WO2019091092A1 - 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用 - Google Patents

一种适用于油井水泥浆的pH敏感性吸水树脂及其应用 Download PDF

Info

Publication number
WO2019091092A1
WO2019091092A1 PCT/CN2018/088414 CN2018088414W WO2019091092A1 WO 2019091092 A1 WO2019091092 A1 WO 2019091092A1 CN 2018088414 W CN2018088414 W CN 2018088414W WO 2019091092 A1 WO2019091092 A1 WO 2019091092A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mass
amount
absorbing resin
sensitive
Prior art date
Application number
PCT/CN2018/088414
Other languages
English (en)
French (fr)
Inventor
步玉环
王春雨
柳华杰
田磊聚
郭辛阳
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/495,841 priority Critical patent/US11136490B2/en
Publication of WO2019091092A1 publication Critical patent/WO2019091092A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00112Mixtures characterised by specific pH values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3054Ammonium sulfates

Definitions

  • the invention relates to a pH sensitive water absorbing resin, in particular to a pH sensitive water absorbing resin suitable for oil well cement slurry and application thereof. It belongs to the field of oil and gas well cementing and oilfield chemistry.
  • cementing cement stone is a brittle material. As the exploration and development goals tend to be complex, the cement stone is affected by stress and temperature changes, and is inevitably damaged to form micro-cracks, causing formation fluid turbulence and oil leakage. Accidents such as casing corrosion seriously affect the safe exploitation of oil and gas and the ecological environment, and shorten the life of oil and gas wells. Cementing workovers are not only costly but also have a low success rate.
  • the water absorbing resin is added as an additive to the oil well cement slurry.
  • the water absorbing resin is exposed to the surface of the micro crack, and when it encounters the water flow through the micro crack, it will swell and swell, and block the micro crack. Realize the self-blocking of micro cracks in cement stone. Therefore, the development of water-absorbent resin suitable for oil well cement slurry is of great significance for preventing formation fluid turbulence and ensuring long-term effective sealing of cementing cement ring.
  • Chinese patent CN201410818719.6 prepared a chitosan cross-linked polymaleic anhydride superabsorbent resin, which has pH sensitivity, but chitosan has poor thermal stability under high temperature conditions and is easily degraded, which is not suitable for oil well cement high temperature environment.
  • the water-absorbing gel prepared by the international patents WO2004064816A1, WO1998001421A1, Chinese patent CN2015107292937.1, CN200710042753.9, CN200710042753.9, etc. has a pH sensitivity of more water absorption in an alkaline environment than in a neutral environment;
  • Chinese patent CN201310485548 The pH-sensitive hydrogel prepared in .5 has pH-sensitivity as the pH value affects the adsorption of heavy metal ions by hydrogel, and does not indicate its pH-sensitive water-swelling property; pH-sensitive water prepared in Chinese patent CN200910217799.9
  • the pH sensitivity of the gel is reflected in the fact that the hydrogel absorbs a large amount of water in a neutral environment than in an acidic environment, and does not indicate its water swelling property under alkaline conditions.
  • the high water absorbing resin with pH sensitivity prepared by Chinese patent CN102311517 controls the reversible breaking or bonding of sensitive groups by adjusting the change of pH value to control the degradation/recovery of water absorbing resin.
  • the use condition is weakly alkaline and cannot be applied. In the oil well cement to block micro cracks.
  • a pH sensitive water absorbing resin consisting of distilled water, a polymerization monomer, a mixing aid, a crosslinking agent and an initiator, wherein the amount of the polymerization monomer is 30% to 100% of the mass of the distilled water, and the amount of the mixing aid is polymerization.
  • the amount of the monomer is from 16% to 67%
  • the amount of the crosslinking agent is from 0.2% to 1% by mass of the polymerization monomer
  • the amount of the initiator is from 0.4% to 1% by mass of the polymerization monomer.
  • the amount of the polymerization monomer is 30-70% of the mass of the distilled water
  • the amount of the mixing aid is 22.2-50% of the mass of the polymerization monomer
  • the amount of the crosslinking agent is 0.6% of the mass of the polymerization monomer.
  • the amount of the agent added is 0.64 to 1% by mass of the polymerized monomer.
  • the amount of the polymerization monomer is 42.3 to 59.1% of the mass of the distilled water
  • the amount of the mixing aid is 36.4 to 46.2% of the mass of the polymerization monomer
  • the amount of the initiator is 0.69 to 0.81% of the mass of the polymerization monomer.
  • the amount of the polymerization monomer is 50% of the mass of the distilled water
  • the amount of the mixing aid is 41.67% of the mass of the polymerization monomer
  • the amount of the crosslinking agent is 0.6% of the mass of the polymerization monomer
  • the amount of the initiator is added. It is 0.75% of the mass of the monomer.
  • the polymerizable monomer is a mixture of dimethylaminoethyl methacrylate and acryloyloxyethyltrimethylammonium chloride, and the dimethylaminoethyl methacrylate and acryloyloxyethyl three
  • the mass ratio of methyl ammonium chloride is from 10 to 150:100.
  • the mass ratio of the dimethylaminoethyl methacrylate to the acryloyloxyethyltrimethylammonium chloride is from 50 to 134:100.
  • the mixing aid is acetic acid.
  • the crosslinking agent is N,N-methylenebisacrylamide.
  • the initiator is one of ammonium persulfate or potassium persulfate.
  • the above-mentioned pH-sensitive water-absorbing resin is prepared by sequentially adding distilled water, a polymerization monomer, a mixing aid, a crosslinking agent in a reaction vessel, mixing uniformly, and then adding an initiator, and reacting in a water bath to form a reaction product. Soaking in a 75 ° C saturated calcium hydroxide solution for 24 hours, then drying and pulverizing, thereby obtaining a pH-sensitive water absorbing resin.
  • the invention also provides the use of the above pH sensitive water absorbing resin as a water swellable component in an oil well cement slurry.
  • the invention adopts acetic acid as a mixing aid, and its function is to promote the mixing of dimethylaminoethyl methacrylate and acryloyloxyethyltrimethylammonium chloride.
  • the pH-sensitive functional monomers used in the present invention are dimethylaminoethyl methacrylate and acryloyloxyethyltrimethylammonium chloride, due to the amino group and acryloyloxyethyl group in dimethylaminoethyl methacrylate.
  • the presence of quaternary ammonium salt groups in trimethylammonium chloride makes the copolymerization of the two monomers different in different pH solutions, which is one of the key factors affecting the water absorption performance of the water absorbing resin.
  • the amino group is bonded to the hydrogen ion and the quaternary ammonium salt group to ionize, so that the copolymer molecules are positively charged and mutually repelled, the molecular chain is stretched, and the water absorption capacity of the water absorbing resin becomes large; in the neutral solution, the quaternary ammonium salt group
  • the ionization of the mass will also increase the water absorption of the resin due to the positive charge of the molecular chain, but the amount of water absorbed by the resin will be less in the neutral solution than in the acidic solution due to the low charge; in the alkaline solution, the hydroxide
  • the ions inhibit the ionization of the quaternary ammonium salt group, and the polymer chain is not charged, so the water absorption of the resin is greatly reduced.
  • the invention has the beneficial effects that the pH-sensitive water-absorbing resin prepared by the invention is added to the oil well cement slurry, and the water absorption in the alkaline environment of the cement slurry is less, thereby greatly reducing the rheology of the water-absorbing resin to the oil well cement slurry and the cement stone after solidification.
  • the influence of compressive strength ensures the smooth implementation of cementing operations; in addition, the water absorbing resin absorbs more water in a neutral environment, and most of the formation water is neutral, so the water absorbing resin encounters formation water passing through micro cracks. When it will absorb water and swell, it will block micro-cracks, and realize the self-blocking of micro-cracks in oil well cement stone.
  • Example 1 is a water absorption ratio curve of a water absorbing resin obtained in Example 1, Example 3, and Example 5 in distilled water and a sodium hydroxide solution of different pH;
  • Fig. 3 is a graph showing the water absorption ratio of the water absorbing resin obtained by adding different amounts of the crosslinking agent in distilled water and cement slurry filtrate.
  • the oxygen in the reaction vessel was drained, and after stirring for 10 minutes, 0.9 g of a 5% ammonium persulfate solution was added dropwise, and then statically reacted in a 50 ° C water bath for 3 hours, and the product was immersed in a 75 ° C saturated calcium hydroxide solution for 24 hours, and then After drying at 80 ° C for 48 h, the pH-sensitive water-absorbent resin was obtained after pulverization.
  • the oxygen in the reaction vessel was drained, and after stirring for 10 minutes, 0.9 g of a 5% ammonium persulfate solution was added dropwise, and then statically reacted in a 50 ° C water bath for 3 hours, and the product was immersed in a 75 ° C saturated calcium hydroxide solution for 24 hours, and then After drying at 80 ° C for 48 h, the pH-sensitive water-absorbent resin was obtained after pulverization.
  • the oxygen in the reaction vessel was drained, and after stirring for 10 minutes, 0.9 g of a 5% ammonium persulfate solution was added dropwise, and then statically reacted in a 50 ° C water bath for 3 hours, and the product was immersed in a 75 ° C saturated calcium hydroxide solution for 24 hours, and then After drying at 80 ° C for 48 h, the pH-sensitive water-absorbent resin was obtained after pulverization.
  • the oxygen in the reaction vessel was drained, and after stirring for 10 minutes, 0.9 g of a 5% ammonium persulfate solution was added dropwise, and then statically reacted in a 50 ° C water bath for 3 hours, and the product was immersed in a 75 ° C saturated calcium hydroxide solution for 24 hours, and then After drying at 80 ° C for 48 h, the pH-sensitive water-absorbent resin was obtained after pulverization.
  • the oxygen in the reaction vessel was drained, and after stirring for 10 minutes, 0.9 g of a 5% ammonium persulfate solution was added dropwise, and then statically reacted in a 50 ° C water bath for 3 hours, and the product was immersed in a 75 ° C saturated calcium hydroxide solution for 24 hours, and then After drying at 80 ° C for 48 h, the pH-sensitive water-absorbent resin was obtained after pulverization.
  • the method for measuring the liquid absorption ratio of the pH sensitive water absorbing resin is as follows:
  • Example 1 The water absorbing resins obtained in Example 1, Example 3, and Example 5 were respectively placed in distilled water, sodium hydroxide solutions having pH values of 9, 10, 11, 12, and 13, and the water absorption ratio was measured by the above method. As shown in Figure 1. As can be seen from the figure, the above water absorbing resin has a high water absorption ratio in a neutral liquid distilled water and an alkaline solution having a pH of ⁇ 10. When the pH is >10, the water absorption ratio is remarkably lowered, and when the pH is >12, the water absorption ratio is extremely low.
  • the water absorbing resin obtained in Example 3 has the highest water absorption ratio in a neutral liquid and an alkaline solution having a pH of ⁇ 10, and the change in water absorption ratio is most remarkable as the pH of the solution increases.
  • the water absorbing resin obtained in Example 3 has the largest water absorption ratio in distilled water and the largest difference in water absorption ratio in the cement slurry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种适用于油井水泥浆的pH敏感性吸水树脂及其应用,由蒸馏水、聚合单体、混合助剂、交联剂和引发剂组成,其中聚合单体加量为蒸馏水质量的30%~100%,混合助剂加量为聚合单体质量的16%~67%,交联剂加量为聚合单体质量的0.2%~1%,引发剂加量为聚合单体质量的0.4%~1%。本发明制备的pH敏感性吸水树脂加入到油井水泥浆中,在水泥浆碱性环境中吸水少,极大的降低了吸水树脂对油井水泥浆流变性和固化后水泥石抗压强度的影响,保障固井作业的顺利实施;该吸水树脂在地层水中性环境中吸水多,因此在遇到通过微裂缝的地层水时会吸水膨胀,封堵微裂缝,实现油井水泥石微裂缝遇水自封堵。

Description

一种适用于油井水泥浆的pH敏感性吸水树脂及其应用 技术领域
本发明涉及一种pH敏感性吸水树脂,具体涉及一种适用于油井水泥浆的pH敏感性吸水树脂及其应用。属于油气井固井及油田化学领域。
背景技术
固井的主要目的是保护生产管柱和封隔相邻的油、气、水层,固井水泥凝固后形成一个纵向上的水力封隔系统,因此必须在整个油气井寿命期间及报废之后都能实现有效的层间封隔。固井水泥石是一种脆性材料,随着勘探开发目标趋于复杂,水泥石受到应力和温度变化的影响,不可避免地受到破坏而形成微裂缝,造成地层流体窜流、冒漏油气、套管腐蚀等事故,严重影响油气安全开采及生态环境,缩短油气井寿命。挤水泥修井不仅成本高,而且成功率低。
把吸水树脂作为添加剂加入到油井水泥浆中,当硬化后的水泥石内部产生微裂缝时,吸水树脂暴露于微裂缝表面,当遇到通过微裂缝的水流后会吸水膨胀,封堵微裂缝,实现水泥石微裂缝的自封堵。因此,开发出适用于油井水泥浆的吸水树脂,对防止地层流体窜流和保障固井水泥环长期有效封隔具有重要的意义。
中国专利CN201410818719.6制备了一种壳聚糖交联聚马来酸酐高吸水树脂,树脂具有pH敏感性,但是壳聚糖在高温条件下热稳定性差,容易降解,不适用于油井水泥高温环境中;国际专利WO2004064816A1、WO1998001421A1、中国专利CN2015107292937.1、CN200710042753.9、CN200710042753.9等制备的吸水凝胶,其pH敏感性为在碱性环境中比在中性环境中吸水多;中国专利CN201310485548.5中制备的pH敏感水凝胶,其pH敏感性能体现为pH值影响水凝胶对重金属离子的吸附,并未说明其pH敏感吸水膨胀性能;中国专利CN200910217799.9中制备的pH敏感水凝胶,其pH敏感性能体现为水凝胶在中性环境中比在酸性环境中吸水量大,并未说明其在碱性条件下的吸水膨胀性能。中国专利CN102311517制备的具有pH值敏感特性的高吸水树脂,是通过调节pH值的变化来控制敏感基团可逆的断裂或结合进而控制吸水树脂的降解/恢复,使用条件为弱碱性,不能应用在油井水泥中来封堵微裂缝。
发明内容
本发明的目的是为克服上述现有技术的不足,提供一种适用于油井水泥浆的pH敏感性 吸水树脂及其应用。
为实现上述目的,本发明采用下述技术方案:
一种pH敏感性吸水树脂,由蒸馏水、聚合单体、混合助剂、交联剂和引发剂组成,其中聚合单体加量为蒸馏水质量的30%~100%,混合助剂加量为聚合单体质量的16%~67%,交联剂加量为聚合单体质量的0.2%~1%,引发剂加量为聚合单体质量的0.4%~1%。
优选的,所述聚合单体加量为蒸馏水质量的30~70%,混合助剂加量为聚合单体质量的22.2~50%,交联剂加量为聚合单体质量的0.6%,引发剂加量为聚合单体质量的0.64~1%。
优选的,所述聚合单体加量为蒸馏水质量的42.3~59.1%,混合助剂加量为聚合单体质量的36.4~46.2%,引发剂加量为聚合单体质量的0.69~0.81%。
进一步优选的,所述聚合单体加量为蒸馏水质量的50%,混合助剂加量为聚合单体质量的41.67%,交联剂加量为聚合单体质量的0.6%,引发剂加量为聚合单体质量的0.75%。
优选的,所述聚合单体为甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的混合物,所述的甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的质量比为10~150:100。
进一步优选的,所述的甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的质量比为50~134:100。
优选的,所述的混合助剂为醋酸。
优选的,所述的交联剂为N,N-亚甲基双丙烯酰胺。
优选的,所述的引发剂为过硫酸铵或过硫酸钾其中的一种。
上述pH敏感性吸水树脂的制备方法为:在反应容器中依次加入蒸馏水、聚合单体、混合助剂、交联剂,混合均匀,再加入引发剂,在水浴中静止反应,反应生成的产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后烘干、粉碎,即得pH敏感性吸水树脂。
本发明还提供了上述pH敏感性吸水树脂作为油井水泥浆中吸水膨胀成分的应用。
本发明采用醋酸为混合助剂,其作用是促进甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵混合。
本发明中采用的pH敏感性功能单体为甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵,由于甲基丙烯酸二甲氨基乙酯中氨基和丙烯酰氧乙基三甲基氯化铵中季铵盐基团的存在,使得两种单体的共聚物在不同pH值溶液中的带电情况不同,而这是影响吸水树脂吸水性能的关键性因素之一。在酸性溶液中,氨基结合氢离子、季铵盐基团电离,使共聚物分子上带正电荷而相互排斥,分子链伸展,吸水树脂的吸水量变大;在中性溶液中,季铵盐基团电离,同样会因分子链带正电而使树脂吸水量增大,但是由于所带电量少,树 脂吸水量在中性溶液中会小于在酸性溶液中;在碱性溶液中,氢氧根离子会抑制季铵盐基团电离,共聚物分子链上不带电,因此树脂的吸水量会大大降低。
本发明的有益效果:本发明制备的pH敏感性吸水树脂加入到油井水泥浆中,在水泥浆碱性环境中吸水少,极大的降低了吸水树脂对油井水泥浆流变性和固化后水泥石抗压强度的影响,保障固井作业的顺利实施;此外,该吸水树脂在中性环境中吸水多,而大多数地层水偏中性,因此,该吸水树脂在遇到通过微裂缝的地层水时会吸水膨胀,封堵微裂缝,实现油井水泥石微裂缝遇水自封堵。
附图说明
图1为实施例1、实施例3、实施例5所得吸水树脂在蒸馏水和不同pH值氢氧化钠溶液中的吸水倍率曲线;
图2为不同聚合单体比例所得的吸水树脂在蒸馏水和水泥浆滤液中的吸水倍率对比图;
图3为不同交联剂加量所得的吸水树脂在蒸馏水和水泥浆滤液中的吸水倍率对比图。
具体实施方式
下面结合附图和实施例对本发明进行进一步的阐述,应该说明的是,下述说明仅是为了解释本发明,并不对其内容进行限定。
实施例1:
在反应容器中加入15g蒸馏水、1.5g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、1g醋酸、0.027gN,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例2:
在反应容器中加入13g蒸馏水、2.5g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、2g醋酸、0.033gN,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例3:
在反应容器中加入12g蒸馏水、3g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基 氯化铵、2.5g醋酸、0.036g N,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例4:
在反应容器中加入11g蒸馏水、3.5g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、3g醋酸、0.039gN,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例5:
在反应容器中加入10g蒸馏水、4g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、3.5g醋酸、0.042g N,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例6:
在反应容器中加入12g蒸馏水、3g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、2.5g醋酸、0.012g N,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例7:
在反应容器中加入12g蒸馏水、3g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、2.5g醋酸、0.024g N,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
实施例8:
在反应容器中加入12g蒸馏水、3g甲基丙烯酸二甲氨基乙酯、3g丙烯酰氧乙基三甲基氯化铵、2.5g醋酸、0.048g N,N-亚甲基双丙烯酰胺,通氮气排出反应容器中的氧气,搅拌 10分钟后滴加0.9g浓度为5%的过硫酸铵溶液,而后在50℃水浴中静止反应3h,产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后在80℃下干燥48h,粉碎后得到pH敏感性吸水树脂。
试验例:
pH敏感性吸水树脂的吸液倍率测定方法如下:
称取一定质量的pH敏感性吸水树脂粉末,记为W1,放入白色无纺布袋中,称量树脂和布袋的总质量,记为W2,然后放入蒸馏水或水泥浆滤液或不同pH值氢氧化钠溶液中,考虑井下温度,在75℃条件下进行吸水测试,每隔5min取出无纺布袋,悬挂至基本无液滴低落,称量无纺布袋和吸液后树脂的总质量,记为W3,计算pH敏感性吸水树脂的吸液倍率,其公式为:吸液倍率(g/g)=(W3-W2)/W1。
1、将实施例1、实施例3、实施例5所得吸水树脂分别放入蒸馏水、pH值为9、10、11、12和13的氢氧化钠溶液中,按上述方法测定吸水倍率,所得结果如图1所示。从图中可以看出,上述吸水树脂在中性液体蒸馏水中和pH<10的碱性溶液中的吸水倍率高,pH>10时,吸水倍率下降明显,pH>12时,吸水倍率极低。
其中实施例3所得吸水树脂在中性液体和pH<10的碱性溶液中的吸水倍率最高,且随着溶液pH的增加,吸水倍率的变化最为明显。
2、将实施例1~8所制得的吸水树脂分别放入蒸馏水和水泥浆滤液中,按上述方法测定吸水倍率,所得结果如图2、图3所示。从图中可以看出,上述吸水树脂在蒸馏水中均具有较高的吸水倍率,在水泥浆滤液中的吸水倍率极低,说明本发明方法制得的pH敏感性吸水树脂适用于油井水泥浆中。
其中实施例3所得吸水树脂在蒸馏水中的吸水倍率最大,与在水泥浆中的吸水倍率差别最大。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种pH敏感性吸水树脂,其特征在于,由蒸馏水、聚合单体、混合助剂、交联剂和引发剂组成,其中聚合单体加量为蒸馏水质量的30%~100%,混合助剂加量为聚合单体质量的16%~67%,交联剂加量为聚合单体质量的0.2%~1%,引发剂加量为聚合单体质量的0.4%~1%。
  2. 根据权利要求1所述的一种pH敏感性吸水树脂,其特征在于,所述聚合单体加量为蒸馏水质量的30~70%,混合助剂加量为聚合单体质量的22.2~50%,交联剂加量为聚合单体质量的0.6%,引发剂加量为聚合单体质量的0.64~1%。
  3. 根据权利要求1所述的一种pH敏感性吸水树脂,其特征在于,所述聚合单体加量为蒸馏水质量的42.3~59.1%,混合助剂加量为聚合单体质量的36.4~46.2%,引发剂加量为聚合单体质量的0.69~0.81%。
  4. 根据权利要求1所述的一种pH敏感性吸水树脂,其特征在于,所述聚合单体为甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的混合物,所述的甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的质量比为10~150:100。
  5. 根据权利要求4所述的一种pH敏感性吸水树脂,其特征在于,所述甲基丙烯酸二甲氨基乙酯和丙烯酰氧乙基三甲基氯化铵的质量比为50~134:100。
  6. 根据权利要求1~5任一项所述的一种pH敏感性吸水树脂,其特征在于,所述混合助剂为醋酸。
  7. 根据权利要求1~5任一项所述的一种pH敏感性吸水树脂,其特征在于,所述交联剂为N,N-亚甲基双丙烯酰胺。
  8. 根据权利要求1~5任一项所述的一种pH敏感性吸水树脂,其特征在于,所述引发剂为过硫酸铵或过硫酸钾其中的一种。
  9. 权利要求1~8任一项所述pH敏感性吸水树脂的制备方法,其特征在于,在反应容器中依次加入蒸馏水、聚合单体、混合助剂、交联剂,混合均匀,再加入引发剂,在水浴中静止反应,反应生成的产物在75℃饱和氢氧化钙溶液中浸泡24小时,然后烘干、粉碎,即得pH敏感性吸水树脂。
  10. 权利要求1~8任一项所述pH敏感性吸水树脂作为油井水泥浆中吸水膨胀成分的应用。
PCT/CN2018/088414 2017-11-10 2018-05-25 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用 WO2019091092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/495,841 US11136490B2 (en) 2017-11-10 2018-05-25 PH sensitive water-absorbent resin suitable for oil well cement slurry and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711104881.1 2017-11-10
CN201711104881.1A CN107759725B (zh) 2017-11-10 2017-11-10 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用

Publications (1)

Publication Number Publication Date
WO2019091092A1 true WO2019091092A1 (zh) 2019-05-16

Family

ID=61273442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088414 WO2019091092A1 (zh) 2017-11-10 2018-05-25 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用

Country Status (3)

Country Link
US (1) US11136490B2 (zh)
CN (1) CN107759725B (zh)
WO (1) WO2019091092A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759725B (zh) 2017-11-10 2020-02-18 中国石油大学(华东) 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用
CN112552449A (zh) * 2020-12-02 2021-03-26 中国石油化工股份有限公司 一种pH敏感性吸水膨胀树脂的制备方法及其应用
CN112898623B (zh) * 2021-02-02 2023-01-24 中国石油大学(华东) 一种温度和pH耦合响应型凝胶泡沫用液相凝胶、制备方法及凝胶泡沫、其制备方法与应用
CN114956734B (zh) * 2022-06-13 2023-09-19 东南大学 基于氢氧化物提高水泥基材料sap内养护效率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018286A (en) * 1975-11-06 1977-04-19 Phillips Petroleum Company Controlled well plugging with dilute polymer solutions
CN106281267A (zh) * 2016-07-26 2017-01-04 中国石油天然气股份有限公司 一种pH值敏凝胶堵水调剖剂
CN106800382A (zh) * 2017-01-23 2017-06-06 长安大学 一种抗冻抗开裂混凝土的制备方法
CN107759725A (zh) * 2017-11-10 2018-03-06 中国石油大学(华东) 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140265A (en) * 1959-09-01 1964-07-07 Rohm & Haas Fibrous textile and industrial fabrics
US3857824A (en) * 1972-07-05 1974-12-31 Dow Chemical Co Process for the preparation of bead polymers useful in gel permeation chromatography
WO1998001421A1 (en) 1996-07-10 1998-01-15 University Of Utah Research Foundation pH SENSITIVE HYDROGELS WITH ADJUSTABLE SWELLING KINETICS FOR COLON-SPECIFIC DELIVERY OF PEPTIDES AND PROTEINS
FR2770526B1 (fr) * 1997-11-04 2000-01-14 Atochem Elf Sa Dispersions aqueuses stables a base de polymeres hydrosolubles contenant un dispersant cationique comportant des motifs hydrophobes
AU2003294258B2 (en) 2003-01-16 2009-05-28 Cornell Research Foundation, Inc. Partially biodegradable temperature and pH sensitive hydrogel
CN100558845C (zh) * 2005-09-30 2009-11-11 中国科学院理化技术研究所 核壳自交结丙烯酰胺共聚物深部调剖堵水剂及其制备方法
CN100463930C (zh) * 2006-12-21 2009-02-25 天津大学 可再分散pH敏感型阳离子聚合物水凝胶亚微米粒及制备方法
CN100567375C (zh) 2007-06-26 2009-12-09 上海大学 pH敏感性水凝胶及其制备方法
CN101701051B (zh) 2009-10-28 2012-02-08 东北师范大学 一种pH和温度敏感性水凝胶及其制备方法
CN101759838A (zh) * 2009-12-30 2010-06-30 中国石油大学(华东) 低界面张力聚丙烯酰胺类纳米微球调驱体系的制备方法
GB201110042D0 (en) * 2011-06-14 2011-07-27 Univ Edinburgh Growth of cells
CN102311517A (zh) * 2011-09-07 2012-01-11 西南石油大学 一种具有pH值敏感特性的高吸水树脂的制备方法
CN103374099A (zh) * 2012-04-16 2013-10-30 连宗旭 二烯烃季铵盐型抗菌高吸水树脂的制法
CN104968694B (zh) * 2012-11-22 2017-11-28 凯米罗总公司 聚合物及其制备和用途
CN103242046A (zh) * 2013-05-21 2013-08-14 中国科学院上海硅酸盐研究所 一种自由基体系凝胶注模成型的方法
CN103554328A (zh) 2013-10-17 2014-02-05 滁州友林科技发展有限公司 一种吸附重金属离子的pH敏感水凝胶的制备方法及其产品
CN104558442A (zh) 2014-12-25 2015-04-29 青岛文创科技有限公司 一种壳聚糖交联聚马来酸酐高吸水树脂的合成方法
CN105566564A (zh) 2015-11-18 2016-05-11 陕西易阳科技有限公司 pH敏感性水凝胶的制备
CN105482024A (zh) * 2015-12-31 2016-04-13 扬州大学 一种高吸盐水倍率的高吸水性树脂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018286A (en) * 1975-11-06 1977-04-19 Phillips Petroleum Company Controlled well plugging with dilute polymer solutions
CN106281267A (zh) * 2016-07-26 2017-01-04 中国石油天然气股份有限公司 一种pH值敏凝胶堵水调剖剂
CN106800382A (zh) * 2017-01-23 2017-06-06 长安大学 一种抗冻抗开裂混凝土的制备方法
CN107759725A (zh) * 2017-11-10 2018-03-06 中国石油大学(华东) 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用

Also Published As

Publication number Publication date
US11136490B2 (en) 2021-10-05
CN107759725A (zh) 2018-03-06
US20200102486A1 (en) 2020-04-02
CN107759725B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2019091092A1 (zh) 一种适用于油井水泥浆的pH敏感性吸水树脂及其应用
CA2920932C (en) Cationic copolymer and use thereof in lost circulation additive
CN110358513B (zh) 一种桥接堵漏浆及其制备方法
EP2381065B1 (en) System and method for improving zonal isolation in a well
WO2009015725A1 (en) Self-repairing isolation systems
AU2011244756A1 (en) Composition for well cementing comprising a compounded elastomer swelling additive
CN111320974B (zh) 一种酸化暂堵剂及其制备方法与应用
CN110183579A (zh) 一种温敏型水凝胶堵漏剂及其制备方法与应用
Song et al. Evaluation of a novel recrosslinkable hyperbranched preformed particle gel for the conformance control of high-temperature reservoirs with fractures
CN112552449A (zh) 一种pH敏感性吸水膨胀树脂的制备方法及其应用
AU2013323700B2 (en) Triggerable lost circulation material and method of use
CN115850569A (zh) 用于水泥石微裂缝自修复的co2响应性凝胶材料的制备方法
CN115873567A (zh) 一种抗高温智能膨胀核壳堵漏剂及其制备方法和应用
CN116063612B (zh) 一种酸溶性凝胶及其制备方法
CN111518532A (zh) 一种水平井分段压裂暂堵剂及其制备方法
CN107793526B (zh) pH敏感性油水双吸树脂及制备方法与其在固井中的应用
CN106281268A (zh) 一种抗高温有机暂堵剂及制备方法
CN114539465A (zh) 一种缔合型丙烯酸盐灌浆材料及其制备方法与应用
US11486223B2 (en) Method for sealing a void in a well using smart gels
CA3196270A1 (en) Nontoxic high temperature resistant hydrogels
CN111088030A (zh) 一种压裂用自悬浮支撑剂及其制备方法
CN117304429B (zh) 一种复合型耐高温、抗盐性堵水剂及其制备方法
CN116239724A (zh) 一种耐碱pH敏感性吸水膨胀材料及其制备方法和应用
CN106046250B (zh) 钻井堵漏用可反应聚合物及其制备方法
CN117447649B (zh) 一种凝胶颗粒封堵剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876599

Country of ref document: EP

Kind code of ref document: A1