WO2016078491A1 - 一种长寿命锌溴液流电池 - Google Patents

一种长寿命锌溴液流电池 Download PDF

Info

Publication number
WO2016078491A1
WO2016078491A1 PCT/CN2015/092058 CN2015092058W WO2016078491A1 WO 2016078491 A1 WO2016078491 A1 WO 2016078491A1 CN 2015092058 W CN2015092058 W CN 2015092058W WO 2016078491 A1 WO2016078491 A1 WO 2016078491A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
zinc
negative electrode
bromine
electrolyte
Prior art date
Application number
PCT/CN2015/092058
Other languages
English (en)
French (fr)
Inventor
张华民
赖勤志
李先锋
程元徽
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2016078491A1 publication Critical patent/WO2016078491A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a long-life zinc bromine flow battery structure and electrolyte composition.
  • the zinc-bromine flow battery requires equipment required for an electrolyte circulation system such as a circulation pump and a storage tank, the energy density of the zinc-bromine flow battery is lowered due to the influence of system loss, and on the other hand, these battery auxiliary devices make zinc.
  • the bromine flow battery system has a complicated structure and is not conducive to miniaturization.
  • Patent CN99245261.9 introduces a zinc-bromine battery, which eliminates the circulating circulation pump of the zinc-bromine flow battery, the electrolyte circulation system such as the liquid storage tank, and makes the battery structure simple and compact, thereby reducing the system energy consumption.
  • the system does not propose an electrode suitable for a zinc-bromine battery, but directly uses a carbon felt electrode for a zinc-bromine liquid storage battery, resulting in a lower energy efficiency of the system, and since the suppression of hydrogen evolution of the battery is not considered, The system needs to be equipped with venting holes, and the system design is complicated, which is not conducive to sealing.
  • a liquid-storage battery is also a battery system that converts electrical energy and chemical energy into each other by redox reaction of the active material.
  • the electrodes of the liquid energy storage battery are inert electrodes, which provide a reaction site for the electrode reaction and act as an electrocatalyst.
  • the liquid storage energy storage battery is in an initial state, the active material is stored in the electrolyte in an ionic state, and the positive electrode and the negative electrode electrolyte are respectively installed in two storage tanks, and the electrolyte is circulated in the pipeline system through the liquid supply pump.
  • some battery system redox reactions appear as changes in the valence state of the ions, and some manifest as metal deposition and dissolution.
  • the cells in the latter form are generally referred to as sedimentary liquid storage batteries.
  • zinc is considered to be the metal with the highest specific energy density in the stable metal in aqueous solution, and is most suitable for use as a negative electrode for a liquid-type energy storage battery such as zinc bromide, zinc-nickel, zinc-manganese, zinc or the like.
  • Energy storage battery such as zinc bromide, zinc-nickel, zinc-manganese, zinc or the like.
  • Zinc-bromine redox flow battery is a low-energy, high-efficiency, environment-friendly liquid energy storage battery with high energy density and current efficiency, simple and easy to operate, and easy to use. Long life, low cost and other advantages, mainly used in power grid peaking, wind energy and solar energy and other renewable energy power generation, electric vehicles and other fields.
  • the circulation pump is used to drive the electrolyte to circulate in the battery.
  • the electrolyte is taken out from the cavity of the battery and stored in the liquid storage tank, so that the electrolyte is disconnected between the positive and negative electrodes inside the battery, which can prevent the chemical reaction of the positively charged bromine from diffusing to the negative electrode and causing self-discharge.
  • the circulating electrolyte also prevents the zinc dendrite from growing through the diaphragm during charging to short the positive and negative electrodes.
  • Patent EPBIO167517, CN1087209A, etc. are such circulating electrolyte zinc bromide batteries.
  • the zinc bromine flow battery adopts a conductive substrate and a catalytic material to prepare a positive electrode of the battery, and on the one hand, the activity is poor, and on the other hand, the process is increased, which is not conducive to cost control.
  • Carbon felt as an electrode has a wide range of applications in all vanadium redox flow batteries, and carbon felt has good catalytic activity as a positive electrode of zinc bromine flow battery.
  • the negative electrode is a zinc deposition reaction, the use of carbon felt can lead to zinc. Accumulation, affecting battery life.
  • the invention provides a long-life zinc-bromo flow battery structure and electrolyte composition, and the use of carbon felt as an electrode material solution solves the problem of low zinc accumulation and low cycle life while ensuring the improvement of battery performance.
  • a long-life zinc-bromine flow battery structure and electrolyte composition comprising a single battery or a battery module formed by connecting two or more single cells in series, the single battery including a positive electrode, a diaphragm and a negative electrode, wherein the single battery
  • the active carbon felt is used as the electrode material for both the positive electrode and the negative electrode;
  • the positive electrode and the negative electrode electrolyte of the zinc-bromine flow battery are both zinc bromide solutions, and the positive electrode and the negative electrode electrolyte both contain a chloride ion solution, and the chloride ion concentration is 1.0 mol/ L ⁇ 5.0 mol / L.
  • the battery consists of a single cell or a battery module in which two or more cells are connected in series, an electrolyte reservoir, a circulation pump, and a circulation line.
  • the separator is a porous membrane or an ion exchange membrane.
  • the zinc bromide concentration is from 1.0 mol/L to 5.0 mol/L.
  • the positive and negative electrode electrolytes contain 0.1-1 M quaternary ammonium salt bromine elemental complexing agent.
  • a bromine elemental complex is generated, so that the bromine elemental substance is separated from the electrolyte to achieve the effect of reducing the bromine elemental permeation.
  • the quaternary ammonium salt bromine elemental complexing agent is nitrogen bromide methyl ethyl pyrrolidine (MEP) or nitrogen bromide methyl ethyl morpholine (MEM).
  • the positive and negative electrodes of the battery of the invention adopt active carbon felt as an electrode material, and in order to solve the problem that the battery cycle life is low due to zinc accumulation caused by the carbon felt of the negative electrode, chlorine ions are added to the positive and negative electrolytes.
  • the open circuit voltage and energy density of the battery are improved.
  • the addition of chloride ions greatly improves the zinc deposition morphology and zinc accumulation problem, and solves the poor cycle stability of the battery due to the use of high-activity carbon felt.
  • the problem is that the positive and negative electrodes of the battery are made of carbon felt material, which simplifies the preparation process of the positive electrode.
  • Example 1 is a cycle data diagram of a zinc bromine flow battery of Example 1;
  • the electrode area was 36 cm 2 and the charge and discharge current density was 20 mA/cm 2 .
  • Electrolyte composition 40 ml of 2.0 M zinc bromide solution + 2.0 M potassium chloride solution + 0.1 M MEP for each of the positive electrode and the negative electrode.
  • the electrode area was 36 cm 2 and the charge and discharge current density was 20 mA/cm 2 .
  • Electrolyte composition 40 ml of a 2.0 M zinc bromide solution of each of the positive and negative electrodes.
  • the electrode area is 36 cm 2
  • the charge and discharge current density is 20 mA/cm 2
  • the electrolyte composition is 40 ml each of the positive electrode and the negative electrode.
  • the electrolyte When the concentration of zinc bromide is 2.0 mol/L, the electrolyte has the highest conductivity, so the battery performance is good.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

一种长寿命锌溴液流电池结构及电解液组成,电池正负极均采用活性碳毡作为电极材料,为了解决负极采用碳毡而引起的锌累积所导致的电池循环寿命偏低的问题,在正负极电解液中加入氯离子,一方面提高了电池的开路电压及能量密度,另一方面由于氯离子的加入,大大改善了锌沉积形貌及锌累积问题,解决了电池由于采用高活性碳毡所带来的循环稳定性较差的难题。

Description

一种长寿命锌溴液流电池 技术领域
本发明涉及一种长寿命锌溴液流电池结构及电解液组成。
背景技术
由于锌溴液流电池需要循环泵、贮液槽等电解液循环系统所需的设备,导致了锌溴液流电池的能量密度由于系统损耗的影响而降低,另一方面这些电池辅助设备使得锌溴液流电池系统结构复杂,不利于小型化。
专利CN99245261.9介绍了一种锌溴蓄电池,它取消了锌溴液流电池的循环泵,贮液槽等电解液循环系统,使电池结构简单而紧凑,降低了系统能耗。但是,该系统未提出适合锌溴蓄电池使用的电极而是直接采用锌溴液流储能电池使用的碳毡电极,导致了系统的能量效率较低,并且由于未考虑电池析氢的抑制问题,导致系统需要设置排气孔,系统设计复杂,不利于密封。
随着人类经济和社会的发展,对能源的需求越来越多,使得化石能源保障压力越来越大;而且化石能源转化过程产生诸多环境问题:例如,排放氮和硫的氧化物引发酸雨,排放温室气体加速全球变暖的进程。因此,发展可再生能源,扩大其在能源结构中的比重,提高能源利用效率,将推动社会可持续发展。
电能作为清洁高效的二次能源,与人类日常生产生活密切相关,而不断增长的电能需求以及对电力品质的要求,需要频繁的对电网系统进行扩容和升级,大力发展太阳能、风能等可再生能源发电是解决这一问题的重要途径。然而,太阳能、风能具有明显的不连续、不稳定特性,对电网的稳定可靠运行提出了巨大挑战,成为阻碍其进一步发展的瓶颈。为此发展高效储能技术,用以平滑和稳定可再生能源发电的输出以及解决发电与用电的时差矛盾,提高电力品质和电网可靠性,具有十分重要的意义。
为保证太阳能、风能等可再生能源发电系统的稳定供电,就必须开发高效、廉价、污染少和安全可靠的储能技术。纵观各种不同类型的化学蓄电池,液流电池以其独特的优势而成为最适宜大规模储能的蓄电池之一。与所有电化学电池一样,液流储能电池也是通过活性物质发生氧化还原反应来实现电能和化学能相互转化的电池系统。与传统二次电池不同,液流储能电池的电极均为惰性电极,为电极反应提供反应场所,同时起到电催化剂的作用。通常液流储能电池在初始状态,活性物质以离子状态存储于电解液当中,正极和负极电解液分别装在两个储罐中,通过送液泵实现电解液在管路系统中的循环。运行过程中,有的电池体系氧化还原反应表现为离子价态的变化,有的表现为金属的沉积与溶出,通常把后者表现形式的电池统称为沉积型液流储能电池。目前研究认为锌作为在水溶液中稳定存在的金属中比能量密度最高的金属,最适合于作为沉积型液流储能电池负极使用,如:锌溴、锌镍、锌锰、锌空等液流储能电池。
锌溴液流储能电池(Zinc-bromine redox flow battery,ZBB)是一种低能耗、高效率、环境友好型的液流储能电池,具有能量密度和电流效率高、装置简单易操纵、使用寿命长、成本低廉等优点,主要应用于电网调峰、风能和太阳能等可再生能源发电、电动汽车等领域。
锌溴液流电池在充放电工作时,用循环泵驱动电解液在电池内循环流动。电池不工作时电解液从电池空腔中抽出,贮存于贮液槽内,使电池内部正负极之间实现电解液断路,可以防止正极充电态溴扩散到负极直接发生化学反应而引起自放电。循环电解液同时还可以防止充电时锌枝晶生长穿过隔膜使正负极短路。专利EPBIO167517,CN1087209A等就是这类循环电解液锌溴电池。
目前锌溴液流电池均采用导电基体并附着催化材料的方法制备电池正极,一方面活性较差,另一方面增加了工序,不利于成本控制。而碳毡作为电极在全钒液流电池中有广泛的应用,而碳毡作为锌溴液流电池正极具有良好的催化活性,但是由于负极为锌的沉积溶解反应,使用碳毡会导致锌的累积,影响电池寿命。
发明内容
本发明提供一种长寿命锌溴液流电池结构及电解液组成,使用碳毡作为电极材料的解决方案,在保证电池性能提高的同时,解决了锌的累积及循环寿命较低的问题。
为实现上述目的,本发明的具体技术方案如下:
一种长寿命锌溴液流电池结构及电解液组成,包括一节单电池或由二节以上单电池串联而成的电池模块,单电池包括正极、隔膜、负极,其特征在于:单电池的正极和负极均采用活性碳毡作为电极材料;所述锌溴液流电池的正极和负极电解液均为溴化锌溶液,正极和负极电解液均含有氯离子溶液,氯离子浓度为1.0mol/L~5.0mol/L。
电池由一节单电池或二节以上单电池串联而成的电池模块、电解液储液罐、循环泵和循环管路组成。
隔膜为多孔膜或离子交换膜。
所述溴化锌浓度为1.0mol/L~5.0mol/L。
所述正负极电解液中含有0.1-1M季铵盐类溴单质络合剂。利用溴单质络合剂与溴单质之间的相互作用,产生溴单质络合物,使得溴单质与电解液实现分相,达到降低溴单质渗透的作用。
所述季铵盐类溴单质络合剂为溴化氮甲基乙基吡咯烷(MEP)、溴化氮甲基乙基吗啉(MEM)。
本发明的有益效果:
本发明电池正负极均采用活性碳毡作为电极材料,为了解决负极采用碳毡而引起的锌累积所导致的电池循环寿命偏低的问题,在正负极电解液中加入氯离子,一方面提高了电池的开路电压及能量密度,另一方面由于氯离子的加入,大大改善了锌沉积形貌及锌累积问题,解决了电池由于采用高活性碳毡所带来的循环稳定性较差的难题,同时该电池正负极均采用碳毡材料,简化了正极电极的制备过程。
附图说明
图1为实施例1锌溴液流电池循环数据图;
图2为对比例1电池循环数据图。
具体实施方式
实施例1
电极面积36cm2,充放电电流密度20mA/cm2
电解液组成:正极和负极各40ml的2.0M溴化锌溶液+2.0M氯化钾溶液+0.1M MEP。
对比例1
电极面积36cm2,充放电电流密度20mA/cm2
电解液组成:正负极各40ml的2.0M溴化锌溶液。
由图1和图2可以看出:电解液中加入氯离子之后,电池的循环性能明显提高。未加入氯离子的传统电池循环10次左右,性能即明显出现衰减。
条件优选
见表1和表2。在条件优选中,如无说明,电极面积36cm2,充放电电流密度20mA/cm2, 电解液组成:正极和负极各40ml。
从优选结果中可以看出,采用氯化钾作为氯离子的供给方,并且浓度为2mol/L时,电池显示出较好的性能。主要原因在于由酸提供氯离子会导致电池的负极析氢严重,导致电池性能下降。而氯离子与钾离子的离子迁移数相近,所以具有更好的作用。
溴化锌浓度为为2.0mol/L时,其电解液具有最高的电导率,所以其电池性能较好。
电解液中采用浓度为0.1mol/L的MEP作为络合剂时,电池效率得到最高值,达到85%。
最终优化结果见条件23。
表1
Figure PCTCN2015092058-appb-000001
Figure PCTCN2015092058-appb-000002
表2
编号 库伦效率(100%) 电压效率(100%) 能量效率(100%)
1 96 80 77
2 96 81 78
3 96 82 79
4 95 75 72
5 96 74 71
6 95 72 68
7 75 80 60
8 80 81 65
9 65 85 55
10 63 87 55
11 60 88 53
12 97 83 81
13 97 84 81
14 97 86 83
15 97 83 81
16 97 81 79
17 97 80 78
18 97 80 78
19 97 88 85
20 97 86 83
21 97 85 82
22 97 81 79
23 98 88 86
24 99 84 83
25 95 83 79
26 96 84 81
27 97 81 79
28 99 86 85
29 99 84 83

Claims (6)

  1. 一种长寿命锌溴液流电池,其特征在于:包括一节单电池或由二节以上单电池串联而成的电池模块,单电池包括正极、隔膜、负极,其特征在于:单电池的正极和负极均采用活性碳毡作为电极材料;所述锌溴液流电池的正极和负极电解液均为溴化锌溶液,正极和负极电解液均含有氯离子溶液,氯离子浓度为1.0mol/L~5.0mol/L。
  2. 根据权利要求1所述的电池,其特征在于:电池由一节单电池或二节以上单电池串联而成的电池模块、电解液储液罐、循环泵和循环管路组成。
  3. 根据权利要求1或2所述的电池,其特征在于:隔膜为多孔膜或离子交换膜。
  4. 根据权利要求1所述的电池,其特征在于:所述溴化锌浓度为1.0mol/L~5.0mol/L。
  5. 根据权利要求1所述的电池,其特征在于:所述正负极电解液中含有0.1-1M季铵盐类溴单质络合剂。
  6. 根据权利要求5所述的电池,其特征在于:所述季铵盐类溴单质络合剂为溴化氮甲基乙基吡咯烷(MEP)、溴化氮甲基乙基吗啉(MEM)。
PCT/CN2015/092058 2014-11-17 2015-10-16 一种长寿命锌溴液流电池 WO2016078491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410659524.1 2014-11-17
CN201410659524.1A CN105680082A (zh) 2014-11-17 2014-11-17 一种长寿命锌溴液流电池结构及其电解液

Publications (1)

Publication Number Publication Date
WO2016078491A1 true WO2016078491A1 (zh) 2016-05-26

Family

ID=56013263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092058 WO2016078491A1 (zh) 2014-11-17 2015-10-16 一种长寿命锌溴液流电池

Country Status (2)

Country Link
CN (1) CN105680082A (zh)
WO (1) WO2016078491A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841852A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种锌溴单液流电池用正极活性材料及其制备和应用
CN111180778A (zh) * 2018-11-13 2020-05-19 陕西华银科技股份有限公司 一种锌镍单液流电池负极电解液以及用途
CN111244561A (zh) * 2020-03-08 2020-06-05 南开大学 基于水系电解液的高能量密度、高电压石墨-锌基离子电池的制备方法
CN114614038A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种锌溴液流电池电解液及其在锌溴液流电池中的应用
CN114628719A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种高面容量锌溴单液流电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134141B (zh) * 2016-12-01 2020-05-05 中国科学院大连化学物理研究所 一种无隔膜静态锌溴电池
CN109786799B (zh) * 2017-11-10 2021-09-14 中国科学院大连化学物理研究所 一种锌镍液流电池
CN109860658B (zh) * 2017-11-28 2022-02-22 中国科学院大连化学物理研究所 一种锌溴单液流电池性能的恢复方法
CN111106373B (zh) * 2018-10-25 2021-05-25 中国科学院大连化学物理研究所 一种锌溴蓄电池
CN113036156B (zh) * 2019-12-09 2022-05-31 中国科学院大连化学物理研究所 一种凝胶电解质及锌溴或锌碘单液流电池
CN114628715A (zh) * 2020-12-14 2022-06-14 中国科学院大连化学物理研究所 一种提升锌溴液流电池面容量与循环稳定性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
CN103137986A (zh) * 2011-12-05 2013-06-05 张华民 一种锌溴单液流电池
CN103875107A (zh) * 2011-10-17 2014-06-18 洛克希德马丁公司 高表面面积的液流电池电极

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049179B1 (ko) * 2007-11-05 2011-07-14 한국에너지기술연구원 격리막을 포함하는 레독스 플로우 전지
CN102487142A (zh) * 2010-12-01 2012-06-06 大连融科储能技术发展有限公司 一种液流储能电池用电极
CN202153549U (zh) * 2011-06-27 2012-02-29 深圳市氢动力科技有限公司 锌溴液流电池及电池组
CN103947012B (zh) * 2011-09-21 2016-07-06 溴化合物有限公司 运行金属-溴电池的方法
CN102780018B (zh) * 2012-08-13 2015-07-29 北京百能汇通科技股份有限公司 一体化储液罐及新型锌溴液流电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
CN103875107A (zh) * 2011-10-17 2014-06-18 洛克希德马丁公司 高表面面积的液流电池电极
CN103137986A (zh) * 2011-12-05 2013-06-05 张华民 一种锌溴单液流电池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841852A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种锌溴单液流电池用正极活性材料及其制备和应用
CN109841852B (zh) * 2017-11-28 2021-07-06 中国科学院大连化学物理研究所 一种锌溴单液流电池用正极活性材料及其制备和应用
CN111180778A (zh) * 2018-11-13 2020-05-19 陕西华银科技股份有限公司 一种锌镍单液流电池负极电解液以及用途
CN111180778B (zh) * 2018-11-13 2023-01-24 陕西华银科技股份有限公司 一种锌镍单液流电池负极电解液以及用途
CN111244561A (zh) * 2020-03-08 2020-06-05 南开大学 基于水系电解液的高能量密度、高电压石墨-锌基离子电池的制备方法
CN111244561B (zh) * 2020-03-08 2023-01-13 南开大学 基于水系电解液的高能量密度、高电压石墨-锌基离子电池的制备方法
CN114614038A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种锌溴液流电池电解液及其在锌溴液流电池中的应用
CN114628719A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种高面容量锌溴单液流电池
CN114628719B (zh) * 2020-12-11 2023-12-22 中国科学院大连化学物理研究所 一种高面容量锌溴单液流电池

Also Published As

Publication number Publication date
CN105680082A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN102479968B (zh) 一种锌/多卤化物储能电池
CA2781582C (en) Redox flow battery
CN105742656B (zh) 一种锌碘液流电池
CN207587857U (zh) 一种锌镍单液流电池
WO2018103518A1 (zh) 一种中性锌铁液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
CN102694143A (zh) 一种空气/钒液流电池
CN118016948A (zh) 多活性物质电解液及包含其的液流电池
CN105280943A (zh) 一种全锰液流电池
AU2015349218B2 (en) Quinone polyhalide flow battery
CN113036156B (zh) 一种凝胶电解质及锌溴或锌碘单液流电池
CN107565151B (zh) 一种全钒液流电池电极活性的再生方法
CN108123159A (zh) 一种提高全钒液流电池负极电解液稳定性的方法
JP2014170715A (ja) 電池
CN104300169A (zh) 一种碱性锌钒液流电池
CN109841885B (zh) 提高全钒液流电池运行时高浓度负极电解液稳定性的方法
CN109768309A (zh) 一种负极电解液在全钒液流电池的应用
CN108123174A (zh) 一种碱性锌铁液流电池用正极电解液及应用
CN106450400A (zh) 一种全钒氧化还原液流电池
CN109755620B (zh) 一种锌碘液流电池
CN110071317A (zh) 一种锡溴液流电池
WO2023103312A1 (zh) 一种胺溴双电子液流电池电解液及其应用和液流电池
CN113013460B (zh) 一种碱性锌铁液流电池用负极电解液及锌铁液流电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860338

Country of ref document: EP

Kind code of ref document: A1