WO2023103312A1 - 一种胺溴双电子液流电池电解液及其应用和液流电池 - Google Patents

一种胺溴双电子液流电池电解液及其应用和液流电池 Download PDF

Info

Publication number
WO2023103312A1
WO2023103312A1 PCT/CN2022/098184 CN2022098184W WO2023103312A1 WO 2023103312 A1 WO2023103312 A1 WO 2023103312A1 CN 2022098184 W CN2022098184 W CN 2022098184W WO 2023103312 A1 WO2023103312 A1 WO 2023103312A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
bromide
flow battery
electron
bromine
Prior art date
Application number
PCT/CN2022/098184
Other languages
English (en)
French (fr)
Inventor
李先锋
徐岳
谢聪鑫
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2023103312A1 publication Critical patent/WO2023103312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to an electrolyte for a flow battery, in particular to an electrolyte for an amine-bromine dual-electron flow battery and its application and a flow battery, belonging to the field of flow batteries.
  • Bromine has abundant valence changes, and it can theoretically realize multi-electron transfer reactions. However, at present, bromine only uses the single-electron transfer reaction between bromide ions and bromine simple substances, and the further electron loss products are quite unstable, which makes its energy density restricted.
  • the present invention aims to provide a configuration method of a bromine-based double electron transfer electrolyte and its application in a flow battery.
  • the present invention utilizes bromine simple substance to react with amino groups on amine compounds connected with electron-withdrawing groups after further losing electrons to form nitrogen-bromoamino compounds, realizing two-step Two-electron transfer reaction.
  • This reaction broadens the reversible valence state reaction of bromine, extending from the one-electron reaction from negative one valence to zero valence to the two-electron reaction from negative one valence to positive one valence, which doubles the energy density.
  • the flow battery assembled with this two-electron reaction electrolyte can achieve high energy density, charge and discharge efficiency and stability, and has a low cost, and can be applied to distributed energy storage that requires high energy density. system.
  • the technical scheme that the present invention adopts is as follows:
  • An electrolyte solution for a flow battery comprising bromide ions, an amine compound with an electron-withdrawing group adjacent to the amino group, and a supporting electrolyte; when the amine compound with an electron-withdrawing group adjacent to the amino group itself has When there are electron-conducting groups, the electrolyte does not contain a supporting electrolyte.
  • the electrolyte is composed of bromide ions, an amine compound with an electron-withdrawing group adjacent to the amino group and a supporting electrolyte; when the amine compound with an electron-withdrawing group adjacent to the amino group itself has a conductive group When agglomerated, the electrolyte solution does not contain a supporting electrolyte.
  • the bromide ion and the amine compound whose amino ortho position is an electron-withdrawing group are used as the active material of the positive electrode; Oxidation and/or reduction reactions occur during the process.
  • the bromide ion includes one or more of hydrobromic acid, sodium bromide, potassium bromide, zinc bromide, ammonium bromide, zinc bromide and other bromide ion-containing salts, preferably hydrogen bromide acid, zinc bromide.
  • the bromide ion concentration is 0.1-5 mol L -1 , preferably 1-2 mol L -1 .
  • the concentration of the bromide ion is selected from 0.1mol L -1 , 0.5mol L -1 , 1mol L -1 , 2mol L -1 , 2.5mol L -1 , 3mol L -1 , 3.5mol L -1 , 4mol L -1 Any value among 1 , 4.5mol L -1 , 5mol L -1 or any range of binary values.
  • the amine compounds include sulfamic acid, sodium sulfamate, potassium sulfamate, ammonium sulfamate, sulfonamide, succinimide, acetamide, phthalimide, saccharin, pyrrolidone One or more of sodium carboxylate, barbituric acid, dicyandiamide, methylsulfonamide, cyanuric acid, trifluoromethanesulfonamide, and 2-aminopyrimidine, preferably aminosulfonic acid, amino One or more of sodium sulfonate, potassium sulfamate, and ammonium sulfamate.
  • the concentration of the amine compound is 0.1-5 mol L -1 , preferably 1-2 mol L -1 .
  • the concentration of the amine compound is selected from 0.1mol L -1 , 0.5mol L -1 , 1mol L -1 , 1.2mol L -1 , 1.4mol L -1 , 1.6mol L -1 , 1.8mol L -1 , 2mol L -1 , 2.5mol L -1 , 3mol L -1 , 3.5mol L -1 , 4mol L -1 , 4.5mol L -1 , 5mol L -1 any value or a range of any binary value.
  • the concentration of amine compounds depends on their own solubility, for example, the solubility of sodium sulfamate can reach 8mol L -1 .
  • the supporting electrolyte includes one or more of sulfuric acid, acetic acid, glycolic acid, bromoacetic acid, potassium chloride, potassium acetate, sodium chloride, sodium acetate, sodium sulfate, preferably sulfuric acid, potassium chloride One or two, respectively for acidic and neutral environments.
  • the amino compound itself can ionize conductive ions, it is not necessary to add another supporting electrolyte, such as sodium sulfamate can be directly used as a supporting electrolyte.
  • the concentration of the supporting electrolyte is 0.1-4mol L -1 , preferably 1-2mol L -1 .
  • the concentration of the supporting electrolyte is selected from 0.1mol L -1 , 0.5mol L -1 , 1mol L -1 , 1.2mol L -1 , 1.4mol L -1 , 1.6mol L -1 , 1.8mol L -1 , 2mol Any value among L -1 , 2.5mol L -1 , 3mol L -1 , 3.5mol L -1 , 4mol L -1 or any range value composed of binary values.
  • the electrolytic solution is an aqueous solution containing bromide ions, amine compounds with electron-withdrawing groups adjacent to amino groups, and supporting electrolytes.
  • an application of the above-mentioned flow battery electrolyte is provided, which is used as a positive electrode electrolyte in a flow battery.
  • the negative electrolyte active material of the flow battery includes titanium sulfate, hexafluorotitanic acid, titanium bromide, cadmium sulfate, cadmium bromide, cadmium chloride, lead chloride, stannous chloride, zinc bromide , zinc acetate, preferably one or more of titanium sulfate, cadmium sulfate, and zinc bromide.
  • a liquid flow battery includes a positive electrode, a negative electrode, and a separator for separating the positive and negative electrodes, the cavity on the positive electrode side is filled with a positive electrode electrolyte, and the negative electrode The side cavity is filled with a negative electrode electrolyte; the positive electrode electrolyte includes at least one of the above electrolytes;
  • the negative electrolyte active material is one or two of titanium sulfate, hexafluorotitanic acid, titanium bromide, cadmium sulfate, cadmium bromide, cadmium chloride, lead chloride, stannous chloride, zinc bromide, and zinc acetate. more than one species.
  • the liquid flow battery includes a metal end plate, a current collector, a flow frame, activated carbon felt or graphite felt as an electrode, a diaphragm for separating the positive and negative electrodes, and a rubber gasket for sealing.
  • the positive electrode current collector and the The cavity between the diaphragms is filled with positive electrode graphite felt or carbon felt and positive electrode electrolyte
  • the cavity between the negative electrode current collector and the diaphragm is filled with negative electrode graphite felt or carbon felt and negative electrode electrolyte
  • the electrolyte is passed through a magnetic centrifugal pump or peristaltic
  • One of the pumps circulates between the cavity and the storage tank, and the positive electrolyte can be optionally not circulated and sealed in the cavity as a single flow battery.
  • the metal end plate can be any one of aluminum alloy plate, stainless steel plate and other acid-resistant metal plates, preferably stainless steel plate;
  • the current collector can be any one of graphite plate and titanium plate, and the positive electrode current collector is preferably It is a titanium plate;
  • the diaphragm can be any one of perfluorosulfonic acid membrane, porous polyolefin membrane, sulfonated polyether ether ketone membrane, and polybenzimidazole membrane, preferably perfluorosulfonic acid membrane.
  • an amine compound with an electron-withdrawing group at the ortho position of the amino group is used to react with the bromine charged to a positive valence to form an amine bromine compound, thereby stabilizing the bromine with a positive valence, and realizing the conversion of the bromide ion to the amine bromine compound.
  • a reversible two-electron transfer reaction According to different substituents, amine compounds have different solubility and generate different voltages, so they have a wide range of adjustability and applicability, and can be used in acidic, neutral and weak alkaline flow battery systems.
  • the flow battery assembled with the electrolyte prepared by this reaction has the advantages of low cost and high energy density, and can obtain a longer cycle life and higher battery efficiency.
  • the flow battery electrolyte provided by this application utilizes the characteristic that the amino compound containing an electron-withdrawing group in the adjacent position can ionize hydrogen ions to make itself negatively charged, and can stabilize the positive-valent bromine intermediate after the bromine element further loses electrons.
  • the product expands the original single-electron transfer reaction between bromide ion and bromine simple substance to the double-electron transfer reaction of bromide ion to ammonium bromide compound. Therefore, the theoretical capacity and theoretical energy density of the battery can be doubled.
  • the electron concentration can reach 8mol L -1
  • the battery capacity can reach 214Ah L -1
  • the discharge voltage can reach 1.6V
  • the theoretical energy density can reach 342Wh L -1 .
  • the flow battery assembled with the electrolyte of the flow battery provided in this application can achieve lower battery polarization and higher voltage efficiency. Compared with the bromine-based flow battery, the resistance of the electrolyte does not increase significantly after adding the amino compound, so the voltage efficiency similar to that of the traditional bromine-based flow battery can be obtained.
  • the amino bromide compound formed by the amino compound and positive bromine in this application can reduce the positive valency of bromine due to the existence of the conjugated structure, thereby improving its stability. Therefore, the flow battery assembled with the flow battery electrolyte provided by the present application can achieve higher coulombic efficiency, and the coulombic efficiency can be compared with that of the traditional bromine-based liquid flow after adding the complexing agent.
  • the battery was flat, capable of 98%-99%. And for some amine bromide compounds, the molecular volume is relatively large, so the requirements for the membrane are also relatively low.
  • the amino compounds used in this application have wide adjustability and adaptability.
  • the ortho position of the amino group is an electron-withdrawing group, which has the ability to bind positive bromine, such as carbonyl and acyl, while the connection of groups at other positions is not limited, so there is a wide range of options.
  • they can have different solubility and exhibit different electrode potentials, and can be used in acidic, neutral and weakly alkaline environments, so they can match different negative electrodes.
  • sulfamic acid is an inorganic solid acid, which is widely used in other fields and is a common chemical raw material.
  • the electrolytic solution used in this application can reduce the generation of bromine simple substance, thereby reducing its corrosiveness, diffusibility and volatility. There is no need to add bromine complexing agent in the electrolytic solution, and there are not so many requirements for the sealing and materials of the battery. Harsh. Since the reaction between bromine and amino compounds is a two-electron reaction, under the same electron concentration, the amount of bromine used can be half less than that of traditional bromine-based flow batteries, thus reducing its corrosion on materials and harm to the environment . In addition, in a weakly alkaline environment, the conversion of bromide ions to bromine will be difficult due to the disproportionation of bromine. Instead, the one-step two-electron transfer reaction of bromide ions directly to the ammonium bromide compound can be directly avoided. generation.
  • Fig. 1 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 1 after 100 cycles.
  • Fig. 2 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 2 after 100 cycles.
  • Fig. 3 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 3 after 100 cycles.
  • Fig. 4 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 4 after 100 cycles.
  • FIG. 5 is a graph of the voltage efficiency of the batteries of Example 1 and Comparative Example 5 after 100 cycles.
  • Fig. 6 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 6 after 100 cycles.
  • FIG. 7 is a charge-discharge curve diagram of the flow battery of Example 1.
  • composition of the positive and negative electrode electrolytes is the same, both consisting of 1mol L -1 of zinc bromide, 2mol L -1 of sodium sulfamate, and 2mol L -1 of potassium acetate.
  • zinc bromide not only provides zinc ions for the negative electrode, but also provides bromide ions for the positive electrode.
  • the structure of a single cell includes an end plate, a graphite plate as a current collector, 6 ⁇ 8cm carbon felt as a positive and negative electrode, a Nafion membrane as a perfluorosulfonic acid diaphragm, a liquid flow frame, a silica gel pad, an end plate, positive and negative electrolyte storage Composed of tanks and pumps and piping.
  • the constant current charge and discharge mode is adopted, the flow rate of the electrolyte is 60mL min -1 , the charge and discharge current is 40mA cm -2 , the charge cut-off voltage is 2.0V, and the discharge cut-off voltage is 0.1V. Detect the average value of Coulombic efficiency CE, voltage efficiency VE, and energy efficiency EE in the first 100 cycles of charge and discharge cycles.
  • the flow battery can be used as a battery. Higher energy density, coulombic efficiency, voltage efficiency and energy efficiency can be obtained.
  • Example 1 and Example 2 it can be seen that under the condition that the electrolyte required by the positive electrode remains unchanged, a variety of negative electrode active materials can be selected, such as Zn 2+ /Zn as the negative electrode pair or Cd 2+ / As the negative electrode pair, Cd can provide higher performance. Compared with the Cd 2+ /Cd negative electrode pair, the Zn 2+ /Zn negative electrode pair has a lower standard electrode potential, so the voltage of the battery is higher, and the voltage efficiency and energy efficiency of the battery are also higher.
  • a variety of negative electrode active materials such as Zn 2+ /Zn as the negative electrode pair or Cd 2+ / As the negative electrode pair, Cd can provide higher performance.
  • the Zn 2+ /Zn negative electrode pair has a lower standard electrode potential, so the voltage of the battery is higher, and the voltage efficiency and energy efficiency of the battery are also higher.
  • Example 1 and Example 3 It can be seen from Example 1 and Example 3 that within the range of selected amino compounds, the battery can develop higher performance.
  • the ortho amino group of acetamide is a carbonyl group
  • the ortho amino position of sodium sulfamate is a sulfonic acid group, both of which are electron-withdrawing groups, so they can combine with bromine to undergo two electron transfer reactions, thereby obtaining higher energy density. Since the electronic structure of each amino compound will be different, its ability to bind bromine will also be different, thus showing different battery efficiencies.
  • Example 1 and Example 4 it can be seen from Example 1 and Example 4 that when the amino compound itself can ionize conductive ions, a higher battery efficiency can also be obtained without adding a supporting electrolyte.
  • a supporting electrolyte For example, sodium sulfamate itself can ionize sodium ions, so it has the function of conducting ions.
  • not adding a supporting electrolyte will reduce the conductivity of the solution, and the voltage efficiency of the battery will decrease somewhat.
  • Example 1 uses zinc bromide as a bromine source and can also be used as a negative electrode active material, thereby saving raw materials and reducing part of the cost.
  • Fig. 1 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 1 after 100 cycles. It can be seen from the figure that the coulombic efficiency of the battery is only 81% under the same energy density condition in Comparative Example 1 because no amino compound is added. This is mainly due to the fact that bromine can only undergo a reversible single-electron reaction without the addition of selected amino compounds, and further charging will charge hypobromous acid or bromic acid, which has relatively poor reversibility and will occur Side reactions, thus leading to a decrease in Coulombic efficiency.
  • Fig. 2 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 2 after 100 cycles.
  • comparative example 2 added glycine as the amino compound, the amino ortho position of glycine is an electron-donating methylene group, which cannot be combined with bromine to undergo a reversible two-electron transfer reaction, so it is different from the comparative example A similar reaction occurs in 1, both leading to lower Coulombic efficiencies.
  • Fig. 3 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 3 after 100 cycles.
  • ethanolamine is added as the amino compound in Comparative Example 3
  • the amino group ortho to the ethanol is an electron-donating alcoholic hydroxyl group, which cannot be combined with bromine to undergo a reversible two-electron transfer reaction, so it is different from Comparative Example 2. Similar reactions occur, all resulting in lower Coulombic efficiencies.
  • Fig. 4 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 4 after 100 cycles. It can be seen from the figure that in Comparative Example 4, the coulombic efficiency is very low because no bromine source is added. This shows that the amino compound itself has no redox activity and needs to be combined with bromine to undergo a reversible electron transfer reaction. Otherwise, only the oxygen evolution reaction can occur at the positive electrode, resulting in extremely low Coulombic efficiency.
  • FIG. 5 is a graph of the voltage efficiency of the batteries of Example 1 and Comparative Example 5 after 100 cycles. It can be seen from the figure that in Comparative Example 5, since no supporting electrolyte was added, and acetamide itself could not provide conductive ions, the conductivity of the solution was low, and thus the voltage efficiency was low.
  • Fig. 6 is a Coulombic efficiency diagram of the batteries of Example 1 and Comparative Example 6 after 100 cycles.
  • Comparative Example 6 no selected amino compound was added, and only a single-electron reaction could take place, so the energy density was half that of the two-electron reaction in Example 1. Moreover, due to the volatilization and diffusion of bromine element in the later stage of charging, the coulombic efficiency of the battery will be low.
  • Fig. 7 is the charge and discharge curve of the flow battery of Example 1. It can be seen from the figure that the battery can obtain an energy density of 172Wh L -1 , which corresponds to the two-electron transfer reaction of bromine. Under this energy density, the battery can still obtain high Coulombic efficiency, voltage efficiency and energy efficiency.
  • the electrolyte composition of the present application can realize the two-electron transfer reaction of bromine, so that the flow battery can operate stably and efficiently at high energy density.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种胺溴双电子液流电池电解液及其应用和液流电池,属于液流电池领域。所述电解液中采用了氨基邻位为吸电子基团的氨基化合物,以其与充电到正价的溴反应形成胺溴化合物,从而稳定正价的溴,实现了溴离子到氨基化合物的可逆两电子转移反应。胺类化合物根据其取代基的不同,有着不同的溶解度和产生不同的电压,因而具有广泛的可调性和适用性,可用于酸性、中性和弱碱性液流电池体系。利用该反应配制的电解液组装的液流电池,具有低成本、高能量密度的优势,能够获得较长的循环寿命和较高的电池效率。

Description

一种胺溴双电子液流电池电解液及其应用和液流电池 技术领域
本申请涉及一种液流电池电解液,具体涉及一种胺溴双电子液流电池电解液及其应用和液流电池,属于液流电池领域。
背景技术
可再生能源在现代能源系统中占据越来越重要的地位,但其仍然存在不连续、不稳定的问题,限制了其进一步发展。这一问题可以通过储能技术的调控来得到有效缓解。在众多储能技术中,液流电池具有容量和功率可独立设计、循环寿命长、安全性高等优点,可被用于发电侧电网调节、用户侧光伏调控等场景,是一种极具有潜力的储能技术。但是目前液流电池的能量密度普遍偏低,如全钒液流电池的能量密度仅为30-40Wh L -1,因而导致了其电解液和系统成本相对偏高。溴离子的溶解度通常较高,其电化学活性相对较好,是一种具有发展潜力的正极活性物质。溴具有丰富的变价,理论上可以实现多电子的转移反应,但是目前溴仅利用了溴离子与溴单质之间的单电子转移反应,进一步的失电子产物则相当不稳定,这使其能量密度受到了限制。
发明内容
为解决以上技术问题,本发明旨在提供一种基于溴的双电子转移电解液的配置方法及其在液流电池中的应用。本发明在溴离子与溴单质之间的单电子转移基础上,利用溴单质进一步失去电子后与连接有吸电子基团的胺类化合物上的氨基反应,形成氮溴代氨基化合物,实现两步两电子转移反应。这一反应扩宽了溴的可逆价态反应,从负一价到零价的单电子反应扩展到从负一价到正一价的双电子反应,使得能量密度实现了翻倍。且这种反应根据氨基化合物种类的不同,可以灵活调节溶解度和电压。利用这种两电子反应的电解液组装的液流电池,能够实现高的能量密度、充放电 效率和稳定性,且具有较低的成本,可以应用于对能量密度要求较高的分布式储能系统中。为实现以上目的,本发明采用的技术方案如下:
一种液流电池电解液,所述电解液中包含溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质;当所述氨基邻位为吸电子基团的胺类化合物本身带有导电子基团时,所述电解液中不包含支持电解质。
可选地,所述电解液由溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质组成;当所述氨基邻位为吸电子基团的胺类化合物本身带有导电子基团时,所述电解液中不含有支持电解质。
可选地,所述溴离子、氨基邻位为吸电子基团的胺类化合物作为正极的活性物质;所述溴离子、氨基邻位为吸电子基团的胺类化合物在液流电池的循环过程中发生氧化和/或还原反应。
进一步地,所述溴离子包括氢溴酸、溴化钠、溴化钾、溴化锌、溴化铵、溴化锌及其他含溴离子盐中的一种或二种以上,优选为氢溴酸、溴化锌。
进一步地,所述溴离子浓度为0.1-5mol L -1,优选为1-2mol L -1
所述溴离子的浓度选自0.1mol L -1、0.5mol L -1、1mol L -1、2mol L -1、2.5mol L -1、3mol L -1、3.5mol L -1、4mol L -1、4.5mol L -1、5mol L -1中的任意值或任意二值组成的范围值。
进一步地,所述胺类化合物包括氨基磺酸、氨基磺酸钠、氨基磺酸钾、氨基磺酸铵、磺酰胺、琥珀酰亚胺、乙酰胺、邻苯二甲酰亚胺、糖精、吡咯烷酮羧酸钠、巴比妥酸、二氰二胺、甲基磺酰胺、三聚氰酸、三氟甲磺酰胺、2-氨基嘧啶中的一种或二种以上,优选为氨基磺酸、氨基磺酸钠、氨基磺酸钾、氨基磺酸铵中的一种或二种以上。
进一步地,胺类化合物浓度为0.1-5mol L -1,优选为1-2mol L -1
所述胺类化合物的浓度选自0.1mol L -1、0.5mol L -1、1mol L -1、1.2mol L -1、1.4mol L -1、1.6mol L -1、1.8mol L -1、2mol L -1、2.5mol L -1、3mol L - 1、3.5mol L -1、4mol L -1、4.5mol L -1、5mol L -1中的任意值或任意二值组成的范围值。
胺类化合物的浓度取决于其自身的溶解度,如氨基磺酸钠的溶解度可 达到8mol L -1
进一步地,所述支持电解质包括硫酸、醋酸、羟基乙酸、溴乙酸、氯化钾、乙酸钾、氯化钠、乙酸钠、硫酸钠中一种或二种以上,优选为硫酸、氯化钾中一种或二种,分别用于酸性和中性环境中。当氨基化合物自身能够电离出导电离子时,也可不另加入支持电解质,如氨基磺酸钠可直接作为支持电解质。
进一步地,支持电解质浓度0.1-4mol L -1,优选为1-2mol L -1
所述支持电解质的浓度选自0.1mol L -1、0.5mol L -1、1mol L -1、1.2mol L -1、1.4mol L -1、1.6mol L -1、1.8mol L -1、2mol L -1、2.5mol L -1、3mol L - 1、3.5mol L -1、4mol L -1中的任意值或任意二值组成的范围值。
所述电解液为包含溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质的水溶液。
根据本申请的又一个方面,提供了上述液流电池电解液的应用,将其作为正极电解液应用于液流电池中。
进一步地,所述液流电池的负极电解液活性物质包括硫酸钛、六氟钛酸、溴化钛、硫酸镉、溴化镉、氯化镉、氯化铅、氯化亚锡、溴化锌、乙酸锌中的一种或二种以上,优选为硫酸钛、硫酸镉、溴化锌中的一种或二种以上。
根据本申请的又一个方面,提供了一种液流电池,所述液流电池包括正极、负极和用于分隔正负极的隔膜,所述正极侧腔体内填充有正极电解液,所述负极侧腔体内填充有负极电解液;所述正极电解液包括上述电解液中的至少一种;
负极电解液活性物质为硫酸钛、六氟钛酸、溴化钛、硫酸镉、溴化镉、氯化镉、氯化铅、氯化亚锡、溴化锌、乙酸锌中的一种或二种以上。
具体地,所述液流电池包括金属端板、集流体、液流框、活性碳毡或石墨毡作电极,以及用于分离正负极的隔膜和用于密封的橡胶垫,正极集流体与隔膜之间的腔体内填充有正极石墨毡或碳毡及正极电解液,负极集流体与隔膜之间的腔体内填充有负极石墨毡或碳毡及负极电解液;电解液通过磁力离心泵或者蠕动泵中的一种循环于腔体和储罐之间,正极电解液 可选不循环,密封于腔体内,作为单液流电池。
具体地,金属端板可选铝合金板、不锈钢板及其他耐酸腐蚀金属板中的任意一种,优选为不锈钢板;集流体可选石墨板、钛板中的任意一种,正极集流体优选为钛板;隔膜可选为全氟磺酸膜、多孔聚烯烃膜、磺化聚醚醚酮膜、聚苯并咪唑膜中的任意一种,优选为全氟磺酸膜。
所述电解液中采用了氨基邻位为吸电子基团的胺类化合物,以其与充电到正价的溴反应形成胺溴化合物,从而稳定正价的溴,实现了溴离子到胺溴化合物的可逆两电子转移反应。胺类化合物根据其取代基的不同,有着不同的溶解度和产生不同的电压,因而具有广泛的可调性和适用性,可用于酸性、中性和弱碱性液流电池体系。利用该反应配制的电解液组装的液流电池,具有低成本、高能量密度的优势,能够获得较长的循环寿命和较高的电池效率。
本申请能产生的有益效果包括:
1)本申请所提供的液流电池电解液,利用了邻位含吸电子基团的氨基化合物能电离出氢离子使自身带负电的特性,能稳定溴单质进一步失去电子后的正价溴中间产物,使原本在溴离子与溴单质之间的单电子转移反应,扩展到了溴离子到胺溴化合物的双电子转移反应。因而电池的理论容量和理论能量密度能够得到成倍提高。以4mol L -1溴盐计算,电子浓度可以达到8mol L -1,电池容量达到214Ah L -1,以锌为负极,放电电压可达1.6V,理论能量密度可达到342Wh L -1
2)本申请所提供的液流电池电解液组装的液流电池,能够实现较低的电池极化和较高的电压效率。相比于溴基液流电池,加入了氨基化合物后电解液的电阻并没有明显的增大,因而能够得到与传统的溴基液流电池相类似的电压效率。
3)本申请中氨基化合物与正价的溴形成的胺溴化合物由于共轭结构的存在能够使溴的正价性降低,从而提高其稳定性。因而利用本申请所提供的液流电池电解液组装的液流电池,能够实现较高的库伦效率,在不加络合剂的情况下库伦效率能够与加入络合剂后的传统溴基液流电池持平,能够达到98%-99%。且对于一些胺溴化合物而言,其分子体积比较大,因 而对于膜的要求也比较低。
4)本申请中所采用的氨基化合物具有广泛的可调性和适应性。理论上氨基的邻位为吸电子基团即具有结合正价溴的能力,如羰基和酰基,而在其他位置上的基团连接并不受限制,因而可以选择的范围很广。此外,根据氨基化合物种类的不同,可以具有不同的溶解度以及表现出不同的电极电位,且可以适用于酸性、中性以及弱碱性环境中,因而可以匹配不同的负极。
5)本申请中所采用的一些氨基化合物具有廉价易得的特点,因而所配置的电解液具有价格低的优势。如氨基磺酸是无机固体酸,被广泛应用于其他领域,是一种常见的化工原料。
6)本申请中所采用的电解液可以减少溴单质的产生,从而降低其腐蚀性、扩散性和挥发性,电解液中无需添加溴络合剂,对于电池的密封和材料的要求并没有那么严苛。由于溴与氨基化合物的反应为两电子反应,在相同的电子浓度下,所使用的溴的量能比传统的溴基液流电池少一半,因而可以减少其对于材料的腐蚀和对环境的危害。此外,在弱碱性环境中,溴离子到溴单质的转化会受溴的歧化的影响而难以进行,取而代之的是溴离子直接到胺溴化合物的一步两电子转移反应,因而可以直接避免溴单质的产生。
附图说明
图1为实施例1与对比例1电池循环100圈的库伦效率图。
图2为实施例1与对比例2电池循环100圈的库伦效率图。
图3为实施例1与对比例3电池循环100圈的库伦效率图。
图4为实施例1与对比例4电池循环100圈的库伦效率图。
图5为实施例1与对比例5电池循环100圈的电压效率图。
图6为实施例1与对比例6电池循环100圈的库伦效率图。
图7为实施例1的液流电池充放电曲线图。
具体实施方式
下面的实施例是对本申请的进一步说明,而不是限制本申请的范围。 如无特别说明,本申请的实施例及对比例中的原料均通过商业途径购买。电池性能测试采用新威充放电仪器。
实施例1
组装液流电池:
正、负极电解液组成相同,均由组成1mol L -1的溴化锌、2mol L -1的氨基磺酸钠、2mol L -1的乙酸钾组成。其中溴化锌既提供负极所用的锌离子,又提供正极所需的溴离子。
单电池的组装:
单电池的结构包括端板,石墨板作集流体,6×8cm碳毡作正负极,使用Nafion膜作全氟磺酸隔膜,液流框,硅胶垫,端板,正负极电解液储罐和泵以及管路组成。
电池测试:
采取恒流充放电模式,电解液的流速为60mL min -1,充放电电流为40mA cm -2,充电截止电压为2.0V,放电截止电压为0.1V。检测充放电循环前100圈的库伦效率CE、电压效率VE、能量效率EE的平均值。
其他实施例和对比例组装的液流电池,仅电解液组成与实施例1存在差别,具体见表1。
表1不同实施例和对比例的电池组成和性能
Figure PCTCN2022098184-appb-000001
Figure PCTCN2022098184-appb-000002
从实施例1-5的电池性能数据可以看出,当电解液中含有合适的负极活性物质、正极所需的溴源、含吸电子基团的氨基化合物、支持电解质时,液流电池能电池能够获得较高的能量密度、库伦效率、电压效率和能量效率。
通过实施例1与实施例2可以看出,在正极所需要的电解液不变的情况下,负极活性物质可以选取多种,如以Zn 2+/Zn作为负极电对或以Cd 2+/Cd作为负极电对,均能开出较高的性能。相比于Cd 2+/Cd负极电对,Zn 2+/Zn负极电对由于具有更低的标准电极电位,因而电池的电压更高,电池的电压效率和能量效率也会更高。
通过实施例1与实施例3可以看出,在选定的氨基化合物的范围内,电池均能开出较高的性能。乙酰胺的氨基邻位为羰基,氨基磺酸钠的氨基邻位为磺酸基,均为吸电子基团,因而均能与溴结合发生两电子转移反应,从而获得较高的能量密度。由于每种氨基化合物的电子结构会有差异,其与溴的结合能力也会有差异,因而表现出不同的电池效率。
通过实施例1与实施例4可以看出,当氨基化合物自身能够电离出导电离子时,不另加入支持电解质,也可以获得较高的电池效率。如氨基磺酸钠本身能够电离出钠离子,因而具有传导离子的作用。当然,相比于加入支持电解质,不加入支持电解质会使溶液的电导率下降,电池的电压效率会有一些下降。
通过实施例1与实施例5可以看出,在选定的溴离子源范围内,电池均能开出较高的性能。相比于实施例5,实施例1以溴化锌作为溴源的同时,也可以作为负极活性物质,因而能够节省原材料,降低一部分成本。
图1为实施例1与对比例1电池循环100圈的库伦效率图。从图中可以看出,对比例1由于没有氨基化合物的加入,在相同的能量密度条件下,电池的库伦效率仅为81%。这主要是由于在没有所选定的氨基化合物的加入的情况下,溴只能可逆的发生单电子反应,进一步的充电会充电到次溴酸或溴酸,其可逆性相对较差,会发生副反应,因而会导致库伦效率下降。
图2为实施例1与对比例2电池循环100圈的库伦效率图。从图中可以看出,尽管对比例2加入了甘氨酸作为氨基化合物,但是甘氨酸的氨基邻位为给电子的亚甲基基团,不能与溴结合发生可逆的两电子转移反应,因而与对比例1所发生的反应类似,都会导致库伦效率较低。
图3为实施例1与对比例3电池循环100圈的库伦效率图。从图中可以看出,尽管对比例3加入了乙醇胺作为氨基化合物,但是乙醇的氨基邻位为给电子的醇羟基基团,不能与溴结合发生可逆的两电子转移反应,因而与对比例2所发生的反应类似,都会导致库伦效率较低。
图4为实施例1与对比例4电池循环100圈的库伦效率图。从图中可以看出,对比例4中由于没有加入溴源,库伦效率非常低。这表明氨基化合物本身并没有氧化还原活性,需要与溴结合才能发生可逆的电子转移反应,否则只能在正极发生析氧反应,导致库伦效率极低。
图5为实施例1与对比例5电池循环100圈的电压效率图。从图中可以看出,对比例5中由于没有加入支持电解质,且乙酰胺本身不能提供导电离子,因而溶液的电导率较低,从而电压效率较低。
图6为实施例1与对比例6电池循环100圈的库伦效率图。对比例6中没有加入选定的氨基化合物,仅能发生单电子反应,因而能量密度要比 实施例1中的两电子反应低一半。而且由于在充电后期溴单质的挥发和扩散,会导致电池的库伦效率较低。
图7为实施例1的液流电池的充放电曲线图,从图中可以看出,电池能够获得172Wh L -1的能量密度,对应于溴的两电子转移反应。在此能量密度下,电池依然能够获得较高的库伦效率、电压效率和能量效率。
综合以上分析,利用本申请的电解液组成,能够实现溴的两电子转移反应,从而使液流电池能够在高的能量密度下稳定、高效的运行。
此外,以上所述仅是本申请的几个实施例和相应的对比例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例展示如上,然而并非用以限制本申请。任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述展示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种液流电池电解液,其特征在于:所述电解液包括溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质;当所述氨基邻位为吸电子基团的胺类化合物本身带有导电子基团时,所述电解液中不包含支持电解质。
  2. 根据权利要求1所述的液流电池电解液,其特征在于:所述电解液由溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质组成;当所述氨基邻位为吸电子基团的胺类化合物本身带有导电子基团时,所述电解液中不含有支持电解质。
  3. 根据权利要求1所述的液流电池电解液,其特征在于:所述溴离子、氨基邻位为吸电子基团的胺类化合物作为正极的活性物质;
    所述溴离子、氨基邻位为吸电子基团的胺类化合物在液流电池的循环过程中发生氧化和/或还原反应。
  4. 根据权利要求1所述的液流电池电解液,其特征在于:所述溴离子包括氢溴酸、溴化钠、溴化钾、溴化锌、溴化铵、溴化锌及其他含溴离子盐中的一种或二种以上。
  5. 根据权利要求1所述的液流电池电解液,其特征在于:所述胺类化合物包括氨基磺酸、氨基磺酸钠、氨基磺酸钾、氨基磺酸铵、磺酰胺、琥珀酰亚胺、乙酰胺、邻苯二甲酰亚胺、糖精、吡咯烷酮羧酸钠、巴比妥酸、二氰二胺、甲基磺酰胺、三聚氰酸、三氟甲磺酰胺、2-氨基嘧啶中的一种或二种以上。
  6. 根据权利要求1所述的液流电池电解液,其特征在于:所述支持电解质包括硫酸、醋酸、羟基乙酸、溴乙酸、氯化钾、乙酸钾、氯化钠、乙酸钠、硫酸钠中的一种或二种以上。
  7. 根据权利要求1所述的液流电池电解液,其特征在于:
    所述电解液为包含溴离子、氨基邻位为吸电子基团的胺类化合物和支持电解质的水溶液;
    其中,溴离子浓度为0.1-5mol L -1,优选为1-2mol L -1;胺类化合物浓度为0.1-5mol L -1,优选为1-2mol L -1;支持电解质浓度0.1-4mol L -1,优选为1-2mol L -1
  8. 一种权利要求1-7任一所述的液流电池电解液作为正极电解液在液流电池中的应用。
  9. 根据权利要求8所述的应用,其特征在于:
    所述液流电池的负极电解液活性物质包括硫酸钛、六氟钛酸、溴化钛、硫酸镉、溴化镉、氯化镉、氯化铅、氯化亚锡、溴化锌、乙酸锌中的一种或二种以上。
  10. 一种液流电池,其特征在于,所述液流电池包括正极、负极和用于分隔正负极的隔膜,所述正极侧腔体内填充有正极电解液,所述负极侧腔体内填充有负极电解液;所述正极电解液包括权利要求1-7任一项所述电解液中的至少一种;
    负极电解液活性物质为硫酸钛、六氟钛酸、溴化钛、硫酸镉、溴化镉、氯化镉、氯化铅、氯化亚锡、溴化锌、乙酸锌中的一种或二种以上。
PCT/CN2022/098184 2021-12-06 2022-06-10 一种胺溴双电子液流电池电解液及其应用和液流电池 WO2023103312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111481099.8A CN116231022A (zh) 2021-12-06 2021-12-06 一种胺溴双电子液流电池电解液及其应用和液流电池
CN202111481099.8 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023103312A1 true WO2023103312A1 (zh) 2023-06-15

Family

ID=86581182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098184 WO2023103312A1 (zh) 2021-12-06 2022-06-10 一种胺溴双电子液流电池电解液及其应用和液流电池

Country Status (2)

Country Link
CN (1) CN116231022A (zh)
WO (1) WO2023103312A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558503A (en) * 1968-07-22 1971-01-26 Dow Chemical Co Stable bromo-sulfamate composition
CN1337919A (zh) * 1999-04-21 2002-02-27 纳尔科化学公司 稳定的氧化溴制剂、制备方法及其用于生物污垢控制的应用
CN102790233A (zh) * 2011-05-20 2012-11-21 罗臬 液流型电化学电池
WO2015026393A1 (en) * 2013-08-18 2015-02-26 Ftorion, Inc. Flow battery and regeneration system with improved safety
CN111244518A (zh) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 一种水系中性有机液流电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558503A (en) * 1968-07-22 1971-01-26 Dow Chemical Co Stable bromo-sulfamate composition
CN1337919A (zh) * 1999-04-21 2002-02-27 纳尔科化学公司 稳定的氧化溴制剂、制备方法及其用于生物污垢控制的应用
CN102790233A (zh) * 2011-05-20 2012-11-21 罗臬 液流型电化学电池
WO2015026393A1 (en) * 2013-08-18 2015-02-26 Ftorion, Inc. Flow battery and regeneration system with improved safety
CN111244518A (zh) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 一种水系中性有机液流电池

Also Published As

Publication number Publication date
CN116231022A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN103137986B (zh) 一种锌溴单液流电池
CN112490515B (zh) 一种中性锌锰二次电池及电解液
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN109509901B (zh) 一种碱性锌铁液流电池
WO2018103518A1 (zh) 一种中性锌铁液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
CN113764714A (zh) 一种水系液流电池的电解液、全铁水系液流电池及应用
WO2016078492A1 (zh) 一种醌多卤化物液流电池
JP7035181B2 (ja) 亜鉛-ヨウ化物フロー電池
CN110224157B (zh) 非循环流动的液流电池
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
WO2023103312A1 (zh) 一种胺溴双电子液流电池电解液及其应用和液流电池
CN112952172A (zh) 一种碱性铁镍液流电池
CN114156514B (zh) 一种液流电池电解液及其应用
CN112599828B (zh) 一种新型钛锰单液流电池
CN114447385B (zh) 一种正负极电解液不同pH值的双膜水相有机液流电池
CN108123174A (zh) 一种碱性锌铁液流电池用正极电解液及应用
CN114447386A (zh) 一种全钒液流电池电解液的制备方法
CN114614038A (zh) 一种锌溴液流电池电解液及其在锌溴液流电池中的应用
CN111525170A (zh) 一种锡铁碱性液流电池
CN110071317A (zh) 一种锡溴液流电池
CN113013460B (zh) 一种碱性锌铁液流电池用负极电解液及锌铁液流电池
CN111180777A (zh) 一种锌溴单液流电池用正极电解液
CN113036193B (zh) 一种液态金属锌基电池
CN116207315A (zh) 一种双电子转移卤素液流电池电解液及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902750

Country of ref document: EP

Kind code of ref document: A1