WO2016078492A1 - 一种醌多卤化物液流电池 - Google Patents

一种醌多卤化物液流电池 Download PDF

Info

Publication number
WO2016078492A1
WO2016078492A1 PCT/CN2015/092059 CN2015092059W WO2016078492A1 WO 2016078492 A1 WO2016078492 A1 WO 2016078492A1 CN 2015092059 W CN2015092059 W CN 2015092059W WO 2016078492 A1 WO2016078492 A1 WO 2016078492A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
flow battery
electrolyte
ruthenium
positive electrode
Prior art date
Application number
PCT/CN2015/092059
Other languages
English (en)
French (fr)
Inventor
张华民
赖勤志
李先锋
程元徽
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US15/302,440 priority Critical patent/US10446867B2/en
Priority to AU2015349218A priority patent/AU2015349218B2/en
Priority to JP2016566261A priority patent/JP6247778B2/ja
Priority to EP15861860.3A priority patent/EP3223354B1/en
Publication of WO2016078492A1 publication Critical patent/WO2016078492A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a flow battery system.
  • the well-developed flow battery system mainly includes two kinds of vanadium redox flow batteries and zinc bromine flow batteries.
  • the all-vanadium flow battery realizes the reversible conversion of electrical energy and chemical energy by electrochemical reaction of vanadium ions of different valence states on the inert electrode in the electrolyte.
  • the positive electrode is a VO 2+ /VO 2 + electric pair
  • the negative electrode is a V 2+ /V 3 + electric pair
  • the sulfuric acid is a supporting electrolyte. Because the vanadium ions of different valence states are on both sides of the positive and negative electrodes, the contamination of the electrolyte by the ions is avoided, which affects the performance and life of the battery.
  • the vanadium electrolyte solution can be regenerated, further improving the life of the battery system and reducing operating costs.
  • the electrolyte cost of the vanadium redox flow battery and the cost of the proton exchange membrane are high, and there is still a certain degree of cross-contamination problem between the positive and negative electrodes.
  • the positive and negative half-cells of the zinc-bromine flow battery are separated by a separator, and the electrolyte on both sides is a ZnBr 2 solution. Under the action of the power pump, the electrolyte circulates in a closed loop formed by the liquid storage tank and the battery.
  • the main problem with zinc-bromine flow batteries is that bromine contamination cannot be solved.
  • the ruthenium bromine flow battery has been reported in the literature, but since the proton exchange membrane is used in the literature and sulfuric acid is used as the supporting electrolyte, the cost and the battery voltage are both low.
  • the invention uses a porous membrane and uses hydrochloric acid as a supporting electrolyte, and the cost is obtained. Reduced, the voltage is increased.
  • the utility model relates to a ⁇ multi-halide liquid flow battery system, comprising: a positive and negative electrode end plate, a positive electrode, a porous diaphragm, a negative electrode, a liquid storage tank, a pipeline and a pump.
  • the positive and negative electrodes are composed of a current collector and a positive and negative electrode catalytic material; during charging and discharging, the electrolyte is transported from the liquid storage tank to the positive and negative electrodes via a pump, and the redox reaction of bromine and bromine is generated in the positive electrode, and the ruthenium and ruthenium are oxidized in the negative electrode. Reduction reaction.
  • the specific technical solution of the present invention is as follows:
  • the utility model relates to a ⁇ multi-halide flow battery, which is composed of a battery module, an electrolyte liquid storage tank filled with a positive electrode electrolyte, a negative liquid storage tank filled with a negative electrode electrolyte, a circulation pump and a circulation pipeline;
  • the two cells are connected in series by two or more cells, and the single cell includes a positive electrode, a separator and a negative electrode, the positive electrode electrolyte is a mixed solution of hydrochloric acid and sodium bromide, and the negative electrode electrolyte is a mixed solution of hydrochloric acid and hydrazine.
  • the positive electrode electrolyte is a mixed solution of a concentration of 0.5-2 M hydrochloric acid and a concentration of 0.5-2 M sodium bromide.
  • the negative electrode electrolyte is a mixed solution having a concentration of 0.5 to 2 M hydrochloric acid and a concentration of 0.5 to 1 M.
  • the positive and negative electrolytes contain 0.1-1M quaternary ammonium salt bromine elemental complexing agent, and the interaction between the bromine elemental complexing agent and the bromine element is used to generate a bromine elemental complex, so that the bromine elemental substance and the electrolyte Achieve phase separation to reduce the penetration of bromine.
  • the quaternary ammonium salt bromine elemental complexing agent is nitrogen bromide methyl ethyl pyrrolidine (MEP) or nitrogen bromide methyl ethyl morpholine (MEM).
  • the positive and negative materials are all activated carbon felts.
  • the separator is a porous membrane or a dense membrane.
  • the single cell includes a positive electrode end plate, a positive electrode, a separator, a negative electrode, and a negative electrode end plate.
  • this patent proposes the concept of a multi-halide halide flow battery, which improves the problem that the cost of the bismuth bromine flow battery is high and the battery voltage is low.
  • Example 1 is a cycle stability diagram of a battery of Example 1;
  • Fig. 3 is a graph showing the comparison of charge and discharge of the batteries of Example 1 and Comparative Example 1.
  • the batteries were assembled using a porous film unless otherwise specified.
  • Electrolyte configuration and battery assembly are Electrolyte configuration and battery assembly:
  • Positive electrode electrolyte 40 ml of 1 M HCl + 0.5 M solution of methyl bromide methyl ethyl pyrrolidine + 1 M sodium bromide solution; negative electrode electrolyte: 40 ml of 1 M HCl + 0.5 M solution of methyl bromide methyl ethyl pyrrolidine + 1 M solution
  • the single cells are sequentially a positive electrode end plate, a positive electrode 3 ⁇ 3 cm 2 , a carbon felt, a separator, a carbon felt, a negative electrode 3 ⁇ 3 cm 2 graphite plate, and a negative electrode end plate.
  • Electrolyte flow rate 5 ml/min; charge and discharge current density 20 mA/cm 2 ; battery cycle stability is shown in Fig. 1.
  • Electrolyte configuration and battery assembly are Electrolyte configuration and battery assembly:
  • Positive electrode electrolyte 40 ml of 0.5 M sulfuric acid + 1 M sodium bromide solution
  • negative electrode electrolyte 40 ml of 0.5 M sulfuric acid + 1 M barium solution single cell, positive electrode end plate, positive electrode 3x3 cm 2 , carbon felt, separator, carbon felt, negative electrode 3x3cm 2 graphite plate, negative end plate.
  • Electrolyte flow rate 5 ml/min; charge and discharge current density 20 mA/cm 2 ; battery cycle stability is shown in Fig. 2.
  • the ⁇ multi-halide liquid flow battery of the invention comprises: a positive and negative electrode end plate, a positive electrode, a porous separator, a negative electrode, a liquid storage tank, a pipeline, and a pump.
  • the positive and negative electrodes are composed of a current collector and a positive and negative electrode catalytic material; during charging and discharging, the electrolyte is transported from the liquid storage tank to the positive and negative electrodes via a pump, and the redox reaction of bromine and bromine is generated in the positive electrode, and the ruthenium and ruthenium are oxidized in the negative electrode. Reduction reaction.
  • the positive and negative electrolytes are all 40 ml; the single cells are sequentially positive electrode plates, positive electrodes 3 ⁇ 3 cm 2 , carbon felt, separator, carbon felt, negative electrode 3 ⁇ 3 cm 2 graphite plates, and negative electrode plates.
  • the electrolyte flow rate in the battery test was 5 ml/min; the charge and discharge current density was 20 mA/cm 2 ; and the battery performance is shown in Tables 1 and 2.
  • the battery performance tends to increase with the increase of the concentration of the positive hydrochloric acid.
  • the positive hydrochloric acid reaches 1.0 mol/L or more, the battery performance is basically unchanged.
  • the concentration of the positive sodium bromide increases, the battery performance gradually increases and tends to be stable.
  • the concentration of the positive hydrochloric acid and sodium bromide was selected to be 2. mol/L.
  • the concentration of the negative electrode hydrochloric acid is kept constant in accordance with the positive electrode, and finally 2 mol/L is selected, and the increase in the concentration of ruthenium is not advantageous for the improvement of the battery performance, and is preferably 0.5 mol/L.
  • the addition of MEP can significantly improve the performance of the battery, and has a better effect than MEM.
  • the excessive addition of the complexing agent causes an increase in cost.
  • it also causes a drop in battery performance.
  • the final preferred concentration is 0.5 mol/L.
  • the final optimized electrolyte conditions are the concentration parameters shown as number 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

醌多卤化物液流电池,正极电解液为盐酸与溴化钠的混合溶液,负极电解液为盐酸与蒽醌的混合溶液。改善了醌溴液流电池成本偏高,电池电压较低的问题。

Description

一种醌多卤化物液流电池 技术领域
本发明涉及一种液流电池系统。
背景技术
日前随着世界能源供应日趋短缺,人们开始对风能、太阳能等可再生能源的开发和利用广泛关注,但要保证太阳能、风能等可再生能源发电系统的稳定供电,就必须结合高效、廉价、安全可靠的储能技术与其配合,纵观各种储能技术,其中化学储能方式的液流储能电池以其独特的优势而成为目前最适宜大规模储能的蓄电池之一。
目前发展较好的液流电池体系主要有全钒液流电池及锌溴液流电池两种。全钒液流电池通过电解液中不同价态钒离子在惰性电极上的电化学反应来实现电能和化学能的可逆转化。正极为VO2+/VO2 +电对,负极为V2+/V3+电对,硫酸为支持电解质。因为正负极两侧是不同价态的钒离子,避免了离子互串对电解液的污染,影响电池的性能和寿命。另外,钒电解质溶液可以恢复再生,进一步提高了电池系统的寿命,降低运行成本。但是全钒液流电池电解液成本和质子交换膜成本较高、正负极仍存在一定程度的交叉污染问题。
锌溴液流电池正负半电池由隔膜分开,两侧电解液为ZnBr2溶液。在动力泵的作用下,电解液在储液罐和电池构成的闭合回路中进行循环流动。锌溴液流电池存在的主要问题为溴的污染无法解决。
醌溴液流电池在文献中已有报道,但是由于文献中使用质子交换膜,并且采用硫酸作为支持电解质,成本及电池电压均偏低,该发明使用多孔膜并使用盐酸作为支持电解质,成本得到了降低,电压得以提高。
发明内容
一种醌多卤化物液流电池系统,包括:正负极端板、正极、多孔隔膜、负极、储液罐、管路、泵。其中正负极由集流体和正负极催化材料组成;充放电时,电解液经由泵从储液罐输送至正、负极,正极发生溴与溴单质的氧化还原反应,负极发生醌与蒽醌的氧化还原反应。为实现上述目的,本发明的具体技术方案如下:
一种醌多卤化物液流电池,所述电池由电池模块、装有正极电解液的电解液储液罐、装有负极电解液的负极储液罐、循环泵、循环管路组成;电池模块由二节或三节以上单电池串联而成,单电池包括正极、隔膜、负极,正极电解液为盐酸与溴化钠的混合溶液,负极电解液为盐酸与蒽醌的混合溶液。
所述正极电解液为浓度0.5-2M盐酸和浓度0.5-2M溴化钠的混合溶液。所述负极电解液为浓度0.5-2M盐酸和浓度0.5-1M蒽醌的混合溶液。
所述正负极电解液中含有0.1-1M季铵盐类溴单质络合剂,利用溴单质络合剂与溴单质之间的相互作用,产生溴单质络合物,使得溴单质与电解液实现分相,达到降低溴单质渗透的作用。
所述季铵盐类溴单质络合剂为溴化氮甲基乙基吡咯烷(MEP)、溴化氮甲基乙基吗啉(MEM)。
正极和负极材料均为活性炭毡。
所述隔膜为多孔膜或致密膜。
单电池包括正极端板、正极、隔膜、负极、负极端板。
本发明的有益效果:
本专利通过技术改进,提出了醌多卤化物液流电池的概念,改善了醌溴液流电池成本偏高,电池电压较低的问题。
附图说明
图1为实施例1电池循环稳定性图;
图2为对比例1电池循环稳定性图;
图3为实施例1和对比例1电池充放电对比曲线图。
具体实施方式
实施例及对比例中,如无特殊说明,电池均采用多孔膜进行装配。
实施例1
电解液配置及电池组装:
正极电解液:40ml的1MHCl+0.5M溴化氮甲基乙基吡咯烷+1M溴化钠溶液;负极电解液:40ml的1MHCl+0.5M溴化氮甲基乙基吡咯烷+1M蒽醌溶液单电池依次正极端板、正极3x3cm2、碳毡、隔膜、碳毡、负极3x3cm2石墨板、负极端板。
电池测试:
电解液流速:5ml/min;充放电电流密度20mA/cm2;电池循环稳定性见图1。
对比例1
电解液配置及电池组装:
正极电解液:40ml的0.5M硫酸+1M溴化钠溶液;负极电解液:40ml的0.5M硫酸+1M蒽醌溶液单电池依次正极端板、正极3x3cm2、碳毡、隔膜、碳毡、负极3x3cm2石墨板、负极端板。
电池测试:
电解液流速:5ml/min;充放电电流密度20mA/cm2;电池循环稳定性见图2。
实施例1和对比例电池充放电对比曲线见图3。
本发明醌多卤化物液流电池,包括:正负极端板、正极、多孔隔膜、负极、储液罐、管路、泵。其中正负极由集流体和正负极催化材料组成;充放电时,电解液经由泵从储液罐输送至正、负极,正极发生溴与溴单质的氧化还原反应,负极发生醌与蒽醌的氧化还原反应。
由图2和图3可以看出:盐酸作为支持电解质的电池充电电压下降,放电电压升高,电池性能得到提升,且循环性能优于硫酸作为支持电解质。
在条件优选中,如无说明,正负极电解液均为40ml;单电池依次正极端板、正极3x3cm2、碳毡、隔膜、碳毡、负极3x3cm2石墨板、负极端板。电池测试中电解液流速:5ml/min;充放电电流密度20mA/cm2;电池性能见表1和2。
从优选结果中可以看出,随着正极盐酸浓度的升高,电池性能呈上升的趋势,在正极盐酸达到1.0mol/L以上时,电池性能基本不变。随着正极溴化钠浓度的提高,电池性能逐渐上升并趋于稳定。为了提高电池的能量密度,正极盐酸及溴化钠浓度选为2.mol/L。负极盐酸浓度为了保持与正极保持一致,最终选择2mol/L,而醌浓度的上升并不利于电池性能的提高,最终优选为0.5mol/L。通过对比可以看出MEP的加入可以显著提高电池的性能,相比MEM具有更好的效果。但是络合剂的加入过多一方面造成成本的上升。另一方面,也会导致电池性能的下降。最终优选浓度为0.5mol/L。
最终优化的电解液条件为编号为7所显示的各浓度参数。
表1
Figure PCTCN2015092059-appb-000001
表2
编号 库伦效率(100%) 电压效率(100%) 能量效率(100%)
1 96 83 80
2 96 85 82
3 96 84 81
4 96 86 83
5 96 85 82
6 96 85 82
7 97 86 83
8 98 83 81
9 94 85 80
10 96 85 82
11 97 80 78
12 99 81 80
13 99 80 79

Claims (8)

  1. 一种醌多卤化物液流电池,所述电池由电池模块、装有正极电解液的电解液储液罐、装有负极电解液的负极储液罐、循环泵、循环管路组成;电池模块由二节或三节以上单电池串联而成,单电池包括正极、隔膜、负极,其特征在于:正极电解液为盐酸与溴化钠的混合溶液,负极电解液为盐酸与蒽醌的混合溶液。
  2. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述正极电解液为浓度0.5-2M盐酸和浓度0.5-2M溴化钠的混合溶液。
  3. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述负极电解液为浓度0.5-2M盐酸和浓度0.5-1M蒽醌的混合溶液。
  4. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述正负极电解液中含有0.1-1M季铵盐类溴单质络合剂。
  5. 根据权利要求3所述的醌多卤化物液流电池,其特征在于:所述季铵盐类溴单质络合剂为溴化氮甲基乙基吡咯烷(MEP)、溴化氮甲基乙基吗啉(MEM)。
  6. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:正极和负极材料均为活性炭毡。
  7. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述隔膜为多孔膜或致密膜。
  8. 根据权利要求1所述的醌多卤化物液流电池,其特征在于:单电池包括正极端板、正极、隔膜、负极、负极端板。
PCT/CN2015/092059 2014-11-17 2015-10-16 一种醌多卤化物液流电池 WO2016078492A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/302,440 US10446867B2 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery
AU2015349218A AU2015349218B2 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery
JP2016566261A JP6247778B2 (ja) 2014-11-17 2015-10-16 キノンポリハライドフロー電池
EP15861860.3A EP3223354B1 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410653131.XA CN105679985B (zh) 2014-11-17 2014-11-17 一种醌多卤化物液流电池
CN201410653131.X 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016078492A1 true WO2016078492A1 (zh) 2016-05-26

Family

ID=56013264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092059 WO2016078492A1 (zh) 2014-11-17 2015-10-16 一种醌多卤化物液流电池

Country Status (6)

Country Link
US (1) US10446867B2 (zh)
EP (1) EP3223354B1 (zh)
JP (1) JP6247778B2 (zh)
CN (1) CN105679985B (zh)
AU (1) AU2015349218B2 (zh)
WO (1) WO2016078492A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056698B2 (en) * 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
CN111293355A (zh) * 2018-12-07 2020-06-16 河南大学 蒽醌在锂氧电池中的应用及其得到的蒽醌锂氧电池
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102144321A (zh) * 2008-07-01 2011-08-03 迪亚能源股份有限公司 氧化还原流通单元电池
WO2011131959A1 (en) * 2010-04-19 2011-10-27 The Queen's University Of Belfast Redox battery
CN102646835A (zh) * 2012-04-24 2012-08-22 中南大学 用于液流电池的氧化还原性导电聚合物液流正极
WO2014052682A2 (en) * 2012-09-26 2014-04-03 President And Fellows Of Harvard College Small organic molecule based flow battery
CN104321924A (zh) * 2012-04-04 2015-01-28 巴特尔纪念研究院 利用氧化还原活性有机化合物的混合能量储存体系

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1409588A (fr) * 1964-09-09 1965-08-27 Thomson Houston Comp Francaise Perfectionnements aux accumulateurs
US5591538A (en) * 1995-07-07 1997-01-07 Zbb Technologies, Inc. Zinc-bromine battery with non-flowing electrolyte
AUPS192102A0 (en) * 2002-04-23 2002-05-30 Unisearch Limited Vanadium bromide redox flow battery
AU2003901183A0 (en) * 2003-03-14 2003-03-27 Michael Kazacos Novel vanadium bromide redox flow cell
CN100459269C (zh) * 2006-03-31 2009-02-04 中国科学院大连化学物理研究所 用于液流蓄电的铁-配合物/卤素电化学体系
US7754064B2 (en) * 2006-09-29 2010-07-13 Eltron Research & Development Methods and apparatus for the on-site production of hydrogen peroxide
US20100047671A1 (en) * 2008-06-12 2010-02-25 Massachusetts Institute Of Technology High energy density redox flow device
JP5417441B2 (ja) * 2009-06-09 2014-02-12 シャープ株式会社 レドックスフロー電池
CN102035007A (zh) * 2009-09-25 2011-04-27 中国人民解放军63971部队 一种水溶性有机电对液流电池
CN102479968B (zh) * 2010-11-29 2014-06-11 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
CN103000924B (zh) * 2011-09-16 2015-02-18 清华大学 一种有机相双液流电池
US20140320061A1 (en) * 2013-04-30 2014-10-30 Ashlawn Energy, LLC Apparatus and method controlling sequencings for multiple electrolyte storage tanks in a reduction-oxidation flow battery
EP3011627B1 (en) * 2013-06-17 2022-05-04 University of Southern California Inexpensive metal-free organic redox flow battery (orbat) for grid-scale storage
CA2925478C (en) * 2013-09-26 2022-08-30 President And Fellows Of Harvard College Quinone and hydroquinone based rechargable battery
KR101600141B1 (ko) * 2013-10-11 2016-03-04 서울대학교산학협력단 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
US10050290B2 (en) * 2013-12-26 2018-08-14 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
US9812883B2 (en) * 2014-02-18 2017-11-07 Massachusetts Institute Of Technology Materials for use with aqueous redox flow batteries and related methods and systems
US10263308B2 (en) * 2014-03-24 2019-04-16 Cornell University Solar flow battery
US10079401B2 (en) * 2014-03-24 2018-09-18 Cornell University Symmetric redox flow battery containing organic redox active molecule
ES2796700T3 (es) * 2015-04-01 2020-11-30 Fundacion Centro De Investig Cooperativa De Energias Alternativas Cic Energigune Fundazioa Compuestos de electrolitos orgánicos para baterías de flujo redox
GB201511695D0 (en) * 2015-07-03 2015-08-19 Renewable Energy Dynamics Technology Ltd Improvements in redox flow batteries
US10847844B2 (en) * 2016-04-26 2020-11-24 Calera Corporation Intermediate frame, electrochemical systems, and methods
WO2017205676A1 (en) * 2016-05-26 2017-11-30 Calera Corporation Anode assembly, contact strips, electrochemical cell, and methods to use and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102144321A (zh) * 2008-07-01 2011-08-03 迪亚能源股份有限公司 氧化还原流通单元电池
WO2011131959A1 (en) * 2010-04-19 2011-10-27 The Queen's University Of Belfast Redox battery
CN104321924A (zh) * 2012-04-04 2015-01-28 巴特尔纪念研究院 利用氧化还原活性有机化合物的混合能量储存体系
CN102646835A (zh) * 2012-04-24 2012-08-22 中南大学 用于液流电池的氧化还原性导电聚合物液流正极
WO2014052682A2 (en) * 2012-09-26 2014-04-03 President And Fellows Of Harvard College Small organic molecule based flow battery

Also Published As

Publication number Publication date
CN105679985A (zh) 2016-06-15
US20170025700A1 (en) 2017-01-26
EP3223354A1 (en) 2017-09-27
CN105679985B (zh) 2019-02-01
AU2015349218B2 (en) 2021-01-21
US10446867B2 (en) 2019-10-15
EP3223354A4 (en) 2018-07-04
JP2017517101A (ja) 2017-06-22
JP6247778B2 (ja) 2017-12-13
AU2015349218A1 (en) 2016-11-03
EP3223354B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
CN103137986B (zh) 一种锌溴单液流电池
CN102479968B (zh) 一种锌/多卤化物储能电池
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN105742656B (zh) 一种锌碘液流电池
CN103247816A (zh) 一种半固态液流电池
Pan et al. Preliminary study of alkaline single flowing Zn–O2 battery
CN106549179B (zh) 一种有机体系锂醌液流电池
CN108232265A (zh) 一种中性锌铁液流电池
CN103401045A (zh) 一种具有光电效应的液流电池储能体系
CN105280964A (zh) 一种锌锰液流电池
WO2016078492A1 (zh) 一种醌多卤化物液流电池
CN106532093A (zh) 一种醌金属电对液流电池系统
CN102694143A (zh) 一种空气/钒液流电池
CN107565151B (zh) 一种全钒液流电池电极活性的再生方法
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
CN104300169A (zh) 一种碱性锌钒液流电池
WO2019091304A1 (zh) 一种锌碘液流电池
CN109904506A (zh) A3型号铁基液流电池及其正负极电解液与制备方法
CN114156514A (zh) 一种液流电池电解液及其应用
CN110071317A (zh) 一种锡溴液流电池
CN110010949A (zh) 正负极电解液及其制备方法和在a11型号液流电池中应用
CN109950599A (zh) 正负极电解液及其制备方法和在a8型号液流电池中应用
WO2014101863A1 (zh) 一种具有辅助电极结构的电池电极及其高功率电池
CN113903964B (zh) 一种简易的提高钒电池性能的方法及应用
WO2023103312A1 (zh) 一种胺溴双电子液流电池电解液及其应用和液流电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15302440

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016566261

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015349218

Country of ref document: AU

Date of ref document: 20151016

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015861860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015861860

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE