WO2019090918A1 - 印刷线路板及其制作方法 - Google Patents

印刷线路板及其制作方法 Download PDF

Info

Publication number
WO2019090918A1
WO2019090918A1 PCT/CN2017/117501 CN2017117501W WO2019090918A1 WO 2019090918 A1 WO2019090918 A1 WO 2019090918A1 CN 2017117501 W CN2017117501 W CN 2017117501W WO 2019090918 A1 WO2019090918 A1 WO 2019090918A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
printed wiring
weight
bending
parts
Prior art date
Application number
PCT/CN2017/117501
Other languages
English (en)
French (fr)
Inventor
刘东亮
杨中强
陈文欣
许永静
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to KR1020207010583A priority Critical patent/KR102522754B1/ko
Publication of WO2019090918A1 publication Critical patent/WO2019090918A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • H05K1/0281Reinforcement details thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Definitions

  • the present invention relates to the field of electronic product technology, and in particular, to a printed circuit board and a method of fabricating the same.
  • the conventional rigid-flex PCB board refers to a PCB printed circuit board comprising one or more rigid regions and one or more flexible regions, which are composed of a rigid PCB board and a flexible (FPCB) board laminated in an orderly manner. Electrical connections are made with metallized holes.
  • Rigid-flexible PCBs not only provide the support function of rigid printed boards, but also the flexability of flexible boards, which can meet the requirements of three-dimensional assembly, and the demand in recent years is increasing.
  • the rigid-flex PCB processing process is complicated and difficult.
  • the rigid PCB needs to be partially hollowed out, and then bonded to the FPCB by pressing, and the non-flow adhesive must be used between the rigid PCB and the flexible FPCB.
  • the flexible copper clad laminate (FCCL) polyimide (PI) film surface inertness, and Hard board and most bonding materials have low adhesion, while rubber and acrylic resin systems can bond well with PI film, but heat resistance and dimensional stability are not good, so product reliability has hidden dangers. And the yield is not high, resulting in high costs.
  • the present invention is directed to a statically bent PCB and a method of making the same.
  • the object of the present invention can be achieved by the following technical solutions.
  • One aspect of the present invention provides a printed wiring board comprising a statically bendable copper clad laminate comprising a copper foil and a thermosetting resin composition impregnated with the base material adhered to the copper foil,
  • the copper plate has an elastic bending modulus of >10 GPa (preferably >12 GPa), a peel strength of more than 1.0 N/mm between 60-200 ° C, and a maximum stress value of more than 400 Mpa and more than 4% after removal of the copper foil. The strain at break value.
  • the thermosetting resin composition comprises: a thermosetting resin; a curing agent; a toughening material; and a solvent, wherein the curing agent is 1 to 50 parts by weight, based on 100 parts by weight of the thermosetting resin, and the toughening material
  • the solvent is 5 to 50 parts by weight, and the solvent is 5 to 50 parts by weight.
  • the thermosetting resin comprises an epoxy resin, preferably a polyfunctional epoxy resin; and/or the curing agent comprises a phenolic resin, an amine compound, an acid anhydride, an imidazole compound, a phosphonium salt, a dicyandiamide At least one of an amine, an active ester; and/or the toughening material comprises rubber (preferably a core-shell rubber), a phenolic resin, polyvinyl butyral (PVB), nylon, nanoparticles (preferred) At least one of SiO 2 , TiO 2 , or CaCO 3 nanoparticles), an olefinic block copolymer (preferably a block copolymer of polymethacrylic acid, butadiene, and styrene); and/or the solvent Including dimethylformamide (DMF), ethylene glycol methyl ether (MC), propylene glycol methyl ether (PM), propylene glycol methyl ether acetate (PMA), cyclohex
  • DMF
  • the base fabric comprises a fiberglass cloth or a nonwoven fabric.
  • the printed wiring board is a high density interconnect (HDI) printed wiring board.
  • HDI high density interconnect
  • Another aspect of the present invention provides a method for bending a printed wiring board, the method comprising: placing the printed wiring board into a mold and performing press forming, wherein the mold is designed to form a bending angle of 10 to 90°, A curved structure with a bending radius of 1 mm to 25 mm.
  • the printed wiring board is heated to a temperature of 60 to 200 ° C, preferably to a temperature of a glass transition temperature of ⁇ 50 ° C of the thermosetting resin composition in the copper clad laminate, before being placed in the mold.
  • the conditions for stamp forming include:
  • Mold temperature normal temperature (20 ⁇ 35 ° C), or heated to below 100 ° C.
  • the number of layers of the copper clad laminate in the press-formed printed wiring board is 4-14 layers and the thickness is 0.2 mm - 1 mm.
  • Still another aspect of the present invention provides a high density interconnect (HDI) printed wiring board having a curved structure, characterized in that the HDI printed wiring board having a curved structure is according to any one of claims 6-9.
  • the method described is produced by one or several press forming, and has a bending angle of 10 to 90° and a bending radius of 1 mm to 25 mm.
  • the printed circuit board needs to be bent and formed only in a simple line, and there is no Via hole.
  • the copper clad laminate of the present invention and the printed circuit board using the copper clad laminate can be plastically deformed under a certain temperature range and mechanical force, and the shape generated by the original deformation does not change when the mechanical force is released and the temperature is restored to normal temperature.
  • the fixed shape that is, has a certain rigidity to withstand the stress to cause deformation without breaking, and has a strain strain.
  • the production process of the printed circuit board is simple, and the manufacturing process of the printed circuit board without soft and hard combination is needed, thereby improving efficiency and saving cost.
  • the printed circuit board has the processing capability of one or several bending forming. It can withstand the impact stress better during the bending forming process, without cracking or delamination, and punch out various three-dimensional bending or concave-convex shapes to facilitate subsequent Static bending installation, especially for HDI printed circuit boards.
  • Figure 1 shows five types of stress-strain curves.
  • Figure 2 shows a typical stress (F)-strain (L) curve of the copper clad laminate of the present invention obtained according to the tensile strength and tensile modulus test methods.
  • Fig. 3 shows the bending radius of the bent molded PCB in the embodiment 1 of the present application.
  • Fig. 4 shows the bending angle of the bent molded PCB in the embodiment 1 of the present application.
  • a prepreg is obtained by impregnating a base fabric such as a glass fiber cloth with a thermosetting resin composition containing a toughening material, and the prepreg is laminated with a copper foil to form a rigid and toughness (or A hard and tough copper clad plate with which a printed circuit board (PCB) that can be statically bent can be fabricated.
  • a base fabric such as a glass fiber cloth
  • a thermosetting resin composition containing a toughening material e.g
  • the prepreg is laminated with a copper foil to form a rigid and toughness (or A hard and tough copper clad plate with which a printed circuit board (PCB) that can be statically bent can be fabricated.
  • PCB printed circuit board
  • the stress-strain curve of a material having a hard and tough property is shown as curve 2 in FIG.
  • the material properties represented by each curve are as follows: 1. Hard and brittle; 2. Hard and tough; 3. Hard and strong; 4. Soft and tough; 5. Soft and weak.
  • the present invention provides a bendable formed copper clad laminate, a printed wiring board, and a method of fabricating the same. Various aspects of the invention are described in detail below.
  • One aspect of the invention provides a bendable copper clad laminate comprising a copper foil and a base fabric adhered to the copper foil impregnated with the above thermosetting resin composition.
  • thermosetting resin composition for impregnating the base fabric may comprise: a thermosetting resin; a curing agent; a toughening material; and a solvent.
  • the thermosetting resin may include an epoxy resin, a phenol resin, a polyimide resin, a urea resin, a melamine resin, an unsaturated polyester, a polyurethane resin, etc., among which an epoxy resin is preferred.
  • the epoxy resin may include: bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aralkyl epoxy resin, phenol novolak type epoxy resin (phenol novolac Type epoxy resin, alkylphenol novolac type epoxy resin, bisphenol epoxy resin, naphthalene epoxy resin, dicyclopentadiene epoxy resin, phenolic compound and phenolic hydroxyl group An epoxide obtained by condensing an aromatic aldehyde, a triglycidyl isocyanurate, an alicyclic epoxy resin or the like. These epoxy resins may be used singly or in combination of two or more kinds depending on the case.
  • the epoxy resin is a polyfunctional epoxy resin containing two or more epoxy groups (preferably three or more epoxy groups) in one molecule.
  • an epoxy resin can be used as a commercially available epoxy resin, for example, JER1003 (manufactured by Mitsubishi Chemical Corporation, methyl group is 7 to 8, difunctional, molecular weight is 1300), EXA-4816 (manufactured by Di Aisheng Co., Ltd., molecular weight) 824, most methyl, difunctional), YP50 (manufactured by Nippon Steel Sumitomo Metal Chemical Co., Ltd., molecular weight 60,000 to 80,000, most methyl, bifunctional), DER 593 (manufactured by Dow Chemical, polyfunctional epoxy resin), EPIKOTE 157 (manufactured by Resolution, polyfunctional epoxy resin).
  • the curing agent in the thermosetting resin composition may depend on the kind of the thermosetting resin.
  • the curing agent may include at least one of a phenol resin, an amine compound, an acid anhydride, an imidazole compound, a phosphonium salt, dicyandiamide, and an active ester.
  • the active ester curing agent is obtained by reacting a phenolic compound linked by an aliphatic cyclic hydrocarbon structure, a difunctional carboxylic acid aromatic compound or an acid halide, and a monohydroxy compound.
  • the amount of the difunctional carboxylic acid aromatic compound or acid halide is 1 mol
  • the amount of the phenolic compound linked by the aliphatic cyclic hydrocarbon structure is 0.05 to 0.75 mol
  • the amount of the monohydroxy compound is 0.25 to 0.95 mol.
  • the active ester curing agent may comprise an active ester of the formula:
  • X is a benzene or naphthalene ring
  • j is 0 or 1
  • k is 0 or 1
  • n represents an average repeating unit of 0.25 to 1.25.
  • the curing agent is preferably a phenolic resin, an amine compound, an imidazole compound, and dicyandiamide.
  • these curing agents can be used singly or in combination of two or more.
  • Specific curing agents may include: phenolic resins (eg, phenol novolac resin, cresol novolac resin, etc.); diaminodiphenyl sulfone (DDS); dicyandiamide (DICY); dimethylimidazole (2-MI), etc. .
  • the curing agent is usually used in an amount of 1 to 50 parts by weight, based on 100 parts by weight of the thermosetting resin, and may be, for example, 1 to 40, or 1 to 30 parts by weight.
  • the amount of the curing agent can be controlled such that the epoxy equivalent of the epoxy resin and the hydroxyl equivalent ratio of the phenolic resin are 1:1 to 0.95; or the epoxy resin to amino equivalent ratio is 1:0.6 to 0.4. .
  • the toughening material comprises at least one of rubber, phenoxy resin, polyvinyl butyral (PVB), nylon, nanoparticles, olefinic block copolymers.
  • These toughening materials are selected according to compatibility with a thermosetting resin such as an epoxy resin, a toughening effect (to achieve a corresponding stress strain requirement value (see subsequent description)), and the like.
  • the rubber is preferably a rubber having a core-shell structure, such as a methyl methacrylate-butadiene-styrene (MBS) core-shell copolymer resin, a rubber-epoxy core-shell resin, etc., which is representatively commercially available.
  • the nanoparticles include SiO 2 , TiO 2 , or CaCO 3 nanoparticles, etc., and have a particle diameter of generally 10 to 500 nm.
  • the olefinic block copolymers are block copolymers formed by copolymerization of different kinds of olefins, such as block copolymers of polymethacrylic acid, butadiene and styrene.
  • the toughening materials may be used singly or in combination of two or more.
  • the nanoparticles can be combined with another toughening material (eg, core shell rubber, phenoxy resin, PVB, nylon, olefinic block copolymer, or mixtures thereof) in a weight ratio of 1:10 to 2:1. use.
  • another toughening material eg, core shell rubber, phenoxy resin, PVB, nylon, olefinic block copolymer, or mixtures thereof
  • the toughening material is generally used in an amount of usually 20 to 60 parts by weight, for example, 20 to 50 parts by weight, or 30 to 60 parts by weight, per 100 parts by weight of the thermosetting resin.
  • the solvent may include dimethylformamide (DMF), ethylene glycol methyl ether (MC), propylene glycol methyl ether (PM), propylene glycol methyl ether acetate (PMA), cyclohexanone, methyl ethyl ketone ( MEK), at least one of toluene and xylene.
  • the solvent is used in an amount of usually 5 to 50 parts by weight, for example, 10 to 50, 20 to 50 parts by weight, or the like, relative to 100 parts by weight of the thermosetting resin to form a gum having a viscosity of 300 to 600 cPa ⁇ s.
  • the thermosetting resin composition may further contain a filler or an auxiliary agent or the like, such as a flame retardant, a leveling agent, a coloring agent, a dispersing agent, a coupling agent, etc., within a range not detracting from the effects of the present invention.
  • a filler or an auxiliary agent or the like such as a flame retardant, a leveling agent, a coloring agent, a dispersing agent, a coupling agent, etc.
  • the flame retardant may be an organic flame retardant such as one or more of tetrabromobisphenol A, DOPO, and phosphate.
  • the base fabric comprises a fiberglass cloth or a nonwoven fabric.
  • Glass fiber cloth can be selected from various specifications such as 7628, 2116, 1080, 106, 1037, 1027, and 1017.
  • the copper foil may be selected from different specifications such as 1OZ, 1/2OZ, 1/3OZ, and the like.
  • the statically bendable copper clad plate of the invention can be plastically deformed under a certain temperature range and mechanical force, and the shape generated by the original deformation does not change when the mechanical force is released and returns to the normal temperature, and can be fixedly formed.
  • the copper clad has an elastic flexural modulus of >10 GPa, a peel strength between 60-200 ° C greater than 1.0 N/mm, and a maximum stress value greater than 400 MPa and greater than 4 after removal of the copper foil. % fracture strain value.
  • test device / or material
  • the size of the sample is 250mm ⁇ 25mm, and the thickness of the sample is recommended to be 0.4mm.
  • the edge of the sample should be free of cracks, delamination and other defects, otherwise it will be sanded with sandpaper or equivalent tools (the edges are not rounded).
  • the dispersion coefficient is less than 5%, ten samples per batch, five in the vertical direction and five in the lateral direction (cut on the whole sample plate or small plate).
  • the dispersion coefficient is greater than 5%, the number of samples in each direction shall not be less than 10, and 10 effective samples are guaranteed.
  • the width is accurate to 0.02mm
  • the thickness is accurate to 0.002mm.
  • the loading speed is 12.5 mm/min.
  • Figure 2 shows a typical stress-strain curve of a copper clad laminate obtained according to the above tensile strength and tensile modulus test methods.
  • the copper clad laminate of the present invention (after etching to remove the metal clad layer) has a maximum stress value of more than 400 MPa and a strain at break value of more than 4%.
  • the copper clad laminate of the present invention can be made as follows:
  • the base fabric is impregnated or coated with the thermosetting resin composition in the form of a glue of the present invention, and then heated at 100 to 200 ° C for 1-10 minutes (for example, 3 to 10 minutes) to obtain a prepreg (semi-cured B-stage state).
  • the resin content of the prepreg can be controlled between 40 and 70% by weight, and the resin flow of the prepreg can be controlled between 10 and 30%.
  • the cut prepreg is laminated on a copper foil, hot pressed at a temperature increase rate of 1-3 ° C / min, pressure up to 300-500 PSI, and maintained at a maximum temperature of 180-200 ° C for 30-120 minutes (eg 60- 120 minutes), get a copper clad laminate.
  • the copper clad laminate of the present invention can be stamped into a die.
  • the temperature of the stamping is selected within a range of ⁇ 50 ° C, preferably ⁇ 30 ° C of the Tg value of the copper clad laminate (thermosetting resin composition).
  • PCB Printed circuit board
  • Another aspect of the present invention provides a bendable PCB comprising the above-described copper clad laminate as a substrate.
  • the PCB is an HDI-PCB (High Density Interconnected Printed Wiring Board).
  • the PCB is fabricated in accordance with a conventional PCB fabrication process on the copper clad laminate described above.
  • the area in which the PCB needs to be bent is a simple line with no vias.
  • Another aspect of the present invention provides a method of bending a printed wiring board, the method comprising: placing the aforementioned printed wiring board into a mold, performing press forming, and generating a desired step to be suitable for three-dimensional mounting.
  • the mold is pre-formed at different bend radii (2-50 mm) and bend angle (10-90°).
  • the printed wiring board is heated to a temperature of 60-200 °C prior to being placed in the mold.
  • the molding temperature of the press forming is a glass transition temperature of the thermosetting resin composition in the copper clad laminate of ⁇ 50 ° C (preferably ⁇ 30 ° C), and the setting time is ⁇ 2 sec.
  • the conditions for stamp forming include:
  • Mold temperature normal temperature (20 ⁇ 35 ° C), or heated to below 100 ° C.
  • other clamping parameters may include a clamping rate of 0 to 2000 mm/min and an upper clamping pressure value of 100 to 20000 N.
  • the number of layers of the copper clad laminate in the stamped formed printed wiring board may be 4-14 layers and may have a thickness of 0.2 mm - 1 mm.
  • one or more press formings can be performed to achieve various bend forming.
  • HDI High-density interconnect
  • Still another aspect of the present invention provides a high density interconnect (HDI) printed wiring board having a curved structure which can be fabricated by the above-described bending forming method.
  • HDI high density interconnect
  • the HDI printed wiring board has a bend angle of 10 to 90° and a bend radius of 1 mm to 25 mm.
  • the HDI printed wiring board has only a simple line in the area where bending is required, and has no via holes.
  • the HDI printed wiring board can be fabricated by one or several moldings.
  • Glue configuration 5 parts by weight of rubber (Japan Kouyuan M-521), 10 parts by weight of core-shell rubber (Japan Kaneka MX-395) and 20 parts by weight of nano-SiO 2 (Evonik Nanoopol A 710) were selected.
  • As a toughening material it is mixed with 100 parts by weight of a polyfunctional epoxy resin (DOW Chemical DER 593 resin), and a phenol resin (DOW Chemical XZ92741 resin) is added so that the epoxy equivalent ratio to the hydroxyl equivalent ratio is 1:1.
  • the right amount of MEK organic solvent, configured as a glue to control the viscosity of the glue between 300-600 cPaS.
  • Prepreg production firstly glue the above-mentioned glue-impregnated glass fiber cloth (2116 glass fiber cloth), and then put it into an oven and heat-bake at 100-200 °C for 3-10 minutes to make the above resin composition reach the semi-cured B-stage state. .
  • CCL production use 1OZ copper foil, combined with the above prepreg, put into the laminator, heating rate 1-3 ° C / min, plate pressure up to 300-500 PSI, material maximum temperature 180-200 ° C to maintain 60-120 minute.
  • PCB production The above-mentioned copper-clad board is produced according to the traditional PCB manufacturing process, and the PCB board needs to be bent and formed in a part, and only a simple line is used.
  • PCB bending molding (1) first heat the above PCB board to 60 ° C; (2) after heating the PCB temperature is stable, put it into the die machine, press 10000N pressure for 5 seconds, then open the mold, take out the PCB board.
  • the bending radius and bending angle of the obtained PCB are shown in FIGS. 3 and 4.
  • a copper clad laminate and a PCB were produced in the same manner as in Example 1 except for the following glue configuration.
  • Glue configuration 20 parts by weight of phenol oxygen (53BH35 from HEXION) and 10 parts by weight of core-shell rubber CSR (Japan Kaneka MX-395) are used as the toughening material, and 100 parts by weight of the multifunctional epoxy resin ( Resolution's EPIKOTE 157 resin) is mixed, and 2.5 parts by weight of dicyandiamide is added, and an appropriate amount of DMF organic solvent is used to configure a glue to control the viscosity of the glue between 300 and 600 cPaS.
  • the multifunctional epoxy resin Resolution's EPIKOTE 157 resin
  • PCB bending molding (1) first heat the above PCB board to 120 ° C; (2) after heating the PCB temperature is stable, put it into the die machine, press 100N pressure for 100 seconds, then open the mold and take out the PCB board.
  • the bending radius and bending angle of the obtained PCB were the same as in Example 1.
  • a copper clad laminate and a PCB were produced in the same manner as in Example 1 except for the following glue configuration.
  • Glue configuration 20 parts by weight of PVB (American Solutia B90), 8 parts by weight of nano-SiO 2 (Evonik Nanoopolo A710) and 5 parts by weight of block copolymer (Arkoma Nanostrength) ) is a toughened material, mixed with 100 parts by weight of a polyfunctional epoxy resin (DOW Chemical Co., Ltd. DER593 resin), and added with 3 parts by weight of dicyandiamide, and an appropriate amount of DMF or PM organic solvent, configured as a glue, controlled The viscosity of the glue is between 300-600 cPaS.
  • PCB bending molding (1) first heat the above PCB board to 200 ° C; (2) After heating the PCB temperature is stable, put it into the die machine, press it at 20000N for 2 seconds, then open the mold and take out the PCB board.
  • the bending radius and bending angle of the obtained PCB were the same as in Example 1.
  • a copper clad laminate and a PCB were produced in the same manner as in Example 1 except for the following glue configuration.
  • Glue configuration 20 parts by weight of nylon (DuPont ST801A) and 8 parts by weight of nano-SiO 2 (Evonik Nanoopol A710) were selected and mixed with 100 parts by weight of polyfunctional epoxy resin (DOW Chemical DER 593 resin) and pressed Epoxy equivalent and hydroxyl equivalent 1:1 were added with phenolic resin (Resolution EPIKURE YLH129B65), and an appropriate amount of MEK organic solvent, which was configured as a glue to control the viscosity of the glue between 300-600 cPaS.
  • polyfunctional epoxy resin DOW Chemical DER 593 resin
  • Epoxy equivalent and hydroxyl equivalent 1:1 were added with phenolic resin (Resolution EPIKURE YLH129B65), and an appropriate amount of MEK organic solvent, which was configured as a glue to control the viscosity of the glue between 300-600 cPaS.
  • PCB bending molding (1) first heat the above PCB board to 100 ° C; (2) After the temperature of the heating PCB is stabilized, put it into the die machine, press it at 10000 N for 10 seconds, then open the mold and take out the PCB board.
  • the bending radius and bending angle of the obtained PCB were the same as in Example 1.
  • a copper clad laminate and a PCB were produced in the same manner as in Example 1 except for the following glue configuration.
  • Glue configuration 25 parts by weight of block copolymer (Arkema Nanostrength) And 8 parts by weight of nano-SiO 2 (Evonik Nanoopol A710) as a toughening material, mixed with 100 parts by weight of cyanate tree (Huifeng HF-10) grease, and added with 20 parts by weight of phenolic resin (RESOLUTION)
  • the company's EPIKURE YLH129B65), as well as the right amount of MEK organic solvent, is configured as a glue to control the viscosity of the glue between 300-600 cPaS.
  • PCB bending molding (1) first heat the above PCB board to 200 ° C; (2) After heating the PCB temperature is stable, put it into the die machine, press it with 10000N pressure for 20 seconds, then open the mold and take out the PCB board.
  • the bending radius and bending angle of the obtained PCB were the same as in Example 1.
  • a copper clad laminate and a PCB were produced in the same manner as in Example 1 except for the following glue configuration.
  • Glue configuration 20 parts by weight of phenolic resin (Nippon Steel Chemical ERF-001), 10 parts by weight of PVB (American Solutia B90) and 5 parts by weight of nano-SiO 2 (Evonik Nanoopolo A710) are used for toughening
  • the material is mixed with 50 parts by weight of PPO resin (such as: SB90 of SABIC) and 100 parts by weight of epoxy resin (DOW Chemical DER593 resin), and 20 parts by weight of phenolic resin (EPIKURE YLH129B65 from RESOLUTION) is added.
  • PPO resin such as: SB90 of SABIC
  • epoxy resin DOW Chemical DER593 resin
  • MEKURE YLH129B65 from RESOLUTION
  • PCB bending forming (1) first heat the above PCB board to 180 °C; (2) After the temperature of the heating PCB is stabilized, put it into the die machine, press it with 10000N pressure for 30 seconds, then open the mold and take out the PCB board.
  • the bending radius and bending angle of the obtained PCB were the same as in Example 1.
  • PCB and bending were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 100 parts by weight of polyfunctional epoxy resin (DOW Chemical DER593 resin), 2-3 parts by weight of dicyandiamide, and appropriate amount of DMF organic solvent are added to configure the glue to control the viscosity of the glue at 300-600 cPaS. between.
  • PCB and bending were fabricated in the same manner as in Example 1 except for the following glue configuration, and the corresponding properties were tested.
  • Glue configuration 10 parts by weight of nitrile rubber (such as: Japan Kouyuan M-521) and 100 parts by weight of polyfunctional epoxy resin (DOW Chemical DER593 resin) are mixed, and 2-3 parts by weight of dicyandiamide is added. And the appropriate amount of DMF organic solvent, configured as a glue, to control the viscosity of the glue between 300-600 cPaS.
  • test results are compared as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种印刷线路板及其制作方法,包括可弯折成型的覆铜板作为基板,所述覆铜板包括铜箔和粘附在所述铜箔上的热固性树脂组合物浸渍基布,其弹性弯曲模量>10GPa,在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400MPa的最大应力值和大于4%的断裂应变值。可以通过一次或数次冲压成型形成具有弯曲结构的印刷线路板。

Description

印刷线路板及其制作方法 技术领域
本发明涉及电子产品技术领域,特别涉及一种印刷线路板及其制作方法。
背景技术
随着电子产品向轻薄短小化和多功能集成化方向发展以及电池续航能力的日显不足,印刷线路板(PCB)和电子元器件的三维立体安装的需求越来越多,目前为了实现三维立体安装,大多采用刚挠结合PCB技术路线。传统刚挠结合PCB板是指一块PCB印制电路板上包含一个或多个刚性区和一个或多个挠性区,由刚性PCB板和挠性(FPCB)板有序地层压在一起组成,并以金属化孔形成电气连接。刚挠结合PCB既有可以提供刚性印制板应有的支撑作用,又有挠性板的弯曲性,能够满足三维组装的要求,近年来的需求越来越大。但是,刚挠结合PCB加工工艺复杂,难度大,譬如:刚性PCB需要局部镂空,再与FPCB通过压合粘结,同时局部镂空的刚性PCB与挠性FPCB之间必须使用不流胶的粘结材料,而此类材料层压窗口很窄,压合难度很高,很容易出现气泡和白斑等缺陷;此外,挠性覆铜板(FCCL)的聚酰亚胺(PI)膜表面惰性大,与硬板及大多数粘结材料的粘结力不高,而橡胶和丙烯酸类的树脂体系可以与PI膜粘结良好,但耐热性及尺寸稳定性等性能不佳,因此产品可靠性存在隐患,而且成品率不高,导致成本很高。
很多软硬结合PCB是用于静态弯折领域,所谓静态弯折,即是说安装时只需弯折一次,或者一次弯折成型后,该弯折区域无需摆动,即工作时是静止的,不像打印机激光头那样来回摆动的;但是,即使就是这些静态弯折领域中,普通的刚性PCB也无法满足弯折成型及使用要求。
因此,很多静态弯折安装PCB等电子产品领域,对材料要求具有一次冲击成型的加工能力,在冲击成型过程中能较好的承受冲击应力,不开裂、不分层,而且冲出各种立体弯曲或凹凸形状固定,便于后续PCB安装使用。
发明内容
本发明旨在提供一种静态弯折安装的的PCB及其制作方法。
本发明的目的可以通过以下技术方案实现。
本发明的一个方面提供一种印刷线路板,其包括可静态弯折的覆铜板作为基板,所述覆铜板包括铜箔和粘附在所述铜箔上的热固性树脂组合物浸渍基布,所述覆铜板的弹性弯曲模量>10GPa(优选>12GPa),在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。
在某些实施方式中,所述热固性树脂组合物包含:热固性树脂;固化剂;增韧材料;和溶剂,其中以热固性树脂为100重量份计,固化剂为1-50重量份,增韧材料为20-60重量份,溶剂为5-50重量份。
在某些实施方式中,所述热固性树脂包括环氧树脂,优选多官能环氧树脂;和/或,所述固化剂包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种;和/或,所述增韧材料包括橡胶(优选核壳结构的橡胶)、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子(优选SiO2,TiO2,或CaCO3纳米粒子)、烯属嵌段共聚物(优选聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物)中的至少一种;和/或,所述溶剂包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),丙二醇甲醚醋酸酯(PMA),环己酮,甲乙酮(MEK),甲苯,二甲苯中的至少一种。
在某些实施方式中,所述基布包括玻璃纤维布或无纺布。
在某些实施方式中,所述印刷线路板为高密度互联(HDI)印刷线路板。
本发明的另一个方面提供一种印刷线路板弯曲成型方法,所述方法包括:将上述印刷线路板放入模具中,进行冲压成型,所述模具设计用于形成弯曲角度为10~90°,弯曲半径为1mm~25mm的弯曲结构。
在某些实施方式中,在放入模具之前,将印刷线路板加热到60-200℃的温度,优选加热到覆铜板中热固性树脂组合物的玻璃化转变温度±50℃的温度。
在某些实施方式中,冲压成型的条件包括:
1)冲压压力:100N-20000N;
2)压合成型维持时间:≥2sec;
3)模具温度:常温(20~35℃),或加热至100℃以下。
在某些实施方式中,进行冲压成型的印刷线路板中覆铜板的层数为4-14层,厚度为0.2mm–1mm。
本发明的再一个方面还提供一种具有弯曲结构的高密度互联(HDI)印刷线路板,其特征在于,所述具有弯曲结构的HDI印刷线路板是采用权利要求6-9中任一项所述的方法,通过一次或数次冲压成型而制作的,其弯曲角度为10~90°,弯曲半径为1mm~25mm,优选地,所述印刷线路板需要弯折成型的区域只有简单线路,没有导通孔。
本发明可以具有以下优点中的至少一个:
1、本发明的覆铜板和采用该覆铜板的印刷线路板在一定的温度范围内及机械力作用下可以塑性变形,当释放机械力和恢复到常温时原形变产生的形状不会改变,能固定成型,即,具有一定的刚性以承受应力作用产生形变而不断裂,且具有形变应变量。
2、印刷线路板的生产工艺流程简单,无需软硬结合的印刷线路板制作工艺,提高效率,节约成本。
3、印刷线路板具有一次或数次弯曲成型的加工能力,在弯曲成型过程中能较好的承受冲击应力,不开裂、不分层,而且冲出各种立体弯曲或凹凸形状固定,便于后续静态弯曲安装使用,尤其适用于HDI印刷线路板。
附图说明
图1显示了五种类型的应力-应变曲线。
图2显示了按照拉伸强度及拉伸模量测试方法获得的本发明覆铜板的一个典型的应力(F)-应变(L)曲线。
图3显示了本申请实施例1中弯折成型的PCB的弯曲半径。
图4显示了本申请实施例1中弯折成型的PCB的弯曲角度。
具体实施方式
本发明出人意料地发现:用含有增韧材料的热固性树脂组合物浸渍玻璃纤维布等基布制成半固化片,将这种半固化片与铜箔层压复合,完全固化后即可获得具有刚而韧(或硬而韧)特性的覆铜板,采用这种覆铜板可以制作能静态弯折安装的印刷线路板(PCB)。
具有硬而韧特性的材料的应力-应变曲线如图1中曲线2所示。在图1中,各曲线代表的材料特性如下:1、硬而脆;2、硬而韧;3、硬而强;4、软而韧; 5、软而弱。
基于上述发现,本发明提供一种可弯折成型的覆铜板、印刷线路板及其制作方法。下面详细描述本发明的各个方面。
覆铜板
本发明的一个方面提供一种可弯折成型的覆铜板,所述覆铜板包括铜箔和粘附在所述铜箔上的被上述热固性树脂组合物浸渍的基布。
-热固性树脂组合物-
本发明中,用于浸渍基布的热固性树脂组合物可以包含:热固性树脂;固化剂;增韧材料;和溶剂。
在某些实施方案中,热固性树脂可以包括环氧树脂、酚醛树脂、聚酰亚胺树脂、脲醛树脂、三聚氰胺树脂、不饱和聚酯、聚氨酯树脂等,其中,优选环氧树脂。
环氧树脂的具体例子可以包括:双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、芳烷基环氧树脂、苯酚酚醛清漆型环氧树脂(phenol novolac type epoxy resin)、烷基酚醛清漆型环氧树脂(alkylphenol novolac type epoxy resin)、双酚型环氧树脂、萘型环氧树脂、双环戊二烯型环氧树脂、酚化合物与具有酚羟基的芳香醛缩合而成的环氧化物、异氰尿酸三缩水甘油酯、脂环式环氧树脂等。根据情况,可以将这些环氧树脂单独或者组合两种以上而使用。
优选地,环氧树脂是在一个分子中包含两个以上环氧基(优选三个以上环氧基)的多官能环氧树脂。这种环氧树脂可以使用市场销售的环氧树脂,例如,JER1003(三菱化学公司制造,甲基为7至8个,双官能,分子量为1300)、EXA-4816(迪爱生公司制造,分子量为824,多数甲基,双官能)、YP50(新日铁住友金属化学公司制造,分子量为60000至80000,多数甲基,双官能),DER593(陶氏化学制造,多官能环氧树脂),EPIKOTE 157(Resolution公司制造,多官能环氧树脂)等。
在某些实施方案中,热固性树脂组合物中的固化剂可以根据热固性树脂的种类而定。对于环氧树脂而言,固化剂可以包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种。
所述活性酯固化剂是由一种通过脂肪环烃结构连接的酚类化合物、二官能度羧酸芳香族化合物或酸性卤化物及一种单羟基化合物反应而得。所述二官能度羧酸芳香族化合物或酸性卤化物用量为1mol,通过脂肪环烃结构连接的酚类化合物用量为0.05~0.75mol,单羟基化合物用量为0.25~0.95mol。活性酯固化剂可包括下述结构式的活性酯:
Figure PCTCN2017117501-appb-000001
其中式中X为苯环或萘环,j为0或1,k为0或1,n表示平均重复单元为0.25-1.25。
在某些实施方案中,固化剂优选酚醛树脂、胺系化合物、咪唑系化合物和双氰胺。可以将这些固化剂单独或者组合两种以上而使用。具体的固化剂可以包括:酚醛树脂(例如苯酚酚醛清漆树脂,甲酚酚醛清漆树脂等);二氨基二苯砜(DDS);双氰胺(DICY);二甲基咪唑(2-MI)等。
相对于100重量份的热固性树脂,固化剂的用量通常为1-50重量份,例如可以为1-40,或者1-30重量份。对于环氧树脂而言,可以控制固化剂的用量,使得环氧树脂的环氧当量与酚醛树脂的羟基当量比为1:1~0.95;或者环氧树脂与氨基当量比为1:0.6~0.4。
在某些实施方案中,增韧材料包括橡胶、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子、烯属嵌段共聚物中的至少一种。这些增韧材料是根据与环氧树脂等热固性树脂的相容性、增韧效果(以达到相应的应力应变要求值(见后续描述))等而选择的。其中,橡胶优选为具有核壳结构的橡胶,例如甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)核壳型共聚树脂,橡胶-环氧型核壳树脂等,其代表性的市售包括日本钟源公司的M-521,MX-395等。纳米粒子包括SiO2,TiO2,或CaCO3纳米粒子等,其粒径一般为10-500nm。烯属嵌段共聚物是不同种类的烯烃共聚形成的嵌段共聚物,例如聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物。
增韧材料可以单独或者组合两种以上使用。例如,可以将纳米粒子与另一增韧材料(例如核壳橡胶,酚氧树脂,PVB,尼龙,烯属嵌段共聚物,或它们的混合物)以1:10至2:1的重量比组合使用。
为达到良好的增韧效果,相对于100重量份的热固性树脂,增韧材料总的用量一般为20-60重量份,例如,可以为20-50重量份,或者30-60重量份。
在某些实施方案中,溶剂可以包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),丙二醇甲醚醋酸酯(PMA),环己酮,甲乙酮(MEK),甲苯,二甲苯中的至少一种。相对于100重量份的热固性树脂,溶剂的用量一般为5-50重量份,例如10-50,20-50重量份等,以形成粘度为300-600cPa·s的胶液。
在某些实施方案中,在不损失本发明的效果的范围内,热固性树脂组合物还可以包含填料或助剂等,例如阻燃剂,均化剂,着色剂,分散剂,偶联剂,发泡剂等。其中阻燃剂可以为有机阻燃剂,例如四溴双酚A,DOPO,磷酸酯中的一种或多种。
-基布-
在某些实施方案中,基布包括玻璃纤维布或无纺布。玻璃纤维布可以选用7628、2116、1080、106、1037、1027、1017等各种规格。
-铜箔-
在某些实施方案中,铜箔可以选用1OZ、1/2OZ、1/3OZ等不同规格。
-可静态弯折的覆铜板-
本发明的可静态弯折的覆铜板在一定的温度范围内及机械力作用下可以塑性变形,当释放机械力和恢复到常温时原形变产生的形状不会改变,能固定成型。
在某些实施方案中,覆铜板的弹性弯曲模量>10GPa,在60-200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400Mpa的最大应力值和大于4%的断裂应变值。
上述应力应变值通过以下拉伸强度及拉伸模量测试方法测定。
材料拉伸强度及拉伸模量测试方法:
A、试验装置/或材料
-材料试验机
一台ISO3384标准的拉伸压缩试验机,该装置拉伸夹具能以稳定的速率运行。负载测量系统的误差不超过±1%。
-能够完全除去覆金属箔的蚀刻系统。
-游标卡尺(精确至0.02mm)或千分尺(精确至0.002mm)
-试样
(1)尺寸和形状
试样的尺寸250mm×25mm,试样厚度推荐使用0.4mm,试样边缘应无裂纹、分层等缺陷,否则用砂纸或等效工具打磨(边缘不形成圆角)。
(2)数量和抽样
当离散系数小于5%时,每批用十块试样,纵向五块,横向五块(在整块样品板或小板上切取)。当离散系数大于5%时,每个方向的试样数量不能少于10个,并保证有10个有效试样。
(3)用蚀刻方法蚀刻除去所有金属覆盖层。
B、拉伸测试程序
-测量试样尺寸
测量并记录试样宽度及厚度,宽度精确至0.02mm,厚度精确至0.002mm。
-测量
(1)夹持试样,使试样的中心线与上下夹具的对准中心线一致。
(2)调节上下夹具间距,使其125mm±0.5mm。
(3)加载速度为12.5mm/min。
(4)设置拉伸弹性模量计算时,取应变的0.05%到0.25%之间部分。
(5)进行测试,绘制应力-应变曲线。
(6)有明显内部缺陷的试样,应予作废。
(7)试样破坏在夹具内或试样断裂处离夹紧处的距离小于10mm,应予作废。
C、计算
-按下式计算每个试样的拉伸强度
Figure PCTCN2017117501-appb-000002
式中:
τT:拉伸强度,MPa
F:破坏载荷或最大载荷,N
b:试样宽度,mm
d:试样厚度,mm
-按下式计算每个试样的拉伸弹性模量
Figure PCTCN2017117501-appb-000003
式中:
Et:拉伸弹性模量,MPa
σ″:应变ε″=0.25%ε时测得的拉伸应力值,MPa
σ':应变ε'=0.05%ε时测得的拉伸应力值,MPa
-计算平均拉伸强度及拉伸弹性模量,以MPa为单位。
图2显示了按照上述拉伸强度及拉伸模量测试方法获得的覆铜板的一个典型的应力-应变曲线。如图2所示,本发明的覆铜板(在蚀刻除去金属覆盖层后)具有大于400Mpa的最大应力值和大于4%的断裂应变值。
-制作覆铜板的方法-
在某些实施方案中,本发明的覆铜板可以按照以下方法制作:
-制作半固化片-
用本发明的胶水形式的热固性树脂组合物浸渍或涂布基布,然后在100-200℃加热1-10分钟(例如3-10分钟),得到半固化片(半固化的B阶状态)。半固化片的树脂含量可以控制在40-70重量%之间,半固化片的树脂流动度可以控制在10-30%之间。
-制作覆铜板-
将裁切好的半固化片层压在铜箔上,以1-3℃/min的升温速率进行热压,压力最大300-500PSI,并且在最高温度180-200℃保持30-120分钟(例如60-120分钟),获得覆铜板。
在某些实施方案中,可以将本发明的覆铜板在冲模中冲压成型。优选地,冲压的温度选取在覆铜板(热固性树脂组合物)的Tg值的±50℃,优选±30℃的范围内。
印刷线路板(PCB)
本发明的另一个方面提供一种可弯曲成型的PCB,所述PCB包括上述的覆铜板作为基板。
在某些实施方案中,所述PCB为HDI-PCB(高密度互联印刷线路板)。
在某些实施方案中,所述PCB是在上述覆铜板按照传统PCB制作工艺制作的。
在某些实施方案中,所述PCB需要弯折成型的区域只有简单线路,没有导通孔。
印刷线路板弯曲成型方法
本发明的另一个方面提供一种印刷线路板弯曲成型方法,所述方法包括:将前述的印刷线路板放入模具中,进行冲压成型,生成所需的台阶,以适用于三维立体安装。
在某些实施方案中,模具是预先按不同弯折半径(2-50mm)和弯折角度(10-90°)设计的。
在某些实施方案中,在放入模具之前,将所述印刷线路板加热到60-200℃的温度。
在某些实施方案中,冲压成型的成型温度为覆铜板中热固性树脂组合物的玻璃化转变温度±50℃(优选±30℃),定型时间≥2sec。
在某些实施方案中,冲压成型的条件包括:
1)冲压压力:100N-20000N;
2)压合成型维持时间:≥2sec;
3)模具温度:常温(20~35℃),或加热至100℃以下。
在某些实施方案中,其他合模参数可以包括:合模速率为0~2000mm/min、及合模压力值上限为100~20000N。
在某些实施方案中,进行冲压成型的印刷线路板中覆铜板的层数可以为4-14层,厚度可以为0.2mm–1mm。
在某些实施方案中,可以进行一次或数次冲压成型,以实现各种弯曲成型。
具有弯曲结构的高密度互联(HDI)印刷线路板
本发明的再一个方面提供一种具有弯曲结构的高密度互联(HDI)印刷线路板,其可以通过上述弯曲成型方法制作。
在某些实施方案中,所述HDI印刷线路板具有10~90°的弯曲角度和1mm~25mm的弯曲半径。
在某些实施方案中,所述HDI印刷线路板在需要弯折成型的区域中只有简单线路,没有导通孔。
在某些实施方案中,所述HDI印刷线路板可以通过一次或数次成型而制作。
以下结合具体实施例,对本发明的技术方案做进一步详细说明。这些实施例只是示例性的,而不用于限制本发明的范围。
实施例1:
1、胶液配置:选用5重量份的橡胶(日本钟渊M-521)、10重量份的核壳橡胶(日本钟渊MX-395)和20重量份的纳米SiO2(赢创Nanopol A 710)作为增韧材料,与100重量份的多官能环氧树脂(DOW化学的DER593树脂)混合,并添加酚醛树脂(DOW化学的XZ92741树脂),使得环氧当量与羟基当量比为1:1,以及适量MEK有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
2、半固化片制作:先将上述胶水浸渍玻璃纤维布(2116玻璃纤维布)上胶,然后放进烘箱在100-200℃加热烘烤3-10分钟,使上述树脂组合物达到半固化B阶状态。
3、覆铜板制作:选用1OZ铜箔,与上述半固化片组合好,放进层压机,升温速率1-3℃/min,压板压力最大300-500PSI,材料最高温度180-200℃保持60-120分钟。
4、PCB制作:将上述覆铜板按传统PCB制作工艺生产PCB板,PCB板局部需要弯折成型的区域,只有简单线路。
5、PCB弯折成型:(1)先将上述PCB板加热至60℃;(2)加热PCB温度稳定后,放进冲模机中,以10000N压力压合5秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度如图3、图4所示。
6、将上述PCB测试表观、弹性模量、热冲击(288℃/10S)、回流焊(最大稳定280℃)、耐离子迁移(CAF)等相关特性,并且按照说明书中描述的拉伸 强度及拉伸模量测试方法测定应力应变值。
实施例2:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB。
胶液配置:选用20重量份的酚氧(HEXION公司的53BH35)和10重量份的核壳橡胶CSR(日本钟渊MX-395)作为增韧材料,与100重量份的多官能环氧树脂(Resolution公司的EPIKOTE 157树脂)混合,并添加2.5重量份的双氰胺,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
PCB弯折成型:(1)先将上述PCB板加热至120℃;(2)加热PCB温度稳定后,放进冲模机中,以100N压力压合100秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度同实施例1。
按照实施例1所述的方法测试表观、弹性模量、应力应变值、热冲击、回流焊、CAF等相关特性。
实施例3:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB。
胶液配置:选用20重量份的PVB(美国首诺B90)、8重量份的纳米SiO2(赢创Nanopolo A710)和5重量份的嵌段共聚物作(阿科马Nanostrength
Figure PCTCN2017117501-appb-000004
)为增韧材料,与100重量份的多官能环氧树脂(DOW化学公司的DER593树脂)混合,并添加3重量份的双氰胺,以及适量DMF或PM有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
PCB弯折成型:(1)先将上述PCB板加热至200℃;(2)加热PCB温度稳定后,放进冲模机中,以20000N压力压合2秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度同实施例1。
按照实施例1所述的方法测试表观、弹性模量、应力应变值、热冲击、回流焊、CAF等相关特性。
实施例4:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB。
胶液配置:选用20重量份的尼龙(美国杜邦ST801A)和8重量份的纳米SiO2(赢创Nanopol A710),与100重量份的多官能环氧树脂(DOW化学DER593树脂)混合,并按环氧当量和羟基当量1:1添加酚醛树脂(Resolution公司的EPIKURE YLH129B65),以及适量MEK有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
PCB弯折成型:(1)先将上述PCB板加热至100℃;(2)加热PCB温度稳定后,放进冲模机中,以10000N压力压合10秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度同实施例1。
按照实施例1所述的方法测试表观、弹性模量、应力应变值、热冲击、回流焊、CAF等相关特性。
实施例5:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB。
胶液配置:选用25重量份的嵌段共聚物(阿科玛Nanostrength
Figure PCTCN2017117501-appb-000005
)和8重量份的纳米SiO2(赢创Nanopol A710)作为增韧材料,与100重量份的氰酸酯树(慧峰公司HF-10)脂混合,并添加20重量份的酚醛树脂(RESOLUTION公司的EPIKURE YLH129B65),以及适量MEK有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
PCB弯折成型:(1)先将上述PCB板加热至200℃;(2)加热PCB温度稳定后,放进冲模机中,以10000N压力压合20秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度同实施例1。
按照实施例1所述的方法测试表观、弹性模量、应力应变值、热冲击、回流焊、CAF等相关特性。
实施例6:
除了以下胶液配置外,以与实施例1相同的方式制作覆铜板和PCB。
胶液配置:选用20重量份的酚氧树脂(新日铁化学ERF-001)、10重量份的PVB(美国首诺B90)和5重量份的纳米SiO2(赢创Nanopolo A710)作为增韧材料,与50重量份的PPO树脂(如:沙伯基础公司的MX90)和100重量份的环氧树脂(DOW化学DER593树脂)混合,并添加20重量份酚醛树脂 (RESOLUTION公司的EPIKURE YLH129B65),以及适量MEK有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
PCB弯折成型:(1)先将上述PCB板加热至180℃;(2)加热PCB温度稳定后,放进冲模机中,以10000N压力压合30秒,然后再开模,取出PCB板。所得PCB的弯曲半径和弯曲角度同实施例1。
按照实施例1所述的方法测试表观、弹性模量、应力应变值、热冲击、回流焊、CAF等相关特性。
比较例1:
除了以下胶液配置外,以与实施例1相同的方式制作PCB和弯折成型,并测试相应的性能。
胶液配置:选用100重量份的多官能环氧树脂(DOW化学DER593树脂),添加2-3重量份的双氰胺,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
比较例2:
除了以下胶液配置外,以与实施例1相同的方式制作PCB和弯折成型,并测试相应的性能。
胶液配置:选用10重量份的丁晴橡胶(如:日本钟渊M-521)和100重量份的多官能环氧树脂(DOW化学DER593树脂)混合,添加2-3重量份的双氰胺,以及适量DMF有机溶剂,配置成胶液,控制胶水粘度在300-600cPaS之间。
测试结果对比如下表:
Figure PCTCN2017117501-appb-000006
Figure PCTCN2017117501-appb-000007
以上,仅为本发明的部分实施例,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思做出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的范围。
本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种印刷线路板,其特征在于,所述印刷线路板包括可弯折成型的覆铜板作为基板,所述覆铜板包括铜箔和粘附在所述铜箔上的热固性树脂组合物浸渍基布,所述覆铜板的弹性弯曲模量>10GPa,在60~200℃之间的剥离强度大于1.0N/mm,且在除去铜箔后,具有大于400MPa的最大应力值和大于4%的断裂应变值。
  2. 根据权利要求1所述的印刷线路板,其特征在于,所述热固性树脂组合物包含:热固性树脂;固化剂;增韧材料;和溶剂,其中以热固性树脂为100重量份计,固化剂为1~50重量份,增韧材料为20~60重量份,溶剂为5~50重量份。
  3. 根据权利要求2所述的印刷线路板,其特征在于,所述热固性树脂包括环氧树脂,优选多官能环氧树脂;和/或,所述固化剂包括酚醛树脂、胺系化合物、酸酐、咪唑系化合物、锍盐、双氰胺、活性酯中的至少一种;和/或,所述增韧材料包括橡胶(优选核壳结构的橡胶)、酚氧树脂、聚乙烯醇缩丁醛(PVB)、尼龙、纳米粒子(优选SiO2,TiO2,或CaCO3纳米粒子)、烯属嵌段共聚物(优选聚甲丙烯酸、丁二烯和苯乙烯的嵌段共聚物)中的至少一种;和/或,所述溶剂包括二甲基甲酰胺(DMF),乙二醇甲醚(MC),丙二醇甲醚(PM),丙二醇甲醚醋酸酯(PMA),环己酮,甲乙酮(MEK),甲苯,二甲苯中的至少一种。
  4. 根据权利要求1所述的印刷线路板,其特征在于,所述基布包括玻璃纤维布或无纺布。
  5. 根据权利要求1所述的印刷线路板,其特征在于,所述印刷线路板为高密度互联(HDI)印刷线路板。
  6. 一种印刷线路板弯曲成型方法,其特征在于,所述方法包括:将权利要求1~5中任一项所述的印刷线路板放入模具中,进行冲压成型,所述模具设计用于形成弯曲角度为10~90°,弯曲半径为1mm~25mm的弯曲结构。
  7. 根据权利要求6所述的方法,其特征在于,在放入模具之前,将所述印刷线路板加热到60~200℃的温度,优选加热到覆铜板中热固性树脂组合物的玻璃化转变温度±50℃的温度。
  8. 根据权利要求7所述的方法,其特征在于,所述冲压成型的条件包括:
    1)冲压压力:100~20000N;
    2)压合成型维持时间:≥2sec;
    3)模具温度:常温(20~35℃),或加热至100℃以下。
  9. 根据权利要求6所述的方法,其特征在于,进行冲压成型的印刷线路板中覆铜板的层数为4~14层,厚度为0.2~1mm。
  10. 一种具有弯曲结构的高密度互联(HDI)印刷线路板,其特征在于,所述具有弯曲结构的HDI印刷线路板是采用权利要求6~9中任一项所述的方法,通过一次或数次冲压成型而制作的,其弯曲角度为10~90°,弯曲半径为1~25mm,优选地,所述印刷线路板需要弯折成型的区域只有简单线路,没有导通孔。
PCT/CN2017/117501 2017-11-08 2017-12-20 印刷线路板及其制作方法 WO2019090918A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207010583A KR102522754B1 (ko) 2017-11-08 2017-12-20 인쇄회로기판 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711091388.0 2017-11-08
CN201711091388.0A CN109757023B (zh) 2017-11-08 2017-11-08 印刷线路板及其制作方法

Publications (1)

Publication Number Publication Date
WO2019090918A1 true WO2019090918A1 (zh) 2019-05-16

Family

ID=66401468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117501 WO2019090918A1 (zh) 2017-11-08 2017-12-20 印刷线路板及其制作方法

Country Status (4)

Country Link
KR (1) KR102522754B1 (zh)
CN (1) CN109757023B (zh)
TW (1) TWI711354B (zh)
WO (1) WO2019090918A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662132B (zh) * 2020-12-22 2023-08-22 广东盈骅新材料科技有限公司 改性树脂组合物及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360577A (zh) * 2012-03-29 2013-10-23 株式会社田村制作所 热固性树脂组合物、树脂膜、覆铜板及柔性印刷布线板
CN104725781A (zh) * 2015-03-11 2015-06-24 广东生益科技股份有限公司 一种树脂组合物以及使用它的预浸料和层压板
JP2016174051A (ja) * 2015-03-16 2016-09-29 日本メクトロン株式会社 フレキシブルプリント配線板
CN107206643A (zh) * 2014-09-23 2017-09-26 朗德万斯有限责任公司 用于形成电路板的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193381B2 (ja) * 2001-07-16 2008-12-10 日立電線株式会社 耐屈曲フレキシブルフラットケーブル及びその製造方法
KR100523913B1 (ko) * 2003-09-16 2005-10-25 주식회사 엘지화학 동박 부착 접착시트용 조성물 및 이를 이용한 동박 부착접착시트의 제조방법
US8043697B2 (en) * 2005-04-19 2011-10-25 Ube Industries, Ltd. Polyimide film-laminated body
EP1874101A4 (en) * 2005-04-19 2009-11-04 Denki Kagaku Kogyo Kk PCB WITH METAL BASE, LED AND LED LIGHT SOURCE UNIT
KR101502653B1 (ko) * 2008-09-26 2015-03-13 스미토모 베이클라이트 가부시키가이샤 적층판, 회로판 및 반도체 장치
US8314487B2 (en) * 2009-12-18 2012-11-20 Infineon Technologies Ag Flange for semiconductor die
GB201102672D0 (en) * 2011-02-15 2011-03-30 Zephyros Inc Improved structural adhesives
CN102304273B (zh) * 2011-04-03 2013-06-12 广东生益科技股份有限公司 热固性环氧树脂组合物及使用其制作的环氧玻纤布基覆铜板
CN102585531A (zh) * 2011-12-14 2012-07-18 东北林业大学 一种木质素-环氧树脂复合材料及其制备方法
JP5774505B2 (ja) * 2012-01-17 2015-09-09 Jx日鉱日石金属株式会社 銅−ポリイミド積層体、立体成型体、及び立体成型体の製造方法
CN103013045B (zh) * 2012-12-13 2015-07-08 东莞市海旭新材料技术有限公司 一种环氧代木的制备方法
JP6225643B2 (ja) * 2013-10-31 2017-11-08 味の素株式会社 積層板の製造方法
KR101987305B1 (ko) * 2013-11-19 2019-06-10 삼성전기주식회사 인쇄회로기판용 절연 수지 조성물 및 이를 이용한 제품
JP6269294B2 (ja) * 2014-04-24 2018-01-31 味の素株式会社 プリント配線板の絶縁層用樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360577A (zh) * 2012-03-29 2013-10-23 株式会社田村制作所 热固性树脂组合物、树脂膜、覆铜板及柔性印刷布线板
CN107206643A (zh) * 2014-09-23 2017-09-26 朗德万斯有限责任公司 用于形成电路板的方法
CN104725781A (zh) * 2015-03-11 2015-06-24 广东生益科技股份有限公司 一种树脂组合物以及使用它的预浸料和层压板
JP2016174051A (ja) * 2015-03-16 2016-09-29 日本メクトロン株式会社 フレキシブルプリント配線板

Also Published As

Publication number Publication date
TWI711354B (zh) 2020-11-21
TW201919451A (zh) 2019-05-16
CN109757023A (zh) 2019-05-14
CN109757023B (zh) 2022-04-26
KR102522754B1 (ko) 2023-04-17
KR20200053566A (ko) 2020-05-18

Similar Documents

Publication Publication Date Title
WO2019090917A1 (zh) 热固性树脂组合物及用其制备的可静态弯折的覆铜板、印刷线路板
KR101141902B1 (ko) 에폭시 수지 조성물, 프리프레그, 적층판, 다층 프린트 배선판, 반도체 장치, 절연 수지 시트, 다층 프린트 배선판의 제조 방법
JP4911795B2 (ja) 積層体の製造方法
KR101184139B1 (ko) 수지 조성물, 수지 부착 금속박, 기재 부착 절연시트 및다층 프린트 배선판
JPH11140281A (ja) 銅張積層板用樹脂組成物、樹脂付き銅箔、多層銅張り積層板および多層プリント配線板
JP2007087982A (ja) 樹脂組成物、基材付き絶縁シート、及び、多層プリント配線板
KR20080073788A (ko) 고속 및 고주파 인쇄 회로 기판용 라미네이트
JP5200386B2 (ja) 電子材料用接着剤シート
JP3821728B2 (ja) プリプレグ
JP6620457B2 (ja) 樹脂組成物
JPH115828A (ja) 銅張積層板用樹脂組成物、樹脂付き銅箔、多層銅張り積層板および多層プリント配線板
WO2019090918A1 (zh) 印刷线路板及其制作方法
WO2019090916A1 (zh) 可静态弯折的覆铜板及其制作方法和弯曲成型方法
JP2012019240A (ja) 樹脂組成物、基材付き絶縁シート、及び、多層プリント配線板
CN114901741B (zh) 热固性导热介电复合材料
JP2000301534A (ja) プリプレグ、金属張積層板及びこれらを用いた印刷配線板
KR20140146542A (ko) 부품 내장 배선 기판의 제조 방법, 및 반도체 장치
JP2005209489A (ja) 絶縁シート
JP2010087402A (ja) プリント配線板用多層基板の製造方法
JP2010129610A (ja) フレックスリジッドプリント配線板
JP2008111188A (ja) プリント配線板用の銅箔
JP2001152108A (ja) 絶縁接着フィルム及びそれを用いた多層プリント配線板並びにその製造方法
JP2015120890A (ja) 熱硬化性樹脂組成物
JPH11262974A (ja) 銅張積層板の製造方法及びこれを用いたプリント配線板、多層プリント配線板
JPH09260843A (ja) 内層回路入り多層銅張積層板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931332

Country of ref document: EP

Kind code of ref document: A1