を想定すると、p電極124およびn電極126の厚さは1μm以上であることが好ましい。
 また、p電極124よりも下、好ましくは透明電極122よりも下に、電流がp電極124の直下に注入されることを防止するための絶縁層が設けられていることが好ましい。これにより、p電極124に遮蔽される発光量が減少して、光取り出し効率が向上する。
 また、透明絶縁保護膜128としては、たとえばSiO2からなる膜を用いることができるが、これに限定されるものではない。
 [キャリア濃度とドーパント濃度について]
 キャリア濃度は電子またはホールの濃度を意味し、n型ドーパントの量またはp型ドーパントの量だけでは決定されない。このようなキャリア濃度は窒化物半導体発光素子の電圧対容量特性の結果に基づいて算出されるものであり、電流が注入されていない状態のキャリア濃度のことを指しており、イオン化した不純物、ドナー化した結晶欠陥、およびアクセプター化した結晶欠陥から発生したキャリアの合計である。
 しかしながら、n型キャリア濃度は、n型ドーパントであるSi等の活性化率が高いことから、n型ドーパント濃度とほぼ同じと考えることができる。また、n型ドーパント濃度はSIMS(Secondary Ion Mass Spectroscopy;二次イオン質量分析)にて深さ方向の濃度分布を測定することにより容易に求めることができる。さらに、ドーパント濃度の相対関係(比率)は、キャリア濃度の相対関係(比率)とほぼ同じである。これらのことから、本発明においては、実際に測定の容易なドーパント濃度で定義している。そして、測定により得られたn型ドーパント濃度を厚さ方向に平均することによって、平均n型ドーパント濃度を得ることができる。
 [作用効果]
 本発明の窒化物半導体発光素子においては、第2のn型窒化物半導体層110の平均n型ドーパント濃度を、第1のn型窒化物半導体層108の平均n型ドーパント濃度の0.53倍以下とし、n型電子注入層112の平均n型ドーパント濃度を、第2のn型窒化物半導体層110の平均n型ドーパント濃度の1.5倍以上としている。これは、本発明者が鋭意検討した結果、このように、発光層114に最も近いn型電子注入層112のキャリア濃度を高くした場合には、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率を高くすることができるとともに、n型電子注入層112の下方に低キャリア濃度の第2のn型窒化物半導体層を設けることにより、静電耐圧の悪化を抑制できることを見い出したことによるものである。
 また、本発明の窒化物半導体発光素子において、n型電子注入層112は、第2のn型窒化物半導体層110よりバンドギャップが大きいことが好ましい。この場合には、発光層114内への電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 また、本発明の窒化物半導体発光素子において、発光層114は、量子井戸層およびバリア層を含み、GaおよびAlを含む窒化物半導体からなることが好ましい。この場合には、発光層114内における電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 また、本発明の窒化物半導体発光素子において、n型電子注入層112の厚さは、10nm以上100nm以下であることが好ましい。この場合には、発光層114内への電子の注入を良好に行なうことができるため、静電耐圧の悪化を抑制しつつ、動作電圧を低減することができるとともに、発光層114内における電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 さらに、本発明の窒化物半導体発光素子の発光ピーク波長(発光スペクトルのピークに対応する波長)は、250nm以上445nm以下であることが好ましい。本発明は、発光ピーク波長が250nm以上445nm以下といった短波長の光を発光する窒化物半導体発光素子に対して非常に有効に作用する。
 さらに、本発明の窒化物半導体発光素子の発光ピーク波長は、250nm以上445nm以下であることが好ましい。本発明は、発光ピーク波長が250nm以上445nm以下といった短波長の光を発光する窒化物半導体発光素子に対して非常に有効に作用する。
 <実施例1>
 以下に、図4の模式的断面図に示される実施例1の窒化物半導体発光素子の製造方法について説明する。
 まず、図4に示すように、凸部101aおよび凹部101bからなる凹凸加工が上面に施された100mm径のサファイア基板である基板101を準備した。凸部101aの形状は、平面視において略円形を為し、隣り合う3個の凸部101aが平面視において略正三角形の頂点に位置するように配置されている。隣り合う凸部101aの頂点の間隔は2μmであり、凸部101aの平面視における略円形の直径は1.2μm程度であり、凸部101aの高さは0.6μm程度であった。さらに、基板101の上面の凸部101aおよび凹部101bは、図4に示す断面を有しており、凸部101aは先端部を有していた。
 次に、凸部101aおよび凹部101bの形成後の基板101の上面に対してRCA洗浄を行なった。そして、チャンバにRCA洗浄後の基板101を設置してN2とO2とArとを導入し、基板101を650℃に加熱し、Alターゲットをスパッタする反応性スパッタ法により、凸部101aおよび凹部101bを有する基板101の表面上に、基板101の表面の法線方向に伸長する結晶粒の揃った柱状結晶の集合体からなるAlON結晶からなる厚さ35nmのバッファ層102を形成した。
 次に、バッファ層102が形成された基板101を第1のMOCVD装置内に収容した。そして、MOCVD法により、バッファ層102上に、アンドープGaNからなる窒化物半導体下地層106を成長させ、引き続いてSiドープn型GaNからなる第1のn型窒化物半導体層108Aを成長させた。このとき、窒化物半導体下地層106の厚さを3.8μmとし、第1のn型窒化物半導体層108Aの厚さを3μmとし、第1のn型窒化物半導体層108Aにおけるn型ドーパント濃度を1×1019/cm3とした。
 なお、窒化物半導体下地層106の厚さをできるだけ厚くすることによって、窒化物半導体下地層106中の欠陥は減少するが、窒化物半導体下地層106の厚さをある程度以上厚くしたとしても窒化物半導体下地層106における欠陥減少効果が飽和した。これにより、窒化物半導体下地層106の厚さは、1μm以上8μm以下であることが好ましく、3μm以上5μm以下であることがより好ましいことがわかった。
 次に、第1のMOCVD装置から取り出した基板101を第2のMOCVD装置内に収容した。基板101の温度を1250℃に設定して、厚さ1.5μmのn型GaN層からなる第1のn型窒化物半導体層108B(n型ドーパント濃度:1×1019/cm3)を成長させることによって、第1のn型窒化物半導体層108Aと第1のn型窒化物半導体層108Bとの2層の積層体からなる第1のn型窒化物半導体層108(平均n型ドーパント濃度:1×1019/cm3)を形成した。
 次に、基板101の温度を940℃に保持した状態で、厚さ360nmのSiドープn型GaNからなる第2のn型窒化物半導体層110(平均n型ドーパント濃度:1×1018/cm3)を成長した。
 次に、厚さ20nmのSiドープn型Al0.03Ga0.97Nからなるn型電子注入層112(平均n型ドーパント濃度:1.5×1019/cm3)を成長させた。
 次に、基板101の温度を840℃に下げて、発光層114を成長させた。具体的には、図3に示すように、アンドープAl0.05Ga0.95Nからなる各バリア層14B(14BZ、14B1~14B7、14B0)と、アンドープIn0.11Ga0.89Nからなる量子井戸層14W(14W1~14W8)とを1層ずつ交互に成長させた。バリア層14BZおよび14B1~14B7の厚さは4.3nmとし、各量子井戸層(14W1~14W8)の厚さは2.9nmとし、バリア層14B0の厚さは8nmに設定した。
 次に、基板101の温度を1200℃に上げて、最後のバリア層14B0の上面上に、p型窒化物半導体層116,118として、それぞれ、p型Al0.2Ga0.8N層、p型GaN層を成長させた。最終的に目標とするp型ドーパント濃度とするため、p型ドーパント原料流量は一定とはせず、適宜変化させた。
 なお、上述の各層のMOCVD成長において、Gaの原料ガスとしてはTMG(トリメチルガリウム)を用い、Alの原料ガスとしてはTMA(トリメチルアルミニウム)を用い、Inの原料ガスとしてはTMI(トリメチルインジウム)を用い、Nの原料ガスとしてはNH3を用いた。また、n型ドーパントであるSiの原料ガスとしてはSiH4を用い、p型ドーパントであるMgの原料ガスとしてはCp2Mgを用いた。しかし、原料ガスは上記ガスに限定されず、MOCVD用原料ガスとして用いられるガスであれば限定されることなく用いることができる。具体的には、Gaの原料ガスとしてTEG(トリエチルガリウム)を用いることができ、Alの原料ガスとしてTEA(トリエチルアルミニウム)を用いることができ、Inの原料ガスとしてTEI(トリエチルインジウム)を用いることができ、Nの原料ガスとしてDMHy(ジメチルヒドラジン)などの有機窒素化合物を用いることができ、Siの原料ガスとしてSi26または有機Siなどを用いることができる。
 次に、第1のn型窒化物半導体層108Bの表面の一部が露出するように、p型窒化物半導体層118、p型窒化物半導体層116、発光層114、n型電子注入層112、第2のn型窒化物半導体層110および第1のn型窒化物半導体層108Bの一部をエッチングした。このエッチングにより露出した第1のn型窒化物半導体層108Bの上面上にAuからなるn電極126を形成した。また、p型窒化物半導体層118の上面上に、ITOからなる透明電極層122とAuからなるp電極124とを順に形成した。また、主として透明電極層122および上記エッチングによって露出した各層の側面を覆うようにSiO2からなる透明絶縁保護膜128を形成した。
 次に、基板101を440×530μmサイズのチップに分割し、各チップを表面実装型パッケージにマウントし、p電極124およびn電極126をワイヤボンド法によってパッケージ側の電極に接続し、チップを樹脂封止した。これにより、実施例1の窒化物半導体発光素子が得られた。実施例1の窒化物半導体発光素子の発光ピーク波長は、約405nmであり、動作電流50mA(約42mA/cm2)で72.5mWの光出力(発光強度)が得られた。
 また、実施例1の窒化物半導体発光素子の効果を調べるため、n型電子注入層112の形成を省略したこと以外は実施例1と同様にして、比較例の窒化物半導体発光素子を製造した。
 そして、実施例1の窒化物半導体発光素子と、比較例の窒化物半導体発光素子とをそれぞれ電流密度が120mA/cm2という大電流密度で動作させた結果、実施例1の窒化物半導体発光素子の発光効率は、比較例の窒化物半導体発光素子の発光効率と比較して、数%~10%改善できることが確認された。
 また、実施例1の窒化物半導体発光素子のn型電子注入層112のAlx3Gay3Nの組成式のAlの組成比x3を0~0.09の範囲で変化させた場合(x3=0,0.01,0.03,0.05,0.07,0.09)、およびn型電子注入層112の平均n型ドーパント濃度を7×1018/cm3~3×1019/cm3の範囲で変化させた場合(7×1018/cm3,1×1019/cm3,1.5×1019/cm3,2.2×1019/cm3,3×1019/cm3)のいずれにおいても上記と同様の結果が得られたが、Alの組成比x3を0.01以上0.05以下とした場合に特に発光効率の改善効果が優れることが確認された。
 <実施例2>
 以下に、図5の模式的断面図に示される実施例2の窒化物半導体発光素子の製造方法について説明する。まず、実施例1と同様にして、凸部101aおよび凹部101bの形成後の基板101の上面にバッファ層102、窒化物半導体下地層106、第1のn型窒化物半導体層108Aおよび第1のn型窒化物半導体層108Bをこの順に形成した。
 次に、基板101の温度を940℃に保持した状態で、厚さ295nmのSiドープn型GaNからなる第2のn型窒化物半導体層210A(n型ドーパント濃度:6×1018/cm3)、厚さ50nmのSiドープn型GaNからなる第2のn型窒化物半導体層210B(n型ドーパント濃度:7×1017/cm3)、および厚さ15nmのSiドープn型GaNからなる第2のn型窒化物半導体層210C(n型ドーパント濃度:6×1018/cm3)をこの順にMOCVD法により成長させることによって、第2のn型窒化物半導体層210A,210B,210Cの3層の積層体からなる第2のn型窒化物半導体層210を形成した。なお、第2のn型窒化物半導体層210の平均n型ドーパント濃度は、{6×1018×(295+15)+7×1017×50}/(295+50+15)≒5.26×1018/cm3であった。
 その後は、Alx3Gay3Nの組成式のAlの組成比x3を0.02としてn型電子注入層112(平均n型ドーパント濃度:1.5×1019/cm3)を形成したこと以外は実施例1と同様にして、実施例2の窒化物半導体発光素子を製造した。実施例2の窒化物半導体発光素子の発光ピーク波長は、405nmであった。
 そして、実施例2の窒化物半導体発光素子を電流密度が120mA/cm2という大電流密度で動作させた結果、実施例2の窒化物半導体発光素子の発光効率は、比較例の窒化物半導体発光素子の発光効率と比較して、数%~10%改善できることが確認された。
 また、実施例2の窒化物半導体発光素子においては、n型ドーパントが、それぞれ、中濃度、低濃度および中濃度にドープされた第2のn型窒化物半導体層210A,210B,210Cの3層の積層体から第2のn型窒化物半導体層210が構成されているため、窒化物半導体発光素子の静電耐圧を悪化させることなく、動作電圧をさらに低減できることが確認された。
 また、実施例2の窒化物半導体発光素子のn型電子注入層112の厚さを5~100nmの変化させた場合(5nm、10nm、20nm、50nmおよび100nm)のいずれにおいても上記と同様の結果が得られたが、n型電子注入層112の厚さを10nm以上100nm以下とした場合に特に発光効率の改善効果が優れることが確認された。
 <実施例3>
 以下に、図6の模式的断面図に示される実施例3の窒化物半導体発光素子の製造方法について説明する。まず、実施例1と同様にして、凸部101aおよび凹部101bの形成後の基板101の上面にバッファ層102、窒化物半導体下地層106、第1のn型窒化物半導体層108Aおよび第1のn型窒化物半導体層108Bをこの順に形成した。
 次に、基板101の温度を940℃に保持した状態で、厚さ64nmのSiドープn型GaNからなる第2のn型窒化物半導体層310A(n型ドーパント濃度:7×1017/cm3)をMOCVD法により成長させた後に、厚さ2nmのアンドープIn0.04Ga0.96N層と厚さ2nmのアンドープGaN層との交互積層体である超格子構造の第2のn型窒化物半導体層310BをMOCVD法により成長させることによって、第2のn型窒化物半導体層310A,310Bの2層の積層体からなる第2のn型窒化物半導体層310を形成した。なお、第2のn型窒化物半導体層310の平均n型ドーパント濃度は、(7×1017×64)/(64+2+2)≒6.59×1017/cm3であった。
 その後は、Alx3Gay3Nの組成式のAlの組成比x3を0.03としてn型電子注入層112(平均n型ドーパント濃度:1.5×1019/cm3)を形成するとともに、アンドープIn0.18Ga0.82Nからなる量子井戸層14W(14W1~14W8)を形成したこと以外は実施例1と同様にして、実施例3の窒化物半導体発光素子を製造した。実施例3の窒化物半導体発光素子の発光ピーク波長は、445nmであった。
 そして、実施例3の窒化物半導体発光素子を電流密度が120mA/cm2という大電流密度で動作させた結果、実施例3の窒化物半導体発光素子の発光効率は、実施例1および2の窒化物半導体発光素子と比較して、発光効率をさらに2~5%程度改善できることが確認された。これは、超格子構造を有する第2のn型窒化物半導体層310が、第2のn型窒化物半導体層310上に成長される窒化物半導体層の結晶欠陥を緩和できたことによるものであると考えられる。
 また、実施例3においては、発光ピーク波長が445nmという約450nmの窒化物半導体発光素子において、n型電子注入層112の直下の層をアンドープIn0.04Ga0.96N層とアンドープGaN層との交互積層体である超格子構造の第2のn型窒化物半導体層310Bとしたが、このような超格子構造を発光ピーク波長が405nmおよび385nmといったより短波長の窒化物半導体発光素子に適用してもよい。
 <実施例4>
 以下に、図7の模式的断面図に示される実施例4の窒化物半導体発光素子の製造方法について説明する。まず、実施例1と同様にして、凸部101aおよび凹部101bの形成後の基板101の上面にバッファ層102、窒化物半導体下地層106、第1のn型窒化物半導体層108Aおよび第1のn型窒化物半導体層108Bをこの順に形成した。
 次に、基板101の温度を940℃に保持した状態で、厚さ280nmのSiドープn型GaNからなる第2のn型窒化物半導体層410A(n型ドーパント濃度:7×1017/cm3)をMOCVD法により成長させた後に、厚さ2nmのアンドープAl0.02Ga0.98N層と厚さ2nmのアンドープGaN層との交互積層体である超格子構造の第2のn型窒化物半導体層410BをMOCVD法により成長させることによって、第2のn型窒化物半導体層410A,410Bの2層の積層体からなる第2のn型窒化物半導体層410を形成した。なお、第2のn型窒化物半導体層410の平均n型ドーパント濃度は、(7×1017×280)/(280+2+2)≒6.90×1017/cm3であった。
 その後は、Alx3Gay3Nの組成式のAlの組成比x3を0.07としてn型電子注入層112(平均n型ドーパント濃度:1.5×1019/cm3)を形成するとともに、各バリア層14B(14BZ、14B1~14B7、14B0)をアンドープAlGaInNから形成し、さらには量子井戸層14W(14W1~14W8)をアンドープIn0.06Ga0.94Nから形成したこと以外は実施例1と同様にして、実施例4の窒化物半導体発光素子を製造した。実施例4の窒化物半導体発光素子の発光ピーク波長は385nm、光出力は50mAであった。
 これにより、発光ピーク波長が385nmと短波長であった場合でも、高キャリア濃度の電流注入層112によって、良好な電流注入とホールのオーバーフロー防止が実現されるとともに、第2のn型窒化物半導体層410BにInGaNを用いないことにより、第2のn型窒化物半導体層410Bによる光吸収量を低減することができるため、発光効率を向上することができることが確認された。
 また、発光ピーク波長の短波長化のためには、発光層114内の各バリア層14B(14BZ、14B1~14B7、14B0)をAlGaNとすることが好ましいが、さらにInを加えた四元混晶のAlGaInNとすることによって、Inの組成揺らぎに伴う結晶欠陥の影響を低減することができる。また、量子井戸層14W(14W1~14W8)についても、結晶欠陥を低減するために、GaN層に対してInを混合することによっても発光ピーク波長が長波長化するため、さらにAlを加えることによって波長を調整するとともに結晶欠陥の影響を低減することができる。
 <実施例5>
 以下に、図8の模式的断面図に示される実施例5の窒化物半導体発光素子の製造方法について説明する。
 まず、図8に示すように、基板として4インチ径のSi基板501を用いた。窒化物系半導体層の結晶成長に先立って、フッ酸系のエッチャントでSi基板501の表面酸化膜を除去した後に、MOCVD装置のチャンバ内にSi基板501をセットした。
 次に、MOCVD装置内でSi基板501を1100℃に加熱し、チャンバ内圧力13.3kPaの水素雰囲気にてSi基板501の表面((111)面)のクリーニングを行なった。
 次に、Si基板501の温度とチャンバ内圧力を維持しつつ、NH3(12.5slm)をチャンバ内に流すことによって、Si基板501の表面の窒化を行なった。引き続いて、流量が117μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって、Si基板501の表面上に、厚さ200nmのアンドープのAlN層502をMOCVD法により成長させた。
 次に、Si基板501の温度を1150℃に上昇させ、流量が57μmol/minのTMGと、流量が97μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって、AlN層502の表面上に、厚さ400nmのアンドープのAl0.7Ga0.3N層503をMOCVD法により成長させた。
 次に、流量が99μmol/minのTMGと、流量が55μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって、Al0.7Ga0.3N層503の表面上に、厚さ400nmのアンドープのAl0.4Ga0.6N層504をMOCVD法により成長させた。
 次に、流量が137μmol/minのTMGと、流量が18μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって、Al0.4Ga0.6N層504の表面上に、厚さ400nmのアンドープのAl0.1Ga0.9N層505をMOCVD法により成長させた。
 次に、Si基板501の温度は同一とした状態で、厚さ5nmのAlN層と厚さ20nmのAl0.1Ga0.9N層とを1層ずつ交互に50周期積層した多層バッファ層構造506をAl0.1Ga0.9N層505の表面上にMOCVD法により形成した。このとき、AlN層は、流量が102μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって成長させた。また、Al0.1Ga0.9N層は、流量が720μmol/minのTMGと、流量が80μmol/minのTMAと、流量が12.5slmのNH3とをチャンバ内に流すことによって成長させた。
 その後は、Alx3Gay3Nの組成式のAlの組成比x3を0.04としてn型電子注入層112(平均n型ドーパント濃度:1.5×1019/cm3)を形成したこと以外は実施例2と同様にして、実施例5の窒化物半導体発光素子を製造した。実施例5の窒化物半導体発光素子の発光ピーク波長は、405nmであった。
 そして、実施例5の窒化物半導体発光素子を電流密度が120mA/cm2という大電流密度で動作させた結果、実施例5の窒化物半導体発光素子の発光効率は、Si基板501の光吸収により、実施例1~4の窒化物半導体発光素子の発光効率よりも低くなっているが、比較例の窒化物半導体発光素子の発光効率よりも改善できることが確認された。なお、実施例5の窒化物半導体発光素子においては、Si基板501を除去することによって、発光効率のさらなる向上を見込むことができる。
 <本願発明の効果に関する考察>
 本願に記載の新規構造で良好な結果が得られた理由として、本願発明者らは以下のモデルを考えている。
 1.ホールブロック効果:たとえば短波長の発光ピーク波長(約420nm以下の場合、実施例1、2および5の窒化物半導体発光素子の発光ピーク波長405nmなど)の窒化物半導体発光素子においては、青色(約450nm)よりも量子井戸層のバンドギャップが大きくなることに伴って、ホールが発光層のn型窒化物半導体層側まで移動しやすくなるが、その際、高ドープ濃度のn型電子注入層が、ホールのn型窒化物半導体層側へのリークを防ぐホールブロック層として働くために、窒化物半導体発光素子の発光効率が向上すると考えられる。これは、80℃以上といった高温での窒化物半導体発光素子の特性向上にもつながる。
 2.電子注入効果:発光層に隣接するn型電子注入層として、n型電子注入層の直下の第2のn型窒化物半導体層よりも平均n型ドーパント濃度の高いn型窒化物半導体層を導入することによって、発光層への電子の注入が容易になる。この効果は、n型電子注入層のバンドギャップが大きい方がより顕著になる。これにより、動作電圧を低減することができる。また「2次元電子層効果」、つまりn型電子注入層と第2のn型窒化物半導体層との間にバンドギャップ差があるときにバンドの曲がりに伴って、2次元電子層が形成される効果によっても、電子の横方向の広がりが促進され、動作電圧の低減効果が生じる可能性がある。
 3.静電耐圧向上効果:本発明者らは、第2のn型窒化物半導体層のn型キャリア濃度をn型電子注入層のキャリア濃度よりも低くするとともに、n型電子注入層をたとえば20nmと薄くすることにより、(i)n型電子注入層と第2のn型窒化物半導体層との間の電子にとっての障壁が小さくなる、および(ii)窒化物半導体発光素子に電圧を印加して発光させる際、空乏層が薄いn型電子注入層を越えて、平均n型ドーパント濃度の低い第2のn型窒化物半導体層に広がることによって、電圧勾配が減少して、静電耐圧が増加する、という効果があると想定している。
 なお、ここに記載した理由はあくまでも推測であり、別の理由で本発明の効果が得られている可能性もある。
 <まとめ>
 本発明は、第1のn型窒化物半導体層と、第2のn型窒化物半導体層と、n型電子注入層と、発光層と、p型窒化物半導体層と、をこの順に備え、第2のn型窒化物半導体層の平均n型ドーパント濃度は、第1のn型窒化物半導体層の平均n型ドーパント濃度の0.53倍以下であり、n型電子注入層の平均n型ドーパント濃度は、第2のn型窒化物半導体層の平均n型ドーパント濃度の1.5倍以上である窒化物半導体発光素子である。このような構成とすることにより、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率を高くすることができる。
 また、本発明の窒化物半導体発光素子において、n型電子注入層は、第2のn型窒化物半導体層よりバンドギャップが大きいことが好ましく、GaおよびAlを含む窒化物半導体からなることがより好ましい。このような構成とすることにより、発光層内における電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 また、本発明の窒化物半導体発光素子において、発光層は、量子井戸層およびバリア層を含み、GaおよびAlを含む窒化物半導体からなることが好ましい。このような構成とすることにより、発光層内における電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 また、本発明の窒化物半導体発光素子において、n型電子注入層の厚さは、10nm以上100nm以下であることが好ましい。このような構成とすることにより、発光層内への電子の注入を良好に行なうことができるため、静電耐圧の悪化を抑制しつつ、動作電圧を低減することができるとともに、発光層内における電子・ホールの閉じ込めをより良好に行なうことができるため、動作電流密度が高い場合においても窒化物半導体発光素子の発光効率をより高くすることができる。
 さらに、本発明の窒化物半導体発光素子の発光ピーク波長は、250nm以上445nm以下であることが好ましい。本発明は、発光ピーク波長が250nm以上445nm以下といった短波長の光を発光する窒化物半導体発光素子に対して非常に有効に作用する。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の窒化物半導体発光素子は、たとえば、一般照明、液晶用バックライト、表示、可視光通信、および紫外線光源等に利用することができる。
 14W1,14W2,14W3,14W4,14W5,14W6 量子井戸層、14B0,14B1,14B2,14B3,14B4,14B5,14BZ バリア層、101 基板、101a 凸部、101b 凹部、102 バッファ層、106 窒化物半導体下地層、108,108A,108B 第1のn型窒化物半導体層、110,210,210A,210B,210C,310,310A,310B,410,410A,410B 第2のn型窒化物半導体層、112 n型電子注入層、114 発光層、116,118 p型窒化物半導体層、122 透明電極層、124 p電極、126 n電極、128 透明絶縁保護膜、501 Si基板、502 AlN層、503 Al0.7Ga0.3N層、504 Al0.4Ga0.6N層、505 Al0.1Ga0.9N層、506 多層バッファ層構造。

Claims (5)

  1.  第1のn型窒化物半導体層と、
     第2のn型窒化物半導体層と、
     n型電子注入層と、
     発光層と、
     p型窒化物半導体層と、をこの順に備え、
     前記第2のn型窒化物半導体層の平均n型ドーパント濃度は、前記第1のn型窒化物半導体層の平均n型ドーパント濃度の0.53倍以下であり、
     前記n型電子注入層の平均n型ドーパント濃度は、前記第2のn型窒化物半導体層の平均n型ドーパント濃度の1.5倍以上である、窒化物半導体発光素子。
  2.  前記n型電子注入層は、前記第2のn型窒化物半導体層よりバンドギャップが大きい、請求項1に記載の窒化物半導体発光素子。
  3.  前記発光層は、量子井戸層およびバリア層を含み、前記バリア層は、GaおよびAlを含む窒化物半導体からなる、請求項1または2に記載の窒化物半導体発光素子。
  4.  前記n型電子注入層の厚さは、10nm以上100nm以下である、請求項1から3のいずれか1項に記載の窒化物半導体発光素子。
  5.  前記窒化物半導体発光素子の発光ピーク波長は、250nm以上445nm以下である、請求項1から4のいずれか1項に記載の窒化物半導体発光素子。
PCT/JP2014/059122 2013-04-30 2014-03-28 窒化物半導体発光素子 WO2014178248A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480004398.4A CN104919604B (zh) 2013-04-30 2014-03-28 氮化物半导体发光元件
JP2015514786A JPWO2014178248A1 (ja) 2013-04-30 2014-03-28 窒化物半導体発光素子
US14/653,703 US9324908B2 (en) 2013-04-30 2014-03-28 Nitride semiconductor light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095469 2013-04-30
JP2013-095469 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178248A1 true WO2014178248A1 (ja) 2014-11-06

Family

ID=51843383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059122 WO2014178248A1 (ja) 2013-04-30 2014-03-28 窒化物半導体発光素子

Country Status (4)

Country Link
US (1) US9324908B2 (ja)
JP (1) JPWO2014178248A1 (ja)
CN (1) CN104919604B (ja)
WO (1) WO2014178248A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356297A (zh) * 2015-10-30 2016-02-24 武汉电信器件有限公司 一种GaN基激光器和相应制造方法
JP2016219547A (ja) * 2015-05-18 2016-12-22 ローム株式会社 半導体発光素子
JP2017037030A (ja) * 2015-08-12 2017-02-16 日本電信電話株式会社 半導体装置およびその製造方法
CN106505133A (zh) * 2015-09-03 2017-03-15 丰田合成株式会社 紫外发光器件及其制造方法
JP2017139265A (ja) * 2016-02-01 2017-08-10 旭化成株式会社 紫外線発光素子及びそれを備えた装置
JP2017143152A (ja) * 2016-02-09 2017-08-17 日亜化学工業株式会社 窒化物半導体発光素子
JPWO2016072150A1 (ja) * 2014-11-06 2017-08-31 シャープ株式会社 窒化物半導体発光素子
JP2018500762A (ja) * 2015-01-05 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
JP2018125428A (ja) * 2017-02-01 2018-08-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
CN113396484A (zh) * 2019-01-09 2021-09-14 索泰克公司 包含基于InGaN的P型注入层的光电半导体结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597862B (zh) * 2013-08-30 2017-09-01 晶元光電股份有限公司 具阻障層的光電半導體元件
JP6375890B2 (ja) * 2014-11-18 2018-08-22 日亜化学工業株式会社 窒化物半導体素子及びその製造方法
TWI668885B (zh) * 2016-08-25 2019-08-11 億光電子工業股份有限公司 氮化物半導體元件及其製造方法與所應用之封裝結構
DE102016123262A1 (de) * 2016-12-01 2018-06-07 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterkörper und Verfahren zur Herstellung einer Halbleiterschichtenfolge
KR102600002B1 (ko) * 2017-01-11 2023-11-08 삼성전자주식회사 반도체 발광 소자
US11043530B2 (en) * 2017-02-13 2021-06-22 Fujifilm Business Innovation Corp. Light-emitting component having light-absorbing layer, light-emitting device, and image forming apparatus
JP6440802B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 有機デバイスの製造方法
KR102506441B1 (ko) * 2017-12-04 2023-03-06 삼성전자주식회사 반도체 발광 어레이의 제조 방법 및 반도체 발광 어레이
CN110047980B (zh) * 2019-05-05 2020-11-03 深圳市洲明科技股份有限公司 一种紫外led外延结构及其制备方法
JP6968122B2 (ja) * 2019-06-06 2021-11-17 日機装株式会社 窒化物半導体発光素子
CN115799417B (zh) * 2023-02-13 2023-05-05 江西兆驰半导体有限公司 一种紫外发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232237A (ja) * 1998-12-08 2000-08-22 Nichia Chem Ind Ltd 窒化物半導体素子
JP2005260215A (ja) * 2004-02-09 2005-09-22 Nichia Chem Ind Ltd 窒化物半導体素子
JP2006120856A (ja) * 2004-10-21 2006-05-11 Hitachi Cable Ltd 半導体発光素子の製造方法
JP2006173581A (ja) * 2004-11-16 2006-06-29 Showa Denko Kk Iii族窒化物半導体発光素子
JP2007234648A (ja) * 2006-02-27 2007-09-13 Sharp Corp 窒化物半導体発光素子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153645A (ja) 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
CN1964093B (zh) * 1997-01-09 2012-06-27 日亚化学工业株式会社 氮化物半导体元器件
JP3216596B2 (ja) 1998-01-08 2001-10-09 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
EP1063711B1 (en) 1998-03-12 2013-02-27 Nichia Corporation Nitride semiconductor device
JP4356555B2 (ja) 1998-03-12 2009-11-04 日亜化学工業株式会社 窒化物半導体素子
US6635904B2 (en) 2001-03-29 2003-10-21 Lumileds Lighting U.S., Llc Indium gallium nitride smoothing structures for III-nitride devices
JP2005203520A (ja) 2004-01-14 2005-07-28 Sumitomo Electric Ind Ltd 半導体発光素子
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
CN102334204B (zh) * 2010-01-06 2013-11-20 松下电器产业株式会社 氮化物系半导体发光元件及其制造方法
JP6005346B2 (ja) * 2011-08-12 2016-10-12 シャープ株式会社 窒化物半導体発光素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232237A (ja) * 1998-12-08 2000-08-22 Nichia Chem Ind Ltd 窒化物半導体素子
JP2005260215A (ja) * 2004-02-09 2005-09-22 Nichia Chem Ind Ltd 窒化物半導体素子
JP2006120856A (ja) * 2004-10-21 2006-05-11 Hitachi Cable Ltd 半導体発光素子の製造方法
JP2006173581A (ja) * 2004-11-16 2006-06-29 Showa Denko Kk Iii族窒化物半導体発光素子
JP2007234648A (ja) * 2006-02-27 2007-09-13 Sharp Corp 窒化物半導体発光素子の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016072150A1 (ja) * 2014-11-06 2017-08-31 シャープ株式会社 窒化物半導体発光素子
JP2018500762A (ja) * 2015-01-05 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
JP2016219547A (ja) * 2015-05-18 2016-12-22 ローム株式会社 半導体発光素子
JP2017037030A (ja) * 2015-08-12 2017-02-16 日本電信電話株式会社 半導体装置およびその製造方法
CN106505133A (zh) * 2015-09-03 2017-03-15 丰田合成株式会社 紫外发光器件及其制造方法
CN105356297A (zh) * 2015-10-30 2016-02-24 武汉电信器件有限公司 一种GaN基激光器和相应制造方法
JP2017139265A (ja) * 2016-02-01 2017-08-10 旭化成株式会社 紫外線発光素子及びそれを備えた装置
JP2017143152A (ja) * 2016-02-09 2017-08-17 日亜化学工業株式会社 窒化物半導体発光素子
JP2018125428A (ja) * 2017-02-01 2018-08-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
WO2018142870A1 (ja) * 2017-02-01 2018-08-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
US10944026B2 (en) 2017-02-01 2021-03-09 Nikkiso Co., Ltd. Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
CN113396484A (zh) * 2019-01-09 2021-09-14 索泰克公司 包含基于InGaN的P型注入层的光电半导体结构
CN113396484B (zh) * 2019-01-09 2024-04-23 索泰克公司 包含基于InGaN的P型注入层的光电半导体结构

Also Published As

Publication number Publication date
JPWO2014178248A1 (ja) 2017-02-23
US9324908B2 (en) 2016-04-26
CN104919604A (zh) 2015-09-16
CN104919604B (zh) 2017-06-09
US20150349197A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2014178248A1 (ja) 窒化物半導体発光素子
US10790409B2 (en) Nitride semiconductor light-emitting element
JP5533744B2 (ja) Iii族窒化物半導体発光素子
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
US9620671B2 (en) Nitride semiconductor light emitting element and method for manufacturing same
US9236533B2 (en) Light emitting diode and method for manufacturing same
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US9373750B2 (en) Group III nitride semiconductor light-emitting device
US20090121214A1 (en) Iii-nitride semiconductor light-emitting device and manufacturing method thereof
JP6227134B2 (ja) 窒化物半導体発光素子
WO2014061692A1 (ja) 窒化物半導体発光素子
JP2008288397A (ja) 半導体発光装置
JP2006210692A (ja) 3族窒化物系化合物半導体発光素子
US8633469B2 (en) Group III nitride semiconductor light-emitting device
JP5423026B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP2009224370A (ja) 窒化物半導体デバイス
JP6124740B2 (ja) 窒化物半導体発光素子の製造方法、窒化物半導体発光素子および窒化物半導体発光素子用下地基板
KR100728132B1 (ko) 전류 확산층을 이용한 발광 다이오드
TWI545798B (zh) Nitride semiconductor light emitting device and manufacturing method thereof
JP2015115343A (ja) 窒化物半導体素子の製造方法
JP2008227103A (ja) GaN系半導体発光素子
JP6482388B2 (ja) 窒化物半導体発光素子
US20220310874A1 (en) Group iii nitride semiconductor device and method for producing same
JP4055794B2 (ja) 窒化ガリウム系化合物半導体発光素子
US9508895B2 (en) Group III nitride semiconductor light-emitting device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514786

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14653703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791940

Country of ref document: EP

Kind code of ref document: A1