WO2019093222A1 - 全固体リチウム電池及びその製造方法 - Google Patents

全固体リチウム電池及びその製造方法 Download PDF

Info

Publication number
WO2019093222A1
WO2019093222A1 PCT/JP2018/040687 JP2018040687W WO2019093222A1 WO 2019093222 A1 WO2019093222 A1 WO 2019093222A1 JP 2018040687 W JP2018040687 W JP 2018040687W WO 2019093222 A1 WO2019093222 A1 WO 2019093222A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
positive electrode
solid
solid electrolyte
negative electrode
Prior art date
Application number
PCT/JP2018/040687
Other languages
English (en)
French (fr)
Inventor
幸信 由良
武内 幸久
佐藤 洋介
吉田 俊広
勝田 祐司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201880059332.3A priority Critical patent/CN111279538B/zh
Priority to EP18875769.4A priority patent/EP3709430A4/en
Priority to JP2019552754A priority patent/JP6956801B2/ja
Priority to KR1020207011378A priority patent/KR102325924B1/ko
Publication of WO2019093222A1 publication Critical patent/WO2019093222A1/ja
Priority to US16/864,550 priority patent/US11837699B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/483Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid lithium secondary battery (hereinafter referred to as all solid lithium battery) and a method of manufacturing the same.
  • a powder of a lithium composite oxide typically, a lithium transition metal oxide
  • an additive such as a binder or a conductive agent BACKGROUND ART
  • a powder-dispersed positive electrode obtained by kneading and molding is widely known.
  • Such a powder-dispersed positive electrode contains a relatively large amount (eg, about 10% by weight) of a binder that does not contribute to the volume, so the packing density of the lithium composite oxide as a positive electrode active material is low. For this reason, the powder-dispersed positive electrode has a large room for improvement in terms of capacity and charge / discharge efficiency.
  • Patent Document 1 International Publication No. 2017/146088 discloses a plurality of primary particles composed of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode of a lithium secondary battery provided with a solid electrolyte.
  • a low-angle oriented positive electrode plate including a plurality of primary particles whose (003) planes are oriented at an average orientation angle of more than 0 ° and 30 ° or less with respect to the plate surface of the positive electrode plate .
  • the orientation alleviates the stress generated at the interface between the positive electrode plate and the solid electrolyte during charge and discharge. That is, the expansion and contraction rate in the plate surface direction of the positive electrode plate can be reduced, and the stress generated at the interface between the positive electrode plate and the solid electrolyte layer can be relieved, whereby defects in the solid electrolyte layer and the positive electrode from the solid electrolyte layer Peeling of the plate can be suppressed.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2015-185337
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2015-185337
  • a solid state battery is disclosed.
  • the sintered body disclosed in this document is as dense as 90% or more in relative density (density). This can be said to be based on the general understanding that it is desirable that the positive electrode and the negative electrode be dense in order to increase the energy density of the all solid secondary battery.
  • Li 3 OCl and Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, A solid electrolyte exhibiting at least one selected from the group consisting of Ba and Sr, wherein A is at least one selected from the group consisting of F, Cl, Br and I) exhibits excellent lithium ion conductivity.
  • Li 3 OCl and Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, A solid electrolyte exhibiting at least one selected from the group consisting of Ba and Sr, wherein A is at least one selected from the group consisting of F, Cl, Br and I) exhibits excellent lithium ion conductivity.
  • Non-Patent Document 1 (Yutao Li et al., "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithim-Ion Batteries", Angew. Chem. Int. Ed. 2016, 55, 9965-9968) Li 2 OHX (where X is Cl or Br) is promising as a solid electrolyte for all-solid secondary batteries, and the above Li 2 OHCl is fluorine doped to make part of OH ⁇ F ⁇ It is disclosed that the compound partially substituted with the compound of the formula (1) has electrochemical stability suitable for all solid secondary batteries.
  • the present inventors set the porosity of the low angle orientation positive electrode plate to 10 to 50%, and by filling the solid electrolyte in 30% or more of the void, the low angle orientation positive electrode plate and the predetermined solid electrolyte In the all-solid-state lithium battery using the above, it has been found that the battery resistance and the rate performance at the time of charge and discharge can be significantly improved, and furthermore, the yield of battery production can be significantly improved.
  • an object of the present invention is to improve the battery resistance and the rate performance at the time of charge and discharge remarkably in an all solid lithium battery using a low angle orientation positive electrode plate and a predetermined solid electrolyte, and moreover, it is possible to The yield is also to be greatly improved.
  • an oriented positive electrode plate which is a lithium complex oxide sintered plate having a porosity of 10 to 50%, and the lithium complex oxide sintered plate is a lithium complex oxide.
  • An oriented positive electrode plate comprising a plurality of primary particles configured, wherein the plurality of primary particles are oriented at an average orientation angle of more than 0 ° and 30 ° or less with respect to a plate surface of the oriented positive plate;
  • Li / Li + Li / Li +
  • a method of manufacturing the all solid lithium battery as described above Placing a solid electrolyte powder having a melting point lower than the melting point or the decomposition temperature of the oriented positive electrode plate or the negative electrode plate on the oriented positive electrode plate or the negative electrode plate; Placing the negative electrode plate or the oriented positive electrode plate on the solid electrolyte powder; The negative electrode plate is directed to the oriented positive electrode plate or the oriented positive electrode plate is pressed to the negative electrode plate at a temperature of 100 to 600 ° C.
  • FIG. 1 schematically shows an example of the all solid lithium battery of the present invention.
  • the all solid lithium battery 10 shown in FIG. 1 includes an oriented positive plate 12, a solid electrolyte 14, and a negative plate 16.
  • the oriented positive electrode plate 12 is a sintered lithium complex oxide plate having a porosity of 10 to 50%.
  • the sintered lithium composite oxide plate contains a plurality of primary particles composed of lithium composite oxide, and the plurality of primary particles are at an average orientation angle of more than 0 ° and 30 ° or less with respect to the plate surface of the oriented positive electrode plate It is a so-called "low angle orientation positive electrode plate" oriented by
  • the solid electrolyte 14 has a melting point lower than the melting point or decomposition temperature of the oriented positive electrode plate 12 or the negative electrode plate 16.
  • the negative electrode plate 16 is a negative electrode plate capable of inserting and releasing lithium ions at 0.4 V (vs. Li / Li + ) or more, and contains Ti.
  • the solid electrolyte 14 is filled in 30% or more of the voids contained in the oriented positive electrode plate 12 when the cross section in the direction perpendicular to the plate surface of the oriented positive electrode plate 12 is evaluated.
  • the porosity of the low angle orientation positive electrode plate is set to 10 to 50% and filling 30% or more of the voids with the solid electrolyte, all of the low angle orientation positive electrode plate and the predetermined solid electrolyte are used.
  • battery resistance and rate performance at the time of charge and discharge can be significantly improved, and furthermore, the yield of battery manufacture can be significantly improved.
  • a plurality of plate-like primary particles (specifically, the (003) plane) constituting the low angle orientation positive electrode plate are 30 ° or less with respect to the plate surface of the orientation positive electrode plate Is oriented at an average orientation angle of, for example, about 15 °, so that the surface microstructure of the oriented positive plate becomes flat (compared to a high angle oriented or non-oriented positive plate), ie, the plate surface of plate-like primary particles It is considered that the (003) plane corresponding to H.sub.0 is predominantly exposed.
  • the solid electrolyte is softened or melted once to increase the adhesion between the interface between the positive electrode plate and the solid electrolyte and the interface between the negative electrode plate and the solid electrolyte
  • this softened or melted electrolyte has poor wettability with the (003) surface which is predominantly exposed on the surface of the positive electrode plate, and can not form a good interfacial contact.
  • interfacial peeling occurs due to stress generated at lithium ion removal / insertion, and sometimes battery breakage may occur as described in Patent Document 1 is there.
  • these problems can be solved conveniently by setting the porosity of the low angle orientation positive electrode plate to 10 to 50% and filling 30% or more of the voids with the solid electrolyte. That is, the battery resistance and the rate performance at the time of charge and discharge can be significantly improved, and furthermore, the yield of battery manufacture can be significantly improved.
  • the reason why these unexpected improvements are brought about is not clear, but the solid electrolyte penetrates and is filled inside the voids of the oriented positive electrode plate, so that the surface other than the solid electrolyte and the (003) plane (ie, the solid electrolyte) It is inferred that it may be due to the formation of a strong interfacial contact with the crystal face) with good wettability.
  • the (003) plane is predominantly exposed on the surface of the oriented positive electrode plate, the shape of the air gap inside the oriented positive electrode plate is random, so the solid electrolyte is also sufficiently in contact with surfaces other than the (003) plane. be able to.
  • the solid electrolyte 14 is filled to 70% or more.
  • the inorganic solid electrolyte filling rate in the pores of the positive electrode plate 12 is desirably as high as possible, and may be 100%, but is typically 98% or less, and more typically 95% or less.
  • the electrolyte filling rate (%) in this gap is (i) the battery is polished by a cross section polisher (CP), and (ii) the obtained cross section of the oriented positive plate is a predetermined magnification (for example, 1000 times) and a predetermined visual field Image analysis was performed after SEM observation and EDX analysis (for example, 125 ⁇ m ⁇ 125 ⁇ m), (iii) area of voids filled with solid electrolyte and area of all voids were measured, and (iv) solid electrolyte filled It can be calculated by dividing the area of the void by the area of the entire void and multiplying the obtained value by 100.
  • CP cross section polisher
  • the obtained cross section of the oriented positive plate is a predetermined magnification (for example, 1000 times) and a predetermined visual field Image analysis was performed after SEM observation and EDX analysis (for example, 125 ⁇ m ⁇ 125 ⁇ m), (iii) area of voids filled with solid electrolyt
  • the outer periphery of the void contained in the oriented positive electrode plate 12 is in contact with the solid electrolyte 14 when evaluated in a cross section perpendicular to the plate surface of the oriented positive electrode plate 12, more preferably It is 40% or more, more preferably 50% or more.
  • the battery resistance and the rate performance during charge and discharge can be further improved, and the yield of battery manufacture can be further improved. It is presumed that this is because the contact area between the solid electrolyte and the oriented positive electrode plate is further increased.
  • the inorganic solid electrolyte filling rate in the pores of the positive electrode plate 12 is desirably as high as possible, and may be 100%, but is typically 98% or less, and more typically 95% or less.
  • the contact ratio (%) of the outer periphery of the gap and the solid electrolyte is (i) the battery is polished by a cross section polisher (CP), and (ii) the obtained cross section of the oriented positive electrode plate has a predetermined magnification (for example, 1000 times) and Image analysis is performed after SEM observation and EDX analysis in a predetermined field of view (for example, 125 ⁇ m ⁇ 125 ⁇ m), and (iii) the length in which the solid electrolyte is in contact with particles constituting the outer periphery of the void (ie, particles adjacent to the void) Measure the length of the outer periphery of the air gap, (iv) divide the length of contact between the particles constituting the outer periphery of the air gap and the solid electrolyte by the length of the outer periphery of the air gap and multiply the obtained value by 100 It can be calculated by
  • the cross section perpendicular to the plate surface of the oriented positive electrode plate 12 is evaluated, 20% or more of the surface other than the (003) plane of the lithium composite oxide is solid on the surface of the voids included in the oriented positive electrode plate 12 It is preferably in contact with the electrolyte, more preferably 30% or more. Within such a range, the battery resistance and the rate performance during charge and discharge can be further improved, and the yield of battery manufacture can be further improved. It is considered that this is because the surface other than the (003) surface has good wettability with the solid electrolyte used in the present invention, so that good interface contact can be formed.
  • the upper limit of the proportion of the lithium composite oxide other than the (003) plane in contact with the solid electrolyte 14 is not particularly limited, but is typically 98% or less, and more typically 95% or less. .
  • the contact ratio (%) of the solid electrolyte with a surface other than the (003) surface on the void surface is (i) the battery is polished with a cross section polisher (CP) and (ii) the obtained cross section of the oriented positive electrode plate is predetermined.
  • the crystal face of the particle exposed on the void surface is the (003) plane It is analyzed whether it is the other surface or not, and the length of the void periphery where the solid electrolyte is in contact with the surface other than the (003) plane, and the length of the void periphery where the surface other than the (003) plane is exposed (Iv) Divide the length of the gap periphery where the solid electrolyte is in contact with the surface other than the (003) plane by the length of the gap periphery where the surface other than the (003) plane is exposed, The value obtained It can be calculated by multiplying by 100.
  • the oriented positive electrode plate 12 is a lithium complex oxide sintered plate.
  • the lithium complex oxide sintered body plate includes a plurality of primary particles composed of a lithium complex oxide having a layered rock salt structure, and the plurality of primary particles are more than 0 ° to 30 ° with respect to the plate surface of the oriented positive electrode plate It orientates at the following average orientation angles.
  • FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 12, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 12.
  • EBSD electron backscatter diffraction
  • FIG. 4 shows a histogram showing the distribution of the orientation angle of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
  • the orientation angle of each primary particle 11 is indicated by light and shade of color, and it is indicated that the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • the black portion in the inside of the alignment positive plate 12 is a void.
  • the oriented positive plate 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to one another.
  • each primary particle 11 is mainly plate-shaped, what was formed in rectangular solid shape, cube shape, spherical shape, etc. may be contained.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium complex oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1. 10, M is at least one transition metal, and M is typically one of Co, Ni, Mn and Al. And the like.
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium single layer are alternately interposed via oxide ions.
  • a stacked crystal structure typically, an ⁇ -NaFeO 2 type structure, ie, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure.
  • lithium composite oxides include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate) , Li x NiCoO 2 (lithium nickel cobaltate), Li x CoNiMnO 2 (cobalt nickel nickel manganate), Li x CoMnO 2 (cobalt manganese manganate), etc., and particularly preferably Li x CoO 2 (Lithium cobaltate, typically LiCoO 2 ).
  • lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, and Ba.
  • Bi, and W may contain one or more elements.
  • the average value of the orientation angle of each primary particle 11, that is, the average orientation angle is more than 0 ° and not more than 30 °.
  • the orientation positive electrode in the plate surface direction is achieved by reducing the inclination angle of the (003) plane with respect to the plate surface direction.
  • the amount of expansion and contraction of the plate 12 is reduced, and the generation of stress between the oriented positive electrode plate 12 and the solid electrolyte 14 can be suppressed.
  • rate characteristics can be further improved. This is because, as described above, expansion and contraction in the thickness direction are dominant in the thickness direction of the oriented positive electrode plate 12 when lithium ions move in and out, so the expansion and contraction of the aligned positive electrode plate 12 becomes smooth. Therefore, the lithium ion can be smoothly moved in and out.
  • the average orientation angle of the primary particles 11 is determined by: (i) polishing the oriented positive electrode plate with a cross section polisher (CP); and (ii) the obtained oriented positive electrode plate cross section (cross section perpendicular to the plate surface of the oriented positive electrode plate) Of the primary particle (003) and the oriented positive plate for all particles identified in the EBSD image obtained by EBSD measurement in a predetermined magnification (eg, 1000 ⁇ ) and a predetermined visual field (eg, 125 ⁇ m ⁇ 125 ⁇ m) It can be determined by obtaining the angle formed by the plate surface of (1) (i.e., the inclination of the crystal orientation from (003)) as the inclination angle, and (iv) calculating the average value of those angles.
  • a predetermined magnification eg, 1000 ⁇
  • a predetermined visual field eg, 125 ⁇ m ⁇ 125 ⁇ m
  • the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
  • the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in the region of more than 0 ° and 30 ° or less Is preferred. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate 12 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 12 is 0 °.
  • Primary particles 11 (specifically, 30 primary particles 11 used for calculation of average orientation angle), the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) being over 30 ° or less is included in the cross section It is preferable that it is 70% or more with respect to the total area of, and more preferably 80% or more. Thereby, since the ratio of the primary particles 11 having high mutual adhesion can be increased, the rate characteristics can be further improved. Further, the total area of low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 11 extends in a predetermined direction, and typically becomes substantially rectangular. That is, in the oriented sintered body, when the cross section is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
  • the total area of the particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle) is preferably 70% or more, and more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 3, this makes it possible to further improve the mutual adhesion of the primary particles 11, and as a result, it is possible to further improve the rate characteristics.
  • the aspect ratio of the primary particle 11 is a value obtained by dividing the maximum Feret diameter of the primary particle 11 by the minimum Feret diameter.
  • the maximum Feret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when cross-sectional observation is performed.
  • the minimum Feret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image.
  • the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 20 ⁇ m or less.
  • the average particle diameter of the primary particles 11 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the distance for conducting lithium ions in the primary particle 11 becomes short, and the rate characteristic can be further improved.
  • lithium ions move from inside the particles of the positive electrode primary particles 11 to the solid electrolyte filled in the voids, and then pass through the solid electrolyte 14 in the form of a film (or planar).
  • the average particle diameter of the primary particle diameter 11 can be measured by image analysis of a cross-sectional SEM image of the sintered plate.
  • the sintered plate is processed with a cross section polisher (CP) to expose a polished cross section.
  • the polished cross section is observed by SEM (scanning electron microscope) at a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m). At this time, the visual field is set so that 20 or more primary particles exist in the visual field.
  • the diameter of the circumscribed circle when the circumscribed circle is drawn for all primary particles in the obtained SEM image can be determined, and the average particle diameter of the primary particle diameter 11 can be obtained.
  • the porosity of the sintered lithium complex oxide plate constituting the oriented positive electrode plate 12 is 10 to 50%, preferably 10 to 40%, more preferably 12 to 35%, still more preferably 15 to 30%. .
  • the porosity is in such a range, the solid electrolyte 14 can be sufficiently filled inside the voids of the oriented positive electrode plate 12, thereby significantly improving the battery resistance and the rate performance during charge and discharge, and the battery Significant improvements in manufacturing yield can be realized.
  • the porosity of the oriented positive electrode plate 12 is a volume ratio of voids in the oriented positive electrode plate 12. The porosity can be measured by image analysis of a cross-sectional SEM image of the oriented positive plate.
  • the sintered plate is processed with a cross section polisher (CP) to expose a polished cross section, and (ii) this polished cross section has a predetermined magnification (eg, 1000 ⁇ ) and a predetermined visual field (eg, 125 ⁇ m ⁇ 125 ⁇ m) ), And (iii) image analysis of the obtained SEM image, dividing the area of all voids in the field of view by the area (cross-sectional area) of the sintered plate in the field of view The porosity (%) can be obtained by multiplying the obtained value by 100.
  • CP cross section polisher
  • the thickness of the oriented positive electrode plate 12 is 30 ⁇ m or more, preferably 40 ⁇ m or more, particularly preferably 50 ⁇ m or more, from the viewpoint of enhancing the energy density of the all solid lithium battery 10 by increasing the active material capacity per unit area. Preferably it is 55 micrometers or more.
  • the upper limit of the thickness is not particularly limited, but from the viewpoint of suppressing the deterioration of the battery characteristics (in particular, the increase in the resistance value) due to the repetition of charge and discharge, the thickness of the alignment positive plate 12 is preferably less than 500 ⁇ m, more preferably It is less than 200 ⁇ m, more preferably 150 ⁇ m or less, particularly preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and most preferably 90 ⁇ m or less, 80 ⁇ m or less or 70 ⁇ m or less.
  • the size of the oriented positive electrode plate is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and another expression preferably is 25 mm 2 or more, more preferably 100 mm 2 or more.
  • a positive electrode current collector 13 be provided on the side of the oriented positive electrode plate 12 away from the solid electrolyte 14.
  • a negative electrode current collector 17 be provided on the side of the negative electrode plate 16 away from the solid electrolyte 14.
  • materials constituting the positive electrode current collector 13 and the negative electrode current collector 17 include platinum (Pt), platinum (Pt) / palladium (Pd), gold (Au), silver (Ag), aluminum (Al), Copper (Cu), ITO (indium-tin oxide film), etc. may be mentioned.
  • the oriented positive electrode plate 12, the solid electrolyte 14 and the negative electrode plate 16 are accommodated in a container 18.
  • the container 18 is not particularly limited as long as it can accommodate a unit cell or a stack in which a plurality of the unit cells are stacked in series or in parallel.
  • the container 18 can adopt a relatively simple container form, and may be packaged with an exterior material.
  • a chip form for mounting on an electronic circuit or a laminate cell form for example, a multilayer product of aluminum (Al) / polypropylene (PP)
  • PP polypropylene
  • the positive electrode current collector 13 and / or the negative electrode current collector 17 may double as part of the container 18.
  • heat-resistant resins such as PCTFE (polychlorotrifluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), polyimide, polyamide may be used instead of polypropylene.
  • a metal such as aluminum or stainless steel may be used.
  • the solid electrolyte 14 is a lithium ion conductive material having a melting point lower than the melting point or decomposition temperature of the oriented positive electrode plate 12 or the negative electrode plate 16.
  • the melting point of the solid electrolyte 14 is typically higher than the battery operating temperature, and more typically higher than the battery operating temperature and less than or equal to 600.degree. Since this solid electrolyte 14 has a low melting point, it can be melted at a temperature of 100 to 600 ° C., as described later, to be able to penetrate into the voids of the oriented positive electrode plate 12 and optionally 16 voids of the negative electrode plate Can be realized.
  • the solid electrolyte 14 preferably comprises a lithium-halide based material.
  • this lithium-halide material include Li 3 OCl, Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, Ba and Sr) At least one member selected from the group consisting of: A is at least one member selected from the group consisting of F, Cl, Br and I; Li 2 (OH) 1-a F a Cl And at least one selected from the group consisting of Li 2 OHX (wherein X is Cl and / or Br), and more preferably Li 3 OCl or a li 2 (OH) 0.9 F 0.1 Cl.
  • the composition of the solid electrolyte 14 can be suitably used if it has a low melting point and a high ion conductivity.
  • a typical form of solid electrolyte 14 is a solid electrolyte layer.
  • the method for producing the solid electrolyte layer is not particularly limited. Examples of the producing method include gas phase methods such as sputtering and CVD, liquid phase methods such as screen printing and spin coating, a method of compressing powder, and raw materials above the melting point. A method of coagulating after heating and a method of coagulating after heating above the melting point while compressing the powder may be mentioned.
  • the solid electrolyte 14 is selected from the group consisting of Li 3 OCl, Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, Ba and Sr. At least one, A is at least one selected from the group consisting of F, Cl, Br and I), Li 2 (OH) 1-a F a Cl (wherein 0 ⁇ a ⁇ 0. It is also preferred that it is at least one melt-coagulate selected from the group consisting of 3) and Li 2 OH x (wherein X is Cl and / or Br).
  • the dimensions of the solid electrolyte 14 are not particularly limited, but the thickness of the solid electrolyte layer excluding the portion intruding into the voids of the oriented positive electrode plate 12 and the voids of the negative electrode plate 16 is 0 from the viewpoint of charge / discharge rate characteristics and mechanical strength.
  • the thickness is preferably from .0005 mm to 1.0 mm, more preferably from 0.001 mm to 0.1 mm, still more preferably from 0.002 to 0.05 mm.
  • the solid electrolyte layer may be controlled by the thickness at which the film is formed, or in the case of a method of heating the powder to a temperature above the melting point while compressing it, the thickness may be controlled by a spacer.
  • the all solid lithium battery further includes a spacer that defines the thickness of the solid electrolyte layer 14 between the oriented positive electrode plate 12 and the negative electrode plate 16.
  • the resistivity of the spacer is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or more, more preferably 1 ⁇ 10 7 ⁇ ⁇ cm or more.
  • the type of spacer is not particularly limited, but is preferably spacers are made of ceramics, examples of such ceramic, Al 2 O 3, MgO, ZrO 2 and the like.
  • the negative electrode plate 16 is a negative electrode plate capable of inserting and desorbing lithium ions at 0.4 V (against Li / Li + ) or more, and contains Ti. It is preferable that the negative electrode active material satisfying such conditions is an oxide containing at least Ti. Preferred examples of such negative electrode active materials include lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO), niobium titanium composite oxide Nb 2 TiO 7 , titanium oxide TiO 2 , and more preferably LTO and Nb 2 TiO 7 , more preferably LTO.
  • LTO is typically known as having a spinel structure, other structures may be adopted during charge and discharge. For example, the reaction of LTO proceeds in two phases of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charge and discharge. Therefore, LTO is not limited to the spinel structure.
  • the negative electrode plate 16 is preferably a sintered plate (for example, an LTO or Nb 2 TiO 7 sintered plate).
  • a sintered plate since the negative electrode plate does not contain a binder, the packing density of the negative electrode active material (eg, LTO or Nb 2 TiO 7 ) is increased to obtain high capacity and good charge / discharge efficiency. Can.
  • the reason why the negative electrode plate does not contain a binder is that the binder disappears or burns out during firing even if the green sheet contains a binder.
  • the LTO sintered body plate can be manufactured according to the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2015-185337).
  • the negative electrode plate 16 may be dense or may include an air gap.
  • the stress generated by the expansion and contraction of the crystal lattice accompanying lithium ions in and out during the charge and discharge cycle is favorably (uniformly) released by the void, resulting in particles associated with repeated charge and discharge cycles.
  • the occurrence of the field crack is suppressed as much as possible.
  • the porosity of the negative electrode plate 16 is preferably 2 to 40%, more preferably 3 to 30%. Within such a range, it is possible to desirably realize the stress relief effect by the air gap and the effect of increasing the capacity.
  • the void ratio of the negative electrode plate 16 is a volume ratio of voids in the negative electrode plate 16 and can be measured by image analysis of a cross-sectional SEM image of the negative electrode plate 16 in the same manner as the void ratio of the oriented positive electrode plate 12 described above. it can.
  • the cross section in the direction perpendicular to the plate surface of the negative electrode plate 16 it is preferable that 30% or more of the voids contained in the negative electrode plate 16 be filled with the solid electrolyte 14, and more preferably 50% or more. More preferably, it is 60% or more, more preferably 70% or more. Within such a range, the battery resistance and the rate performance at the time of charge and discharge can be further improved, and the yield of battery production can be further improved.
  • the inorganic solid electrolyte filling rate in the pores of the negative electrode plate 16 is desirably as high as possible and may be 100%, but is typically 99% or less, and more typically 95% or less.
  • the electrolyte filling ratio (%) in the void can be measured by image analysis of the cross-sectional SEM image of the negative electrode plate 16 in the same manner as the above-described electrolyte filling ratio of the oriented positive electrode plate 12.
  • the inorganic solid electrolyte filling rate in the pores of the negative electrode plate 16 is desirably as high as possible and may be 100%, but is typically 99% or less, and more typically 95% or less.
  • the contact ratio (%) of the outer periphery of the gap and the solid electrolyte can be measured by image analysis of the cross-sectional SEM image of the negative electrode plate 16 in the same manner as the contact ratio of the oriented positive electrode plate 12 described above. .
  • the thickness of the negative electrode plate 16 is 25 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of enhancing the energy density of the all solid lithium battery 10 by increasing the active material capacity per unit area. Particularly preferably, it is 50 ⁇ m or more, and most preferably 55 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but the thickness of the negative electrode plate 16 is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m from the viewpoint of suppressing deterioration of the battery characteristics (particularly, increase in resistance) due to repeated charging and discharging. It is below.
  • the size of the negative electrode plate 16 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and in another expression, it is preferably 25 mm 2 or more, more preferably 100 mm 2 or more.
  • the oriented positive electrode plate 12 is preferably a LiCoO 2 (LCO) sintered plate
  • the negative electrode plate 16 is preferably a Li 4 Ti 5 O 12 (LTO) sintered plate.
  • the average value of the orientation angle of the LCO-oriented positive electrode plate ie, the average orientation angle is more than 0 ° and 30 ° or less
  • expansion and contraction do not occur in the surface direction during charging and discharging
  • the LTO negative electrode plate also expands during charging and discharging Since no contraction occurs and the solid electrolyte layer does not expand or contract during charge and discharge, stress (especially stress at the interface between the oriented positive plate 12 or the negative plate 16 and the solid electrolyte 14) does not occur during charge and discharge, and charge and discharge are stabilized.
  • stress especially stress at the interface between the oriented positive plate 12 or the negative plate 16 and the solid electrolyte 14
  • charge and discharge are stabilized.
  • primary particles constituting the Nb 2 TiO 7 sintered body plate are oriented so as to control expansion and contraction.
  • the all-solid-state lithium battery 10 of the present invention can be charged and discharged even at normal temperature, but it is preferable to be charged and discharged at a temperature of 100 ° C. or more.
  • a temperature of 100 ° C. or more By charging and discharging at a temperature of 100 ° C. or more, rapid charge and discharge can be realized at a high cycle capacity maintenance rate. That is, by charging and discharging the all solid lithium battery 10 at a high temperature of 100 ° C. or more, rapid charge and discharge can be performed. That is, the all solid lithium battery 10 can be driven at high speed and stably at the above temperature. In addition, even if rapid charge and discharge are repeated, a high capacity can be maintained, that is, a high cycle capacity retention rate can be realized.
  • the preferable operating temperature of the all solid lithium battery 10 during charge and discharge is 100 ° C. or higher, more preferably 100 to 300 ° C., still more preferably 100 to 200 ° C., and particularly preferably 100 to 150 ° C.
  • the heating means for achieving the operating temperature may be various heaters or various devices or devices accompanied by heat generation, but a preferred example is a conductive heating type ceramic heater.
  • the all-solid-state lithium battery 10 of this embodiment is preferably provided as a secondary battery system with heating means.
  • the all solid lithium battery 10 of the present invention is preferably manufactured as follows. First, the orientation in the positive electrode plate 12 (or negative electrode plate 16), xLiOH ⁇ yLi 2 SO 4 as described above, Li 3 OCl, Li (3 -x) M x / 2 OA, Li 2 (OH) 1-a F a Cl A solid electrolyte powder comprising at least one selected from the group consisting of Li 2 OHX and Li a (OH) b F c Br is placed. The negative electrode plate 16 (or the oriented positive electrode plate 12) is placed on the solid electrolyte powder.
  • the negative electrode plate 16 is directed to the oriented positive electrode plate 12 (or the oriented positive electrode plate is directed to the negative electrode plate) and pressed at a temperature of 100 to 600 ° C., preferably 200 to 500 ° C., more preferably 250 to 450 ° C.
  • the electrolyte powder is melted and permeates into the voids in the oriented positive electrode plate.
  • the press is not particularly limited as long as it can apply a load, and a load may be applied mechanically, or a load may be applied rather than placing a weight.
  • the oriented positive electrode plate 12, the melted electrolyte, and the negative electrode plate 16 are allowed to cool or cool to solidify the melted electrolyte to form a solid electrolyte 14.
  • the all solid lithium battery 10 may be provided with a spacer that defines the thickness of the solid electrolyte layer 14 between the oriented positive electrode plate 12 and the negative electrode plate 16.
  • this configuration is realized by sandwiching the spacer together with the solid electrolyte powder between the alignment cathode plate 12 and the anode plate 16 when the anode plate 16 or the alignment cathode plate 12 is placed on the solid electrolyte powder.
  • LiCoO 2 is abbreviated as “LCO”
  • Li 4 Ti 5 O 12 is abbreviated as “LTO”.
  • Example 1 Production of positive electrode plate (1a) Production of LCO green sheet Co 3 O 4 powder (Shodomo Chemical Industry Co., Ltd., average particle diameter 0, weighed so that the molar ratio of Li / Co is 1.02 .9 ⁇ m) and Li 2 CO 3 powder (made by Honso Chemical Co., Ltd.) were mixed, and kept at 750 ° C. for 5 hours. The obtained powder was pulverized in a pot mill so that the volume basis D50 was 0.4 ⁇ m, to obtain a powder composed of LCO plate-like particles.
  • LCO green sheet Co 3 O 4 powder Shadomo Chemical Industry Co., Ltd., average particle diameter 0, weighed so that the molar ratio of Li / Co is 1.02 .9 ⁇ m
  • Li 2 CO 3 powder made by Honso Chemical Co., Ltd.
  • 10 parts by weight of a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer 4 parts by weight of (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Chemical Co., Ltd.) and 2 parts by weight of a dispersing agent (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
  • the LCO slurry was prepared by stirring and degassing the resulting mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet. The thickness of the LCO green sheet was such that the thickness after firing was 50 ⁇ m.
  • Li 2 CO 3 green sheet (excess lithium source) 100 parts by weight of Li 2 CO 3 raw material powder (volume-based D50 particle diameter 2.5 ⁇ m, Honjo Chemical Co., Ltd.) and binder (polyvinyl butyral: part number BM -2, 5 parts by weight of Sekisui Chemical Co., Ltd., 2 parts by weight of a plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold chemical), and a dispersant (Leodore SP-O30, Kao 2 parts by weight were mixed. The resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to 4000 cP to prepare a Li 2 CO 3 slurry.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black gold chemical
  • dispersant Leodore SP-O30, Kao 2 parts by weight
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the Li 2 CO 3 green sheet was formed by forming the thus prepared Li 2 CO 3 slurry into a sheet on a PET film by a doctor blade method.
  • the thickness of the dried Li 2 CO 3 green sheet is set to a Li / Co ratio of 0.2, which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet was set to be able to
  • the cut out Li 2 CO 3 green sheet piece was placed on an LCO calcined plate as an excess lithium source, and a porous magnesia setter as an upper setter was placed thereon.
  • the sintered plate and the green sheet piece were sandwiched by a setter, and placed in an alumina sheath (manufactured by Nikkato Co., Ltd.) of 120 mm square. At this time, the alumina sheath was not sealed and a lid of 0.5 mm was opened.
  • the resulting laminate is heated up to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated up to 800 ° C.
  • an LCO sintered plate was obtained as a positive electrode plate.
  • An Au film (100 nm in thickness) was formed as a current collection layer by sputtering on the surface of the obtained LCO sintered body plate in contact with the lower setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
  • the LTO slurry was prepared by stirring and degassing the obtained negative electrode raw material mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the LTO green sheet after drying was a value such that the thickness after firing was 50 ⁇ m.
  • the LCO positive electrode plate is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000CP), and the obtained positive electrode plate cross section (cross section perpendicular to the plate surface of the positive electrode plate) has a 1000 ⁇ field of view (125 ⁇ m ⁇ EBSD measurement at 125 ⁇ m) gave an EBSD image.
  • CP cross section polisher
  • This EBSD measurement was performed using a Schottky field emission scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800F).
  • the angle between the (003) plane of the primary particle and the plate surface of the positive electrode plate is determined as the tilt angle.
  • the average value of the angles of (1) and (2) was defined as the average orientation angle (average tilt angle) of primary particles.
  • ⁇ Electrolyte filling rate in the air gap> The produced battery is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000 CP), and the cross section of the obtained positive electrode plate or negative electrode plate is observed by SEM under a 1000 ⁇ field of view (125 ⁇ m ⁇ 125 ⁇ m) (Japan Image analysis after electronic analysis (JSM 6390 LA) and EDX analysis, area of void filled with solid electrolyte, area of total void (area of void filled with solid electrolyte and void not filled with solid electrolyte The total area of the area of The area of the voids filled with the solid electrolyte was divided by the area of all the voids, and the obtained value was multiplied by 100 to calculate the electrolyte filling rate (%) in the voids.
  • CP cross section polisher
  • the produced battery is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000 CP), and the cross section of the obtained positive electrode plate or negative electrode plate is observed by SEM under a 1000 ⁇ field of view (125 ⁇ m ⁇ 125 ⁇ m) (Japan Image analysis is performed after analysis by EDX Corporation JSM 6390 LA) and EDX, and the length in which the solid electrolyte contacts the particles (that is, the particles adjacent to the void) forming the outer periphery of the void and the length of the outer periphery of the void (void).
  • the total length of the particles in contact with the solid electrolyte and the particles not in contact with the solid electrolyte was measured.
  • the contact ratio of the solid electrolyte and the particles that make up the periphery of the cavity is divided by the length of the periphery of the cavity, and the obtained value is multiplied by 100 to obtain the contact ratio of the periphery of the cavity and the solid electrolyte ( %) Was calculated.
  • ⁇ Contact ratio of solid electrolyte with surface other than (003) surface on void surface> The prepared battery is polished by a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000 CP), and the obtained positive electrode plate cross section is observed by SEM under a magnification of 1000 (125 ⁇ m ⁇ 125 ⁇ m) (manufactured by Nippon Denshi Co., Ltd.) , JSM 6390 LA), EDX analysis and EBSD measurements. This EBSD measurement was performed in the same manner as the measurement of the average orientation angle of the primary particles described above.
  • CP cross section polisher
  • the crystal face of the particle exposed on the void surface is the (003) plane or another face, and the void outer peripheral portion where the solid electrolyte is in contact with the face other than the (003) plane.
  • the length of the void and the length of the outer peripheral portion of the gap where the face other than the (003) face was exposed were measured. Divide the length of the gap periphery where the solid electrolyte is in contact with the surface other than the (003) plane by the length of the gap periphery where the surface other than the (003) plane is exposed, and obtain 100 as the obtained value. By multiplying, the contact ratio (%) of the solid electrolyte with the surface other than the (003) surface on the void surface was calculated.
  • the battery resistance of 100 of the produced batteries was measured by an AC impedance method using an electrochemical measurement system SP-150 manufactured by Biologic.
  • the minimum value when 100 batteries were measured was used as a reference resistance, one having a resistance value within 10 times of the reference resistance was regarded as a good product, and the number of good products was regarded as a battery yield.
  • ⁇ Cycle capacity maintenance rate The cycle capacity retention ratio of the battery at an operating temperature of 100 ° C. was measured in the potential range of 2.7 V-1.5 V according to the following procedure for the battery judged to be non-defective in the battery yield evaluation.
  • the discharge capacity was measured by repeating charging and discharging cycles including discharging a total of three times, and the average value of them was used as the initial discharge capacity.
  • Ii A total of 30 times of charge and discharge were performed at a charge rate of 0.5C and a discharge rate of 0.5C.
  • Example 2 A battery was prepared and evaluated in the same manner as in Example 1 except that the Li 2 CO 3 green sheet piece was not placed on the LCO calcined plate in (1c).
  • Example 3 A battery was manufactured and evaluated in the same manner as in Example 1 except that holding at 800 ° C. for 5 hours in the middle of firing was not performed in (1c) and heating temperature in (4) was set to 330 ° C. The
  • Example 4 (comparison) Production and evaluation of a battery were performed in the same manner as in Example 1 except that a powder having a D50 particle diameter of 0.3 ⁇ m was used as the Co 3 O 4 powder in the above (1a).
  • Example 5 In the same manner as in Example 1 except that the Li / Co ratio is 0.7 in the above (1b) and the baking time at 900 ° C. in the above (1c) is 96 hours, preparation and evaluation of the battery are went.
  • Example 6 A battery was manufactured and evaluated in the same manner as in Example 1 except that the positive electrode plate and the negative electrode plate were produced as follows.
  • the Li / Co ratio which is the molar ratio of the Li content in the Li 2 CO 3 green sheet loaded on the LCO calcined plate, is 0.1, and the maximum temperature is 850 ° C.
  • An LCO sintered plate was produced in the same manner as in Example 1.
  • LTO sintered plate was produced in the same manner as in Example 1 except that another LTO powder (volume-based D50 particle diameter 0.7 ⁇ m, manufactured by Ishihara Sangyo Co., Ltd.) was used as the LTO powder in (2a).
  • Example 7 Production and evaluation of a battery were performed in the same manner as in Example 1 except that the LiOH ⁇ Li 2 SO 4 -based powder produced as follows was used as the solid electrolyte, and the battery was produced as follows. .
  • LiOH purity 98.0% or more
  • Li 2 SO 4 purity 98.0% or more
  • the mixture was placed in a glass tube in an Ar atmosphere and melted by heating at 430 ° C. for 2 hours. The melt was then quenched to form a solid by placing the glass tube in water and holding for 10 minutes.
  • the solidified body was ground in a mortar in an Ar atmosphere to obtain 3LiOH.Li 2 SO 4 powder which is a solid electrolyte.
  • a LiOH ⁇ Li 2 SO 4 based powder to which 5 wt% of ZrO 2 beads with a diameter of 30 ⁇ m was added was placed on the above positive electrode plate, and a negative electrode plate was placed thereon. Further, a 15 g weight was placed on the negative electrode plate, and heated at 400 ° C. for 45 minutes in an electric furnace. At this time, the LiOH.Li 2 SO 4 -based powder was melted, and after solidification, a solid electrolyte layer with a thickness of 40 ⁇ m was finally formed. 100 laminated batteries were produced using the cell which consists of the obtained positive electrode plate / solid electrolyte / negative electrode plate.
  • Example 8 A battery was prepared and evaluated in the same manner as in Example 7 except that the same positive and negative plates as in Example 6 were used.
  • Example 9 Production and evaluation of a battery were performed in the same manner as in Example 7 except that the same positive electrode plate as in Example 2 was used, and the negative electrode plate was produced as follows.
  • Example 10 A battery was fabricated and evaluated in the same manner as in Example 8 except that the thickness of the LCO sintered plate was 200 ⁇ m and the thickness of the LTO sintered plate was 200 ⁇ m.
  • Example 11 (comparison) A battery was prepared and evaluated in the same manner as in Example 7 except that the same positive and negative electrode plates as in Example 4 were used.
  • Example 12 (comparison) A battery was prepared and evaluated in the same manner as in Example 7 except that the same positive and negative plates as in Example 5 were used.
  • Example 13 Solid using the same positive electrode plate and negative electrode plate as in Example 6 and using Li (OH) 0.9 F 0.1 Cl-based powder produced as described below as a solid electrolyte in the above (4) A battery was fabricated and evaluated in the same manner as in Example 7 except that the electrolyte powder was heated at 350 ° C. for 45 minutes.
  • LiOH purity of 98.0% or more
  • LiCl purity of 99.9% or more
  • LiF purity of 99.9%
  • Each raw material was weighed and mixed so that LiOH: LiCl: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
  • the obtained mixed powder was placed in an alumina crucible (purity 99.7%), placed in a quartz tube, and sealed with a flange.
  • the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
  • the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
  • Example 14 Solid electrolyte using the same positive electrode plate and negative electrode plate as in Example 6 and using Li (OH) 0.9 F 0.1 Br-based powder produced as described below as a solid electrolyte in the above (4) A battery was prepared and evaluated in the same manner as in Example 7 except that the powder was heated at 350 ° C. for 45 minutes.
  • LiOH purity 98.0% or more
  • LiBr purity 99.9% or more
  • LiF purity 99.9%
  • Each raw material was weighed and mixed so that LiOH: LiBr: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
  • the obtained mixed powder was placed in an alumina crucible (purity 99.7%), placed in a quartz tube, and sealed with a flange.
  • the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
  • the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
  • Example 15 A battery was prepared and evaluated in the same manner as in Example 8 except that the preparation of the positive electrode plate was performed as follows.
  • the resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to prepare a Li (Co, Ni, Mn) O 2 slurry.
  • the thus prepared slurry was formed into a sheet on a PET film by a doctor blade method to form a green sheet.
  • the thickness of the LCO green sheet was such that the thickness after firing was 50 ⁇ m.
  • Li 3 ClO, 3LiOH ⁇ Li 2 SO 4, Li 2 (OH) 0.9 F 0.1 Cl, and the Li 2 (OH) 0.9 F 0.1 Br TG-DTA measurement was performed in an Ar atmosphere using a Thermo Plus TG 8120 manufactured by Rigaku Corporation. The temperature rising rate was 10 ° C./min.
  • the melting points of Li 3 ClO, 3LiOH ⁇ Li 2 SO 4 , Li 2 (OH) 0.9 F 0.1 Cl, and Li 2 (OH) 0.9 F 0.1 Br are 320, respectively. 360, 285, and 244 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善することが可能な、全固体リチウム電池が提供される。空隙率が10~50%のリチウム複合酸化物焼結体板である低角配向正極板と、Tiを含み、かつ、0.4V(対Li/Li+)以上でリチウムイオンを挿入脱離可能な負極板と、配向正極板又は負極板の融点若しくは分解温度よりも低い融点を有する固体電解質とを備え、配向正極板の板面に対して垂直方向の断面で評価した場合に、配向正極板に含まれる空隙の30%以上に固体電解質が充填されている、全固体リチウム電池。

Description

全固体リチウム電池及びその製造方法
 本発明は、全固体リチウム二次電池(以下、全固体リチウム電池という)及びその製造方法に関するものである。
 リチウム二次電池(リチウムイオン二次電池とも称される)用の正極活物質層として、リチウム複合酸化物(典型的にはリチウム遷移金属酸化物)の粉末とバインダーや導電剤等の添加物とを混練及び成形して得られた、粉末分散型の正極が広く知られている。かかる粉末分散型の正極は、容量に寄与しないバインダーを比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。
 そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーが含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献1(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子の(003)面が正極板の板面に対して0°超30°以下の平均配向角度で配向している、低角配向正極板を用いることが開示されている。上記配向により、充放電時における正極板と固体電解質との界面において発生する応力が緩和される。すなわち、正極板の板面方向における膨張収縮率を小さくして、正極板と固体電解質層との界面に生じる応力を緩和することができ、それにより固体電解質層の欠陥や固体電解質層からの正極板の剥離を抑制することができる。
 また、負極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することも知られている。例えば、特許文献2(特開2015-185337号公報)には、正極、負極及び固体電解質層を有し、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いた全固体電池が開示されている。この文献に開示される焼結体は相対密度(緻密度)90%以上と緻密なものである。これは、全固体二次電池のエネルギー密度を高めるためには正極及び負極は緻密であることが望ましいという一般的な理解に基づくものであるといえる。
 ところで、リチウムイオン伝導度の高い固体電解質として、逆ペロブスカイト型構造を有するリチウムイオン伝導材料が提案されている。例えば、特許文献3(国際公開第2012/112229号)には、LiOCl及びLi(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)が、優れたリチウムイオン伝導性を呈する固体電解質として開示されている。また、非特許文献1(Yutao Li et al., "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithim-Ion Batteries", Angew. Chem. Int. Ed. 2016, 55, 9965-9968)には、LiOHX(式中、XはCl又はBrである)が全固体二次電池用の固体電解質として有望であること、及び上記LiOHClにフッ素をドープしてOHの一部をFで一部置換した化合物が全固体二次電池に適した電気化学的安定性を呈することが開示されている。
国際公開第2017/146088号 特開2015-185337号公報 国際公開第2012/112229号
Yutao Li et al., "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithim-Ion Batteries", Angew. Chem. Int. Ed. 2016, 55, 9965-9968
 上述したような低角配向正極板、負極板及び固体電解質を用いることで、高性能な全固体リチウム電池を作製できるのではないかと本発明者らは当初考えた。しかしながら、そのような全固体リチウム電池を実際に作製したところ、作製した複数個の電池中に、電池抵抗が高く、かつ、レート性能が顕著に悪い電池が存在しうることが判明した。これはLiOCl等の固体電解質を始め、上述したような電池構成を採用した際に生じる特有の問題であった。
 本発明者らは、今般、低角配向正極板の空隙率を10~50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できるとの知見を得た。
 したがって、本発明の目的は、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善することにある。
 本発明の一態様によれば、空隙率が10~50%のリチウム複合酸化物焼結体板である配向正極板であって、前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
 Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、
 前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質と、
を備え、前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の30%以上に前記固体電解質が充填されている、全固体リチウム電池が提供される。
 本発明の他の一態様によれば、前記全固体リチウム電池を製造する方法であって、
 前記配向正極板又は前記負極板に、前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質粉末を載置する工程と、
 前記固体電解質粉末上に前記負極板又は前記配向正極板を載置する工程と、
 前記負極板を前記配向正極板に向けて又は前記配向正極板を前記負極板に向けて100~600℃の温度でプレスして、前記固体電解質粉末を溶融させて前記配向正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
 前記配向正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
を含む、方法が提供される。
本発明の全固体リチウム電池の一例を示す模式断面図である。 配向正極板の板面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極板の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。
 全固体リチウム電池
 図1に本発明の全固体リチウム電池の一例を模式的に示す。図1に示される全固体リチウム電池10は、配向正極板12、固体電解質14、及び負極板16を含む。配向正極板12は、空隙率が10~50%のリチウム複合酸化物焼結体板である。このリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、いわゆる「低角配向正極板」である。固体電解質14は、配向正極板12又は負極板16の融点若しくは分解温度よりも低い融点を有する。負極板16は、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板であり、Tiを含んでいる。そして、配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の30%以上に固体電解質14が充填されている。このように、低角配向正極板の空隙率を10~50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できる。
 前述のとおり、特許文献1~3に開示されるような、低角配向正極板、負極板及び固体電解質を用いることで、高性能な全固体リチウム電池を作製できるのではないかと本発明者らは当初考えた。しかしながら、そのような全固体リチウム電池を実際に作製したところ、作製した複数個の電池中に、電池抵抗が高く、かつ、レート性能が顕著に悪い電池が存在することがあった。その原因は定かではないが、一因として、低角配向正極板を構成する複数の板状一次粒子(具体的にはその(003)面)が配向正極板の板面に対して30°以下の平均配向角度(例えば約15°)で配向しているため、配向正極板の表面微構造が(高角配向又は無配向正極板と比較して)平坦になる、すなわち板状一次粒子の板面に相当する(003)面が優勢的に露出することが考えられる。すなわち、上述したような部材を用いて電池を作製する際、正極板と固体電解質との界面、及び負極板と固体電解質との界面の密着性を高めるために、固体電解質を一旦軟化又は溶融させることが望まれるが、この軟化又は溶融した電解質は正極板表面に優勢的に露出している(003)面との濡れ性が悪く、良好な界面接触を形成できないことが考えられる。一方で、配向方位がランダムの無配向正極板を用いた場合、リチウムイオンの脱挿入時に発生する応力により界面剥離が生じ、時には電池の破壊が起こりうるのは特許文献1に記載されるとおりである。これらの問題が、上述のとおり、低角配向正極板の空隙率を10~50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、好都合に解消されることができる。つまり、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できる。これらの予想外の改善がもたらされる理由は定かではないが、配向正極板の空隙の内部に固体電解質が浸透して充填されることで、固体電解質と(003)面以外の面(すなわち固体電解質との濡れ性が良い結晶面)との強固な界面接触を形成できるためではないかと推察される。つまり、配向正極板表面は(003)面が優勢的に露出しているが、配向正極板内部は空隙の形状がランダムであるため、固体電解質は(003)面以外の面とも十分に接触することができる。
 上述のとおり、配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の30%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上に、固体電解質14が充填されている。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。正極板12の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には98%以下であり、より典型的には95%以下である。この空隙内における電解質充填率(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察及びEDX解析した後に画像解析し、(iii)固体電解質が充填された空隙の面積と、全空隙の面積とを測定し、(iv)固体電解質が充填された空隙の面積を全空隙の面積で除し、得られた値に100を乗じることにより算出することができる。
 配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の外周の30%以上が固体電解質14と接触しているのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、固体電解質と配向正極板との接触面積がより一層大きくなるためと推察される。正極板12の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には98%以下であり、より典型的には95%以下である。この空隙の外周と固体電解質の接触割合(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察及びEDX解析した後に画像解析し、(iii)空隙の外周を構成する粒子(すなわち空隙に隣接する粒子)と固体電解質が接触している長さと、空隙の外周の長さとを測定し、(iv)空隙の外周を構成する粒子と固体電解質が接触している長さを、空隙の外周の長さで除し、得られた値に100を乗じることにより算出することができる。
 配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の表面において、リチウム複合酸化物の(003)面以外の面の20%以上が固体電解質と接触しているのが好ましく、より好ましくは30%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、(003)面以外の面は本発明に用いる固体電解質との濡れ性が良いため、良好な界面接触を形成することができるためと考えられる。リチウム複合酸化物の(003)面以外の面の固体電解質14と接触している割合の上限は特に限定されないが、典型的には98%以下であり、より典型的には95%以下である。この空隙表面における(003)面以外の面と固体電解質の接触割合(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察、EDX解析及びEBSD測定し、(iii)EBSD測定結果に基づき、空隙表面に露出する粒子の結晶面が(003)面かそれ以外の面であるのかを解析し、固体電解質が(003)面以外の面と接触している空隙外周部分の長さと、(003)面以外の面が露出する空隙外周部分の長さとを測定し、(iv)固体電解質が(003)面以外の面と接触している空隙外周部分の長さを、(003)面以外の面が露出する空隙外周部分の長さで除し、得られた値に100を乗じることにより算出することができる。
 配向正極板12は、リチウム複合酸化物焼結体板である。このリチウム複合酸化物焼結体板は、層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向している。図2に配向正極板12の板面に垂直な断面SEM像の一例を示す一方、図3に配向正極板12の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極板12の内部で黒表示されている箇所は空隙である。
 配向正極板12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni、Mn及びAlの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。
 図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、サイクル特性を向上させることができる。すなわち、リチウムイオンの出入りに応じて(003)面と垂直な方向に各一次粒子11が伸縮するところ、板面方向に対する(003)面の傾斜角度を小さくすることによって、板面方向における配向正極板12の膨張収縮量が低減されて、配向正極板12と固体電解質14との間に応力が生じることを抑制できる。第三に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板12では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。
 一次粒子11の平均配向角度は、(i)配向正極板をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面(配向正極板の板面に垂直な断面)を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でEBSD測定し、(iii)得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と配向正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、(iv)それらの角度の平均値を算出することにより決定することができる。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板12の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 配向焼結体を構成する複数の一次粒子の平均粒径は20μm以下であることが好ましいい。具体的には、一次粒子11の平均粒径が、20μm以下であることが好ましく、より好ましくは15μm以下である。これにより、一次粒子11の粒内をリチウムイオンが伝導する距離が短くなり、レート特性をより向上させることができる。具体的には、例えば充電においては、リチウムイオンは正極一次粒子11の粒内から空隙に充填された固体電解質に移動し、更に膜状(或いは平面状)となっている固体電解質14を経て、対極の負極粒子へと移動するが、充填された固体電解質によって律速となる一次粒子11を含む正極内のリチウムイオンの伝導距離が短くなることから、レート特性を向上させることができる。一次粒径11の平均粒径は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。このとき、視野内に20個以上の一次粒子が存在するように視野を設定する。得られたSEM像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの一次粒径11の平均粒径とすることができる。
 配向正極板12を構成するリチウム複合酸化物焼結体板の空隙率は10~50%であり、好ましくは10~40%、より好ましくは12~35%、さらに好ましくは15~30%である。このような範囲内の空隙率であると、配向正極板12の空隙内部に固体電解質14で十分に充填させることができ、それにより電池抵抗及び充放電時のレート性能の顕著な改善、並びに電池製造の歩留まりの大幅な改善を実現できる。配向正極板12の空隙率は、配向正極板12における、空隙の体積比率である。この空隙率は、配向正極板の断面SEM像を画像解析することにより測定することができる。例えば、(i)焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させ,(ii)この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察し、(iii)得られたSEM像を画像解析し、視野内の全ての空隙の面積を視野内の焼結体板の面積(断面積)で除し、得られた値に100を乗じることにより空隙率(%)を得ることができる。
 配向正極板12の厚さは、単位面積当りの活物質容量を高めて全固体リチウム電池10のエネルギー密度を向上する観点から、30μm以上であり、好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、配向正極板12の厚さは500μm未満が好ましく、より好ましくは200μm未満、さらに好ましくは150μm以下、特に好ましくは120μm以下、より特に好ましくは100μm以下、最も好ましくは90μm以下、80μm以下又は70μm以下である。また、配向正極板のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
 配向正極板12の固体電解質14から離れた側の面には、正極集電体13が設けられるのが好ましい。また、負極板16の固体電解質14から離れた側の面には、負極集電体17が設けられるのが好ましい。正極集電体13及び負極集電体17を構成する材料の例としては、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム-錫酸化膜)等が挙げられる。
 配向正極板12、固体電解質14及び負極板16は容器18に収容される。容器18は、単位電池又はそれを複数個直列若しくは並列に積層させたスタックを収容可能な容器であれば特に限定されない。特に、全固体リチウム電池10は電解液の漏れの懸念が無いため、容器18は比較的簡素な容器形態を採用可能であり、外装材での包装であってもよい。例えば、電子回路に実装するためのチップ形態や、薄く幅広の空間用途のためのラミネートセル形態(例えばアルミニウム(Al)/ポリプロピレン(PP)の複層品)が採用可能である。正極集電体13及び/又は負極集電体17が容器18の一部を兼ねる構造としてもよい。また、耐熱性をより高めるために、ポリプロピレンの代わりにPCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)、ポリイミド、ポリアミド等の耐熱樹脂を用いてもよい。また、外装材と集電体との絶縁を確保した上で、アルミニウム、ステンレス等の金属を用いてもよい。
 固体電解質14は、配向正極板12又は負極板16の融点若しくは分解温度よりも低い融点を有するリチウムイオン伝導材料である。固体電解質14の融点は、電池動作温度より高いのが典型的であり、より典型的には、電池動作温度より高く、かつ、600℃以下である。この固体電解質14は融点が低いため、後述するように100~600℃の温度で溶融させて配向正極板12の空隙及び所望により負極板の16の空隙に浸透させることができ、強固な界面接触を実現することができる。
 固体電解質14は、リチウム-ハロゲン化物系材料を含むのが好ましい。このリチウム-ハロゲン化物系材料の好ましい例としては、LiOCl、Li(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種が挙げられ、より好ましくはLiOClやLi(OH)0.90.1Clである。また、固体電解質14としてのリチウム-ハロゲン化物系材料の別の好ましい例としては、Li(OH)Br(式中、1.8≦a≦2.3、b=a-c-1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含むものが挙げられ、例えばLi(OH)0.90.1Brである。あるいは、固体電解質14はリチウム-ハロゲン化物系材料以外の材料であってもよく、例えば、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の組成式で表されるものも好ましく用いることができ、例えば3LiOH・LiSOである。上述した材料はいずれもイオン伝導度が高いとの利点がある。
 固体電解質14の組成は上記したものの他にも、低融点であり、かつ、イオン伝導度が高いものであれば好適に用いることができる。固体電解質14の典型的な形態は固体電解質層である。固体電解質層の作製方法は特に限定されないが、作製方法の例としては、スパッタリング及びCVD等の気相法、スクリーン印刷及びスピンコート等の液相法、粉末を圧縮する方法、原料を融点以上に加熱した後凝固させる方法、粉末を圧縮しながら融点以上に加熱した後凝固させる方法等が挙げられる。
 上述のとおり、固体電解質14は融点が低いため、後述するように100~600℃の温度で溶融させて配向正極板12の空隙及び所望により負極板の16の空隙に浸透させることができ、強固な界面接触を実現することができる。したがって、固体電解質14は、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の溶融凝固物であるのが好ましく、LiOClの溶融凝固物であるのも好ましい。また、固体電解質14は、LiOCl、Li(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種の溶融凝固物であるのも好ましい。あるいは、固体電解質14は、Li(OH)Br(式中、1.8≦a≦2.3、b=a-c-1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む材料の溶融凝固物であるのも好ましい。
 固体電解質14の寸法は特に限定されないが、配向正極板12の空隙及び負極板16の空隙への浸入部分を除いた固体電解質層の厚さは充放電レート特性と機械的強度の観点から、0.0005mm~1.0mmが好ましく、より好ましくは0.001mm~0.1mm、さらに好ましくは0.002~0.05mmである。固体電解質層は成膜する厚みにより制御してもよいし、粉末を圧縮しながら融点以上に加熱した後に凝固させる方法の場合、スペーサにより厚み制御を行ってもよい。すなわち、全固体リチウム電池は、配向正極板12と負極板16の間に固体電解質層14の厚さを規定するスペーサをさらに備えているのが好ましい。スペーサの抵抗率は1×10Ω・cm以上であるのが好ましく、より好ましくは1×10Ω・cm以上である。スペーサの種類は特に限定されないが、スペーサがセラミックスで構成されるのが好ましく、そのようなセラミックスの例としては、Al、MgO、ZrO等が挙げられる。
 負極板16は0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板であり、Tiを含んでいる。かかる条件を満たす負極活物質は、少なくともTiを含有する酸化物であるのが好ましい。そのような負極活物質の好ましい例としては、チタン酸リチウムLiTi12(以下、LTO)、ニオブチタン複合酸化物NbTiO、酸化チタンTiOが挙げられ、より好ましくはLTO及びNbTiO、さらに好ましくはLTOである。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極板16は焼結体板(例えばLTO又はNbTiO焼結体板)であるのが好ましい。焼結体板の場合、負極板にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。なお、負極板にはバインダーが含まれない理由は、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。LTO焼結体板は、特許文献2(特開2015-185337号公報)に記載される方法に従って製造することができる。
 負極板16は緻密であってもよいし、空隙を含んでいるものであってもよい。負極板16が空隙を含む場合、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該空隙によって良好(均一)に開放される結果、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制されるとの利点がある。
 負極板16の空隙率は2~40%であるのが好ましく、より好ましくは3~30%である。このような範囲内であると、空隙による応力開放効果と、高容量化の効果とを望ましく実現することができる。負極板16の空隙率は、負極板16における、空隙の体積比率であり、前述した配向正極板12の空隙率と同様に、負極板16の断面SEM像を画像解析することにより測定することができる。
 負極板16の板面に対して垂直方向の断面で評価した場合に、負極板16に含まれる空隙の30%以上に固体電解質14が充填されているのが好ましく、より好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりを更に改善できる。負極板16の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下であり、より典型的には95%以下である。この空隙内における電解質充填率(%)は、前述した配向正極板12の電解質充填率と同様に、負極板16の断面SEM像を画像解析することにより測定することにより測定することができる。
 負極板16の板面に対して垂直方向の断面で評価した場合に、負極板16に含まれる空隙の外周の30%以上が固体電解質14と接触しているのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、固体電解質と負極板との接触面積がより一層大きくなるためと推察される。負極板16の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下であり、より典型的には95%以下である。この空隙の外周と固体電解質の接触割合(%)は、前述した配向正極板12の接触割合と同様に、負極板16の断面SEM像を画像解析することにより測定することにより測定することができる。
 負極板16の厚さは、単位面積当りの活物質容量を高めて全固体リチウム電池10のエネルギー密度を向上する観点から、25μm以上であり、好ましくは30μm以上であり、より好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、負極板16の厚さは400μm以下が好ましく、より好ましくは300μm以下である。また、負極板16のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
 前述のとおり、配向正極板12はLiCoO(LCO)焼結体板であるのが好ましく、負極板16はLiTi12(LTO)焼結体板であるのが好ましい。特に、LCO配向正極板の配向角度の平均値、すなわち平均配向角度が0°超30°以下である場合、充放電時に面方向へ膨張収縮が生じず、また、LTO負極板も充放電時に膨張収縮が生じなく、固体電解質層も充放電時に膨張収縮しないため、充放電時に応力(特に配向正極板12又は負極板16と固体電解質14との界面における応力)が発生しなくなり、充放電を安定に行うことができる。また、上記同様の目的から、負極板16としてNbTiO焼結体板を用いる場合は、膨張収縮を制御するように、NbTiO焼結体板を構成する一次粒子を配向させるのが好ましい。
 本発明の全固体リチウム電池10は、常温でも充放電可能ではあるが、100℃以上の温度で充放電されるのが好ましい。100℃以上の温度で充放電させることで、急速充放電を高いサイクル容量維持率で実現することができる。すなわち、全固体リチウム電池10を100℃以上の高温で充放電させることで、急速充放電が可能となる。つまり、全固体リチウム電池10は上記温度で高速でかつ安定に駆動することができる。しかも、急速充放電を繰り返し行っても高い容量を維持することができる、すなわち高いサイクル容量維持率を実現することができる。したがって、充放電時における全固体リチウム電池10の好ましい作動温度は100℃以上であり、より好ましくは100~300℃であり、さらに好ましくは100~200℃、特に好ましくは100~150℃である。上記作動温度を実現するための加熱手段は、各種ヒータや発熱を伴う各種装置又はデバイスであることができるが、好ましい例としては通電加熱式セラミックヒーターが挙げられる。換言すれば、本態様の全固体リチウム電池10は加熱手段を伴った二次電池システムとして提供されるのが好ましい。
 製造方法
 本発明の全固体リチウム電池10は以下のようにして製造するのが好ましい。まず、配向正極板12(又は負極板16)に、前述したxLiOH・yLiSO、LiOCl、Li(3-x)x/2OA、Li(OH)1-aCl、LiOHX及びLi(OH)Brからなる群から選択される少なくとも1種を含む固体電解質粉末を載置する。この固体電解質粉末上に負極板16(又は配向正極板12)を載置する。負極板16を配向正極板12に向けて(又は配向正極板を負極板に向けて)100~600℃、好ましくは200~500℃、より好ましくは250~450℃の温度でプレスして、固体電解質粉末を溶融させて配向正極板内の空隙に浸透させる。ここで、上記プレスは、荷重を加えることができる手法であれば特に限定されず、機械的に荷重を加えてもよいし、重しを載せるより荷重を加えてもよい。続いて、配向正極板12、溶融された電解質、及び負極板16を放冷又は冷却して、溶融された電解質を凝固させて固体電解質14を形成させる。
 前述したとおり、全固体リチウム電池10は、配向正極板12と負極板16の間に固体電解質層14の厚さを規定するスペーサを備えていてもよい。この構成は、固体電解質粉末上に負極板16又は配向正極板12を載置する際に、配向正極板12と負極板16の間にスペーサが固体電解質粉末と一緒に挟み込むことにより好ましく実現することができる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。
 例1
(1)正極板の作製
(1a)LCOグリーンシートの作製
 Li/Coのモル比が1.02となるように秤量されたCo粉末(正同化学工業株式会社製、平均粒径0.9μm)とLiCO粉末(本荘ケミカル株式会社製)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(1b)LiCOグリーンシート(過剰リチウム源)の作製
 LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2-エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を0.2とすることができるように設定した。
(1c)LCO焼結板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLiCOグリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(2b)LTOグリーンシートの焼成
 得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されたジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(3)固体電解質の作製
 少量の脱イオン水に4.790gのLiOH及び4.239gのLiClを溶解させて原料水溶液を調製した。これらの前駆体の量は、式:LiOCl+HOに対応する化学量論比となるようにした。水の大部分は、ロータリーエバポレーター及び約90℃の浴温により脱水した。得られた固体をアルミナボートに入れた。ボートを電気炉の中に入れ、約280℃の温度で約48時間真空加熱し、固体電解質であるLiOCl粉末を反応生成物として得た。
(4)電池作製
 上記正極板上に上記LiOCl粉末を載置し、ホットプレートで正極板及びLiOCl粉末を400℃で加熱し、上から負極板を加圧しながら載せた。このときLiOCl粉末は溶融し、その後の凝固を経て、最終的に厚さ20μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いて100個のラミネート電池を作製した。
(5)評価
 上記(1)で合成されたLCO正極板、上記(2)で合成されたLTO負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
<空隙率>
 LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた電極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)した後に画像解析し、全ての空隙の面積を各板の面積で除し、得られた値に100を乗じることで各電極板の空隙率(%)を算出した。
<一次粒子の平均配向角度>
 LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度(平均傾斜角)とした。
<空隙内における電解質充填率>
 作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板又は負極板の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)及びEDX解析した後に画像解析し、固体電解質が充填された空隙の面積と、全空隙の面積(固体電解質が充填された空隙の面積及び固体電解質が充填されていない空隙の面積の合計面積)とを測定した。固体電解質が充填された空隙の面積を全空隙の面積で除し、得られた値に100を乗じることにより、空隙内における電解質充填率(%)を算出した。
<空隙の外周と固体電解質の接触割合>
 作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板又は負極板の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)及びEDX解析した後に画像解析し、空隙の外周を構成する粒子(すなわち空隙に隣接する粒子)と固体電解質が接触している長さと、空隙の外周の長さ(空隙の外周を構成する粒子と固体電解質が接触している長さ及び空隙の外周を構成する粒子と固体電解質が接触していない長さの合計長さ)とを測定した。空隙の外周を構成する粒子と固体電解質が接触している長さを、空隙の外周の長さで除し、得られた値に100を乗じることにより、空隙の外周と固体電解質の接触割合(%)を算出した。
<空隙表面における(003)面以外の面と固体電解質の接触割合>
 作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)、EDX解析及びEBSD測定した。このEBSD測定は、上述した一次粒子の平均配向角度の測定と同様にして行った。EBSD測定結果に基づき、空隙表面に露出する粒子の結晶面が(003)面かそれ以外の面であるのかを解析し、固体電解質が(003)面以外の面と接触している空隙外周部分の長さと、(003)面以外の面が露出する空隙外周部分の長さとを測定した。固体電解質が(003)面以外の面と接触している空隙外周部分の長さを、(003)面以外の面が露出する空隙外周部分の長さで除し、得られた値に100を乗じることにより、空隙表面における(003)面以外の面と固体電解質の接触割合(%)を算出した。
<電池歩留まり>
 作製した電池100個の電池抵抗を、バイオロジック社製電気化学測定システムSP-150を用いて交流インピーダンス法にて測定した。電池100個を測定した際の最小値を基準抵抗とし、基準抵抗から10倍以内の抵抗値をもつものを良品とし、良品の個数を電池歩留まりとした。
<サイクル容量維持率>
 上記電池歩留まり評価において良品と判定された電池について、100℃の作動温度における電池のサイクル容量維持率を2.7V-1.5Vの電位範囲において以下の手順で測定した。
(i)0.2Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き電流値が0.02Cレートになるまで定電圧充電した後、0.2Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート0.5C及び放電レート0.5Cで充放電を合計30回行った。
(iii)0.2Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き0.02Cレートになるまで定電圧充電した後、0.2Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値をサイクル後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られたサイクル後放電容量の比率を算出して100を乗じることにより、サイクル容量維持率(%)を得た。
 例2
 上記(1c)においてLCO仮焼板上にLiCOグリーンシート片を載置しなかったこと以外は例1と同様にして、電池の作製及び評価を行った。
 例3
 上記(1c)において焼成途中の800℃で5時間保持を行わなかったこと、及び上記(4)における加熱温度を330℃としたこと以外は例1と同様にして、電池の作製及び評価を行った。
 例4(比較)
 上記(1a)においてCo粉末としてD50粒径が0.3μmのものを用いたこと以外は例1と同様にして、電池の作製及び評価を行った。
 例5(比較)
 上記(1b)でLi/Co比を0.7としたこと、及び上記(1c)における900℃での焼成時間を96時間としたこと以外は例1と同様にして、電池の作製及び評価を行った。
 例6
 正極板及び負極板の作製を以下のとおり行ったこと以外は例1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
 上記(1c)において、LCO仮焼板上に積載するLiCOグリーンシートにおけるLi含有量のモル比であるLi/Co比を0.1とし、かつ、最高温度を850℃としたこと以外は、例1と同様にしてLCO焼結板を作製した。
(負極板の作製)
 上記(2a)において、LTO粉末として別のLTO粉末(体積基準D50粒径0.7μm、石原産業株式会社製)を用いたこと以外は、例1と同様にしてLTO焼結板を作製した。
 例7
 固体電解質として以下のようにして作製したLiOH・LiSO系粉末を用い、かつ、電池を以下のようにして作製したこと以外は例1と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
 まず、市販のLiOH(純度98.0%以上)とLiSO(純度98.0%以上)とを用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiSO=3.0:1.0(モル比)となるように秤量し混合した。混合物をAr雰囲気のガラス管に入れ、430℃で2時間加熱することによって溶融した。そして、ガラス管を水中に投入して10分間保持することによって、溶融物を急冷して凝固体を形成した。次に、凝固体をAr雰囲気中乳鉢で粉砕することによって固体電解質である3LiOH・LiSO粉末を得た。
(電池作製)
 上記正極板上に直径30μmのZrOビーズを5wt%添加したLiOH・LiSO系粉末を載置し、その上に負極板を載置した。更に負極板上に15gの重しを載置し、電気炉内で400℃で45分間加熱した。このとき、LiOH・LiSO系粉末は溶融し、その後の凝固を経て、最終的に厚さ40μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いて100個のラミネート電池を作製した。
 例8
 正極板及び負極板として例6と同じものを使用したこと以外は例7と同様にして、電池の作製及び評価を行った。
 例9
 正極板として例2と同じものを使用したこと、及び負極板の作製を以下のとおり行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(負極板の作製)
 上記(2b)において最高温度775℃で5時間の焼成を行ったこと以外は、例1と同様にしてLTO焼結板を作製した。
 例10
 LCO焼結板の厚さを200μmとし、かつ、LTO焼結板の厚さを200μmとしたこと以外は例8と同様にして、電池の作製及び評価を行った。
 例11(比較)
 正極板及び負極板として例4と同じものを用いたこと以外は例7と同様にして、電池の作製及び評価を行った。
 例12(比較)
 正極板及び負極板として例5と同じものを使用したこと以外は例7と同様にして、電池の作製及び評価を行った。
 例13
 正極板及び負極板として例6と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Cl系粉末を用いて、固体電解質粉末の加熱を350℃で45分間行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
 原料として、市販のLiOH(純度98.0%以上)、LiCl(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiCl:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼ(純度99.7%)に投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Cl粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
 例14
 正極板及び負極板として例6と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Br系粉末を用いて固体電解質粉末の加熱を350℃で45分間行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
 原料として、市販のLiOH(純度98.0%以上)、LiBr(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiBr:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼ(純度99.7%)に投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Br粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
 例15
 正極板の作製を以下のとおり行ったこと以外は例8と同様にして、電池の作製及び評価を行った。
(1)正極板の作製
(1a)Li(Co0.90Ni0.05Mn0.05)Oグリーンシートの作製
 市販のCo粉末(平均粒径D50:0.9μm)、LiCO粉末、Ni(OH)粉末、及びMnCO粉末を用い、Li(Co0.90Ni0.05Mn0.05)Oとなるように秤量して混合した。得られた混合物を800℃で5時間保持して仮焼粉末を得た。この仮焼粉末をポットミルにて平均粒径D50が1μm以下となるように粉砕した。得られた粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、Li(Co,Ni,Mn)Oスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、グリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(1b)Li(Co0.90Ni0.05Mn0.05)O焼結板の作製
 PETフィルムから剥がしたLi(Co,Ni,Mn)Oグリーンシートを切り出し、下部セッターとしてのマグネシア製セッターの中央に載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記グリーンシート片をセッターで挟んだ状態で、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、800℃で20時間保持することで焼成を行い、Li(Co,Ni,Mn)O焼結体板として得た。得られた焼結体板を10mm×10mm平方の形状にレーザー加工して正極板を得た。
 結果
 例1~15の結果は、表1A及び1Bに示されるとおりであった。
Figure JPOXMLDOC01-appb-T000001
(固体電解質の融点の測定)
 上述した例1~15で用いた、LiClO、3LiOH・LiSO、Li(OH)0.90.1Cl、及びLi(OH)0.90.1Brについて、リガク製Thermo Plus TG8120を用い、Ar雰囲気にてTG-DTA測定を行った。昇温速度は10℃/minとした。その結果、LiClO、3LiOH・LiSO、Li(OH)0.90.1Cl、及びLi(OH)0.90.1Brの融点は、それぞれ、320、360、285、及び244℃であった。

 

Claims (24)

  1.  空隙率が10~50%のリチウム複合酸化物焼結体板である配向正極板であって、前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
     Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、
     前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質と、
    を備え、前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の30%以上に前記固体電解質が充填されている、全固体リチウム電池。
  2.  前記固体電解質の融点が、電池動作温度より高く、かつ、600℃以下である、請求項1に記載の全固体リチウム電池。
  3.  前記固体電解質が、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の組成式で表される、請求項1又は2に記載の全固体リチウム電池。
  4.  前記固体電解質が、LiOCl、Li(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種を含む、請求項1又は2に記載の全固体リチウム電池。
  5.  前記固体電解質が、Li(OH)Br(式中、1.8≦a≦2.3、b=a-c-1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む、請求項1又は2に記載の全固体リチウム電池。
  6.  前記配向正極板に含まれる空隙の70%以上に前記固体電解質が充填されている、請求項1~5のいずれか一項に記載の全固体リチウム電池。
  7.  前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の外周の30%以上が前記固体電解質と接触している、請求項1~6のいずれか一項に記載の全固体リチウム電池。
  8.  前記配向正極板に含まれる空隙の外周の50%以上が前記固体電解質と接触している、請求項7に記載の全固体リチウム電池。
  9.  前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の表面において、前記リチウム複合酸化物の(003)面以外の面の20%以上が、前記固体電解質と接触している、請求項1~8のいずれか一項に記載の全固体リチウム電池。
  10.  前記配向正極板に含まれる空隙の表面において、前記リチウム複合酸化物の(003)面以外の面の30%以上が、前記固体電解質と接触している、請求項9に記載の全固体リチウム電池。
  11.  前記負極板の空隙率が2~40%である、請求項1~10のいずれか一項に記載の全固体リチウム電池。
  12.  前記負極板の板面に対して垂直方向の断面で評価した場合に、前記負極板に含まれる空隙の30%以上に前記固体電解質が充填されている、請求項11に記載の全固体リチウム電池。
  13.  前記負極板に含まれる空隙の70%以上に前記固体電解質が充填されている、請求項12に記載の全固体リチウム電池。
  14.  前記負極板の板面に対して垂直方向の断面で評価した場合に、前記負極板に含まれる空隙の外周の30%以上が前記固体電解質と接触している、請求項11~13のいずれか一項に記載の全固体リチウム電池。
  15.  前記負極板に含まれる空隙の外周の50%以上が前記固体電解質と接触している、請求項14に記載の全固体リチウム電池。
  16.  前記固体電解質が、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の溶融凝固物である、請求項1~3及び6~15のいずれか一項に記載の全固体リチウム電池。
  17.  前記固体電解質が、LiOCl、Li(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種の溶融凝固物である、請求項1、2、4、6~15のいずれか一項に記載の全固体リチウム電池。
  18.  前記固体電解質が、Li(OH)Br(式中、1.8≦a≦2.3、b=a-c-1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む材料の溶融凝固物である、請求項1、2、5~15のいずれか一項に記載の全固体リチウム電池。
  19.  100℃以上の温度で充放電される、請求項1~18のいずれか一項に記載の全固体リチウム電池。
  20.  前記配向正極板と前記負極板の間に前記固体電解質層の厚さを規定するスペーサをさらに備えた、請求項1~19のいずれか一項に記載の全固体リチウム電池。
  21.  前記スペーサの抵抗率が1×10Ω・cm以上である、請求項20に記載の全固体リチウム電池。
  22.  前記スペーサがセラミックスで構成される、請求項20又は21に記載の全固体リチウム電池。
  23.  請求項1~21のいずれか一項に記載の全固体リチウム電池を製造する方法であって、
     前記配向正極板又は前記負極板に、前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質粉末を載置する工程と、
     前記固体電解質粉末上に前記負極板又は前記配向正極板を載置する工程と、
     前記負極板を前記配向正極板に向けて又は前記配向正極板を前記負極板に向けて100~600℃の温度でプレスして、前記固体電解質粉末を溶融させて前記配向正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
     前記配向正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
    を含む、方法。
  24.  前記全固体リチウム電池が、前記配向正極板と前記負極板の間に前記固体電解質層の厚さを規定するスペーサを備えており、
     前記固体電解質粉末上に前記負極板又は前記正極板を載置する際に、前記配向正極板と前記負極板の間に前記スペーサが前記固体電解質粉末と一緒に挟み込まれる、請求項23に記載の方法。
PCT/JP2018/040687 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法 WO2019093222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880059332.3A CN111279538B (zh) 2017-11-10 2018-11-01 全固体锂电池及其制造方法
EP18875769.4A EP3709430A4 (en) 2017-11-10 2018-11-01 FULLY SOLID LITHIUM BATTERY AND METHOD OF MANUFACTURING IT
JP2019552754A JP6956801B2 (ja) 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法
KR1020207011378A KR102325924B1 (ko) 2017-11-10 2018-11-01 전고체 리튬 전지 및 그 제조 방법
US16/864,550 US11837699B2 (en) 2017-11-10 2020-05-01 All-solid lithium battery and method of manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-217195 2017-11-10
JP2017217195 2017-11-10
JP2017-235918 2017-12-08
JP2017235918 2017-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/864,550 Continuation US11837699B2 (en) 2017-11-10 2020-05-01 All-solid lithium battery and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2019093222A1 true WO2019093222A1 (ja) 2019-05-16

Family

ID=66438948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040687 WO2019093222A1 (ja) 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法

Country Status (6)

Country Link
US (1) US11837699B2 (ja)
EP (1) EP3709430A4 (ja)
JP (1) JP6956801B2 (ja)
KR (1) KR102325924B1 (ja)
CN (1) CN111279538B (ja)
WO (1) WO2019093222A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090782A1 (ja) * 2019-11-06 2021-05-14 日本碍子株式会社 全固体二次電池
WO2021100659A1 (ja) * 2019-11-19 2021-05-27 日本碍子株式会社 複合電極及びそれを用いた電池
WO2021200766A1 (ja) * 2020-03-30 2021-10-07 日本碍子株式会社 リチウムイオン二次電池
WO2022091983A1 (ja) * 2020-10-30 2022-05-05 日本碍子株式会社 全固体二次電池
WO2022137359A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 全固体二次電池
WO2022137360A1 (ja) 2020-12-22 2022-06-30 日本碍子株式会社 リチウム複合酸化物焼結板及び全固体二次電池
WO2023181969A1 (ja) * 2022-03-25 2023-09-28 株式会社村田製作所 固体電池用電極およびその製造方法、固体電池、電池パッケージ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147248A1 (ja) * 2017-02-13 2018-08-16 日本碍子株式会社 リチウム複合酸化物焼結体板及びリチウム二次電池
WO2018147387A1 (ja) 2017-02-13 2018-08-16 日本碍子株式会社 リチウム複合酸化物焼結体板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112229A2 (en) 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
JP2017033689A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 電極複合体、全固体二次電池、電極複合体の製造方法
JP2017142885A (ja) * 2016-02-08 2017-08-17 セイコーエプソン株式会社 電極複合体の製造方法、リチウムイオン電池の製造方法、電極複合体、リチウムイオン電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086046A1 (en) * 2008-01-31 2009-08-05 Ohara Inc. Manufacture of lithium ion secondary battery
WO2010074314A1 (ja) * 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP5587052B2 (ja) * 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JPWO2016092888A1 (ja) * 2014-12-09 2017-04-27 日本碍子株式会社 折り曲げ可能な電池モジュール
HU230620B1 (hu) 2015-05-14 2017-04-28 ALU-ÖNTŐ Fémöntő és Fémmegmunkáló Ipari Eljárás vékonyfalú, tagolt, részletgazdag alumínium öntvények homokformázásos technológiával, gravitációs öntéssel történő előállítására
KR101803628B1 (ko) 2016-02-16 2017-12-28 엘지전자 주식회사 냉장고
JP6943873B2 (ja) * 2016-11-11 2021-10-06 日本碍子株式会社 Ic用電源及びそれを備えた各種ic製品、icへの電力供給方法、並びにicの駆動方法
JP6995135B2 (ja) * 2017-11-10 2022-01-14 日本碍子株式会社 二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112229A2 (en) 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
JP2017033689A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 電極複合体、全固体二次電池、電極複合体の製造方法
JP2017142885A (ja) * 2016-02-08 2017-08-17 セイコーエプソン株式会社 電極複合体の製造方法、リチウムイオン電池の製造方法、電極複合体、リチウムイオン電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, YUTAO ET AL.: "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, no. 34, 2016, pages 9965 - 9968, XP055607220 *
See also references of EP3709430A4
YUTAO LI ET AL.: "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries", ANGEW. CHEM. INT. ED., vol. 55, 2016, pages 9965 - 9968, XP055607220, DOI: 10.1002/anie.201604554

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090782A1 (ja) * 2019-11-06 2021-05-14 日本碍子株式会社 全固体二次電池
WO2021100659A1 (ja) * 2019-11-19 2021-05-27 日本碍子株式会社 複合電極及びそれを用いた電池
WO2021200766A1 (ja) * 2020-03-30 2021-10-07 日本碍子株式会社 リチウムイオン二次電池
WO2022091983A1 (ja) * 2020-10-30 2022-05-05 日本碍子株式会社 全固体二次電池
WO2022137359A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 全固体二次電池
WO2022137360A1 (ja) 2020-12-22 2022-06-30 日本碍子株式会社 リチウム複合酸化物焼結板及び全固体二次電池
WO2022138148A1 (ja) 2020-12-22 2022-06-30 日本碍子株式会社 正極活物質及びリチウムイオン二次電池
KR20230051269A (ko) 2020-12-22 2023-04-17 엔지케이 인슐레이터 엘티디 정극 활물질 및 리튬 이온 이차전지
KR20230051267A (ko) 2020-12-22 2023-04-17 엔지케이 인슐레이터 엘티디 리튬 복합 산화물 소결판 및 전고체 이차전지
WO2023181969A1 (ja) * 2022-03-25 2023-09-28 株式会社村田製作所 固体電池用電極およびその製造方法、固体電池、電池パッケージ

Also Published As

Publication number Publication date
EP3709430A4 (en) 2021-08-25
CN111279538A (zh) 2020-06-12
EP3709430A1 (en) 2020-09-16
JPWO2019093222A1 (ja) 2020-11-19
JP6956801B2 (ja) 2021-11-02
US11837699B2 (en) 2023-12-05
CN111279538B (zh) 2023-07-25
US20200259217A1 (en) 2020-08-13
KR20200052962A (ko) 2020-05-15
KR102325924B1 (ko) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2019093222A1 (ja) 全固体リチウム電池及びその製造方法
JP6995057B2 (ja) 二次電池
WO2019093221A1 (ja) 二次電池
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP2013243111A (ja) 正極−固体電解質複合体の製造方法
JP2019071301A (ja) リチウムイオン電池
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP7189163B2 (ja) リチウム二次電池
JP6109673B2 (ja) セラミック正極−固体電解質複合体
JP5602541B2 (ja) 全固体リチウムイオン電池
JP2019192609A (ja) 全固体リチウム電池及びその製造方法
JP6168690B2 (ja) セラミック正極−固体電解質複合体
CN112074987B (zh) 锂二次电池
CN112088459B (zh) 锂二次电池
JP7280379B2 (ja) リチウム二次電池及びその充電状態の測定方法
US20230198110A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207011378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019552754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875769

Country of ref document: EP

Effective date: 20200610