WO2019091304A1 - 一种锌碘液流电池 - Google Patents

一种锌碘液流电池 Download PDF

Info

Publication number
WO2019091304A1
WO2019091304A1 PCT/CN2018/112535 CN2018112535W WO2019091304A1 WO 2019091304 A1 WO2019091304 A1 WO 2019091304A1 CN 2018112535 W CN2018112535 W CN 2018112535W WO 2019091304 A1 WO2019091304 A1 WO 2019091304A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
zinc
electrolyte
battery
flow battery
Prior art date
Application number
PCT/CN2018/112535
Other languages
English (en)
French (fr)
Inventor
李先锋
谢聪鑫
张华民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711090856.2A external-priority patent/CN109755620B/zh
Priority claimed from CN201711091359.4A external-priority patent/CN109755604B/zh
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US16/762,491 priority Critical patent/US11605824B2/en
Priority to EP18876074.8A priority patent/EP3709421A4/en
Priority to AU2018364032A priority patent/AU2018364032B2/en
Priority to JP2020524473A priority patent/JP7035181B2/ja
Publication of WO2019091304A1 publication Critical patent/WO2019091304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of flow batteries, in particular to the field of zinc iodine flow batteries.
  • liquid flow systems include all-vanadium flow batteries, zinc-bromine flow batteries, and sodium sulfide bromine.
  • the whole vanadium redox flow battery faces higher cost, the electrolyte is more acidic and corrosive, and the sulfuric acid and high-valence vanadium ions have strong oxidizing properties, which have high requirements on the separator; zinc bromide and sodium polysulfide bromine flow battery are in use.
  • Bromine is precipitated and has strong corrosiveness.
  • the vapor pressure of elemental bromine is high, the volatilization is serious, and the pollution to the environment is very serious.
  • Zinc iodine flow batteries use neutral zinc salts and iodized salts as electrolytes with high solubility and high energy density; iodine corrosion is weak compared to Cl 2 and Br 2 ; and iodine exists in solution in the form of I 3 -
  • the low vapor pressure, low volatilization and environmental friendliness make the zinc iodine flow battery a promising flow battery.
  • the zinc iodine flow battery (changed to “zinc iodine flow double battery” in PCT) adopts double pump and double pipe design. During charge and discharge, the positive and negative electrolytes are inside the battery and the storage tank. The circulation flows.
  • the battery requires an electrolyte circulation system such as a pump or a storage tank, the energy efficiency of the system is greatly reduced due to the loss of the system.
  • the battery auxiliary equipment such as the pump and the storage tank makes the structure of the battery system complicated, and the energy density of the system is lowered. Therefore, research on single-flow battery on the basis of two-liquid flow, reducing the energy loss of the system is an important method to improve the energy utilization efficiency and energy density of the system.
  • zinc iodine flow battery mostly uses an expensive perfluorosulfonic acid ion exchange membrane, but the above ion exchange membrane is easily contaminated in the zinc iodine system, resulting in an increase in internal resistance of the battery and poor cycle stability of the battery.
  • zinc iodine flow battery mostly uses ZnI 2 as electrolyte, but ZnI 2 is easily oxidized by air to produce ZnO precipitate.
  • high current density and long cycle I 2 is easily precipitated from the positive electrode, electrolyte stability is poor, and the battery is poor.
  • the cycle stability is not good, and the operating current density is only 10 mA/cm 2 , and the power density of the battery is low.
  • a zinc iodine flow battery comprises a stack of single cells and a plurality of single cells, and the single flow battery further comprises a porous electrode on one side of the positive electrode and a cavity filled with an electrolyte; for a zinc iodine double flow battery, positive and negative
  • the electrode electrolyte realizes circulation between the electrode chamber and the storage tank through the pump and the pipeline; and for the single-flow battery, there is no pump and pipeline on the positive electrode side, and the electrolyte is stored in the porous electrode and the cavity;
  • the pump realizes the circulation of the electrolyte inside the battery and the negative storage tank, and is provided with a branch pipe of the positive circulation on the negative electrode line and is provided with a control valve.
  • the dual flow battery also includes positive and negative electrolyte storage tanks, positive and negative electrolytes.
  • I - an oxidation reaction occurs, which is oxidized to I 3 - or I 2 on the positive electrode, and Zn 2+ is reduced to Zn on the negative electrode; when discharged, the positive electrode undergoes a reduction reaction, and I 3 - or I 2 undergoes a reduction reaction to be reduced.
  • Zn is oxidized at the negative electrode to form Zn 2+ .
  • the membrane between the positive and negative electrodes of the battery functions to prevent I 3 - migration to the negative electrode and to conduct the supporting electrolyte.
  • the structure of the zinc-iodine single-flow battery removes the positive tank and the pump on the basis of the double-flow battery structure, the positive electrolyte is sealed in the liquid flow frame of the positive electrode, and the branch pipe of the positive electrolyte circulation is arranged on the negative electrode line. road.
  • the structure of the single-flow battery unit includes a positive/negative end plate, a membrane, a positive/negative electrode, a current collector, a liquid flow frame, a pump, and a pipeline.
  • the structure of the dual flow battery unit includes a positive/negative end plate, a membrane, a positive/negative electrode, a current collector, and a liquid flow frame.
  • the electrolyte of the positive electrode includes an iodide salt, a zinc salt and a supporting electrolyte, and the iodized salt is one or more of CaI 2 , MgI 2 , KI, NaI, the concentration is 2-8 mol/L, and the active material of the negative electrode is ZnNO 3 .
  • the iodide salt is preferably KI
  • the zinc salt is preferably ZnBr 2
  • the supporting electrolyte is preferably KCl.
  • the two-fluid battery has a concentration of 1 mol/L.
  • the electrode material is one in which the electrode is a carbon felt, a graphite plate, a metal plate or a carbon cloth.
  • the electrode material is preferably a carbon felt.
  • the separator used in the single-flow battery in the zinc-iodine flow battery is a porous membrane containing no ion exchange group or a composite membrane thereof, and the double-flow battery uses a porous membrane containing no ion exchange group or a composite membrane thereof, and a composite membrane.
  • the material is a porous membrane, and the material includes polyethersulfone (PES), polyethylene (PE), polypropylene (PP), polysulfone (PS), polyetherimide (PEI), and polyvinylidene fluoride (PVDF).
  • One or more of the two or more membranes have a thickness of 100 to 1000 ⁇ m, preferably 500 to 1000 ⁇ m, a pore diameter of 10 to 100 nm, and a porosity of 30% to 70%.
  • the porous membrane material is preferably polyethylene (PE) or polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • the surface of the porous film base film is coated with a dense polymer layer for improving the coulombic efficiency of the battery, and the materials include: polybenzimidazole (PBI), Nafion resin, (polytetrafluoroethylene) PTFE. Among them, Nafion resin is preferred, and the thickness of the coating layer is from 1 to 10 ⁇ m.
  • the structure of the zinc-iodine single-flow battery is greatly simplified compared with the two-liquid flow, which improves the energy density of the battery, and at the same time, the loss of the system is reduced, and the energy efficiency of the system is improved.
  • the concentration of zinc iodine electrolyte is very high, and it is suitable for single-flow battery; like the double liquid flow, the zinc iodine single-flow battery solves the problem of strong acid and alkali of electrolyte, the cost of the battery is relatively low; The density is high and the power density of the battery is large.
  • the positive and negative electrolytes are the same, which effectively solves the problem of the efficiency of the electrolyte migration from one pole to the other and the efficiency of the battery during the operation of the traditional zinc-iodine flow battery due to the inconsistent osmotic pressure of the positive and negative electrolytes.
  • the cross-linking of positive and negative active materials during battery operation is greatly reduced, the coulombic efficiency is improved, the system maintenance cost caused by electrolyte migration is effectively reduced, and the positive and negative electrolytes are the same, so that the electrolyte can be recovered online, which greatly saves electrolyte replacement. Cost, showing a good application prospect.
  • the positive and negative electrolytes of the two-stream battery are neutral iodized salt and zinc salt, the cost is lower, the operating environment is milder; the solubility of zinc salt and iodized salt is high, the energy density of the battery is high; the electricity of electrolyte The chemical activity is good, the current density of the battery operation is high, and the power density of the battery is high; at the same time, the corrosiveness of iodine and zinc is small, and the environmental burden is greatly reduced.
  • the zinc iodine flow battery of the invention solves the problem of the electrolyte strong acid and alkali used at present, and the support of the electrolyte increases the conductivity of the solution and greatly improves the voltage efficiency of the battery.
  • the cheap porous membrane replaces the traditional Nafion 115 membrane, which greatly reduces the cost of the stack; in addition, the porous structure facilitates the conduction of neutral ions, the current density of the battery can reach 140 mA/cm 2 ", and the voltage of the battery efficiency has been greatly improved; the most important is the porous structure of the porous membrane filled with an oxidation state of I 3 - electrolyte, having a short circuit after the dissolution of zinc dendrite battery overcharge, the battery can be automatically restored after the short circuit, greatly The stability and longevity of the battery are improved.
  • the Nafion coating can effectively block the I 2 /I 3 - mutual string, which significantly improves the coulombic efficiency (above 98%) of the single-flow battery.
  • the traditional zinc iodine flow battery uses ZnI 2 as the active material, which is easily oxidized to form ZnO and I 2 under normal temperature conditions, and the cycle performance of the battery is poor; replacing ZnI 2 with KI greatly improves the stability of the positive electrode electrolyte, and KI The price is much lower than ZnI 2 and the cost of electrolytes drops dramatically.
  • FIG. 1 is a schematic view showing the structure of a zinc-iodine single-flow battery of the present invention
  • Example 2 is a cycle performance diagram of a single-cell zinc-iodine single-cell battery assembled in Example 1; the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Example 3 is an energy density diagram of a zinc-iodine single-liquid flow battery installed in Example 1.
  • the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Example 4 is a cycle performance diagram of a zinc-iodine single-flow battery assembled in Example 3; the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the thickness of the porous film is 500 ⁇ m.
  • Example 5 is a cycle performance diagram of a zinc-iodine single-flow battery assembled in Example 5; the positive and negative electrolytes are ZnCl 2 : 4 M, KI: 8 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Example 6 is a cycle performance diagram of a zinc-iodine single-flow battery assembled in Example 7; the positive and negative electrolytes are ZnBr 2 : 4 M, NaI: 8 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Example 7 is an energy density diagram of a zinc-iodine single-flow battery assembled in Example 7; the positive and negative electrolytes are ZnBr 2 : 4 M, NaI: 8 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • FIG. 8 is a cycle performance diagram of a zinc-iodine single-flow battery assembled in Comparative Example 2; the positive and negative electrolytes are ZnI 2 : 4 M, and the porous film thickness is 900 ⁇ m.
  • FIG. 9 is a cycle performance diagram of a zinc-iodine single-liquid battery assembled in Comparative Example 3; the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and Nafion 115 film thickness: 125 ⁇ m
  • Figure 10 is a graph showing the cycle performance of a zinc-iodine single-flow battery assembled in Comparative Example 5; the positive and negative electrolytes were ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the thickness of the porous film was 65 ⁇ m.
  • Figure 11 is a schematic view showing the structure of a zinc-iodine double-flow battery based on a porous membrane: 1 is a positive, negative-electrode pump; 2 is a positive, negative electrolyte storage tank; 3 is a positive and negative end plate; 4 is a positive and negative electrode set Flow plate; 5 is a positive and negative liquid flow frame; 6 is a battery separator
  • Example 12 is a cycle performance diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 1.
  • the positive and negative electrolytes are ZnBr 2 : 2.5 M, KI: 5 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Example 13 is a cycle performance diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 2; the positive and negative electrolytes are ZnBr 2 : 3 M, KI: 6 M, KCl: 1 M porous film thickness: 900 ⁇ m
  • Example 14 is an energy density diagram of a single-cell zinc-iodine double-flow battery assembled in Example 1; the positive and negative electrolytes are ZnBr 2 : 2.5 M, KI: 5 M, KCl: 1 M porous film thickness: 900 ⁇ m
  • Example 15 is an energy density diagram of a single-cell zinc-iodine double-flow battery assembled in Example 2; the positive and negative electrolytes are ZnBr 2 : 3 M, KI: 6 M, KCl: 1 M porous film thickness: 900 ⁇ m
  • 16 is a cycle performance diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 3; the positive and negative electrolytes are ZnBr 2 : 2 M, KI: 4 M, KCl: 1 M porous film thickness: 900 ⁇ m
  • Figure 17 is a graph showing the cycle performance of a single-cell zinc-iodine double-liquid battery assembled in Example 4; the positive and negative electrolytes are ZnBr 2 : 1 M, KI: 2 M, KCl: 1 M porous film thickness: 900 ⁇ m
  • Example 18 is a cycle performance diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 6; the positive and negative electrolytes are ZnBr 2 : 3 M, KI: 6 M, KCl: 1 M, and the thickness of the porous film is 500 ⁇ m.
  • Example 19 is a cycle performance diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 12; the positive and negative electrolytes are ZnSO 4 : 3 M, KI: 6 M, KCl: 1 M, and the thickness of the porous film is 900 ⁇ m.
  • Figure 20 is a cycle diagram of a single-cell zinc-iodine double-liquid battery assembled in Example 14; the positive and negative electrolytes are ZnBr 2 : 3 M, KI: 6 M, and the thickness of the porous film is 900 ⁇ m.
  • Figure 21 is a graph showing the rate performance of the zinc-iodine double-liquid battery assembled in Example 4; battery rate performance test: the assembly of the single cells is: positive electrode end plate, current collector, positive electrode with liquid flow frame, diaphragm, with liquid The negative electrode and the negative end plate of the flow frame; the composition of the electrolyte in the battery is 2M KI, 1M ZnBr 2 , and the flow rate of 2M KCl is 10mL/min, the charging current is 60-140mA/cm 2 , the control is time, the voltage is double-cut: charging The cut-off time is 45mins, the charge cut-off voltage is 1.5V, and the discharge cut-off voltage is 0.1V.
  • Example 22 is a graph showing the temperature change performance of the zinc-iodine double-flow battery assembled in Example 4; the battery temperature change performance test: the assembly of the single cells is: positive electrode end plate, current collector, positive electrode with liquid flow frame, diaphragm, belt The negative electrode and the negative end plate of the liquid flow frame; the composition of the electrolyte in the battery is 2M KI, 1M ZnBr 2 , and the flow rate of 2M KCl is 10mL/min, the charging current is 80mA/cm 2 , the control is time, the voltage is double cutoff: charging The cut-off time is 45mins, the charge cut-off voltage is 1.5V, the discharge cut-off voltage is 0.1V, and the temperature range is 10°C to 65°C.
  • Example 23 is a voltage curve diagram of a zinc-iodine double-flow battery cell assembled in Example 2; the assembly of the single cells is: a positive electrode end plate, a current collector, a positive electrode with a liquid flow frame, a separator, and a liquid flow frame.
  • the negative electrode and the negative end plate; the composition of the electrolyte in the battery is 6M KI, 3M ZnBr 2 , and the flow rate of 1M KCl is 10mL/min, the charging current is 80mA/cm 2 , the control is time, the voltage is double cut: the charging cut-off time is 45mins The charge cut-off voltage is 1.5V, and the discharge cut-off voltage is 0.1V; first charge 1h until the battery is short-circuited, then reduce the charging time to 45mins to let the battery continue to run.
  • Figure 24 is a voltage graph of the zinc-iodine double-flow battery stack assembled in the second embodiment; the assembly of the stack is: positive electrode end plate, current collector, middle 9-section positive electrode with liquid flow frame, diaphragm, with The negative electrode of the flow frame, finally the current collector, and the negative end plate; the composition of the electrolyte in the battery is 6M KI, 3M ZnBr 2 , and the flow rate of 1M KCl is 10mL/min, the charging current is 80mA/cm 2 , and the charging cut-off voltage is 13V. , discharge cut-off voltage is 1V; charge 1h first until the battery is shorted, then reduce the charging time to 45mins to let the battery continue to run
  • Figure 25 is a diagram showing the cycle performance of a zinc-iodine double-liquid battery stack assembled in Example 2; the stack is composed of 9 single cells connected in series
  • Figure 26 is a graph showing the cycle performance of a zinc-iodine double-liquid battery cell assembled in Comparative Example 1; the positive and negative electrolytes are ZnBr 2 : 2.5 M, KI: 5 M, KCl: 1 M Nafion 115 film thickness: 125 ⁇ m
  • Figure 27 is a graph showing the cycle performance of a zinc-iodine double-liquid battery cell assembled in Comparative Example 4; the positive and negative electrolytes are ZnI 2 : 3 M, and the thickness of the porous film is 900 ⁇ m.
  • Figure 28 is a graph showing the cycle performance of a zinc-iodine double-liquid battery cell assembled in Comparative Example 5; the positive and negative electrolytes are ZnBr 2 : 2.5 M, KI: 5 M, KCl: 1 M porous film thickness: 65 ⁇ m
  • 29 is a cycle performance diagram of a single-cell zinc-iodine single-cell battery assembled in a preferred example 1; the positive and negative electrolytes are ZnBr : 4M, KI: 8M, KCl: 1M, composite film is based on PE porous film, Nafion resin coating, coating thickness is 7 ⁇ m, film thickness: 900 ⁇ m
  • Figure 30 is a diagram showing the energy density of a zinc-iodine single-liquid flow battery installed in a preferred example 1; the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the composite film is based on a PE porous film, coated with Nafion resin. Layer, coating thickness 7 ⁇ m, thickness: 900 ⁇ m
  • 31 is a cycle performance diagram of a zinc-iodine single-liquid battery assembled in a preferred example 2; the positive and negative electrolytes are ZnBr 2 : 4 M, KI: 8 M, KCl: 1 M, and the composite film is based on a PE porous film, Nafion resin Coating, coating thickness 7 ⁇ m, thickness: 500 ⁇ m.
  • a zinc iodine flow battery, battery performance test of a single flow battery the assembly of the single battery is: positive end plate, current collector, carbon felt positive electrode with liquid flow frame, diaphragm, liquid flow frame Carbon felt negative electrode, negative electrode end plate.
  • the flow rate of the electrolyte in the battery is 10 mL/min
  • the charging current is 80 mA/cm 2
  • the control is time
  • the voltage is double-cut: the charge cut-off time is 45 mins, the charge cut-off voltage is 1.5 V, and the discharge cut-off voltage is 0.1 V.
  • Figures 2 - 3 are graphs of cycle performance and energy density of the battery under the most preferred conditions.
  • the battery assembled by the porous membrane has good cycle stability; at the same time, the application of the porous membrane greatly improves the ion conductivity.
  • the operating current density of the battery can reach 80 mA/cm 2 and the power density is high.
  • the concentration of KI in the electrolyte is as high as 8 M, and the energy density of the battery is greater than 90 Wh/L.
  • the battery 4 using a porous membrane more thin (500 m) coulombic efficiency of the cell since the electrolyte decreases crosstalk of intensified; 5 ZnCl 2 electrolyte to replace the ZnBr 2, battery The performance is greatly reduced, and the stability is deteriorated, which is caused by the instability of the electrolyte, the iodine formed by the positive electrode is precipitated, and the negative electrode zinc chloride is hydrolyzed and precipitated; in Figure 6, NaI is substituted for KI, and the overall efficiency of the battery is lowered.
  • voltage efficiency which is mainly caused by a decrease in the conductivity of the electrolyte, and a decrease in efficiency causes a decrease in the energy density of the battery in FIG.
  • FIG. 8 to 10 are comparative experiments, and FIG. 8 uses ZnI 2 as the electrolyte of the battery, and the efficiency of the battery is lowered, and the stability is deteriorated, mainly because the conductivity of the ZnI 2 solution is relatively low, and the battery is in the process of charging and discharging. Electrolyte instability causes precipitation.
  • Figure 9 uses Nafion 115 membrane as the membrane material of the battery. During the charging and discharging process, serious membrane fouling occurs on the membrane surface, the polarization of the battery is intensified, and the performance of the battery is degraded.
  • Figure 10 uses a very thin porous membrane, and the cross-contamination of the electrolyte is greatly aggravated, and the efficiency of the battery, especially the coulombic efficiency, is severely degraded.
  • a preferred example is a PE composite film in which a Nafion coating is used for the separator
  • FIG. 29 is a battery assembled using a composite film having a thickness of 900 ⁇ m.
  • the electrolytic solution is a mixed solution of KI and ZnBr 2 . Due to the good barrier effect of the Nafion coating on I2 and I3-, the coulombic efficiency of the battery is greatly improved; in addition, the battery uses a thinner 500 ⁇ m thick composite film, and the coulombic efficiency of the battery is slightly reduced.
  • a zinc iodine flow battery test for battery performance of a two-flow battery the assembly of the single cells is: a positive electrode end plate, a current collector, a carbon felt positive electrode with a liquid flow frame, a diaphragm, and a liquid flow frame. Carbon felt negative electrode, negative electrode end plate.
  • the flow rate of the electrolyte in the battery is 10 mL/min, controlled to time, and the voltage is double-cut: the charge cut-off time is 45 mins, the charge cut-off voltage is 1.5 V, and the discharge cut-off voltage is 0.1 V.
  • FIG 11 - Figure 17 Zinc iodine flow battery with ZnBr 2 and KI as the positive and negative active materials of the battery, KCl as the supporting electrolyte, the membrane adopts a porous membrane of 900 ⁇ m thick, and the battery can be stably operated at 1000 mA/cm 2 for 1000 cycles. Above, the energy efficiency is greater than 80%, and the energy density is greater than 80 Wh/L.
  • the advantage of the above system is that the introduction of Br - in ZnBr 2 can form a complex with I 2 formed by the positive electrode, thereby inhibiting the precipitation of I 2 ; the replacement of the conventional ZnI 2 by KI in the negative electrode electrolyte can avoid the oxidation of zinc during charge and discharge.
  • the use of the porous membrane facilitates the conduction of neutral ions, improves the operating current density and power density of the battery, and the separator does not contain ion exchange groups, which can greatly reduce the membrane fouling and improve The cycle stability of the battery.
  • the battery of Figure 18 uses a thinner porous membrane, and the performance of the battery, especially the coulombic efficiency, is severely reduced, mainly due to the cross-contamination of the thinner membrane electrolyte;
  • Figure 19 uses ZnSO 4 instead.
  • ZnBr 2 the voltage efficiency of the battery is greatly reduced, indicating that the sulfate in the sulfate has a serious influence on the electrochemical performance of the battery, especially the kinetics;
  • the electrolyte of Fig. 20 removes the supporting electrolyte KCl, and the voltage efficiency of the battery is only slightly decreased.
  • the battery 21 to 25 show that under the most preferable conditions, the battery has good rate performance and temperature change performance; in addition, the porous film has a corrosive effect on the zinc dendrite formed by the negative electrode due to the oxidation state of I 3 - in the pore structure.
  • the battery and the assembled stack can be automatically restored after a micro-short overcharge, which greatly improves the stability of the battery; the most important thing is that the assembled stack can run stably for more than 300 cycles at 80 mA/cm 2 .
  • Figure 26 uses a Nafion 115 membrane as the membrane of the battery, the membrane has poor ion conductivity, and the voltage efficiency of the battery is lower than that of the preferred embodiment, but the Nafion 115 membrane is greatly used. The poor contamination of the ions is reduced, and the coulombic efficiency of the battery is greatly improved. However, the performance of the battery was drastically attenuated after 15 cycles because the I 2 and Zn in the electrolyte caused serious membrane fouling on the Nafion 115 film, the film resistance was greatly increased, and the polarization was intensified.
  • Fig. 27 uses ZnI 2 as an electrolyte, and the performance of the battery is attenuated severely due to the instability of the positive and negative electrolytes.
  • the positive electrode electrolyte forms an I 2 precipitate during charge and discharge, and the negative electrode electrolyte forms zinc oxide and oxidized oxide.
  • Figure 28 uses a very thin porous membrane, which increases the cross-contamination of the electrolyte and the coulombic efficiency of the battery is very low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种锌碘液流电池,为锌碘单液流电池或锌碘双液流电池,包括一节单电池或二节以上单电池电路串联组成的电堆,单电池包括依次层叠的正极端板、正、负极集流体、带有液流框的正极、膜、带有液流框的负极、负极端板,负极电解液储罐中的电解液通过泵实现电解质在负极空腔和储罐之间的循环,同时负极管路上设有正极电解质循环的分支管路。双液流电池正极电解液和负极电解液相同,均为碘盐和锌盐的混合水溶液,膜为不含离子交换基团的多孔膜。同时正负极电解质溶液均为中性,克服了传统液流电池强酸强碱电解质的腐蚀性问题,同时,电池的电流密度高、循环寿命长,成本低。

Description

一种锌碘液流电池 技术领域
本发明涉及液流电池领域,特别是锌碘液流电池领域。
背景技术
化石能源的大量使用引发了能源危机和环境问题。开发利用不可再生能源成为世界各国关注的焦点。但是风能,太阳能等再生能源的不连续性和不稳定性,使得他们的直接利用困难,所以利用储能技术,实现可再生能源的连续供应成为解决上述问题的关键。液流电池由于设计灵活(能量,功率分开设计),安全性好,设计寿命长,不受地域环境限制的优势,已经成为大规模储能市场最优前景的技术之一,其中全钒液流电池以其独特的技术优势已经进入商业示范阶段。
目前发展比较成熟的液流体系包括全钒液流电池,锌溴液流电池,多硫化钠溴等体系。但是全钒液流电池面临成本较高,电解质的酸性和腐蚀性较强,硫酸和高价态钒离子具有强氧化性对隔膜的要求很高;锌溴和多硫化钠溴液流电池在使用中会析出溴,具有很强的腐蚀性,同时单质溴的蒸汽压较高,挥发严重,对环境的污染很严重。锌碘液流电池使用中性的锌盐和碘盐作为电解质,溶解度高,能量密度大;比起Cl 2和Br 2,碘腐蚀性很弱;同时碘在溶液中以I 3 -的形式存在,蒸汽压低,不易挥发,环境友好等特点,使得锌碘液流电池成为一种很有前景的液流电池。与一般液流电池相同,锌碘液流电池(PCT中改为“锌碘液流双电池”)采用双泵双管路设计,在充放电过程中,正负极电解质在电池内部和储罐中循环流动。但是由于电池需要泵、储罐等电解液循环系统,导致系统的能量效率由于系统的损耗大大降低,另一方面泵和储罐等电池辅助设备使得电池系统结构复杂,降低了系统的能量密度,所以在双液流的基础上开展单液流电池的研究,减少系统的能量损耗是提高系统能量利用效率和能量密度的重要方法。另外,目前报道的锌碘液流电池多使用价格昂贵的全氟磺酸离子交换膜,但是上述离子交换膜在锌碘体系中容易被污染,导致电池的内阻上升,电池的循环稳定性差。此外锌碘液流电池多使用ZnI 2作为电解质,但是ZnI 2容易被空气氧化产生ZnO沉淀,同时在高电流密度以及长循环过程中,正极生成的I 2容易析出,电解质的稳定性差,电池的循环稳定性不好,并工作电流密度仅仅为10mA/cm 2,电池的功率密度低。
发明内容
为了解决以上问题,本发明的内容如下:
一种锌碘流电池,包括一节单电池和多节单电池构成的电堆,单液流电池还包括正极一侧多孔电极及空腔充满电解液;对于锌碘双液流电池,正负极电解液通过泵和管路实现在电极腔室和储罐之间的循环;而对于单液流电池,正极一侧没有泵和管路,电解液储存在多孔电极及空腔中;负极利用泵实现电解液在电池内部和负极储罐的循环,并于负极管路上设有正极循环的支路管道并设有控制阀。双液流电池还包括正、负极电解液储罐,正负极电解液。
充电时I -发生氧化反应,在正极上被氧化为I 3 -或I 2,负极上Zn 2+被还原为Zn;放电时,正极发生还原反应,I 3 -或I 2发生还原反应被还原为I -,Zn在负极发生氧化反应生成Zn 2+。电池正负极之间的膜,起到阻止I 3 -迁移到负极并且导通支持电解质 的作用。
锌碘单液流电池的结构在双液流电池结构的基础上去掉了正极的储罐和泵,正极电解液密封在正极的液流框中,同时负极管路上设有正极电解质循环的分支管路。单液流电池单电池的结构包括正/负极端板、膜、正/负极、集流体、液流框,泵和管路组成。双液流电池单电池的结构包括正/负极端板、膜、正/负极、集流体、液流框组成。
正极的电解质包括碘盐,锌盐以及支持电解质,碘盐是CaI 2、MgI 2、KI、NaI中的一种或二种以上,浓度为2~8mol/L,负极的活性物质为ZnNO 3,ZnBr 2、ZnSO 4、ZnCl 2的一种或二种以上,浓度为1~4mol/L,双液流电池中电解液中碘和锌的摩尔比为2:1,单液流电池支持电解质为KCl、KBr、NaCl的一种或者或二种以上,双液流电池支持电解质为KCl、K 2SO 4、KBr的一种或者或二种以上,其浓度是1~2mol/L。其中碘盐优选KI,锌盐优选ZnBr 2,支持电解质优选KCl。双液流电池浓度为1mol/L。
电极材料为电极为碳毡、石墨板、金属板或者碳布的一种。电极材料优选碳毡。
锌碘液流电池中单液流电池使用的隔膜为不含离子交换基团的多孔膜或其复合膜,双液流电池使用的是不含离子交换基团的多孔膜或其复合膜,基底材料为多孔膜,材料包括聚醚砜(PES)、聚乙烯(PE)、聚丙烯(PP)、聚砜(PS)、聚醚酰亚胺(PEI)、聚偏氟乙烯(PVDF)的一种或者二种以上的一种或者二种以上膜厚在100~1000μm,优选500-1000μm,孔径在10~100nm之间,孔隙率30%~70%。多孔膜材料优选聚乙烯(PE)、聚丙烯(PP)。另外对于锌碘单液流电池,多孔膜基膜表面涂覆致密高分子层用于提高电池的库伦效率,材料包括:聚苯并咪唑(PBI),Nafion树脂,(聚四氟乙烯)PTFE。其中优选Nafion树脂,涂层的厚度为1~10μm。
本发明的有益效果在于:
1.锌碘单液流电池的结构比起双液流大大简化,提高了电池的能量密度,同时,系统的损耗减少,系统的能量效率提高。另外,锌碘电解质的浓度很高,适合用于单液流电池;与双液流相同,锌碘单液流电池解决了电解质强酸强碱的问题,电池的成本比较低;同时电池运行的电流密度很高,电池的功率密度大。
2.正负电解液相同,有效地解决了传统的锌碘液流电池在运行过程中由于正、负极电解液渗透压不一致导致电解液由一极迁移至另一极及电池的效率衰减问题,大大降低了电池运行过程中正负极活性物质的互串,提高了库伦效率,有效地降低了由电解液迁移造成的系统维护成本,以及正负电解质相同使得电解质能够在线恢复,大大节省了电解质的更换成本,表现出很好的应用前景。
3、双液流电池正负极电解液使用是中性的碘盐和锌盐,成本较低,运行环境比较温和;锌盐和碘盐的溶解度很高,电池的能量密度高;电解质的电化学活性较好,电池运行的电流密度很高,电池的功率密度高;同时碘和锌的腐蚀性小,大大减轻了环境负担。本发明的锌碘液流电池解决了目前使用的电解质强酸强碱的问题,支持电解质的加入提高了溶液的电导率,大大提高了电池的电压效率。
4.廉价多孔膜代替了传统的Nafion 115膜,大大降低了电堆的成本;另外,多孔结构有利于中性离子的导通,电池的电流密度可以达到140mA/cm 2”,并且电池的电压效率得到很大提高;最重要的是多孔膜的多孔结构中充满了氧化态的I 3 -电解质,对电池过充之后短路的锌枝晶具有溶解作用,所以电池在短路后能够自动恢复,大大提高 了电池的稳定性和寿命。另外Nafion涂层能够有效阻隔I 2/I 3 -的互串,显著提高了单液流电池的库伦效率(高于98%)。
5.传统锌碘液流电池使用ZnI 2作为活性物质,常温条件下容易被氧化生成ZnO和I 2,电池的循环性能差;以KI替代ZnI 2大大提高了正极电解质的稳定性,并且KI的价格大大低于ZnI 2,电解质的成本大幅度下降。
6.使用ZnBr 2引入了Br -,与正极电解质充电时形成的I 2生成I 2Br -抑制I 2的析出,在电池高SOC以及高电流密度运行时保持电解质的稳定,大大提高电池的循环性能。
附图说明
图1为本发明的锌碘单液流电池的结构示意图
其中1为正负极端板;2为正负极集流体;3为正负极的液流框;4为电池的膜;5为正极电解质进出口阀门;6为电解质储罐;7电解质循环泵
图2为实施例1组装的锌碘单液流电池单电池循环性能图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,多孔膜厚度:900μm
图3为实施例1装的锌碘单液流电池能量密度图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,多孔膜厚度:900μm
图4为实施例3组装的锌碘单液流电池的循环性能图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,多孔膜厚度:500μm
图5为实施例5组装的锌碘单液流电池的循环性能图;正负极电解质为ZnCl 2:4M,KI:8M,KCl:1M,多孔膜厚度:900μm
图6为实施例7组装的锌碘单液流电池的循环性能图;正负极电解质为ZnBr 2:4M,NaI:8M,KCl:1M,多孔膜厚度:900μm
图7为实施例7组装的锌碘单液流电池的能量密度图;正负极电解质为ZnBr 2:4M,NaI:8M,KCl:1M,多孔膜厚度:900μm
图8为对比例2组装的锌碘单液流电池的循环性能图;正负极电解质为ZnI 2:4M,多孔膜厚度:900μm
图9为对比例3组装的锌碘单液流电池的循环性能图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,Nafion 115膜厚度:125μm
图10为对比例5组装的锌碘单液流电池的循环性能图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,多孔膜厚度:65μm
图11为基于多孔膜的锌碘双液流电池的结构示意图:其中1为正,负极的泵;2为正,负极电解液储罐;3为正、负极端板;4为正、负极集流板;5为正、负极液流框;6为电池隔膜
图12为实施例1组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:2.5M,KI:5M,KCl:1M,多孔膜厚度:900μm
图13为实施例2组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:3M,KI:6M,KCl:1M多孔膜厚度:900μm
图14为实施例1组装的锌碘双液流电池单电池能量密度图;正负极电解质为ZnBr 2:2.5M,KI:5M,KCl:1M多孔膜厚度:900μm
图15为实施例2组装的锌碘双液流电池单电池能量密度图;正负极电解质为ZnBr 2:3M,KI:6M,KCl:1M多孔膜厚度:900μm
图16为实施例3组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:2M,KI:4M,KCl:1M多孔膜厚度:900μm
图17为实施例4组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:1M,KI:2M,KCl:1M多孔膜厚度:900μm
图18为实施例6组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:3M,KI:6M,KCl:1M,多孔膜的厚度为500μm
图19为实施例12组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnSO 4:3M,KI:6M,KCl:1M,多孔膜的厚度为900μm
图20实施例14组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:3M,KI:6M,多孔膜的厚度为900μm
图21实施例4组装的锌碘双液流电池倍率性能图;电池性倍率性能测试:单电池的组装依次为:正极端板、集流体、带有液流框的正极、隔膜、带有液流框的负极、负极端板;电池中电解质的组成为2M KI,1M ZnBr 2,以及2M KCl流速为10mL/min,充电电流为60~140mA/cm 2,控制为时间,电压双重截止:充电截止时间为45mins,充电截止电压为1.5V,放电截止电压为0.1V
图22为实施例4组装的锌碘双液流电池的变温性能图;电池性变温性能测试:单电池的组装依次为:正极端板、集流体、带有液流框的正极、隔膜、带有液流框的负极、负极端板;电池中电解质的组成为2M KI,1M ZnBr 2,以及2M KCl流速为10mL/min,充电电流为80mA/cm 2,控制为时间,电压双重截止:充电截止时间为45mins,充电截止电压为1.5V,放电截止电压为0.1V,温度范围是10℃~65℃
图23为实施例2组装的锌碘双液流电池单电池的电压曲线图;单电池的组装依次为:正极端板、集流体、带有液流框的正极、隔膜、带有液流框的负极、负极端板;电池中电解质的组成为6M KI,3M ZnBr 2,以及1M KCl流速为10mL/min,充电电流为80mA/cm 2,控制为时间,电压双重截止:充电截止时间为45mins,充电截止电压为1.5V,放电截止电压为0.1V;先充电1h直到电池短路,然后降低充电时间至45mins让电池继续运行
图24为实施例2组装的锌碘双液流电池电堆的电压曲线图;电堆的组装依次为:正极端板、集流体、中间9节带有液流框的正极、隔膜、带有液流框的负极、最后是集流体,负极端板;电池中电解质的组成为6M KI,3M ZnBr 2,以及1M KCl流速为10mL/min,充电电流为80mA/cm 2,充电截止电压为13V,放电截止电压为1V;先充电1h直到电池短路,然后降低充电时间至45mins让电池继续运行
图25为实施例2组装的锌碘双液流电池电堆循环性能图;电堆由9节单电池串联而成
图26为对比例1组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:2.5M,KI:5M,KCl:1M Nafion 115膜厚度:125μm
图27为对比例4组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnI 2:3M,多孔膜的厚度为900μm
图28为对比例5组装的锌碘双液流电池单电池循环性能图;正负极电解质为ZnBr 2:2.5M,KI:5M,KCl:1M多孔膜厚度:65μm
图29为优选例1组装的锌碘单液流电池单电池循环性能图;正负极电解质为ZnBr
Figure PCTCN2018112535-appb-000001
: 4M,KI:8M,KCl:1M,复合膜是以PE多孔膜为基膜,Nafion树脂涂层,涂层厚度为7μm,膜厚度:900μm
图30为优选例1装的锌碘单液流电池能量密度图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,复合膜是以PE多孔膜为基膜,Nafion树脂涂层,涂层厚度为7μm,厚度:900μm
图31为优选例2组装的锌碘单液流电池的循环性能图;正负极电解质为ZnBr 2:4M,KI:8M,KCl:1M,复合膜是以PE多孔膜为基膜,Nafion树脂涂层,涂层厚度为7μm,厚度:500μm。
具体实施方式
一种锌碘液流电池,单液流电池的电池性能的测试:单电池的组装依次为:正极端板、集流体、带有液流框的碳毡正极、隔膜、带有液流框的碳毡负极、负极端板。电池中电解质的流速为10mL/min,充电电流为80mA/cm 2,控制为时间,电压双重截止:充电截止时间为45mins,充电截止电压为1.5V,放电截止电压为0.1V。
Figure PCTCN2018112535-appb-000002
Figure PCTCN2018112535-appb-000003
Figure PCTCN2018112535-appb-000004
图2-图3是最优选条件下电池的循环性能和能量密度图。以KI-ZnBr 2为电解质,多孔膜组装的电池具有很好的循环稳定性;同时,多孔膜的应用大大提高了离子导通性。电池的工作电流密度可达80mA/cm 2,功率密度高;同时电解质中KI的浓度高达8M,电池的能量密度大于90Wh/L。
与最优选的实施例相比,图4中电池使用了更加薄的多孔膜(500μm),电池的库伦效率由于电解质互串加剧而下降;图5中的电解质以ZnCl 2替代了ZnBr 2,电池的性能大大降低,并且稳定性变差,这是由于电解质不稳定所致,正极充电形成的碘发生沉淀,另外负极氯化锌水解沉淀;图6中以NaI代替了KI,电池的整体效率下降,尤其是电压效率,这主要是电解质的电导率降低所致,效率的下降造成了图7中电池的能量密度下降。
图8-图10为对比例实验,图8使用了ZnI 2作为电池的电解质,电池的效率下降,稳定性变差,主要是由于ZnI 2溶液的电导率比较低,同时电池在充放电过程中电解质不稳定产生沉淀所致。图9使用Nafion 115膜作为电池的膜材料,在充放电过程中膜表面发生严重的膜污染,电池极化加剧,电池的性能下降。图10使用非常薄的多孔膜,电解质的交叉污染大大加剧,电池的效率尤其是库伦效率下降严重。
优选例为隔膜选用Nafion涂层的PE复合膜,图29为使用900μm厚的复合膜组装的电池,电解液为KI和ZnBr 2的混合溶液。由于Nafion涂层对I2、I3-良好的阻隔作用,电池的库伦效率大大提高;除此之外,电池使用更薄的500μm厚的复合膜,电池的库伦效率略有下降。
一种锌碘液流电池,双液流电池的电池性能的测试:单电池的组装依次为:正极端板、集流体、带有液流框的碳毡正极、隔膜、带有液流框的碳毡负极、负极端板。电池中电解质的流速为10mL/min,控制为时间,电压双重截止:充电截止时间为45 mins,充电截止电压为1.5V,放电截止电压为0.1V。
Figure PCTCN2018112535-appb-000005
Figure PCTCN2018112535-appb-000006
Figure PCTCN2018112535-appb-000007
图11-图17锌碘液流电池以ZnBr 2和KI作为电池的正负极活性物质,KCl作为支持电解质,膜采用900μm厚的多孔膜,电池可以在80mA/cm 2下稳定运行1000次循环以上,能量效率大于80%,同时能量密度大于80Wh/L。上述体系的优势在于:ZnBr 2中Br -的引入能与正极形成的I 2形成配合物,从而抑制I 2的沉淀;负极电解质中KI替代掉传统的ZnI 2可以避免充放电过程中锌的氧化物和氢氧化物的沉淀产生;多孔膜的使用有利于中性离子的导通,提高了电池的工作电流密度和功率密度,另外隔膜不含离子交换基团可以大大降低膜污染的情况,提高电池的循环稳定性。
与最优选的实施例相比:图18电池使用更薄的多孔膜,电池的性能尤其是库伦效率下降严重,这主要是使用更薄的膜电解质的交叉污染加重;图19选用了ZnSO 4替代了ZnBr 2,电池的电压效率大大降低,表明硫酸盐中的硫酸根对电池的电化学性能尤其是动力学影响严重;图20电解质去掉了支持电解质KCl,电池的电压效率只有轻微下降。
图21-图25表明在最优选的条件下,电池具有很好的倍率性能和变温性能;另外多孔膜由于孔结构中充满氧化态的I 3 -对负极形成的锌枝晶具有腐蚀作用,所以电池以及组装后的电堆在过充发生微短路后能够自动恢复,大大提高了电池的稳定性;最重要的是组装后的电堆可以在80mA/cm 2下稳定运行超过300次循环。
与最优选的实施例相比:图26使用了Nafion 115膜作为电池的隔膜,隔膜的离子导通能力较差,电池的电压效率与最优实施例相比偏低,但是使用Nafion 115膜大大降低了离子的较差污染,电池的库伦效率大大提高。然而,15次循环之后电池的性能急剧衰减,这是由于电解质中的I 2和Zn对Nafion115膜造成了严重的膜污染,膜阻大大提高,极化加剧。
图27使用ZnI 2作为电解质,电池的性能衰减严重,这是由于正负电解质不稳定所致。正极电解质在充放电过程中会形成I 2沉淀,另外负极电解质会形成锌的氧化物和亲氧化物所致。图28使用很薄的多孔膜,电解质的交叉污染加剧,电池的库伦效率很低。

Claims (8)

  1. 一种锌碘液流电池,为锌碘单液流电池或锌碘双液流电池,其特征在于:
    单液流电池包括负极电解液储罐,锌碘单液流电池包括一节单电池或二节以上单电池电路串联组成的电堆,单电池包括依次层叠的正极端板、正极集流体、带有液流框的正极、隔膜、带有液流框的负极、负极集流体、负极端板,负极电解液储罐中的电解液通过泵实现电解液在负极空腔(单电池中膜与负极集流体之间的腔室称之为负极空腔,负极空腔上设有负极进液口和负极出液口)和储罐之间的循环,负极电解液储罐分别通过负极进液管路和负极出液管路分别与负极进液口和负极出液口,同时于负极进液管路和负极出液管路上分别设有正极电解液循环的分支管路,负极进液管路上的分支管路与正极空腔(单电池中隔膜与正极集流体之间的腔室称之为正极空腔,正极空腔上设有正极进液口和正极出液口)上的正极进液口相连,负极出液管路上的分支管路与正极空腔上的正极出液口相连;
    双液流电池,包括一节单电池或二节以上单电池电路串联组成的电堆,单电池包括依次层叠的正极端板、集流体、带有液流框的正极、隔膜、带有液流框的负极、集流体、负极端板,正极电解液储罐中的正极电解液经循环泵通过循环管路流经正极、负极电解液储罐中的负极电解液经循环泵通过循环管路流经负极,正极电解液和负极电解液相同,均为碘盐和锌盐的混合水溶液;隔膜为不含离子交换基团的多孔膜或其复合膜。
  2. 根据权利要求1所述的锌碘液流电池,其特征在于:所述单液流电池和双液流电池的隔膜均为不含离子交换基团的多孔膜或其复合膜。
  3. 根据权利要求1所述的锌碘液流电池,其特征在于:所述碘盐为CaI 2、MgI 2,KI、NaI中的一种或二种以上,碘盐于电解液中摩尔浓度为2~8mol/L;所述锌盐为ZnNO 3,ZnBr 2、ZnSO 4、ZnCl 2中的一种或二种以上,锌盐于电解液中摩尔浓度为1~4mol/L;电解液中碘和锌的摩尔比优选在2:1,其中锌碘锌盐优选ZnBr 2,单液流电池中碘盐优选KI。
  4. 根据权利要求1或3所述的锌碘液流电池,其特征在于:电解液中含有支持电解质,单液流电池中支持电解质为KCl、KBr、NaCl的一种或者或二种以上;双液流电池中支持电解质为KCl、K 2SO 4、KBr的一种或者或二种以上;其浓度是1~2mol/L,支持电解质优选KCl。
  5. 根据权利要求1或2所述的锌碘液流电池,其特征在于:隔膜材料为不含离子交换基团的多孔膜,包括聚醚砜(PES)、聚乙烯(PE)、聚丙烯(PP)、聚砜(PS)、聚醚酰亚胺(PEI)、聚偏氟乙烯(PVDF)的一种或者二种以上;所述隔膜为多孔膜,单液流电池的膜厚100~1000μm,双液流电池的膜厚150~1000μm,优选500~1000μm,多孔膜膜材料优选PE,PP,孔径为1-10nm,孔隙率:20%~70%。
  6. 根据权利要求1或2所述的锌碘液流电池,其特征在于:复合膜为不含离子交换基团的多孔膜表面涂覆致密高分子层,高分子层材料为聚苯并咪唑、Nafion树脂、聚四氟乙烯(PTFE)的一种或者两种以上,优选Nafion树脂,涂层的厚度为1~10μm。
  7. 根据权利要求1所述的锌碘液流电池,其特征在于:充电时,正极活性物质I -发生氧化反应生成I 3 -或I 2中的一种或二种,优选生成I 2,负极活性物质Zn 2+发生还原 反应生成Zn;放电时正极I 3 -或者I 2发生还原反应生成I -,负极单质锌发生氧化反应生成Zn 2+
  8. 根据权利要求1所述的锌碘液流电池,其特征在于:电极材料为电极为碳毡、石墨板、金属板或者碳布的一种,优选碳毡。
PCT/CN2018/112535 2017-11-08 2018-10-30 一种锌碘液流电池 WO2019091304A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/762,491 US11605824B2 (en) 2017-11-08 2018-10-30 Zinc iodine flow battery
EP18876074.8A EP3709421A4 (en) 2017-11-08 2018-10-30 ZINC IODINE FLOW BATTERY
AU2018364032A AU2018364032B2 (en) 2017-11-08 2018-10-30 Zinc-iodine flow battery
JP2020524473A JP7035181B2 (ja) 2017-11-08 2018-10-30 亜鉛-ヨウ化物フロー電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711091359.4 2017-11-08
CN201711090856.2A CN109755620B (zh) 2017-11-08 2017-11-08 一种锌碘液流电池
CN201711091359.4A CN109755604B (zh) 2017-11-08 2017-11-08 一种中性锌碘液流电池
CN201711090856.2 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019091304A1 true WO2019091304A1 (zh) 2019-05-16

Family

ID=66437589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112535 WO2019091304A1 (zh) 2017-11-08 2018-10-30 一种锌碘液流电池

Country Status (5)

Country Link
US (1) US11605824B2 (zh)
EP (1) EP3709421A4 (zh)
JP (1) JP7035181B2 (zh)
AU (1) AU2018364032B2 (zh)
WO (1) WO2019091304A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114605698B (zh) * 2020-12-08 2022-11-15 中国科学院大连化学物理研究所 一种可独立调控mof复合膜及其制备和应用
CN114665135B (zh) * 2022-01-30 2023-05-26 电子科技大学 一种高电压效率的液流电池体系

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
CN105742656A (zh) * 2014-12-11 2016-07-06 中国科学院大连化学物理研究所 一种锌碘液流电池
KR20170024176A (ko) * 2015-08-12 2017-03-07 롯데케미칼 주식회사 레독스 흐름 전지의 충방전 제어 방법
CN206022528U (zh) * 2016-09-21 2017-03-15 中国科学院大连化学物理研究所 一种锌溴单液流电池结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415074B2 (en) * 2007-09-04 2013-04-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolyte battery
US9748595B2 (en) 2013-11-25 2017-08-29 Battelle Memorial Institute High-energy-density, aqueous, metal-polyiodide redox flow batteries
US10411285B2 (en) * 2015-04-14 2019-09-10 Lockheed Martin Energy, Llc Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution
WO2018016592A1 (ja) 2016-07-21 2018-01-25 日立化成株式会社 二次電池、二次電池システム、正極電解液及び発電システム
CN206066528U (zh) 2016-10-13 2017-04-05 青岛鑫泉塑料机械有限公司 一种塑料板材横向切割机
WO2018207367A1 (ja) 2017-05-12 2018-11-15 日立化成株式会社 水溶液系二次電池、水溶液系二次電池の充放電方法、水溶液系二次電池用電解液、フロー電池システム及び発電システム
JP2019053869A (ja) 2017-09-14 2019-04-04 日立化成株式会社 二次電池、二次電池用電解液及び二次電池用電解液の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
CN105742656A (zh) * 2014-12-11 2016-07-06 中国科学院大连化学物理研究所 一种锌碘液流电池
KR20170024176A (ko) * 2015-08-12 2017-03-07 롯데케미칼 주식회사 레독스 흐름 전지의 충방전 제어 방법
CN206022528U (zh) * 2016-09-21 2017-03-15 中国科学院大连化学物理研究所 一种锌溴单液流电池结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, BIN: "Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery", NATURE COMMUNICATIONS, vol. 6, no. 1, 24 February 2015 (2015-02-24), XP055548294 *

Also Published As

Publication number Publication date
AU2018364032A1 (en) 2020-05-21
JP7035181B2 (ja) 2022-03-14
US11605824B2 (en) 2023-03-14
US20210184233A1 (en) 2021-06-17
EP3709421A4 (en) 2021-09-15
EP3709421A1 (en) 2020-09-16
AU2018364032B2 (en) 2021-08-12
JP2021502667A (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
CN109755604B (zh) 一种中性锌碘液流电池
CN103000924B (zh) 一种有机相双液流电池
CN111244518B (zh) 一种水系中性有机液流电池
WO2018103517A1 (zh) 一种碱性锌铁液流电池
CN111354965B (zh) 一种大规模储能低成本中性液流电池的制备方法
CN102479968B (zh) 一种锌/多卤化物储能电池
WO2018103518A1 (zh) 一种中性锌铁液流电池
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
CN112467179B (zh) 一种碱性全铁液流电池
CN112786938A (zh) 具有双溶解沉积反应的酸碱混合高电压水系锌电池和锌液流电池
WO2019091304A1 (zh) 一种锌碘液流电池
JP6247778B2 (ja) キノンポリハライドフロー電池
CN114614038A (zh) 一种锌溴液流电池电解液及其在锌溴液流电池中的应用
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
CN109755620B (zh) 一种锌碘液流电池
CN114447385B (zh) 一种正负极电解液不同pH值的双膜水相有机液流电池
CN111193033B (zh) 一种碱性锌铁单液流电池
CN113707925A (zh) 一种锡-锰水系液流电池
KR20160091154A (ko) 설폰화 개질된 폴리에테르에테르케톤 막을 포함하는 바나듐 레독스 흐름전지
CN110071317A (zh) 一种锡溴液流电池
WO2023103312A1 (zh) 一种胺溴双电子液流电池电解液及其应用和液流电池
CN118016948A (zh) 多活性物质电解液及包含其的液流电池
CN117613335A (zh) 一种分离式液流电池储能系统及其充放电方法
CN116264300A (zh) 一种镉溴锰单液流电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018364032

Country of ref document: AU

Date of ref document: 20181030

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018876074

Country of ref document: EP

Effective date: 20200608