JP7043733B2 - 発光素子、発光装置、光源、認証装置および電子機器 - Google Patents

発光素子、発光装置、光源、認証装置および電子機器 Download PDF

Info

Publication number
JP7043733B2
JP7043733B2 JP2017047586A JP2017047586A JP7043733B2 JP 7043733 B2 JP7043733 B2 JP 7043733B2 JP 2017047586 A JP2017047586 A JP 2017047586A JP 2017047586 A JP2017047586 A JP 2017047586A JP 7043733 B2 JP7043733 B2 JP 7043733B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
light
emitting element
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047586A
Other languages
English (en)
Other versions
JP2018152461A (ja
Inventor
英利 山本
唯芽 濱出
徹司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017047586A priority Critical patent/JP7043733B2/ja
Priority to US15/913,047 priority patent/US10804472B2/en
Publication of JP2018152461A publication Critical patent/JP2018152461A/ja
Application granted granted Critical
Publication of JP7043733B2 publication Critical patent/JP7043733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Description

本発明は、発光素子、発光装置、光源、認証装置および電子機器に関するものである。
有機エレクトロルミネッセンス素子(いわゆる有機EL素子)は、陽極と陰極との間に少なくとも1層の発光性有機層を介挿した構造を有する発光素子である。このような発光素子では、陰極と陽極との間に電界を印加することにより、発光層に陰極側から電子が注入されるとともに陽極側から正孔が注入され、発光層中で電子と正孔が再結合することにより励起子が生成され、この励起子が基底状態に戻る際に、そのエネルギー分が光として放出される。
このような発光素子としては、700nmを超える長波長域で発光するものが知られている(例えば、特許文献1~3参照)。
特許文献1~3に記載の発光素子では、発光層を、発光材料と、この発光材料を保持するホスト材料とを含むものとし、さらに、発光層における発光材料の含有量を、10%以下程度に設定することで、発光素子の高効率化を実現している。
しかしながら、このような発光素子では、発光層における発光材料の含有量を、10%以下程度のように低濃度に設定することで、発光素子の高効率化が図られるが、これに反して、発光層の発光波長が、発光材料が本来有している発光波長よりも短波長側にシフトし、より長波長域において発光する発光素子を得ることができないという問題があった。
特開2012-219078号公報 特開2013-35784号公報 特開2015-207759号公報
本発明の目的は、高効率化が図られつつ、より長波長の近赤外域で発光する発光層を備える発光素子、この発光素子を備え、信頼性に優れた発光装置、光源、認証装置および電子機器を提供することにある。
このような目的は、下記の本発明により達成される。
本発明の発光素子は、陽極と、
陰極と、
前記陽極と前記陰極との間に設けられ、下記一般式(IRD1)で表わされる化合物を含む発光材料と、アセン系材料を含む、前記発光材料を保持するホスト材料とを含み、前記陽極と前記陰極との間に通電することによりピーク波長が近赤外域の光を発光する発光層とを有し、
前記発光層は、前記発光層における前記発光材料の含有量が30wt%以上70wt%以下であることを特徴とする発光素子。
Figure 0007043733000001
[前記一般式(IRD1)中、Rは、それぞれ独立して、アリール基、アリールアミノ基、トリアリールアミン、または、これらの誘導体のうちの少なくとも1種を含む基を示し、前記一般式(IRD1)で表わされる化合物が備えるピラジン環に連結する2つのR同士は、結合して環を形成していてもよい。]
これにより、高効率化が図られつつ、より長波長の近赤外域で発光する発光層を備える発光素子を実現することができる。
本発明の発光素子は、陽極と、
陰極と、
前記陽極と前記陰極との間に設けられ、下記一般式(IRD2)で表わされる化合物を含む発光材料と、前記発光材料を保持するホスト材料とを含み、前記陽極と前記陰極との間に通電することによりピーク波長が近赤外域の光を発光する発光層とを有し、
前記発光層は、前記発光層における前記発光材料の含有量が30wt%以上70wt%以下であることを特徴とする発光素子。
Figure 0007043733000002
[前記一般式(IRD2)中、各Rは、それぞれ独立して、フェニル基、チオフェニル基、フリル基、または、これらの誘導体のうちの少なくとも1種を含む基を示す。]
これにより、発光素子は、高効率化が図られつつ、より長波長の近赤外域で発光する発光層をより確実に備えるものとなる。
本発明の発光素子では、前記一般式(IRD1)で表わされる化合物は、下記式IRD1-1で表わされる化合物であることが好ましい。
Figure 0007043733000003
これにより、発光素子は、高効率化が図られつつ、より長波長の近赤外域で発光する発光層をより確実に備えるものとなる。
本発明の発光素子では、前記一般式(IRD2)で表わされる化合物は、下記式IRD2-1で表わされる化合物であることが好ましい。
Figure 0007043733000004
これにより、発光素子は、高効率化が図られつつ、より長波長の近赤外域で発光する発光層をより確実に備えるものとなる。
本発明の発光素子では、前記ホスト材料は、前記アセン系材料として、下記式IRH1で表わされる化合物を含むことが好ましい。
Figure 0007043733000005
[前記式IRH1中、nは、1~12の自然数を示し、Rは、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。]
このようなテトラセン系材料(特に、前記IRH1で表わされる化合物)は、極性が低い(分極が小さい)化合物である。そのため、テトラセン系材料をホスト材料として用いることにより、発光材料の分子同士の相互作用を低減することができる。そのため、この相互作用に起因する、濃度消光性を低減することができる。
本発明の発光素子では、前記発光層は、前記ピーク波長が700nm以上960nm以下の光を発光することが好ましい。
本発明を適用することで、発光層が発光する光のピーク波長を、前記範囲内に設定することができる。
本発明の発光素子では、前記発光層は、前記発光層における前記発光材料の含有量が50wt%以上70wt%以下であることが好ましい。
本発明によれば、発光層中において、このように発光材料がより高濃度に含まれる場合であっても、濃度消光の発生をより的確に抑制しつつ、発光波長の短波長側へのシフトをより的確に抑制することができる。
本発明の発光装置は、本発明の発光素子を備えることを特徴とする。
このような発光装置は、高効率化が図られつつ、より長波長の近赤外域での発光が可能であり、信頼性に優れる。
本発明の光源は、本発明の発光素子を備えることを特徴とする。
このような光源は、高効率化が図られつつ、より長波長の近赤外域での発光が可能であり、信頼性に優れる。
本発明の認証装置は、本発明の発光素子を備えることを特徴とする。
このような認証装置は、高効率化が図られつつ、より長波長の近赤外域での発光が可能であり、信頼性に優れる。
本発明の電子機器は、本発明の発光素子を備えることを特徴とする。
このような電子機器は、高効率化が図られつつ、より長波長の近赤外域での発光が可能であり、信頼性に優れる。
本発明の実施形態に係る発光素子を模式的に示す断面図である。 本発明の発光装置を適用したディスプレイ装置の実施形態を示す縦断面図である。 本発明の認証装置の実施形態を示す図である。 本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。 発光材料毎における、外部量子効率の相対値と、ドープ濃度との関係を示すグラフである。
以下、本発明の発光素子、発光装置、光源、認証装置および電子機器を添付図面に示す好適な実施形態について説明する。
図1は、本発明の実施形態に係る発光素子を模式的に示す断面図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」として説明を行う。
発光素子(エレクトロルミネッセンス素子)1は、本実施形態では、図1に示すように、陽極3と正孔注入層4と発光層5と電子輸送層6と電子注入層7と陰極8とがこの順に積層されてなるものである。すなわち、発光素子1は、陽極3と陰極8と、陽極3と陰極8との間に介挿された、陽極3側から陰極8側へ向かって正孔注入層4と発光層5と電子輸送層6と電子注入層7とがこの順で積層されている積層体14とを有している。
そして、発光素子1は、その全体が基板2上に設けられるとともに、封止部材9で封止されている。
このような発光素子1にあっては、陽極3と陰極8と、陽極3と陰極8との間に設けられた発光層5とを有している。そして、陽極3および陰極8に駆動電圧が印加され、陽極3と陰極8との間、すなわち発光層5に通電することにより、発光層5に対し、それぞれ、陰極8側から電子が供給(注入)されるとともに、陽極3側から正孔が供給(注入)される。そして、発光層5では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーによりエキシトン(励起子)が生成され、エキシトンが基底状態に戻る際にエネルギー(蛍光やりん光)を放出(発光)する。これにより、発光素子1(発光層5)は、後述するような波長域の光を発光する。
本実施形態では、この発光素子1は、後述するように、下記一般式(IRD1)で表わされる化合物であるチアジアゾール系化合物、下記一般式(IRD2)で表わされる化合物であるベンゾ-ビス-チアジアゾール系化合物を発光材料として含んでいる。これにより、発光素子1(発光層5)は、ピーク波長が700nm以上(好ましくは700nm以上960nm以下)のような波長域の近赤外域で発光する。なお、本明細書において、「近赤外域」とは、ピーク波長が700nm以上1500nm以下の波長域を言う。
基板2は、陽極3を支持するものである。本実施形態の発光素子1は、基板2側から光を取り出す構成(ボトムエミッション型)であるため、基板2および陽極3は、それぞれ、実質的に透明(無色透明、着色透明または半透明)とされている。
基板2の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
このような基板2の平均厚さは、特に限定されないが、0.1mm以上30mm以下程度であるのが好ましく、0.1mm以上10mm以下程度であるのがより好ましい。
なお、発光素子1が基板2と反対側から光を取り出す構成(トップエミッション型)の場合、基板2には、透明基板および不透明基板のいずれも用いることができる。
不透明基板としては、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
また、このような発光素子1では、陽極3と陰極8との間の距離(すなわち積層体14の平均厚さ)は、100nm以上500nm以下であるのが好ましく、100nm以上300nm以下であるのがより好ましく、100nm以上250nm以下であるのがさらに好ましい。これにより、簡単かつ確実に、発光素子1の駆動電圧を実用的な範囲内にすることができる。
以下、発光素子1を構成する各部を順次説明する。
(陽極)
陽極3は、正孔注入層4に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。
陽極3の構成材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
特に、陽極3は、ITOで構成されているのが好ましい。ITOは、透明性を有するとともに、仕事関数が大きく、導電性に優れる材料である。これにより、陽極3から正孔注入層4へ効率的に正孔を注入することができる。
また、陽極3の正孔注入層4側の面(図1にて上面)は、プラズマ処理が施されているのが好ましい。これにより、陽極3と正孔注入層4との接合面の化学的および機械的な安定性を高めることができる。その結果、陽極3から正孔注入層4への正孔注入性を向上させることができる。なお、かかるプラズマ処理については、後述する発光素子1の製造方法の説明において詳述する。
このような陽極3の平均厚さは、特に限定されないが、10nm以上200nm以下程度であるのが好ましく、50nm以上150nm以下程度であるのがより好ましい。
(陰極)
一方、陰極8は、後述する電子注入層7を介して電子輸送層6に電子を注入する電極である。この陰極8の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。
陰極8の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rbまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば、複数層の積層体、複数種の混合層等として)用いることができる。
特に、陰極8の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極8の構成材料として用いることにより、陰極8の電子注入効率および安定性の向上を図ることができる。
このような陰極8の平均厚さは、特に限定されないが、100nm以上10000nm以下程度であるのが好ましく、100nm以上500nm以下程度であるのがより好ましい。
なお、本実施形態の発光素子1は、ボトムエミッション型であるため、陰極8に、光透過性は、特に要求されない。また、トップエミッション型である場合には、陰極8側から光を透過させる必要があるので、陰極8の平均厚さは、1nm以上50nm以下程度であるのが好ましい。
(正孔注入層)
正孔注入層4は、陽極3からの正孔注入効率を向上させる機能を有する(すなわち正孔注入性を有する)ものである。これにより、発光素子1の発光効率を高めることができる。ここで、正孔注入層4は、陽極3から注入された正孔を発光層5まで輸送する機能をも有する(すなわち正孔輸送性を有する)ものである。したがって、正孔注入層4は、前述したように正孔輸送性を有することから、正孔輸送層であるということもできる。なお、正孔注入層4と発光層5との間に、正孔注入層4とは異なる材料(例えばベンジジン誘導体等のアミン系化合物)で構成された正孔輸送層を別途設けてもよい。
この正孔注入層4は、正孔注入性を有する材料(正孔注入性材料)を含んでいる。
この正孔注入層4に含まれる正孔注入性材料としては、特に限定されず、例えば、銅フタロシアニンや、4,4’,4’’-トリス(N,N-フェニル-3-メチルフェニルアミノ)トリフェニルアミン(m-MTDATA)、N,N’-ビス-(4-ジフェニルアミノ-フェニル)-N, N’-ジフェニル-ビフェニル-4-4’-ジアミン等のアミン系材料が挙げられる。
中でも、正孔注入層4に含まれる正孔注入性材料としては、正孔注入性および正孔輸送性に優れるという観点から、アミン系材料を用いるのが好ましく、ジアミノベンゼン誘導体、ベンジジン誘導体(ベンジジン骨格を有する材料)、分子内に「ジアミノベンゼン」ユニットと「ベンジジン」ユニットとの両方を有するトリアミン系化合物、テトラアミン系化合物(具体的には、例えば、下記式HIL-1~HIL-27で表されるような化合物)を用いるのがより好ましい。
Figure 0007043733000006
Figure 0007043733000007
Figure 0007043733000008
また、正孔注入層4の構成材料のルモ(LUMO)は、発光層5に用いるホスト材料のルモとの差が0.5eV以上であることが好ましい。これにより、電子が発光層5から正孔注入層4へ抜けてしまうのを低減し、発光効率を高めることができる。
また、正孔注入層4の構成材料のホモ(HOMO)は、4.7eV以上5.8eV以下であることが好ましく、また、正孔注入層4の構成材料のルモは、2.2eV以上3.0eV以下であることが好ましい。
このような正孔注入層4の平均厚さは、特に限定されないが、5nm以上90nm以下程度であるのが好ましく、10nm以上70nm以下程度であるのがより好ましい。
なお、この正孔注入層4は、他の層の構成材料の組み合わせ等によっては、省略してもよい。
(発光層)
発光層5は、前述した陽極3と陰極8との間に通電することにより、発光するものである。
この発光層5は、本発明では、発光ドーパントとして機能する発光材料と、発光材料を保持するホスト材料とを含む。
この発光層5において、発光材料は、発光層5をピーク波長が近赤外域(700nm以上、好ましくは700nm以上960nm以下)の光で発光し得るものを含んで構成される。
この発光材料としては、例えば、下記一般式(IRD1)で表わされる化合物であるチアジアゾール系化合物(以下、単に「チアジアゾール系化合物」とも言う)、下記一般式(IRD2)で表わされる化合物であるベンゾ-ビス-チアジアゾール系化合物(以下、単に「ベンゾ-ビス-チアジアゾール系化合物」とも言う)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これにより、発光層5を、ピーク波長が700nm以上の近赤外域で確実に発光するものとし得る。
Figure 0007043733000009
[前記一般式(IRD1)中、Rは、それぞれ独立して、アリール基、アリールアミノ基、トリアリールアミン、または、これらの誘導体のうちの少なくとも1種を含む基を示す。]
前記一般式(IRD1)中の基Rとして、アリール基、アリールアミノ基、トリアリールアミン、または、これらの誘導体が挙げられ、これらのうちの2種以上を組み合わせたものを用いることができ、かかる基Rを備えるチアジアゾール系化合物を発光ドーパントとして含む発光層5は、700nm以上の波長域(近赤外域)での発光を得ることができる。
上記のような基Rを備えるチアジアゾール系化合物としては、具体的には、例えば、下記式IRD1-1~IRD1-12で表わされる化合物またはその誘導体が挙げられる。
Figure 0007043733000010
Figure 0007043733000011
[前記一般式(IRD2)中、各Rは、それぞれ独立して、フェニル基、チオフェニル基、フリル基、または、これらの誘導体のうちの少なくとも1種を含む基を示す。]
前記一般式(IRD2)中の各基Rとしては、フェニル基、チオフェニル基、フリル基、または、これらの誘導体のうちの少なくとも1種を含むものであれば、特に限定されないが、例えば、フェニル基、チオフェニル基(チオフェン基)、フリル基(フラン基)、オキサゾール基およびオキサジアゾール基等を含むものが挙げられ、これらのうちの2種以上を組み合わせたものであることが好ましい。これにより、かかる基Rを備えるベンゾ-ビス-チアジアゾール系化合物を発光ドーパントとして含む発光層5は、700nm以上の波長域(近赤外域)での発光を得るもの、特に、より長波長領域と言うことができる850nm以上1500nm以下の波長域での発光を得るものとなる。
上記のような基Rを備えるベンゾ-ビス-チアジアゾール系化合物としては、具体的には、例えば、下記式IRD2-1~IRD2-21で表わされる化合物またはその誘導体が挙げられる。
Figure 0007043733000012
Figure 0007043733000013
Figure 0007043733000014
なお、発光層5は、上述した発光材料以外の他の発光材料(各種蛍光材料、各種燐光材料)が含まれていてもよい。
また、発光層5は、前述の通り、発光材料に加えて、この発光材料をゲスト材料(ドーパント)として保持するホスト材料を含んで構成される。
このホスト材料は、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを発光材料に移動(フェルスター移動またはデクスター移動)させて、発光材料を励起する機能を有する。そのため、発光層5を、発光材料(ゲスト材料)の他に、ホスト材料を含有する構成とすることで、発光素子1の発光効率を高めることができる。このようなホスト材料は、例えば、ゲスト材料である発光材料をドーパントとしてホスト材料にドープして用いることができる。
このようなホスト材料としては、用いるゲスト材料に対して前述したような機能を発揮するものであれば、特に限定されないが、例えば、ジスチリルアリーレン誘導体、ナフタセン誘導体、アントラセン誘導体等のアセン系材料、ペリレン誘導体、ジスチリルベンゼン誘導体、ジスチリルアミン誘導体、ビス(2-メチル-8-キノリノラト)(p-フェニルフェノラト)アルミニウム(BAlq)、トリス(8-キノリノラト)アルミニウム錯体(Alq)等のキノリノラト系金属錯体、トリフェニルアミンの4量体等のトリアリールアミン誘導体、オキサジアゾール誘導体、ルブレンおよびその誘導体、シロール誘導体、ジカルバゾール誘導体、オリゴチオフェン誘導体、ベンゾピラン誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、4,4’-ビス(2,2’-ジフェニルビニル)ビフェニル(DPVBi)、3-フェニル-4-(1’-ナフチル)-5-フェニルカルバゾール、4,4’-N,N’-ジカルバゾールビフェニル(CBP)等のカルバゾール誘導体等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることもできる。
これらの中でも、ホスト材料としては、アセン系材料、または、キノリノラト系金属錯体を用いるのが好ましく、アセン系材料を用いるのがより好ましい。
アセン系材料は、前述したようなゲスト材料との不本意な相互作用が少ない。そのため、ゲスト材料(発光材料)とホスト材料としてのアセン系材料とを共存させることによるゲスト材料の変質・劣化を確実に抑制または防止することができる。また、ホスト材料としてアセン系材料(特にアントラセン系材料、テトラセン系材料)を用いると、ホスト材料からゲスト材料(発光材料)へのエネルギー移動を効率的に行うことができ、そのため、発光素子1の発光効率を優れたものとすることができる。これは、(a)アセン系材料の三重項励起状態からのエネルギー移動によるゲスト材料の一重項励起状態の生成が可能となること、(b)アセン系材料のπ電子雲とゲスト材料の電子雲との重なりが大きくなること等によるものと考えられる。
このようなことから、ホスト材料としてアセン系材料を用いると、発光素子1の発光効率を高めることができる。
また、アセン系材料は、電子および正孔に対する耐性に優れる。また、アセン系材料は、熱安定性にも優れる。そのため、発光層5ひいては発光素子1の長寿命化を図ることができる。また、アセン系材料は、熱安定性に優れるため、気相成膜法を用いて発光層5を形成する場合に、成膜時の熱によるホスト材料の分解を防止することができる。そのため、優れた膜質を有する発光層5を形成することができ、その結果、この点でも、発光素子1の発光効率を高めるとともに長寿命化を図ることができる。
さらに、アセン系材料は、それ自体発光しにくいので、ホスト材料が発光素子1の発光スペクトルに悪影響を及ぼすのを防止することもできる。
このようなアセン系材料は、アセン骨格を有し、かつ、前述したような効果を発揮するものであれば、特に限定されず、例えば、ナフタレン誘導体、アントラセン誘導体、ナフタセン誘導体(テトラセン誘導体)、ペンタセン誘導体が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができるが、アントラセン系材料(アントラセン誘導体)またはテトラセン系材料(テトラセン誘導体)を用いるのが好ましく、テトラセン系材料を用いるのがより好ましい。
テトラセン系材料としては、1つの分子内に少なくとも1つのテトラセン骨格を有し、かつ、前述したようなホスト材料としての機能を発揮し得るものであれば、特に限定されないが、例えば、下記式IRH1で表わされる化合物を用いるのが好ましい。
Figure 0007043733000015
[前記式IRH1中、nは、1~12の自然数を示し、Rは、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。]
このようなテトラセン系材料(特に、前記IRH1で表わされる化合物)は、極性が低い(分極が小さい)化合物である。そのため、テトラセン系材料をホスト材料として用いることにより、発光材料の分子同士の相互作用を低減することができる。そのため、この相互作用に起因する、濃度消光性を低減することができる。
これに対し、例えば、極性が高い(分極が大きい)Alqをホスト材料として用いた場合、これに起因して、発光材料の分子同士の相互作用が生じやすく、濃度消光性が高くなってしまう。
また、テトラセン系材料と同じアセン系材料であるアントラセン系材料は、ホスト材料として用いた場合、濃度消光性を低減する効果があるものの、テトラセン系材料をホスト材料として用いた場合と比べて、発光効率が低くなる。これは、アントラセン系材料をホスト材料として用いると、ホスト材料から発光材料へのエネルギー移動が十分でないこと、および、ホスト材料のルモに注入された電子が陽極側へ突き抜ける確率が高いことが原因であると推察される。かかる点を考慮すると、アントラセン系材料とテトラセン系材料とを比較すると、テトラセン系材料がホスト材料として特に好ましく用いられる。
よって、ホスト材料としてテトラセン系材料(アセン系材料)を用いることにより、発光素子1の発光効率を高めることができる。
また、テトラセン系材料は、電子および正孔に対する耐性に優れる。また、テトラセン系材料は、熱安定性にも優れる。そのため、発光素子1は、長寿命化を図ることができる。また、テトラセン系材料は、熱安定性に優れるため、気相成膜法を用いて発光層5を形成する場合に、成膜時の熱によるホスト材料の分解を防止することができる。そのため、優れた膜質を有する発光層5を形成することができ、その結果、この点でも、発光素子1の発光効率を高めるとともに長寿命化を図ることができる。
さらに、テトラセン系材料は、それ自体発光しにくいので、ホスト材料が発光素子1の発光スペクトルに悪影響を及ぼすのを防止することもできる。
また、ホスト材料として用いるテトラセン系材料としては、前記式IRH1で表され、かつ、前述したようなホスト材料としての機能を発揮し得るものであれば、特に限定されないが、下記式IRH1-Aで表わされる化合物を用いるのが好ましく、下記IRH1-Bで表わされる化合物を用いるのがより好ましい。
Figure 0007043733000016
[前記式IRH1-A、IRH1-B中、R~Rは、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。また、R~Rは、互いに同じであっても異なっていてもよい。]
また、テトラセン系材料すなわちホスト材料は、炭素原子および水素原子で構成されているのが好ましい。これにより、ホスト材料の極性を低くし、ホスト材料と発光材料との不本意な相互作用が生じるのを防止することができる。そのため、発光素子1の発光効率を高めることができる。また、電位および正孔に対するホスト材料の耐性を高めることができる。そのため、発光素子1の長寿命化を図ることができる。
具体的には、テトラセン系材料としては、例えば、下記式IRH1-1~IRH1-27で表される化合物を用いるのが好ましい。
Figure 0007043733000017
Figure 0007043733000018
なお、アントラセン系材料としては、1つの分子内に少なくとも1つのアントラセン骨格を有し、かつ、前述したようなホスト材料としての機能を発揮し得るものであれば、特に限定されないが、例えば、下記式IRH2で表わされる化合物が好ましく用いられ、例えば、下記式IRH2-A、下記式IRH2-B、下記式IRH2-Cまたは下記式IRH2-Dで表される化合物が挙げられる。より具体的には、例えば、下記式IRH2-1~56で表される化合物が挙げられる。
Figure 0007043733000019
Figure 0007043733000020
Figure 0007043733000021
Figure 0007043733000022
また、発光層5に用いるホスト材料のホモは、5.0eV以上6.0eV以下であることが好ましく、また、このホスト材料のルモは、2.5eV以上3.6eV以下であることが好ましい。
さて、上述したように、発光層5は、発光材料と、ホスト材料とを含み、これにより、ピーク波長が700nm以上の近赤外域の光を発光するものであるが、この発光層5において、本発明では、発光材料の含有量が30wt%以上70wt%以下となっている。
ここで、一般的に、発光材料(発光ドーパント)は、極性の高い材料が用いられることが多いため、発光層中における濃度を高くすると、発光材料の分子同士の相互作用が発生し、これに起因して発光効率が低下する現象である濃度消光が生じることが知られている。
そのため、発光層における発光材料の含有量(ドープ量)は、通常、0.5wt%以上10.0wt%以下程度に設定される。発光材料の含有量をかかる範囲に設定することにより、濃度消光の発生が的確に抑制または防止され、その結果、高効率化が図られた発光素子を得ることができる。しかしながら、発光材料の含有量をかかる範囲内に設定すると、発光層の発光波長が、発光材料が本来有している発光波長よりも短波長側にシフトし、より長波長域において発光する発光素子を得ることができないという問題があった。
これに対して、本発明では、発光材料として、ピーク波長が700nm以上の近赤外域の光を発光するものを用いている。このように近赤外域にピーク波長を有する発光材料においても、発光層中における発光材料の濃度を高くすると、濃度消光が発生する傾向を示すが、本発明者の検討により、この傾向が一定の濃度範囲において小さくなることが判って来た。
以上により、本発明は、陽極3と、陰極8と、これらの間に設けられ、発光材料とホスト材料とを含む発光層5とを有する発光素子1において、発光層5中の、発光材料(発光ドーパント)の含有量を30wt%以上70wt%以下に設定することで、発光層5における濃度消光の発生を抑制しつつ、発光波長の短波長側へのシフトを抑制し得ること、すなわち、発光層5の発光の高効率化が図られつつ、より長波長の近赤外域で発光する発光層5とし得るものである。すなわち、発光層5中の発光材料の含有量が30wt%未満であると、発光層5の発光波長が短波長側にシフトし、より長波長域での発光層5の発光が得られず、また、発光層5中の発光材料の含有量が70wt%超であると、発光層5の発光効率が低下し、発光層5の発光の高効率化が得られない。
また、このような傾向は、前述したピーク波長が近赤外域の光を発光する発光材料のうち、前記一般式(IRD1)(特に、前記式IRD1-1)で表わされる化合物および前記一般式(IRD2)(特に、前記式IRD2-1)で表わされる化合物において顕著に認められる。すなわち、前記一般式(IRD1)(特に、前記式IRD1-1)で表わされる化合物および前記一般式(IRD2)(特に、前記式IRD2-1)で表わされる化合物を、発光材料として、発光層5が含む場合に、発光材料(発光ドーパント)の含有量を30wt%以上70wt%以下に設定することで、発光素子1は、高効率化が図られつつ、より長波長の近赤外域で発光する発光層5をより確実に備えるものとなる。
これらの材料を発光材料として用いることで、前記効果が顕著に発揮され、具体的には、発光層5が発光する光のピーク波長を、好ましくは700nm以上960nm以下程度、より好ましくは800nm以上950nm以下程度に設定することができる。
ただし、発光層5における、発光材料(発光ドーパント)の含有量は、30wt%以上70wt%以下であれば良いが、50wt%以上70wt%以下であることが好ましい。本発明によれば、発光層5中において、このように発光材料がより高濃度に含まれる場合であっても、濃度消光の発生をより的確に抑制しつつ、発光波長の短波長側へのシフトをより的確に抑制することができる。
また、発光層5の平均厚さは、10nm以上50nm以下であるのが好ましく、25nm以上50nm以下であるのがより好ましい。発光層5の平均厚さが前記下限値未満では、発光材料の種類によっては、発光層5の周辺層での再結合が増大する傾向を示し、不要な発光が増大してしまうおそれがある。また、前記上限値超では、発光材料の種類によっては、発光層5における電圧が徐々に上昇する傾向を示し、発光層5の発光効率の低下を招くおそれがあるため、発光層5の厚さを前記範囲内に設定することにより、発光素子1の駆動電圧を抑制しつつ、高効率および長寿命な発光素子1とすることができる。
(電子輸送層)
電子輸送層6は、発光層5と陰極8との間に設けられ、陰極8から電子注入層7を介して注入された電子を発光層5に輸送する機能を有するものである。
電子輸送層6の構成材料(電子輸送性材料)としては、例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)等のフェナントロリン誘導体、トリス(8-キノリノラト)アルミニウム(Alq)等の8-キノリノールないしその誘導体を配位子とする有機金属錯体等のキノリン誘導体、アザインドリジン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体、アントラセン系材料等のアセン系材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
これらの中でも、電子輸送層6に用いる電子輸送性材料としては、アントラセン骨格を有する化合物を用いることが好ましい。また、フェナントロリン誘導体、フェナントロリン誘導体のように骨格中に窒素原子を備える含窒素化合物を用いることが好ましい。これらのことから、特に、アザインドリジン骨格およびアントラセン骨格の双方を分子内に有するアザインドリジン系化合物(以下、単に「アザインドリジン系化合物」ともいう)を用いることがより好ましい。これにより、発光層5へ電子を効率的に輸送・注入することができる。その結果、発光素子1の発光効率を高めることができる。
また、電子輸送層6は、前述したような電子輸送性材料のうち2種以上を組み合わせて用いる場合、2種以上の電子輸送性材料を混合した混合材料で構成されていてもよいし、異なる電子輸送性材料で構成された複数の層を積層した積層体で構成されていてもよい。本実施形態では、電子輸送層6は、後者のように積層体で構成され、具体的には、図1に示すように、第1電子輸送層6bと、第1電子輸送層6bと発光層5との間に設けられた第2電子輸送層6aとを有する積層体である。
第1電子輸送層6bの構成材料として用いるアントラセン骨格を有する化合物は、アザインドリジン骨格およびアントラセン骨格の双方を分子内に有するアザインドリジン系化合物であることが好ましい。また、第2電子輸送層6aの構成材料として用いるアントラセン骨格を有する化合物は、アントラセン骨格を分子内に有し、かつ、炭素原子および水素原子で構成されているアントラセン系化合物であることが好ましい。これにより、発光層5へ電子を効率的に輸送・注入するとともに、電子輸送層6の劣化を低減することができる。その結果、発光素子1の発光効率を高めるとともに、発光素子1の長寿命化を図ることができる。
ここで、光学的な光取り出しに必要な電子輸送層6の厚さを第2電子輸送層6aにより確保しつつ、第1電子輸送層6bの厚さを薄くして長寿命化を図ることができる。
電子輸送層6に用いるアザインドリジン系化合物は、1つの分子内に含まれるアザインドリジン骨格およびアントラセン骨格の数がそれぞれ1つまたは2つであるのが好ましい。これにより、電子輸送層6の電子輸送性および電子注入性を優れたものとすることができる。
具体的には、電子輸送層6に用いるアザインドリジン系化合物としては、例えば、下記一般式ETL1で表わされる化合物が挙げられ、具体的には、下記式ETL1-1~24で表わされるような化合物、下記式ETL1-25~36で表わされるような化合物、下記式ETL1-37~56で表わされる化合物が挙げられる。
Figure 0007043733000023
[前記式ETL1中、R1~R7は、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。また、R1~R7は、互いに同じであっても異なっていてもよい。]
Figure 0007043733000024
Figure 0007043733000025
Figure 0007043733000026
このようなアザインドリジン系化合物は、電子輸送性および電子注入性に優れる。そのため、発光素子1の発光効率を向上させることができる。
このようなアザインドリジン系化合物の電子輸送性および電子注入性が優れるのは、以下のような理由によるものと考えられる。
前述したようなアザインドリジン骨格およびアントラセン骨格を分子内に有するアザインドリジン系化合物は、その分子全体がπ共役系で繋がっているため、電子雲が分子全体に亘って拡がっている。
そして、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、電子を受け入れる機能と、その受け取った電子をアントラセン骨格の部分へ送り出す機能とを有する。一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、アザインドリジン骨格の部分から電子を受け入れる機能と、その受け入れた電子を、電子輸送層6の陽極3側に隣接する層、すなわち発光層5へ受け渡す機能とを有する。
より具体的に説明すると、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、2つの窒素原子を有する。その一方(アントラセン骨格の部分に近い側)の窒素原子がsp混成軌道を有し、他方(アントラセン骨格の部分に遠い側)の窒素原子がsp混成軌道を有する。sp混成軌道を有する窒素原子は、アザインドリジン系化合物の分子の共役系の一部を構成するとともに、炭素原子よりも電気陰性度が高く、電子を引き付ける強さが大きいため、電子を受け入れる部分として機能する。一方、sp混成軌道を有する窒素原子は、通常の共役系ではないが、非共有電子対を有するため、その電子がアザインドリジン系化合物の分子の共役系に向けて電子を送り出す部分として機能する。
一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、電気的に中性であるため、アザインドリジン骨格の部分から電子を容易に受け入れることができる。また、かかるアザインドリジン系化合物のアントラセン骨格の部分は、発光層5の構成材料、特にホスト材料(テトラセン系材料)と軌道の重なりが大きいため、発光層5のホスト材料へ電子を容易に受け渡すことができる。
また、かかるアザインドリジン系化合物は、前述したように電子輸送性および電子注入性に優れるため、結果として、発光素子1の駆動電圧を低電圧化することができる。
また、アザインドリジン骨格の部分は、sp混成軌道を有する窒素原子が還元されても安定であり、sp混成軌道を有する窒素原子が酸化されても安定である。そのため、かかるアザインドリジン系化合物は、電子および正孔に対する安定性が高いものとなる。その結果、発光素子1の長寿命化を図ることができる。
また、電子輸送層6(第2電子輸送層6aを有する場合、特に第2電子輸送層6a)に用いるアントラセン系化合物としては、前述した発光層5に含まれるホスト材料として挙げた上記式IRH2で表される化合物であればよいが、上記式IRH2-A、上記式IRH2-B、上記式IRH2-Cまたは上記式IRH2-Dで表される化合物であることが好ましく、より具体的には、例えば、上記式IRH2-1~56で表される化合物であることが好ましい。
また、電子輸送層6(より具体的には、第2電子輸送層6a)の構成材料のHOMOは、発光層5に用いるホスト材料のHOMOとの差が0.2eV以上であることが好ましい。これにより、正孔が発光層5から電子輸送層6へ抜けてしまうのを低減し、発光効率を高めることができる。
また、第2電子輸送層6aの構成材料のHOMOは、5.5eV以上6.0eV以下であることが好ましく、また、第2電子輸送層6aの構成材料のLUMOは、2.5eV以上3.0eV以下であることが好ましい。
また、第1電子輸送層6bの構成材料のHOMOは、5.8eV以上6.5eV以下であることが好ましく、また、第1電子輸送層6bの構成材料のLUMOは、2.8eV以上3.5eV以下であることが好ましい。
また、第2電子輸送層6aの厚さは、第1電子輸送層6bの厚さよりも厚いことが好ましい。これにより、発光素子1の駆動電圧を抑制しつつ、発光層5へ電子を効率的に輸送・注入するとともに、電子輸送層6の劣化を低減することができる。
また、第2電子輸送層6aの具体的な厚さは、30nm以上150nm以下であることが好ましく、70nm以上90nm以下であることがより好ましい。これにより、発光素子1の駆動電圧を抑制しつつ、発光層5へ電子を効率的に輸送・注入するとともに、電子輸送層6の劣化を低減することができる。
さらに、電子輸送層6全体の厚さは、55nm以上200nm以下であることが好ましく、70nm以上95nm以下であることがより好ましい。これにより、発光素子1の駆動電圧を抑制しつつ、発光層5へ電子を効率的に輸送・注入することができる。
なお、電子輸送層6は、陰極8および発光層5の構成材料や厚さ等によっては、省略してもよい。
(電子注入層)
電子注入層7は、陰極8からの電子注入効率を向上させる機能を有するものである。
この電子注入層7の構成材料(電子注入性材料)としては、例えば、各種の無機絶縁材料、各種の無機半導体材料が挙げられる。
このような無機絶縁材料としては、例えば、アルカリ金属カルコゲナイド(酸化物、硫化物、セレン化物、テルル化物)、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらを主材料として電子注入層7を構成することにより、電子注入性をより向上させることができる。特にアルカリ金属化合物(アルカリ金属カルコゲナイド、アルカリ金属のハロゲン化物等)は仕事関数が非常に小さく、これを用いて電子注入層7を構成することにより、発光素子1は、高い輝度が得られるものとなる。
アルカリ金属カルコゲナイドとしては、例えば、LiO、LiO、NaS、NaSe、NaO等が挙げられる。
アルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、MgO、CaSe等が挙げられる。
アルカリ金属のハロゲン化物としては、例えば、CsF、LiF、NaF、KF、LiCl、KCl、NaCl等が挙げられる。
アルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF、BeF等が挙げられる。
また、無機半導体材料としては、例えば、Li、Na、Ba、Ca、Sr、Yb、Al、Ga、In、Cd、Mg、Si、Ta、SbおよびZnのうちの少なくとも1つの元素を含む酸化物、窒化物または酸化窒化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
電子注入層7の平均厚さは、特に限定されないが、0.1nm以上1000nm以下程度であるのが好ましく、0.2nm以上100nm以下程度であるのがより好ましく、0.2nm以上50nm以下程度であるのがさらに好ましい。
なお、この電子注入層7は、陰極8および発光層5の構成材料や厚さ等によっては、省略してもよい。
(封止部材)
封止部材9は、陽極3、積層体14、および陰極8を覆うように設けられ、これらを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材9を設けることにより、発光素子1の信頼性の向上や、変質・劣化の防止(耐久性向上)等の効果が得られる。
封止部材9の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Tiまたはこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、封止部材9の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、封止部材9と陽極3、積層体14および陰極8との間には、必要に応じて、絶縁膜を設けるのが好ましい。
また、封止部材9は、平板状として、基板2と対向させ、これらの間を、例えば熱硬化性樹脂等のシール材で封止するようにしてもよい。
以上のような発光素子1は、例えば、次のようにして製造することができる。
[1] まず、基板2を用意し、この基板2上に陽極3を形成する。
陽極3は、例えば、プラズマCVD、熱CVDのような化学蒸着法(CVD)、真空蒸着法、スパッタリング等の乾式メッキ法、電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
[2] 次に、陽極3上に正孔注入層4を形成する。
正孔注入層4は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、正孔注入層4は、例えば、正孔注入性材料を溶媒に溶解または分散媒に分散してなる正孔注入層形成用材料を、陽極3上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
正孔注入層形成用材料の供給方法としては、例えば、スピンコート法、ロールコート法、インクジェット印刷法等の各種塗布法を用いることもできる。かかる塗布法を用いることにより、正孔注入層4を比較的容易に形成することができる。
正孔注入層形成用材料の調製に用いる溶媒または分散媒としては、例えば、各種無機溶媒や、各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
なお、乾燥は、例えば、大気圧または減圧雰囲気中での放置、加熱処理、不活性ガスの吹付け等により行うことができる。
また、本工程に先立って、陽極3の上面には、酸素プラズマ処理を施すようにしてもよい。これにより、陽極3の上面に親液性を付与すること、陽極3の上面に付着する有機物を除去(洗浄)すること、陽極3の上面付近の仕事関数を調整すること等を行うことができる。
ここで、酸素プラズマ処理の条件としては、例えば、プラズマパワー100W以上800W以下程度、酸素ガス流量50mL/min以上100mL/min以下程度、被処理部材(陽極3)の搬送速度0.5mm/sec以上10mm/sec以下程度とするのが好ましい。
[3] 次に、正孔注入層4上に、発光層5を形成する。
発光層5は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成することができる。
[4] 次に、発光層5上に、電子輸送層6(第1電子輸送層6bおよび第2電子輸送層6a)を形成する。
電子輸送層6(第1電子輸送層6bおよび第2電子輸送層6a)は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、電子輸送層6は、例えば、電子輸送性材料を溶媒に溶解または分散媒に分散してなる電子輸送層形成用材料を、発光層5上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[5] 次に、電子輸送層6上に、電子注入層7を形成する。
電子注入層7の構成材料として無機材料を用いる場合、電子注入層7は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセス、無機微粒子インクの塗布および焼成等を用いて形成することができる。
[6] 次に、電子注入層7上に、陰極8を形成する。
陰極8は、例えば、真空蒸着法、スパッタリング法、金属箔の接合、金属微粒子インクの塗布および焼成等を用いて形成することができる。
以上のような工程を経て、発光素子1が得られる。
最後に、得られた発光素子1を覆うように封止部材9を被せ、基板2に接合する。
(発光装置)
次に、本発明の発光装置の実施形態について説明する。
図2は、本発明の発光装置を適用したディスプレイ装置の実施形態を示す縦断面図である。
図2に示すディスプレイ装置100は、基板21と、複数の発光素子1Aと、各発光素子1Aをそれぞれ駆動するための複数の駆動用トランジスター24とを有している。ここで、ディスプレイ装置100は、トップエミッション構造のディスプレイパネルである。
基板21上には、複数の駆動用トランジスター24が設けられ、これらの駆動用トランジスター24を覆うように、絶縁材料で構成された平坦化層22が形成されている。
各駆動用トランジスター24は、シリコンからなる半導体層241と、半導体層241上に形成されたゲート絶縁層242と、ゲート絶縁層242上に形成されたゲート電極243と、ソース電極244と、ドレイン電極245とを有している。
平坦化層上には、各駆動用トランジスター24に対応して発光素子1Aが設けられている。
発光素子1Aは、平坦化層22上に、反射膜32、腐食防止膜33、陽極3、積層体(有機EL発光部)14、陰極13、陰極カバー34がこの順に積層されている。本実施形態では、各発光素子1Aの陽極3は、画素電極を構成し、各駆動用トランジスター24のドレイン電極245に導電部(配線)27により電気的に接続されている。また、各発光素子1Aの陰極13は、共通電極とされている。
図2における発光素子1Aは、600nm以上の近赤外域の光を発光する発光素子1である。
隣接する発光素子1A同士の間には、隔壁31が設けられている。また、これらの発光素子1A上には、これらを覆うように、エポキシ樹脂で構成されたエポキシ層35が形成されている。
そして、エポキシ層35上には、これらを覆うように封止基板20が設けられている。
以上説明したようなディスプレイ装置100は、例えば軍事用途等の近赤外線ディスプレイとして用いることができる。
このようなディスプレイ装置100によれば、高効率化が図られつつ、より長波長の近赤外域での発光が可能であり、信頼性に優れる。
(認証装置)
次に、本発明の認証装置の実施形態を説明する。
図3は、本発明の認証装置の実施形態を示す図である。
図3に示す認証装置1000は、生体F(本実施形態では指先)の生体情報を用いて個人を認証する生体認証装置である。
この認証装置1000は、光源100Bと、カバーガラス1001と、マイクロレンズアレイ1002と、受光素子群1003と、発光素子駆動部1006と、受光素子駆動部1004と、制御部1005とを有する。
光源100Bは、600nm以上の近赤外域の光を発光する発光素子1を複数備えるものであり、撮像対象物である生体Fへ向けて、近赤外域の光を照射する。例えば、この光源100Bの複数の発光素子1は、カバーガラス1001の外周部に沿って配置される。
カバーガラス1001は、生体Fが接触または近接する部位である。
マイクロレンズアレイ1002は、カバーガラス1001の生体Fが接触または近接する側と反対側に設けられている。このマイクロレンズアレイ1002は、複数のマイクロレンズがマトリクス状に配列して構成されている。
受光素子群1003は、マイクロレンズアレイ1002に対してカバーガラス1001とは反対側に設けられている。この受光素子群1003は、マイクロレンズアレイ1002の複数のマイクロレンズに対応してマトリクス状に設けられた複数の受光素子で構成されている。この受光素子群1003の各受光素子としては、例えば、CCD(Charge Coupled Device)、CMOS等を用いることができる。
発光素子駆動部1006は、光源100Bを駆動する駆動回路である。
受光素子駆動部1004は、受光素子群1003を駆動する駆動回路である。
制御部1005は、例えば、MPUであり、発光素子駆動部1006および受光素子駆動部1004の駆動を制御する機能を有する。
また、制御部1005は、受光素子群1003の受光結果と、予め記憶された生体認証情報との比較により、生体Fの認証を行う機能を有する。
例えば、制御部1005は、受光素子群1003の受光結果に基づいて、生体Fに関する画像パターン(例えば静脈パターン)を生成する。そして、制御部1005は、その画像パターンと、生体認証情報として予め記憶された画像パターンとを比較し、その比較結果に基づいて、生体Fの認証(例えば静脈認証)を行う。
このような認証装置1000によれば、近赤外光を用いて生体認証を行うことができる。また、高効率化が図られつつ、より長波長の近赤外域で発光し得る発光素子1を光源100Bとして備えるので、信頼性に優れる。
このような認証装置1000は、各種の電子機器に組み込むことができる。
(電子機器)
図4は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。
この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部を備える表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このパーソナルコンピューター1100において、本体部1104には、前述した認証装置1000が設けられている。
このようなパーソナルコンピューター1100によれば、高効率化が図られつつ、より長波長の近赤外域で発光し得る発光素子1を備えるので、信頼性に優れる。
なお、本発明の電子機器は、図4のパーソナルコンピューター(モバイル型パーソナルコンピューター)の他にも、例えば、スマートフォン、タブレット端末、時計、ウェアラブル機器、携帯電話機、ディジタルスチルカメラ、テレビや、ビデオカメラ、ビューファインダー型、モニター直視型のビデオテープレコーダー、ラップトップ型パーソナルコンピューター、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、脈拍計測装置、脈波計測装置、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター、その他各種モニター類、プロジェクター等の投射型表示装置等に適用することができる。
また、本発明の電子機器は、前述した光源100Bを備える構成のものとして、例えば、血中酸素濃度測定機、血糖値測定機、肌診断機、体脂肪測定機、体内蛍光物質観察機、皮膚癌診断機器、瞳観察装置、血管観察機器のような医療機器(生体センサー)、赤外スキャナー機器等が、認証装置1000を備える構成以外のものとして挙げることができる。
以上、本発明の発光素子、発光装置、光源、認証装置および電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
また、本発明の発光素子および発光装置は照明用の光源として用いてもよい。
次に、本発明の具体的実施例について説明する。
1-1.発光材料の製造
以下の工程を経ることにより、前記式IRD1-1で表されるチアジアゾール系化合物を合成した。
Figure 0007043733000027
合成(A1-1)
5リットルのフラスコに発煙硝酸1500mlを入れ冷却した。そこへ10~50℃に保つようにして硫酸1500mlを分割添加した。さらにそこへ原料のジブロモベンゾチアジアゾールである化合物(a)150gを1時間かけて少量ずつ添加した。その際に溶液温度は5℃以下になるように行った。全量添加後、室温(25℃)において20時間反応させた。反応後、氷3kgに反応液を注ぎ、一晩攪拌した。その後、ろ過してメタノール、ヘプタンで洗浄した。
ろ過して残った物を200mlのトルエンで熱溶解させた後、室温まで徐冷後にろ過し、残ったものを少量のトルエンで洗浄後、減圧乾燥させた。
これにより、HPLC純度95%の化合物(b)(4、7-ジブロモ-5、6-ジニトロ-ベンゾ[1、2、5]チアジアゾール)60gを得た。
合成(A1-2)
Ar下、5リットルのフラスコに、得られたジブロモ体である化合物(b)30gとトリフェニルアミンのボロン酸体160g、トルエン2500ml、2M炭酸セシウム水溶液(152g/(蒸留水)234ml)を入れ、90℃で一晩反応させた。反応後ろ過、分液、濃縮し、得られた粗体52gをシリカゲルカラム(SiO 5kg)で分離し、赤紫色固体を得た。
これにより、HPLC純度96%の化合物(c)(5、6-ジニトロ-4、7-ジフェニル-ベンゾ[1、2、5]チアジアゾール)6gを得た。
合成(A1-3)
Ar下、1リットルのフラスコに、得られたジニトロ体である化合物(c)6g、還元鉄7g、酢酸600mlを入れ、80℃で4時間反応させて室温まで冷却させた。反応後、反応液をイオン交換水1.5リットルに注ぎ、そこへ酢酸エチル1.5リットルをさらに添加した。添加後、固体が析出していたので、テトラヒドロフラン1リットルと食塩300gを添加し、分液した。水層は1リットルのテトラヒドロフランで再抽出した。濃縮乾燥したものを再度、少量の水、メタノールにて洗浄し、橙色固体を得た。
これにより、HPLC純度80%の化合物(d)(4、7-ジフェニル-ベンゾ[1、2、5]チアジアゾロ-5、6-ジアミン)7gを得た。
合成(A1-4)
Ar下、1リットルのフラスコに、得られたジアミン体である化合物(d)4.5g、ベンジル3.7g、溶媒として酢酸300mlを入れ、80℃にて2時間反応させた。反応後、室温まで冷却させ、反応液をイオン交換水1リットルに注ぎ、結晶をろ過、水洗し、7gの黒緑色固体を得た。そして、その黒緑色固体をシリカゲルカラム(SiO 1kg)で精製した。
これにより、HPLC純度99%の化合物(e)(前記式IRD1-1で表わされる化合物)4gを得た。この化合物(e)を質量分析したところ、M+:492であった。
さらに、得られた化合物(e)を設定温度340℃で昇華精製した。その昇華精製後の化合物(e)のHPLC純度は99%であった。
1-2.ホスト材料等の製造
前記式IRH1-5等で表されるテトラセン系化合物および前記式IRH2-30、前記式ETL1-3等で表されるアントラセン系化合物は、それぞれ、特開2013-177327および特開2013-179123に記載の製造方法を参照して合成した。
2.発光素子の製造
(参考例1)
<1> まず、平均厚さ0.5mmの透明なガラス基板を用意した。次に、この基板上に、スパッタ法により、平均厚さ100nmのITO電極(陽極)を形成した。
そして、基板をアセトン、2-プロパノールの順に浸漬し、超音波洗浄した後、酸素プラズマ処理およびアルゴンプラズマ処理を施した。これらのプラズマ処理は、それぞれ、プラズマパワー100W、ガス流量20sccm、処理時間5secで行った。
<2> 次に、ITO電極上に、前記式HIL-1で表わされる化合物を真空蒸着法により蒸着させ、平均厚さ50nmの正孔注入層(HIL)を形成した。
<3> 次に、正孔注入層上に、発光層の構成材料を真空蒸着法により蒸着させ、平均厚さ25nmの発光層を形成した。発光層の構成材料としては、発光材料(ゲスト材料)として前記式IRD1-1で表わされる化合物(チアジアゾール系化合物)を用い、ホスト材料として前記式IRH1-5で表わされる化合物(テトラセン系材料)を用いた。また、発光層中の発光材料(ドーパント)の含有量(ドープ濃度)を1.5wt%とした。
<4> 次に、発光層上に、前記式IRH2-30で表わされる化合物(アントラセン系材料)を真空蒸着法により成膜し、平均厚さ75nmの第2電子輸送層(ETL2)を形成した。
<5> 次に、第2電子輸送層上に、前記ETL1-3で表される化合物(アザインドリジン系化合物)を真空蒸着法により成膜し、平均厚さ10nmの第1電子輸送層(ETL1)を形成した。
<6> 次に、第1電子輸送層上に、フッ化リチウム(LiF)を真空蒸着法により成膜し、平均厚さ1nmの電子注入層を形成した。
<7> 次に、電子注入層上に、Alを真空蒸着法により成膜した。これにより、Alで構成される平均厚さ100nmの陰極を形成した。
<8> 次に、形成した各層を覆うように、ガラス製の保護カバー(封止部材)を被せ、エポキシ樹脂により固定、封止した。
以上の工程により、発光素子を製造した。
(実施例2~4、参考例5~7)
前記工程<3>において、発光層中に含まれる発光材料(ドーパント)の含有量(ドープ濃度)を、それぞれ、表1に示すように変更したこと以外は、前述した参考例1と同様にして発光素子を製造した。
(参考例8)
前記工程<2>で形成する正孔注入層(HIL)の平均厚さを70nmのものとし、また、前記工程<3>で用いる発光材料(ドーパント)として前記式IRD2-1で表わされる化合物(ベンゾ-ビス-チアジアゾール系化合物)を用い、さらに、前記工程<4>で形成する第2電子輸送層(ETL2)の平均厚さを85nmのものとしたこと以外は、前述した参考例1と同様にして発光素子を製造した。
(実施例9~11、参考例12~14)
前記工程<3>において、発光層中に含まれる発光材料(ドーパント)の含有量(ドープ濃度)を、それぞれ、表1に示すように変更したこと以外は、前述した参考例8と同様にして発光素子を製造した。
(比較例1)
前記工程<2>で形成する正孔注入層(HIL)の平均厚さを30nmのものとし、また、前記工程<3>で用いる発光材料(ドーパント)として下記式RD-1で表わされる化合物を用い、さらに、前記工程<4>で形成する第2電子輸送層(ETL2)の平均厚さを65nmのものとしたこと以外は、前述した参考例1と同様にして発光素子を製造した。
(比較例2~7)
前記工程<3>において、発光層中に含まれる発光材料(ドーパント)の含有量(ドープ濃度)を、それぞれ、表1に示すように変更したこと以外は、前述した比較例1と同様にして発光素子を製造した。
Figure 0007043733000028
3.評価
各実施例、各参考例および各比較例について、一定電流電源(株式会社東陽テクニカ製 KEITHLEY2400)を用いて、発光素子に100mA/cmの定電流を流し、そのときの発光ピーク波長を、高速分光放射計(相馬光学製 S-9000)を用いて測定した。また、光パワー測定機(株式会社エーディーシー製 光パワーメーター 8230)を用いて、600nm~1000nmの波長域における外部量子効率(発光効率)EQE(%)も測定した。
さらに、測定された外部量子効率のうち、各発光材料において、ドープ濃度が1.5wt%のものを基準として、発光材料毎に、外部量子効率の相対値を求めた。また、測定された発光ピーク波長のうち、各発光材料において、ドープ濃度が100wt%のものを基準として、発光材料毎に、発光ピーク波長のシフト量を求めた。
これらの測定結果を表1に示す。
また、発光材料毎における、外部量子効率の相対値と、ドープ濃度との関係を示すグラフを図5に示す。
Figure 0007043733000029
表1および図5から明らかなように、発光材料として前記式IRD1-1で表わされる化合物を用いた参考例1、5~7、実施例2~4の発光素子について、外部量子効率(EQE)の相対値と、ドープ濃度との関係を見ると、ドープ濃度(発光材料の含有量)が30wt%以上70wt%以下の実施例2~4と、ドープ濃度が90wt%以上100wt%以下の参考例5~7とでは、異なる傾きを有する一次関数となっており、実施例2~4の30wt%以上70wt%以下のドープ濃度において、外部量子効率(EQE)の低下が抑制されている結果を示した。また、表1に示す通り、ドープ濃度が30wt%以上70wt%以下の実施例2~4において、ドープ濃度が1.5wt%の参考例1と比較して、ピーク波長のシフトが低減されている結果を示した。
また、表1および図5から明らかなように、発光材料として前記式IRD2-1で表わされる化合物を用いた参考例8、12~14、実施例9~11の発光素子について、外部量子効率(EQE)の相対値と、ドープ濃度との関係を見ると、発光材料として前記式IRD1-1で表わされる化合物を用いた場合と同様に、ドープ濃度(発光材料の含有量)が30wt%以上70wt%以下の実施例9~11と、ドープ濃度が90wt%以上100wt%以下の参考例12~14とでは、異なる傾きを有する一次関数となっており、実施例9~11の30wt%以上70wt%以下のドープ濃度において、外部量子効率(EQE)の低下が抑制されている結果を示した。また、表1に示す通り、ドープ濃度が30wt%以上70wt%以下の実施例9~11において、ドープ濃度が1.5wt%の参考例8と比較して、ピーク波長のシフトが低減されている結果を示した。
これに対して、発光材料として前記式RD-1で表わされる化合物を用いた比較例1~7の発光素子では、表1および図5から明らかなように、外部量子効率(EQE)の相対値と、ドープ濃度との関係を見ると、ドープ濃度(発光材料の含有量)が30wt%以上100wt%以下の比較例2~7の広い濃度範囲において、1つの傾きを有する一次関数となっており、比較例2~4の30wt%以上70wt%以下のドープ濃度においても、高い外部量子効率(EQE)の低下が認められる結果を示した。
1…発光素子、1A…発光素子、2…基板、3…陽極、4…正孔注入層、5…発光層、6…電子輸送層、6a…第2電子輸送層、6b…第1電子輸送層、7…電子注入層、8…陰極、9…封止部材、13…陰極、14…積層体、20…封止基板、21…基板、22…平坦化層、24…駆動用トランジスター、27…導電部、31…隔壁、32…反射膜、33…腐食防止膜、34…陰極カバー、35…エポキシ層、100…ディスプレイ装置、100B…光源、241…半導体層、242…ゲート絶縁層、243…ゲート電極、244…ソース電極、245…ドレイン電極、1000…認証装置、1001…カバーガラス、1002…マイクロレンズアレイ、1003…受光素子群、1004…受光素子駆動部、1005…制御部、1006…発光素子駆動部、1100…パーソナルコンピューター、1102…キーボード、1104…本体部、1106…表示ユニット、F…生体

Claims (11)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に設けられ、下記一般式(IRD1)で表わされる化合物を含む発光材料と、アセン系材料を含む、前記発光材料を保持するホスト材料とを含み、前記陽極と前記陰極との間に通電することによりピーク波長が近赤外域の光を発光する発光層とを有し、
    前記発光層は、前記発光層における前記発光材料の含有量が30wt%以上70wt%以下であることを特徴とする発光素子。
    Figure 0007043733000030
    [前記一般式(IRD1)中、Rは、それぞれ独立して、アリール基、アリールアミノ基、トリアリールアミン、または、これらの誘導体のうちの少なくとも1種を含む基を示し、前記一般式(IRD1)で表わされる化合物が備えるピラジン環に連結する2つのR同士は、結合して環を形成していてもよい。]
  2. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に設けられ、下記一般式(IRD2)で表わされる化合物を含む発光材料と、前記発光材料を保持するホスト材料とを含み、前記陽極と前記陰極との間に通電することによりピーク波長が近赤外域の光を発光する発光層とを有し、
    前記発光層は、前記発光層における前記発光材料の含有量が30wt%以上70wt%以下であることを特徴とする発光素子。
    Figure 0007043733000031
    [前記一般式(IRD2)中、各Rは、それぞれ独立して、フェニル基、チオフェニル基、フリル基、または、これらの誘導体のうちの少なくとも1種を含む基を示す。]
  3. 前記一般式(IRD1)で表わされる化合物は、下記式IRD1-1で表わされる化合物である請求項1に記載の発光素子。
    Figure 0007043733000032
  4. 前記一般式(IRD2)で表わされる化合物は、下記式IRD2-1で表わされる化合物である請求項2に記載の発光素子。
    Figure 0007043733000033
  5. 前記ホスト材料は、前記アセン系材料として、下記式IRH1で表わされる化合物を含む請求項1ないし4のいずれか1項に記載の発光素子。
    Figure 0007043733000034
    [前記式IRH1中、nは、1~12の自然数を示し、Rは、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。]
  6. 前記発光層は、前記ピーク波長が700nm以上960nm以下の光を発光する請求項1ないし5のいずれか1項に記載の発光素子。
  7. 前記発光層は、前記発光層における前記発光材料の含有量が50wt%以上70wt%以下である請求項1ないし6のいずれか1項に記載の発光素子。
  8. 請求項1ないし7のいずれか1項に記載の発光素子を備えることを特徴とする発光装置。
  9. 請求項1ないし7のいずれか1項に記載の発光素子を備えることを特徴とする光源。
  10. 請求項1ないし7のいずれか1項に記載の発光素子を備えることを特徴とする認証装置。
  11. 請求項1ないし7のいずれか1項に記載の発光素子を備えることを特徴とする電子機器。
JP2017047586A 2017-03-13 2017-03-13 発光素子、発光装置、光源、認証装置および電子機器 Active JP7043733B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017047586A JP7043733B2 (ja) 2017-03-13 2017-03-13 発光素子、発光装置、光源、認証装置および電子機器
US15/913,047 US10804472B2 (en) 2017-03-13 2018-03-06 Light-emitting element, light-emitting device, light source, authentication device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047586A JP7043733B2 (ja) 2017-03-13 2017-03-13 発光素子、発光装置、光源、認証装置および電子機器

Publications (2)

Publication Number Publication Date
JP2018152461A JP2018152461A (ja) 2018-09-27
JP7043733B2 true JP7043733B2 (ja) 2022-03-30

Family

ID=63445657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047586A Active JP7043733B2 (ja) 2017-03-13 2017-03-13 発光素子、発光装置、光源、認証装置および電子機器

Country Status (2)

Country Link
US (1) US10804472B2 (ja)
JP (1) JP7043733B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440802B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 有機デバイスの製造方法
DE112019004869T5 (de) * 2018-09-27 2021-06-10 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung, Licht emittierende Einrichtung, Licht emittierendes Modul, elektronisches Gerät, Beleuchtungsvorrichtung, metallorganischer Komplex, Licht emittierendes Material, organische Verbindung und zweikerniger Komplex
US11903232B2 (en) 2019-03-07 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising charge-generation layer between light-emitting units
DE102020117591A1 (de) * 2019-07-12 2021-01-14 Semiconductor Energy Laboratory Co., Ltd. Organische Verbindung, Licht emittierende Vorrichtung, Licht emittierendes Gerät, elektronisches Gerät und Beleuchtungsvorrichtung
CN113549090A (zh) * 2020-04-24 2021-10-26 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种具有双(多)光子激发的近红外荧光分子及其合成方法
CN113552099B (zh) * 2020-04-24 2024-04-16 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种荧光诊断试剂盒及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104144A1 (ja) 2012-12-26 2014-07-03 出光興産株式会社 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
JP2015207759A (ja) 2014-04-09 2015-11-19 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器
JP2018006700A (ja) 2016-07-08 2018-01-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682429B2 (ja) 2011-04-12 2015-03-11 セイコーエプソン株式会社 チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
CN102731533B (zh) * 2011-04-12 2016-08-10 精工爱普生株式会社 噻二唑系化合物、发光元件用化合物、发光元件、发光装置、认证装置以及电子设备
JP5765034B2 (ja) * 2011-04-18 2015-08-19 セイコーエプソン株式会社 チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
KR20130018547A (ko) * 2011-08-09 2013-02-25 세이코 엡슨 가부시키가이샤 티아디아졸계 화합물, 발광 소자, 발광 장치, 인증 장치, 전자 기기
JP5790279B2 (ja) * 2011-08-09 2015-10-07 セイコーエプソン株式会社 発光素子、発光装置および電子機器
JP5935261B2 (ja) 2011-08-09 2016-06-15 セイコーエプソン株式会社 チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP5970811B2 (ja) * 2011-12-28 2016-08-17 セイコーエプソン株式会社 発光素子、発光装置および電子機器
US9324952B2 (en) * 2012-02-28 2016-04-26 Seiko Epson Corporation Thiadiazole, compound for light-emitting elements, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device
JP6003087B2 (ja) 2012-02-28 2016-10-05 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器
JP5982867B2 (ja) 2012-02-28 2016-08-31 セイコーエプソン株式会社 チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
CN103772416B (zh) * 2012-10-18 2018-01-19 精工爱普生株式会社 噻二唑系化合物、发光元件用化合物、发光元件、发光装置、认证装置以及电子设备
JP6459228B2 (ja) * 2014-06-02 2019-01-30 セイコーエプソン株式会社 発光装置、電子機器および検査方法
JP6693053B2 (ja) * 2015-06-03 2020-05-13 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104144A1 (ja) 2012-12-26 2014-07-03 出光興産株式会社 含酸素縮合環アミン化合物、含硫黄縮合環アミン化合物及び有機エレクトロルミネッセンス素子
JP2015207759A (ja) 2014-04-09 2015-11-19 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器
JP2018006700A (ja) 2016-07-08 2018-01-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gang Qian, Ze Zhong, Min Luo, Dengbin Yu, Zhiqiang Zhang, Dongge Ma, Zhi Yuan Wang,Synthesis and Application of Thiadiazoloquinoxaline-Containing Chromophores as Dopants for Efficient Near-Infrared Organic Light-Emitting Diodes,The Journal of Physical Chemistry C,2009年01月07日,113(4),1589-1595
Ran Tao, Juan Qiao, Guoliang Zhang, Lian Duran, Liduo Wang, Yong Qiu,Efficient Near-Infrared-Emitting Cationic Iridium Complexes as Dopants for OLEDs with Small Efficiency Roll-off,The Journal of Physical Chemistry C,2012年05月01日,116,11658-11664

Also Published As

Publication number Publication date
JP2018152461A (ja) 2018-09-27
US20180261773A1 (en) 2018-09-13
US10804472B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP5765034B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP7043733B2 (ja) 発光素子、発光装置、光源、認証装置および電子機器
JP6613595B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP6693053B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5682429B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6885065B2 (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP6809240B2 (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP2018111675A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP2013177327A (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6331779B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5879804B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP6142498B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5935261B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
US20180269416A1 (en) Light-emitting element, light-emitting device, light source, authentication device, and electronic apparatus
JP2018111674A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP2014080400A (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2014080402A (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6171304B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2019147751A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP2019147752A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP6885066B2 (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP6809241B2 (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP5987885B2 (ja) 電子機器
JP6191714B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP2018111678A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7043733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150