WO2019090917A1 - 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板 - Google Patents

热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板 Download PDF

Info

Publication number
WO2019090917A1
WO2019090917A1 PCT/CN2017/117499 CN2017117499W WO2019090917A1 WO 2019090917 A1 WO2019090917 A1 WO 2019090917A1 CN 2017117499 W CN2017117499 W CN 2017117499W WO 2019090917 A1 WO2019090917 A1 WO 2019090917A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
weight
parts
copper clad
Prior art date
Application number
PCT/CN2017/117499
Other languages
English (en)
French (fr)
Inventor
刘东亮
杨中强
吕吉
叶锦荣
陈文欣
许永静
陈飞
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2019090917A1 publication Critical patent/WO2019090917A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to the field of electronic product technology, and in particular to a thermosetting resin composition and a statically bendable copper clad laminate and a printed wiring board (PCB) prepared therefrom.
  • PCB printed wiring board
  • Thermosetting resins are used in a wide range of fields such as electronic materials and optical materials because of their excellent heat resistance, chemical resistance, formability, and insulation reliability.
  • epoxy resins are thermosetting resins which are generally used in various applications.
  • epoxy resins have advantages in the above characteristics, they are generally known to be relatively brittle and lack softness. As a result, the epoxy resin is deformed or damaged by application of external stress or heat stress, and its use in electronic products is greatly limited.
  • Materials exhibiting excellent flexibility include thermoplastic resins such as silicone resins, urethane resins, polyethylene, and the like, and various materials such as rubber and nylon.
  • thermoplastic resins such as silicone resins, urethane resins, polyethylene, and the like
  • various materials such as rubber and nylon.
  • the material when applied to various components, the material is required to have a good absorption stress during stressing, and is not easily cracked or delaminated.
  • the stress is released, it is easy to rebound and return to the original state, and the size of the heated process is large and the size is not stable.
  • the electronic industry such as PCB requires dimensional stability, the fine line and Inter-layer alignment is very difficult and cannot be used alone.
  • the conventional rigid-flex PCB board refers to a PCB printed circuit board comprising one or more rigid regions and one or more flexible regions, which are formed by sequentially laminating rigid PCB boards and flexible PCB boards, and The metallized holes form an electrical connection.
  • Rigid-flexible PCBs not only provide the support that rigid printed boards should have, but also the flexibility of flexible boards, which can meet the requirements of three-dimensional assembly.
  • the rigid-flex PCB processing process is complicated and difficult.
  • the rigid PCB needs to be partially hollowed out, and then bonded to the FPCB by pressing, and the non-flow adhesive must be used between the rigid PCB and the flexible FPCB.
  • Materials such as the material of the laminate window is very narrow, the pressing is very difficult, it is easy to appear bubbles and white spots and other defects; in addition, the flexible copper clad laminate (FCCL) polyimide (PI) film surface inertness, and Hard board and most bonding materials have low adhesion, while rubber and acrylic resin systems can bond well with PI film, but heat resistance and dimensional stability are not good, so product reliability has hidden dangers. And the yield is not high, resulting in high costs. Many soft and hard bonded PCBs are used in the field of static bending.
  • An object of the present invention is to provide a novel thermosetting resin composition usable for a copper clad laminate, a rigid copper clad laminate produced using the thermosetting resin composition without using a flexible sheet (FCCL), and PCB for static bending three-dimensional installation made of copper clad laminate.
  • thermosetting resin composition comprising: a thermosetting resin; a curing agent; and a toughening material, wherein the curing agent is 1 to 50 parts by weight based on 100 parts by weight of the thermosetting resin, and the toughening material is 20 to 60 parts by weight, the toughening material includes at least one of rubber, phenoxy resin, polyvinyl butyral (PVB), nylon, nanoparticles, and olefinic block copolymer.
  • the curing agent is 1 to 50 parts by weight based on 100 parts by weight of the thermosetting resin
  • the toughening material is 20 to 60 parts by weight
  • the toughening material includes at least one of rubber, phenoxy resin, polyvinyl butyral (PVB), nylon, nanoparticles, and olefinic block copolymer.
  • the thermosetting resin comprises an epoxy resin, preferably a polyfunctional epoxy resin;
  • the curing agent comprises a phenolic resin, an amine compound, an acid anhydride, an imidazole compound, a phosphonium salt, a dicyandiamide, an active ester At least one of them.
  • the epoxy equivalent of the epoxy resin to the hydroxyl equivalent ratio of the phenolic resin is from 1:1 to 0.95; or the epoxy resin to amino equivalent ratio is from 1:0.6 to 0.4.
  • the rubber comprises a core-shell structure rubber; the nanoparticles comprise SiO 2 , TiO 2 , or CaCO 3 nanoparticles; the olefinic block copolymer comprises polymethacrylic acid, butadiene And a block copolymer of styrene.
  • the thermosetting resin composition further comprises 5-50 parts by weight of a solvent to form a glue solution of the resin composition (the viscosity of the glue is 300-600 cPa ⁇ s); preferably, the solvent Including dimethylformamide (DMF), ethylene glycol methyl ether (MC), propylene glycol methyl ether (PM), methyl ethyl ketone (MEK), propylene glycol methyl ether acetate (PMA), cyclohexanone, toluene, xylene At least one.
  • a solvent Including dimethylformamide (DMF), ethylene glycol methyl ether (MC), propylene glycol methyl ether (PM), methyl ethyl ketone (MEK), propylene glycol methyl ether acetate (PMA), cyclohexanone, toluene, xylene At least one.
  • DMF dimethylformamide
  • MC ethylene glycol methyl ether
  • PM propylene glycol
  • thermosetting resin composition impregnated base cloth adhered to the copper foil, wherein the thermosetting resin composition is as described above
  • the base fabric is preferably a glass cloth or a nonwoven fabric.
  • the copper clad laminate has an elastic flexural modulus of >10 GPa, a peel strength between 60-200 ° C greater than 1.0 N/mm, and a maximum stress value greater than 400 MPa after removal of the copper foil and A strain at break value greater than 4%.
  • the copper clad laminate is obtained by hot pressing a base fabric (prepreg) impregnated or coated with a semi-cured thermosetting resin composition on a copper foil at a maximum temperature of 180-200 ° C.
  • the time is generally between 30 and 120 minutes, wherein the prepreg is obtained by heating a base cloth impregnated or coated with a thermosetting resin composition at 100 to 200 ° C, and the heating time is generally between 1 and 10 minutes.
  • a bendable printed wiring board comprising the above-mentioned copper clad laminate; preferably, the printed wiring board requires a bent line to have only a simple line and no via hole. .
  • the copper clad laminate of the invention can be plastically deformed under a certain temperature range and mechanical force, and the shape generated by the original deformation does not change when the mechanical force is released and returns to the normal temperature, and can be fixedly formed, that is, has a certain rigidity. Deformation is induced by stress-bearing without breaking, and has a deformation strain.
  • FCCL production process is simple, no need to use flexible board (FCCL), improve efficiency and save costs.
  • the PCB can be produced according to the traditional printed circuit board (PCB) manufacturing process, and the PCB for static bending and three-dimensional installation can be obtained through the stamping forming process.
  • PCB printed circuit board
  • Figure 1 shows five types of stress-strain curves.
  • Figure 2 shows a typical stress (F)-strain (L) curve of the copper clad laminate of the present invention obtained according to the tensile strength and tensile modulus test methods.
  • Fig. 3 shows the bending radius of the bent molded PCB in the embodiment 1 of the present application.
  • Fig. 4 shows the bending angle of the bent molded PCB in the embodiment 1 of the present application.
  • the stress-strain curve of a material having a hard and tough property is shown as curve 2 in FIG.
  • the material properties represented by each curve are as follows: 1. Hard and brittle; 2. Hard and tough; 3. Hard and strong; 4. Soft and tough; 5. Soft and weak.
  • the present invention provides a thermosetting resin composition, a rigid copper clad laminate produced from the thermosetting resin composition, and a printed wiring board (PCB) made of the copper clad laminate.
  • PCB printed wiring board
  • thermosetting resin composition comprising: a thermosetting resin; a curing agent; and a toughening material.
  • the thermosetting resin may include an epoxy resin, a phenol resin, a polyimide resin, a urea resin, a melamine resin, an unsaturated polyester, a polyurethane resin, etc., among which an epoxy resin is preferred.
  • the epoxy resin is a polyfunctional epoxy resin containing two or more epoxy groups (preferably three or more epoxy groups) in one molecule.
  • an epoxy resin can be used as a commercially available epoxy resin, for example, JER1003 (manufactured by Mitsubishi Chemical Corporation, methyl group is 7 to 8, difunctional, molecular weight is 1300), EXA-4816 (manufactured by Di Aisheng Co., Ltd., molecular weight) 824, most methyl, difunctional), YP50 (manufactured by Nippon Steel Sumitomo Metal Chemical Co., Ltd., molecular weight 60,000 to 80,000, most methyl, bifunctional), DER 593 (manufactured by Dow Chemical, polyfunctional epoxy resin), EPIKOTE 157 (manufactured by Resolution, polyfunctional epoxy resin).
  • the curing agent in the thermosetting resin composition may depend on the kind of the thermosetting resin.
  • the curing agent may include at least one of a phenol resin, an amine compound, an acid anhydride, an imidazole compound, a phosphonium salt, dicyandiamide, and an active ester.
  • the active ester curing agent is obtained by reacting a phenolic compound linked by an aliphatic cyclic hydrocarbon structure, a difunctional carboxylic acid aromatic compound or an acid halide, and a monohydroxy compound.
  • the amount of the difunctional carboxylic acid aromatic compound or acid halide is 1 mol
  • the amount of the phenolic compound linked by the aliphatic cyclic hydrocarbon structure is 0.05 to 0.75 mol
  • the amount of the monohydroxy compound is 0.25 to 0.95 mol.
  • the active ester curing agent may comprise an active ester of the formula:
  • X is a benzene or naphthalene ring
  • j is 0 or 1
  • k is 0 or 1
  • n represents an average repeating unit of 0.25 to 1.25.
  • the curing agent is usually used in an amount of 1 to 50 parts by weight, based on 100 parts by weight of the thermosetting resin, and may be, for example, 1 to 40, or 1 to 30 parts by weight.
  • the amount of the curing agent can be controlled such that the epoxy equivalent of the epoxy resin and the hydroxyl equivalent ratio of the phenolic resin are 1:1 to 0.95; or the epoxy resin to amino equivalent ratio is 1:0.6 to 0.4. .
  • the toughening material comprises at least one of rubber, phenoxy resin, polyvinyl butyral (PVB), nylon, nanoparticles, olefinic block copolymers.
  • These toughening materials are selected according to compatibility with a thermosetting resin such as an epoxy resin, a toughening effect (to achieve a corresponding stress strain requirement value (see subsequent description)), and the like.
  • the rubber is preferably a rubber having a core-shell structure, such as a methyl methacrylate-butadiene-styrene (MBS) core-shell copolymer resin, a rubber-epoxy core-shell resin, etc., which is representatively commercially available.
  • the nanoparticles include SiO 2 , TiO 2 , or CaCO 3 nanoparticles, etc., and have a particle diameter of generally 10 to 500 nm.
  • the olefinic block copolymers are block copolymers formed by copolymerization of different kinds of olefins, such as block copolymers of polymethacrylic acid, butadiene and styrene.
  • the toughening materials may be used singly or in combination of two or more.
  • the nanoparticles can be combined with another toughening material (eg, core shell rubber, phenoxy resin, PVB, nylon, olefinic block copolymer, or mixtures thereof) in a weight ratio of 1:10 to 2:1. use.
  • another toughening material eg, core shell rubber, phenoxy resin, PVB, nylon, olefinic block copolymer, or mixtures thereof
  • the toughening material is generally used in an amount of usually 20 to 60 parts by weight, for example, 20 to 50 parts by weight, or 30 to 60 parts by weight, per 100 parts by weight of the thermosetting resin.
  • the thermosetting resin composition may also contain an amount of solvent to dispense the above-described group into a glue.
  • the solvent is used in an amount of usually 5 to 50 parts by weight, for example, 10 to 50, 20 to 50 parts by weight, or the like, relative to 100 parts by weight of the thermosetting resin to form a gum having a viscosity of 300 to 600 cPa ⁇ s.
  • Solvents may include dimethylformamide (DMF), ethylene glycol methyl ether (MC), propylene glycol methyl ether (PM), propylene glycol methyl ether acetate (PMA), cyclohexanone, methyl ethyl ketone (MEK), toluene, xylene At least one of them.
  • DMF dimethylformamide
  • MC ethylene glycol methyl ether
  • PM propylene glycol methyl ether
  • PMA propylene glycol methyl ether acetate
  • MEK methyl ethyl ketone
  • the thermosetting resin composition may further contain a filler or an auxiliary agent or the like, such as a flame retardant, a leveling agent, a coloring agent, a dispersing agent, a coupling agent, etc., within a range not detracting from the effects of the present invention.
  • a filler or an auxiliary agent or the like such as a flame retardant, a leveling agent, a coloring agent, a dispersing agent, a coupling agent, etc.
  • the flame retardant may be an organic flame retardant such as one or more of tetrabromobisphenol A, DOPO, and phosphate.
  • Another aspect of the present invention provides a bendable copper clad laminate comprising a copper foil and a base fabric adhered to the copper foil impregnated with the above thermosetting resin composition.
  • the base fabric comprises a fiberglass cloth or a nonwoven fabric.
  • Glass fiber cloth can be selected from various specifications such as 7628, 2116, 1080, 106, 1037, 1027, and 1017.
  • the copper foil may be selected from different specifications such as 1OZ, 1/2OZ, 1/3OZ, and the like.
  • the copper clad has an elastic flexural modulus of >10 GPa, a peel strength between 60-200 ° C greater than 1.0 N/mm, and a maximum stress value greater than 400 MPa and greater than 4 after removal of the copper foil. % fracture strain value.
  • test device / or material
  • the size of the sample is 250mm ⁇ 25mm, and the thickness of the sample is recommended to be 0.4mm.
  • the edge of the sample should be free of cracks, delamination and other defects, otherwise it will be sanded with sandpaper or equivalent tools (the edges are not rounded).
  • the dispersion coefficient is less than 5%, ten samples per batch, five in the vertical direction and five in the lateral direction (cut on the whole sample plate or small plate).
  • the dispersion coefficient is greater than 5%, the number of samples in each direction shall not be less than 10, and 10 effective samples are guaranteed.
  • the width is accurate to 0.02mm
  • the thickness is accurate to 0.002mm.
  • the loading speed is 12.5 mm/min.
  • the copper clad laminate of the present invention can be made in the following manner.
  • the base fabric is impregnated or coated with the thermosetting resin composition in the form of a glue of the present invention, and then heated at 100 to 200 ° C for 1-10 minutes (for example, 3 to 10 minutes) to obtain a prepreg (semi-cured B-stage state).
  • the resin content of the prepreg can be controlled between 40 and 70% by weight, and the resin flow of the prepreg can be controlled between 10 and 30%.
  • the cut prepreg is laminated on a copper foil, hot pressed at a temperature increase rate of 1-3 ° C / min, pressure up to 300-500 PSI, and maintained at a maximum temperature of 180-200 ° C for 30-120 minutes (eg 60- 120 minutes), get a copper clad laminate.
  • the copper clad laminate of the present invention can be stamped into a die.
  • the temperature of the stamping is selected within a range of ⁇ 30 ° C of the Tg value of the copper clad laminate (thermosetting resin composition).
  • PCB Printed circuit board
  • Yet another aspect of the present invention provides a bendable PCB comprising the copper clad laminate described above.
  • the area in which the PCB needs to be bent is a simple line with no vias.
  • the PCB is stamped.
  • the PCB is stamped to form the desired steps for three dimensional mounting.
  • the stamping of the PCB includes the following steps: (1) heating the PCB to 60-200 ° C; (2) heating the PCB to a stable temperature, placing it in a die press, and pressing at 100-20000 N. For more than 2 seconds, then open the mold and take out the PCB to form a PCB with a curved structure.
  • the mold may be heated or not heated as appropriate.
  • the mold temperature may be normal temperature (20 to 35 ° C) or heated to 100 ° C or lower.
  • Glue configuration 5 parts by weight of rubber (Japan Kouyuan M-521), 10 parts by weight of core-shell rubber (Japan Kaneka MX-395) and 20 parts by weight of nano-SiO 2 (Evonik Nanoopol A710) are selected.
  • As a toughening material it is mixed with 100 parts by weight of a polyfunctional epoxy resin (DOW Chemical DER 593 resin), and 10 parts by weight of diaminodiphenyl sulfone (DDS) and 0.1 part by weight of dimethylimidazole (2-MI) are added. ), and an appropriate amount of DMF organic solvent, configured as a glue, controlling the viscosity of the glue at 300-600 cPaS.
  • DOW Chemical DER 593 resin polyfunctional epoxy resin
  • DDS diaminodiphenyl sulfone
  • 2-MI dimethylimidazole
  • prepreg The above glue is first immersed in 2116 glass fiber cloth, and then placed in an oven and baked at 100-200 ° C for 3-10 minutes to bring the above resin composition into a semi-cured B-stage state.
  • CCL production use 1OZ copper foil, combined with the above prepreg, put into the laminator, heating rate 1-3 ° C / min, plate pressure up to 300-500 PSI, material maximum temperature 180-200 ° C to maintain 60-120 minute.
  • PCB production The above-mentioned copper-clad board is produced according to the traditional PCB manufacturing process, and the PCB board needs to be bent and formed in a part, and only a simple line is used.
  • PCB bending molding (1) first heat the above PCB board to 60 ° C; (2) after heating the PCB temperature is stable, put it into the die machine, press 10000N pressure for 5 seconds, then open the mold, take out the PCB board.
  • the bending radius and bending angle of the obtained PCB are shown in FIGS. 3 and 4.
  • the above PCB test is characterized by appearance, short circuit or open circuit, thermal shock, reflow soldering, ion migration resistance (CAF), etc., and the stress strain value is determined according to the tensile strength and tensile modulus test methods described in the specification.
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 30 parts by weight of phenolic resin (53BH35 from HEXION) was used as the toughening material, mixed with 100 parts by weight of polyfunctional epoxy resin (Resolution's EPIKOTE 157 resin), and 2.5 parts by weight of double was added. Cyanamide (DICY) and 0.1 parts by weight of 2-methylimidazole, and an appropriate amount of DMF organic solvent, are configured as a glue to control the viscosity of the glue at 300-600 cPaS.
  • phenolic resin 53BH35 from HEXION
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 30 parts by weight of PVB (US Solutia B90), 6 parts by weight of nano-SiO 2 (Evonik Nanoopolo A710) and 10 parts by weight of block copolymer (Arkoma Nanostrength) M52N) as a toughening material, mixed with 100 parts by weight of a polyfunctional epoxy resin (DOW Chemical Co., Ltd. DER593 resin) and 20-30 parts by weight of a phenol resin, and added 1 part by weight of dicyandiamide and 0.1 part by weight
  • the 2-MI, as well as the right amount of MC and PM organic solvents, are configured as a glue to control the viscosity of the glue between 300 and 600 cPaS.
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 25 parts by weight of block copolymer (Arkema Nanostrength) M52N) and 8 parts by weight of nano-SiO 2 (Evonik A710) as a toughening material, mixed with 100 parts by weight of a multifunctional epoxy resin, and added with 8-10 parts by weight of DDS curing agent and 0.1 parts by weight of 2-
  • the MI accelerator and the appropriate amount of DMF organic solvent are configured as a glue to control the viscosity of the glue between 300-600 cPaS.
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 20 parts by weight of phenolic resin (Nippon Steel Chemical ERF-001) and 8 parts by weight of nano-SiO 2 (Evonik Nanoopol A710) as the toughening material, and 100 parts by weight of multifunctional epoxy resin (DOW Chemical DER 593 resin) is mixed, and phenolic resin is added in an amount of 1:1 by weight of epoxy equivalent and hydroxyl equivalent, and an appropriate amount of MEK organic solvent is added to prepare a glue to control the viscosity of the glue to be between 300 and 600 cPaS.
  • Glue configuration 100 parts by weight of polyfunctional epoxy resin (DOW Chemical DER593 resin), 2-3 parts by weight of dicyandiamide and 0.1 parts by weight of 2-MI, and appropriate amount of DMF organic solvent are used to prepare the glue. Liquid, control glue viscosity between 300-600 cPaS.
  • a copper clad laminate and a PCB were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 5-10 parts by weight of nitrile rubber and 100 parts by weight of polyfunctional epoxy resin are mixed, 3 parts by weight of dicyandiamide and 0.1 parts by weight of 2-MI, and an appropriate amount of DMF organic solvent are added.
  • the glue is glued to control the viscosity of the glue between 300-600 cPaS.
  • test results are compared as follows:
  • Heating rate 3 ° C / sec Max (recommended)
  • the maximum temperature is maintained at 260 ° C for more than 20 sec, and at 25-260 ° C for 3-5 minutes.
  • T288 test method (refer to the substrate test method for printed boards - method 2.4.21 delamination time (TMA method))
  • the temperature is raised to 288 ° C, the heating rate is 10 ° C / min, and the temperature is raised to 288 ° C and then remains unchanged.
  • the temperature starts from 288 ° C until the sample stratifies at this temperature. So far, the time at which the sample remained undelayed at 288 ° C was recorded, which is the delamination time of T288.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本发明提供一种热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板。本发明的热固性树脂组合物包含:热固性树脂;固化剂;和增韧材料,其中,以热固性树脂为100重量份计,固化剂为1-50重量份,增韧材料为20-60重量份,所述增韧材料包括橡胶、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子、烯属嵌段共聚物中的至少一种。用本发明热固性树脂组合物制作的覆铜板的弹性弯曲模量>10GPa,在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。

Description

热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板 技术领域
本发明涉及电子产品技术领域,特别涉及一种热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板(PCB)。
背景技术
热固性树脂,因为其具有优异的耐热性、耐药品性、成形性、绝缘可靠性等,被应用于电子材料、光学材料等广泛的领域。尤其,环氧树脂是热固性树脂,其通常被应用于各种用途。虽然环氧树脂在上述特性上具有优势,但已知其一般较脆而缺乏柔软性。其结果,环氧树脂被施加外部应力或热应激时会发生变形或损坏,在电子产品中使用受到很大的限制。
呈现优良柔软性的材料包括有机硅树脂、聚氨酯树脂、聚乙烯等的热塑性树脂、以及各种橡胶、尼龙等材料。对于这些树脂材料的柔软性而言,当应用于各种部件时,受力过程中要求材料具有较好地吸收应力,不易开裂或分层。但是此类材料受力成型后,若释放应力后又容易回弹而恢复原状,并且,受热过程尺寸涨缩大,尺寸稳定性不良,在PCB等电子行业要求尺寸稳定的情况下,细线和层间对位难度非常大,因而无法单独使用。
随着电子产品向轻薄短小化和多功能集成化方向发展,以及电池续航能力日显不足,为此,PCB和电子元器件的三维立体安装的需求越来越多。目前,为了实现三维立体安装,大多采用刚挠结合PCB技术路线。传统刚挠结合PCB板是指一块PCB印制电路板上包含一个或多个刚性区和一个或多个挠性区,由刚性PCB板和挠性PCB板有序地层压在一起组成,并以金属化孔形成电气连接。刚挠结合PCB既有可以提供刚性印制板应有的支撑作用,又有挠性板的弯曲性,能够满足三维组装的要求。但是,刚挠结合PCB加工工艺复杂,难度大,譬如:刚性PCB需要局部镂空,再与FPCB通过压合粘结,同时局部镂空的刚性PCB与挠性FPCB之间必须使用不流胶的粘结材料,而此类材料层压窗口很窄,压合难度很高,很容易出现气泡和白斑等缺陷;此外,挠性覆铜板(FCCL)的聚酰亚胺(PI)膜表面惰性大,与硬板及大多数粘结材料的粘结力不高,而橡胶和丙烯酸类的树脂体系可以与PI膜粘结良好,但耐热性及尺寸稳 定性等性能不佳,因此产品可靠性存在隐患,而且成品率不高,导致成本很高。很多软硬结合PCB是用于静态弯折领域,所谓静态弯折,即是说安装时只需弯折一次,或者一次弯折成型后,该弯折区域无需摆动,即工作时是静止的,不像打印机激光头那样来回摆动的;但是,即使就是这些静态弯折领域中,普通的刚性PCB也无法满足弯折成型及使用要求。
因此,很多静态弯折安装PCB等电子产品领域,对材料要求具有一次冲击成型的加工能力,在冲击成型过程中能较好的承受冲击应力,不开裂、不分层,而且冲出各种立体弯曲或凹凸形状固定,便于后续PCB安装使用。
发明内容
本发明的目的在于提供一种新型的可用于覆铜板的热固性树脂组合物,用所述热固性树脂组合物制作的、无需使用挠性板(FCCL)的刚而硬的覆铜板,以及由所述覆铜板制作的可静态弯折三维立体安装用的PCB。
本发明的目的可以通过以下技术方案实现。
本发明的一个方面提供一种热固性树脂组合物,包含:热固性树脂;固化剂;和增韧材料,其中,以热固性树脂为100重量份计,固化剂为1-50重量份,增韧材料为20-60重量份,所述增韧材料包括橡胶、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子、烯属嵌段共聚物中的至少一种。
在某些实施方式中,所述热固性树脂包括环氧树脂,优选多官能环氧树脂;所述固化剂包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种。
在某些实施方式中,环氧树脂的环氧当量与酚醛树脂的羟基当量比为1:1~0.95;或者环氧树脂与氨基当量比为1:0.6~0.4。
在某些实施方式中,所述橡胶包括核壳结构的橡胶;所述纳米粒子包括SiO 2,TiO 2,或CaCO 3纳米粒子;所述烯属嵌段共聚物包括聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物。
在某些实施方式中,所述热固性树脂组合物还包含5-50重量份的溶剂,,以形成树脂组合物的胶液(胶液粘度为300-600cPa·s);优选地,所述溶剂包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),甲乙酮(MEK),丙二醇甲醚醋酸酯(PMA),环己酮,甲苯,二甲苯中的至少一种。
本发明的另一个方面提供一种弯折成型的覆铜板,所述覆铜板包括铜箔和粘附在所述铜箔上的热固性树脂组合物浸渍基布,其中所述热固性树脂组合物为上述的热固性树脂组合物,基布优选为玻璃纤维布或无纺布。
在某些实施方式中,所述覆铜板的弹性弯曲模量>10GPa,在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。
在某些实施方式中,所述覆铜板通过将半固化的热固性树脂组合物浸渍或涂布的基布(半固化片)在180-200℃的最高温度热压在铜箔上而获得,热压固化时间一般在30-120分钟之间,其中所述半固化片由热固性树脂组合物浸渍或涂布的基布在100-200℃加热而得,加热时间一般在1-10分钟之间。
本发明的再一个方面提供一种可弯曲成型的印刷线路板,所述印刷线路板包括上述的覆铜板;优选地,所述印刷线路板需要弯折成型的区域只有简单线路,没有导通孔。
在某些实施方式中,所述印刷线路板是冲压成型的。
本发明可以具有以下优点中的至少一个:
1、本发明的覆铜板在一定的温度范围内及机械力作用下可以塑性变形,当释放机械力和恢复到常温时原形变产生的形状不会改变,能固定成型,即,具有一定的刚性以承受应力作用产生形变而不断裂,且具有形变应变量。
2、覆铜板生产工艺流程简单,无需使用挠性板(FCCL),提高效率,节约成本。
3、采用本发明的覆铜板,可以按照传统印刷线路板(PCB)制作工艺生产PCB,通过冲压成型处理即可获得静态弯折、三维立体安装用的PCB。
附图说明
图1显示了五种类型的应力-应变曲线。
图2显示了按照拉伸强度及拉伸模量测试方法获得的本发明覆铜板的一个典型的应力(F)-应变(L)曲线。
图3显示了本申请实施例1中弯折成型的PCB的弯曲半径。
图4显示了本申请实施例1中弯折成型的PCB的弯曲角度。
具体实施方式
本发明出人意料地发现:用含有增韧材料的热固性树脂组合物浸渍玻璃纤维布等基布制成半固化片,将这种半固化片与铜箔层压复合,完全固化后即可获得具有刚而韧(或硬而韧)特性的覆铜板。
具有硬而韧特性的材料的应力-应变曲线如图1中曲线2所示。在图1中,各曲线代表的材料特性如下:1、硬而脆;2、硬而韧;3、硬而强;4、软而韧;5、软而弱。
基于上述发现,本发明提供一种热固性树脂组合物,用所述热固性树脂组合物制作的刚而硬的覆铜板,以及由所述覆铜板制作的印刷线路板(PCB)。下面详细描述本发明的各个方面。
热固性树脂组合物
本发明的一个方面提供一种热固性树脂组合物,包含:热固性树脂;固化剂;和增韧材料。
在某些实施方案中,热固性树脂可以包括环氧树脂、酚醛树脂、聚酰亚胺树脂、脲醛树脂、三聚氰胺树脂、不饱和聚酯、聚氨酯树脂等,其中,优选环氧树脂。
环氧树脂的具体例子可以包括:双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、芳烷基环氧树脂、苯酚酚醛清漆型环氧树脂(phenol novolac type epoxy resin)、烷基酚醛清漆型环氧树脂(alkylphenol novolac type epoxy resin)、双酚型环氧树脂、萘型环氧树脂、双环戊二烯型环氧树脂、酚化合物与具有酚羟基的芳香醛缩合而成的环氧化物、异氰尿酸三缩水甘油酯、脂环式环氧树脂等。根据情况,可以将这些环氧树脂单独或者组合两种以上而使用。
优选地,环氧树脂是在一个分子中包含两个以上环氧基(优选三个以上环氧基)的多官能环氧树脂。这种环氧树脂可以使用市场销售的环氧树脂,例如,JER1003(三菱化学公司制造,甲基为7至8个,双官能,分子量为1300)、EXA-4816(迪爱生公司制造,分子量为824,多数甲基,双官能)、YP50(新日铁住友金属化学公司制造,分子量为60000至80000,多数甲基,双官能),DER593(陶氏化学制造,多官能环氧树脂),EPIKOTE 157(Resolution公司制造,多官能环氧树脂)等。
在某些实施方案中,热固性树脂组合物中的固化剂可以根据热固性树脂的种类而定。对于环氧树脂而言,固化剂可以包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种。
所述活性酯固化剂是由一种通过脂肪环烃结构连接的酚类化合物、二官能度羧酸芳香族化合物或酸性卤化物及一种单羟基化合物反应而得。所述二官能度羧酸芳香族化合物或酸性卤化物用量为1mol,通过脂肪环烃结构连接的酚类化合物用量为0.05~0.75mol,单羟基化合物用量为0.25~0.95mol。活性酯固化剂可包括下述结构式的活性酯:
Figure PCTCN2017117499-appb-000001
其中式中X为苯环或萘环,j为0或1,k为0或1,n表示平均重复单元为0.25-1.25。
在某些实施方案中,固化剂优选酚醛树脂、胺系化合物、咪唑系化合物和双氰胺。可以将这些固化剂单独或者组合两种以上而使用。具体的固化剂可以包括:酚醛树脂(例如苯酚酚醛清漆树脂,甲酚酚醛清漆树脂等);二氨基二苯砜(DDS);双氰胺(DICY);二甲基咪唑(2-MI)等。
相对于100重量份的热固性树脂,固化剂的用量通常为1-50重量份,例如可以为1-40,或者1-30重量份。对于环氧树脂而言,可以控制固化剂的用量,使得环氧树脂的环氧当量与酚醛树脂的羟基当量比为1:1~0.95;或者环氧树脂与氨基当量比为1:0.6~0.4。
在某些实施方案中,增韧材料包括橡胶、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子、烯属嵌段共聚物中的至少一种。这些增韧材料是根据与环氧树脂等热固性树脂的相容性、增韧效果(以达到相应的应力应变要求值(见后续描述))等而选择的。其中,橡胶优选为具有核壳结构的橡胶,例如甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)核壳型共聚树脂,橡胶-环氧型核壳树脂等,其代表性的市售包括日本钟源公司的M-521,MX-395等。纳米粒子包括SiO 2,TiO 2,或CaCO 3纳米粒子等,其粒径一般为10-500nm。烯属嵌段共聚物是不同种类的烯烃共聚形成的嵌段共聚物,例如聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物。
增韧材料可以单独或者组合两种以上使用。例如,可以将纳米粒子与另一增韧材料(例如核壳橡胶,酚氧树脂,PVB,尼龙,烯属嵌段共聚物,或它们的混合物)以1:10至2:1的重量比组合使用。
为达到良好的增韧效果,相对于100重量份的热固性树脂,增韧材料总的用量一般为20-60重量份,例如,可以为20-50重量份,或者30-60重量份。
在某些实施方案中,热固性树脂组合物还可以包含一定量的溶剂,以将上述组分配制成胶液。相对于100重量份的热固性树脂,溶剂的用量一般为5-50重量份,例如10-50,20-50重量份等,以形成粘度为300-600cPa·s的胶液。
溶剂可以包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),丙二醇甲醚醋酸酯(PMA),环己酮,甲乙酮(MEK),甲苯,二甲苯中的至少一种。
在某些实施方案中,在不损失本发明的效果的范围内,热固性树脂组合物还可以包含填料或助剂等,例如阻燃剂,均化剂,着色剂,分散剂,偶联剂,发泡剂等。其中阻燃剂可以为有机阻燃剂,例如四溴双酚A,DOPO,磷酸酯中的一种或多种。
覆铜板
本发明的另一个方面提供一种可弯折成型的覆铜板,所述覆铜板包括铜箔和粘附在所述铜箔上的被上述热固性树脂组合物浸渍的基布。
在某些实施方案中,基布包括玻璃纤维布或无纺布。玻璃纤维布可以选用7628、2116、1080、106、1037、1027、1017等各种规格。
在某些实施方案中,铜箔可以选用1OZ、1/2OZ、1/3OZ等不同规格。
在某些实施方案中,覆铜板的弹性弯曲模量>10GPa,在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。
在本发明中,上述应力应变值通过以下拉伸强度及拉伸模量测试方法测定。
材料拉伸强度及拉伸模量测试方法:
A、试验装置/或材料
-材料试验机
一台ISO3384标准的拉伸压缩试验机,该装置拉伸夹具能以稳定的速率运行。负载测量系统的误差不超过±1%。
-能够完全除去覆金属箔的蚀刻系统。
-游标卡尺(精确至0.02mm)或千分尺(精确至0.002mm)
-试样
(1)尺寸和形状
试样的尺寸250mm×25mm,试样厚度推荐使用0.4mm,试样边缘应无裂纹、分层等缺陷,否则用砂纸或等效工具打磨(边缘不形成圆角)。
(2)数量和抽样
当离散系数小于5%时,每批用十块试样,纵向五块,横向五块(在整块样品板或小板上切取)。当离散系数大于5%时,每个方向的试样数量不能少于10个,并保证有10个有效试样。
(3)用蚀刻方法蚀刻除去所有金属覆盖层。
B、拉伸测试程序
-测量试样尺寸
测量并记录试样宽度及厚度,宽度精确至0.02mm,厚度精确至0.002mm。
-测量
(1)夹持试样,使试样的中心线与上下夹具的对准中心线一致。
(2)调节上下夹具间距,使其125mm±0.5mm。
(3)加载速度为12.5mm/min。
(4)设置拉伸弹性模量计算时,取应变的0.05%到0.25%之间部分。
(5)进行测试,绘制应力-应变曲线。
(6)有明显内部缺陷的试样,应予作废。
(7)试样破坏在夹具内或试样断裂处离夹紧处的距离小于10mm,应予作废。
C、计算
-按下式计算每个试样的拉伸强度
Figure PCTCN2017117499-appb-000002
式中:
τ T:拉伸强度,MPa
F:破坏载荷或最大载荷,N
b:试样宽度,mm
d:试样厚度,mm
-按下式计算每个试样的拉伸弹性模量
Figure PCTCN2017117499-appb-000003
式中:
E t:拉伸弹性模量,MPa
σ″:应变ε″=0.25%ε时测得的拉伸应力值,MPa
σ':应变ε'=0.05%ε时测得的拉伸应力值,MPa
-计算平均拉伸强度及拉伸弹性模量,以MPa为单位。
图2显示了按照上述拉伸强度及拉伸模量测试方法获得的本发明覆铜板的一个典型的应力-应变曲线。如图2所示,本发明的覆铜板(在蚀刻除去金属覆盖层后)具有大于400Mpa的最大应力值和大于4%的断裂应变值。
在某些实施方案中,本发明的覆铜板可以按照以下方法制作。
-制作半固化片-
用本发明的胶水形式的热固性树脂组合物浸渍或涂布基布,然后在100-200℃加热1-10分钟(例如3-10分钟),得到半固化片(半固化的B阶状态)。半固化片的树脂含量可以控制在40-70重量%之间,半固化片的树脂流动度可以控制在10-30%之间。
-制作覆铜板-
将裁切好的半固化片层压在铜箔上,以1-3℃/min的升温速率进行热压,压力最大300-500PSI,并且在最高温度180-200℃保持30-120分钟(例如60-120分钟),获得覆铜板。
在某些实施方案中,可以将本发明的覆铜板在冲模中冲压成型。优选地,冲压的温度选取在覆铜板(热固性树脂组合物)的Tg值的±30℃范围内。
印刷线路板(PCB)
本发明的再一个方面提供一种可弯曲成型的PCB,所述PCB包括上述的覆铜板。
在某些实施方案中,PCB需要弯折成型的区域只有简单线路,没有导通孔。
在某些实施方案中,所述PCB是冲压成型的。
在某些实施方案中,将PCB冲压成型,生成所需的台阶,以适用于三维立体安装。
在某些实施方案中,PCB的冲压成型包括以下步骤:(1)先将PCB板加热至60-200℃;(2)加热PCB温度稳定后,放进冲模机中,以100-20000N压力压合2秒以上,然后再开模,取出PCB板,即可形成带曲面结构的PCB。其中,模具可以适当进行加热或不加热处理,例如,模具温度可以为常温(20~35℃),或者加热至100℃以下。
以下结合具体实施例,对本发明的技术方案做进一步详细说明。这些实施例只是示例性的,而不用于限制本发明的范围。
实施例1:
1、胶液配置:选用5重量份的橡胶(日本钟渊M-521)、10重量份的核壳橡胶(日本钟渊MX-395)和20重量份的纳米SiO 2(赢创Nanopol A710)作为增韧材料,与100重量份的多官能环氧树脂(DOW化学DER593树脂)混合,并添加10重量份的二氨基二苯砜(DDS)和0.1重量份的二甲基咪唑(2-MI),以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300~600cPaS。
2、半固化片制作:先将上述胶水浸渍2116玻璃纤维布上胶,然后放进烘箱在100-200℃加热烘烤3-10分钟,使上述树脂组合物达到半固化B阶状态。
3、覆铜板制作:选用1OZ铜箔,与上述半固化片组合好,放进层压机,升温速率1-3℃/min,压板压力最大300-500PSI,材料最高温度180-200℃保持60-120分钟。
4、PCB制作:将上述覆铜板按传统PCB制作工艺生产PCB板,PCB板局部需要弯折成型的区域,只有简单线路。
5、PCB弯折成型:(1)先将上述PCB板加热至60℃;(2)加热PCB温度稳定后,放进冲模机中,以10000N压力压合5秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度如图3、图4所示。
6、将上述PCB测试表观、短路或断路、热冲击、回流焊、耐离子迁移(CAF)等相关特性,并且按照说明书中描述的拉伸强度及拉伸模量测试方法测定应力应变值。
实施例2:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用30重量份的酚氧树脂(HEXION公司的53BH35)作为增韧材料,与100重量份的多官能环氧树脂(Resolution公司的EPIKOTE 157树脂)混合,并添加2.5重量份的双氰胺(DICY)和0.1重量份的2-甲基咪唑,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300~600cPaS。
实施例3:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用30重量份的PVB(美国首诺B90)、6重量份的纳米SiO 2(赢创Nanopolo A710)和10重量份的嵌段共聚物(阿科马Nanostrength
Figure PCTCN2017117499-appb-000004
M52N)作为增韧材料,与100重量份的多官能环氧树脂(DOW化学公司的DER593树脂)和20-30重量份的酚醛树脂混合,并添加1重量份的双氰胺胺和0.1重量份的2-MI,以及适量MC和PM有机溶剂,配置成胶液,控制胶水粘度在300~600cPaS之间。
实施例4:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用20重量份的尼龙(美国杜邦ST801A)和10重量份的纳米SiO2(赢创Nanopol A710)作为增韧材料,与100重量份的多官能环氧树脂(DOW化学DER593树脂)混合,并按环氧当量和羟基当量1:1添加酚醛树脂,以及适量MEK有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
实施例5:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用25重量份的嵌段共聚物(阿科玛Nanostrength
Figure PCTCN2017117499-appb-000005
M52N)和8重量份的纳米SiO 2(赢创A710)作为增韧材料,与100重量份的多官能环氧树脂混合,并添加8-10重量份的DDS固化剂和0.1重量份的2-MI促进剂,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
实施例6:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用20重量份的酚氧树脂(新日铁化学ERF-001)和8重量份的纳米SiO 2(赢创Nanopol A710)作为增韧材料,与100重量份的多官能环氧树脂(DOW化学DER593树脂)混合,并按环氧当量和羟基当量1:1添加酚醛树脂,以及适量MEK有机溶剂,配置成胶液,控制胶水粘度为300~600cPaS之间。
比较例1:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用100重量份的多官能环氧树脂(DOW化学DER593树脂),添加2-3重量份的双氰胺胺和0.1重量份的2-MI,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
比较例2:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB,并测试相应的性能。
胶液配置:选用5-10重量份的丁晴橡胶和100重量份的多官能环氧树脂混合,添加3重量份的双氰胺和0.1重量份的2-MI,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
测试结果对比如下表:
Figure PCTCN2017117499-appb-000006
回流焊测试方法(参考JEDEC Standard 22-A113D)
(1)升温速率:3℃/sec Max(推荐)
(2)150-260℃维持150sec以上。
(3)最高温度260℃维持20sec以上,25-260℃维持3-5分钟。
T288测试方法(参考印制板用基材试验方法-方法2.4.24.1分层时间(TMA法))
从不高于35℃的起始温度开始升温至288℃,升温速率10℃/分钟,升温至288℃温度后维持不变,从温度达到288℃时开始计时,直至样品在该温度出现分层为止,记录样品在288℃温度下维持不分层的时间,即为T288的分层时间。
其它性能测试可以参考IPC相关测试方法。
以上,仅为本发明的较佳实施例,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思做出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的范围。
本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领 域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种热固性树脂组合物,其特征在于,所述热固性树脂组合物包含:热固性树脂;固化剂;和增韧材料,其中,以热固性树脂为100重量份计,固化剂为1~50重量份,增韧材料为20~60重量份,所述增韧材料包括橡胶、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子、烯属嵌段共聚物中的至少一种。
  2. 根据权利要求1所述的热固性树脂组合物,其特征在于,所述热固性树脂包括环氧树脂,优选多官能环氧树脂;所述固化剂包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种。
  3. 根据权利要求2所述的热固性树脂组合物,其特征在于,环氧树脂的环氧当量与酚醛树脂的羟基当量比为1:1~0.95;或者环氧树脂与氨基当量比为1:0.6~0.4。
  4. 根据权利要求1所述的热固性树脂组合物,其特征在于,所述橡胶包括核壳结构的橡胶;所述纳米粒子包括SiO 2,TiO 2,或CaCO 3纳米粒子;所述烯属嵌段共聚物包括聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物。
  5. 根据权利要求1所述的热固性树脂组合物,其特征在于,所述热固性树脂组合物还包含5~50重量份的溶剂,以形成树脂组合物的胶液(胶液粘度为300~600 cPa·s);优选地,所述溶剂包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),甲乙酮(MEK),丙二醇甲醚醋酸酯(PMA),环己酮,甲苯,二甲苯中的至少一种。
  6. 一种可弯折成型的覆铜板,其特征在于,所述覆铜板包括铜箔和粘附在所述铜箔上的热固性树脂组合物浸渍基布,其中所述热固性树脂组合物是根据权利要求1~5中任一项所述的热固性树脂组合物,基布优选为玻璃纤维布或无纺布。
  7. 根据权利要求6所述的覆铜板,其特征在于,所述覆铜板的弹性弯曲模量>10GPa,在60~200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。
  8. 根据权利要求6所述的覆铜板,其特征在于,所述覆铜板通过将半固化的热固性树脂组合物浸渍或涂布的基布(半固化片)在180~200℃的最高温度热压在铜箔上而获得,热压固化时间为30~120分钟,其中所述半固化片由热固 性树脂组合物浸渍或涂布的基布在100-200℃加热而得,加热时间为1~10分钟。
  9. 一种可弯曲成型的印刷线路板,其特征在于,所述印刷线路板包括权利要求6~8中任一项所述的覆铜板;优选地,所述印刷线路板需要弯折成型的区域只有简单线路,没有导通孔。
  10. 根据权利要求9所述的印刷线路板,其特征在于,所述印刷线路板是冲压成型的。
PCT/CN2017/117499 2017-11-08 2017-12-20 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板 WO2019090917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711092331.2A CN109749360B (zh) 2017-11-08 2017-11-08 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板
CN201711092331.2 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019090917A1 true WO2019090917A1 (zh) 2019-05-16

Family

ID=66402047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117499 WO2019090917A1 (zh) 2017-11-08 2017-12-20 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板

Country Status (3)

Country Link
CN (1) CN109749360B (zh)
TW (1) TWI772369B (zh)
WO (1) WO2019090917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216094A (zh) * 2021-09-10 2022-10-21 金安国纪科技(杭州)有限公司 一种高频低介质损耗覆铜板用树脂组合物及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589195B2 (en) 2020-08-20 2023-02-21 Ip Co, Llc Asset tracking systems and methods
CN112662132B (zh) * 2020-12-22 2023-08-22 广东盈骅新材料科技有限公司 改性树脂组合物及其制备方法与应用
CN114539721B (zh) * 2022-01-05 2023-07-04 广东盈骅新材料科技有限公司 一种扩散板用环氧树脂组合物、半固化片及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316564A (ja) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd 絶縁樹脂組成物、銅箔付き絶縁材及び銅張り積層板
CN1489883A (zh) * 2001-11-26 2004-04-14 ���������kҵ��ʽ���� 附有绝缘层的铜箔及其制造方法以及使用该附有绝缘层的铜箔的印刷电路板
CN202388871U (zh) * 2011-12-30 2012-08-22 广东生益科技股份有限公司 覆铜板
CN102702683A (zh) * 2012-06-04 2012-10-03 中国航空工业集团公司北京航空材料研究院 一种预浸料用环氧树脂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201102672D0 (en) * 2011-02-15 2011-03-30 Zephyros Inc Improved structural adhesives
CN102311614B (zh) * 2011-04-03 2013-09-18 广东生益科技股份有限公司 树脂组合物及使用其制作的半固化片
CN102304273B (zh) * 2011-04-03 2013-06-12 广东生益科技股份有限公司 热固性环氧树脂组合物及使用其制作的环氧玻纤布基覆铜板
CN102585531A (zh) * 2011-12-14 2012-07-18 东北林业大学 一种木质素-环氧树脂复合材料及其制备方法
CN103013045B (zh) * 2012-12-13 2015-07-08 东莞市海旭新材料技术有限公司 一种环氧代木的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316564A (ja) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd 絶縁樹脂組成物、銅箔付き絶縁材及び銅張り積層板
CN1489883A (zh) * 2001-11-26 2004-04-14 ���������kҵ��ʽ���� 附有绝缘层的铜箔及其制造方法以及使用该附有绝缘层的铜箔的印刷电路板
CN202388871U (zh) * 2011-12-30 2012-08-22 广东生益科技股份有限公司 覆铜板
CN102702683A (zh) * 2012-06-04 2012-10-03 中国航空工业集团公司北京航空材料研究院 一种预浸料用环氧树脂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216094A (zh) * 2021-09-10 2022-10-21 金安国纪科技(杭州)有限公司 一种高频低介质损耗覆铜板用树脂组合物及其制备方法
CN115216094B (zh) * 2021-09-10 2024-02-20 金安国纪科技(杭州)有限公司 一种高频低介质损耗覆铜板用树脂组合物及其制备方法

Also Published As

Publication number Publication date
CN109749360B (zh) 2021-11-30
TW201922895A (zh) 2019-06-16
TWI772369B (zh) 2022-08-01
CN109749360A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US8604352B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
KR101184139B1 (ko) 수지 조성물, 수지 부착 금속박, 기재 부착 절연시트 및다층 프린트 배선판
WO2019090917A1 (zh) 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板
JP3184485B2 (ja) 銅張積層板用樹脂組成物、樹脂付き銅箔、多層銅張り積層板および多層プリント配線板
JP6620457B2 (ja) 樹脂組成物
WO2014087882A1 (ja) 樹脂層付き金属層、積層体、回路基板および半導体装置
JPH115828A (ja) 銅張積層板用樹脂組成物、樹脂付き銅箔、多層銅張り積層板および多層プリント配線板
WO2015072261A1 (ja) 樹脂層付きキャリア材料、積層体、回路基板および電子装置
US20220055344A1 (en) Resin composition and metal base copper-clad laminate
WO2019090918A1 (zh) 印刷线路板及其制作方法
JP2000301534A (ja) プリプレグ、金属張積層板及びこれらを用いた印刷配線板
JP2002187937A (ja) エポキシ樹脂組成物、プリプレグ及び金属箔張り積層板
KR102591030B1 (ko) 정적 벤딩이 가능한 동박적층판 및 이의 제조방법과 굽힘 성형방법
JP5776134B2 (ja) 樹脂組成物
KR20140146542A (ko) 부품 내장 배선 기판의 제조 방법, 및 반도체 장치
JP2010087402A (ja) プリント配線板用多層基板の製造方法
JP4042886B2 (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JP6191659B2 (ja) 樹脂組成物
JP4245197B2 (ja) 印刷配線板用プリプレグの製造方法及びこれを用いた金属張積層板
JP2008111188A (ja) プリント配線板用の銅箔
JP2019199537A (ja) 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板及びプリント配線板
JP4738859B2 (ja) エポキシ系接着剤、金属張積層板、カバーレイ、およびフレキシブルプリント基板
JP2001156459A (ja) 多層プリント配線板の製造方法
TW201041994A (en) Composition, method and application of an adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931510

Country of ref document: EP

Kind code of ref document: A1