WO2019088764A1 - 플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판 - Google Patents

플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판 Download PDF

Info

Publication number
WO2019088764A1
WO2019088764A1 PCT/KR2018/013263 KR2018013263W WO2019088764A1 WO 2019088764 A1 WO2019088764 A1 WO 2019088764A1 KR 2018013263 W KR2018013263 W KR 2018013263W WO 2019088764 A1 WO2019088764 A1 WO 2019088764A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
curable composition
plastic substrate
planar
curing
Prior art date
Application number
PCT/KR2018/013263
Other languages
English (en)
French (fr)
Inventor
김영석
김혜민
김부경
장영래
김영태
김지영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/757,914 priority Critical patent/US11648710B2/en
Priority to JP2020523770A priority patent/JP6976637B2/ja
Priority to CN201880069632.XA priority patent/CN111278634B/zh
Publication of WO2019088764A1 publication Critical patent/WO2019088764A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • B29C43/206Making multilayered articles by pressing the material between two preformed layers, e.g. deformable layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method of manufacturing a plastic substrate and a method of manufacturing a plastic substrate produced thereby.
  • a virtual reality device or an augmented reality device can form a diffracted light guide pattern on a lens such as a general eyeglass to make a desired image visible to a user.
  • a lens used for a virtual reality device or an augmented reality device uses a glass base material having a high refractive index.
  • the glass base material has an advantage of having a high refractive index and a light transmittance, but can damage the user ' , It is heavy and there is inconvenience to wear for a long time.
  • lens base materials having high light transmittance, high refractive index, and light weight, and relatively safe in breakage, so that they can be used for a virtual reality device or an augmented reality device.
  • Patent Document 1 Korean Published Patent Publication: KR 10-2015-0060562A
  • the present invention provides a method of manufacturing a plastic substrate. Specifically, the present invention provides a method of manufacturing a plastic substrate having excellent thickness uniformity.
  • One embodiment of the present invention is a method of manufacturing a semiconductor device comprising a planar lower substrate, a planar upper substrate, and a buffered spacer between the planar lower substrate and the planar upper substrate, the molding space being defined by the buffered spacer Preparing mold equipment;
  • One embodiment of the present invention provides a plastic substrate produced by the method for producing a plastic substrate.
  • a plastic substrate having excellent surface flatness and thickness uniformity can be produced.
  • a plastic substrate having excellent thickness uniformity and thickness flatness can be manufactured by a simple method.
  • FIG. 1 is a cross-sectional view showing a step of curing a curable composition according to an embodiment of the present invention.
  • a member when a member is located on another member, it includes not only the case where the member is in contact with the other member but also the case where another member exists between the two members.
  • step or " step of ⁇ " does not mean " step for.
  • the present inventors have found that when a curable composition is injected into a mold and then cured to produce a plastic substrate, it is peeled off from the mold substrate during curing due to curing shrinkage of the curable composition, so that a peeled trail remains on the surface of the plastic substrate to be produced,
  • the present inventors have recognized that there is a problem that they are greatly damaged and have come to develop the present invention.
  • One embodiment of the present invention is a method of manufacturing a semiconductor device comprising a planar lower substrate, a planar upper substrate, and a buffered spacer between the planar lower substrate and the planar upper substrate, the molding space being defined by the buffered spacer Preparing mold equipment;
  • the method of manufacturing a plastic substrate according to an embodiment of the present invention minimizes the phenomenon of peeling off the substrate of the mold equipment due to shrinkage during curing of the curable composition by using buffered spacers and is excellent in surface flatness and thickness uniformity There is an advantage that a plastic substrate can be manufactured.
  • the compressive stress of the buffered spacer satisfies the above-mentioned formula (1). Since the compressive stress of the buffered spacer has a difference of 5% or less of the sum of the load of the planar top substrate and the curing shrinkage force of the curable composition, the curing composition may have a compressive stress The flat top substrate is brought into close contact with the curable composition. Accordingly, the plastic substrate to be manufactured exhibits excellent surface flatness, and further, the thickness uniformity can be realized.
  • the compressive stress of the buffered spacer is smaller than ⁇ (the load of the plate-like upper substrate + the curing shrinkage force of the curable composition) X 0.95 ⁇ , the curing is completed before the equilibrium is reached, . If the compressive stress of the buffered spacer is larger than ⁇ (the load of the flat plate type upper substrate + the curing shrinkage force of the curable composition) X1 1.05 ⁇ , the shrinkage during curing may be uneven and the appearance of the plastic substrate may be poor .
  • Formula 1 can satisfy Formula 1-1, Formula 1-2, or Formula 1-3 below.
  • the compressive stress of the buffered spacer may have a difference of within 3%, within 2%, or within 1% of the sum of the load of the planar top substrate and the curing shrinkage force of the curable composition,
  • the plastic substrate exhibits a better surface flatness, and the thickness uniformity can be realized even better.
  • the unit of the load, the curing shrinkage force, and the compressive stress of the flat plate-like upper substrate may be kgf or N.
  • the buffered spacer serves to prevent the curable composition from peeling off from the planar top substrate upon shrinkage of the curable composition due to curing.
  • the buffered spacer has a compressive stress in consideration of the degree of shrinkage of the curable composition as it is cured and the load of the flat plate-type upper substrate. Therefore, And the curable composition may be compressed to maintain the closely adhered state of the curable composition and the flat top substrate in the step of curing the curable composition.
  • the load of the planar top substrate may be 3.4 N or more and 34 N or less.
  • the load of the flat plate-like upper substrate may be 5.9 N or more and 27 N or less.
  • the curing shrinkage force of the curable composition can be measured by the following method. Specifically, a certain amount of the curable composition is applied onto the lower jig by using a TA's Texure Analyzer at 25 ° C and 50 RH% atmosphere, and the upper jig is lowered to contact with the curable composition to record the initial value of the force. Then, the temperature is raised to 90 DEG C and held for 5 hours, and the final value of the force is recorded, and the value obtained by the difference between the final value of the force and the initial value can be measured.
  • the compressive stress of the buffered spacer was measured at a compression rate of 1 mm / min at a specimen area of 5 mm 5 mm 2 using a TA Textile Analyzer at 25 ° C. and 50 RH% Initial thickness - thickness after deformation) / initial thickness).
  • the molding space may be an empty space formed between the planar lower substrate and the planar upper substrate, the space being partitioned by the buffer spacer.
  • the step of buffering the curable composition means injecting the curable composition into the molding space to sufficiently fill the curable composition so that the curable composition closely contacts the flat substrate and the flat substrate can do.
  • the step of buffering the curable composition may mean that the curable composition is injected into the molding space in an amount of 95 vol% or more, 97 vol% or more, 99 vol% or more, preferably 100 vol%.
  • the step of buffering the curable composition comprises the steps of injecting the curable composition into a molding space of a flat-type lower substrate provided with the buffered spacer and laminating the flat-type upper substrate or And a method of injecting the curable composition by providing an injection port in the mold equipment.
  • FIG. 1 shows a cross-section in the step of curing the curable composition. More specifically, FIG. 1 shows a state in which the curable composition 300 is injected into a molding space of a molding equipment including buffered spacers 201 and 202 provided between the plate-like lower substrate 101 and the plate- Lt; / RTI > Thus, after the curable composition is buffered, a plastic substrate can be produced by photocuring and / or thermosetting.
  • the heating rate of the curable composition upon heat treatment may be 2 ° C / min or less.
  • the temperature raising rate may be 1 ⁇ ⁇ / min or less.
  • the final temperature during the thermal curing may be 85 ° C or more and 100 ° C or less, and the isothermal holding period may be three or more times at a temperature lower than the final temperature before reaching the final temperature, So that the deviation between the positions of the columns can be minimized.
  • the temperature difference between the isothermal holding intervals may be 10 ° C or more and 20 ° C or less, and the holding time of the isothermal holding interval may be 1 hour or more and 5 hours or less, respectively.
  • the curable composition is allowed to stand at room temperature (25 ° C) for 2 hours, it is thermally cured at 45 ° C for 2 hours, at 60 ° C for 2 hours, at 75 ° C for 2 hours, Can be manufactured.
  • the flexural modulus of the planar lower substrate and the planar upper substrate may be 3 GPa or more, respectively.
  • the flexural modulus of the planar bottom substrate and the planar top substrate may be 10 GPa or more, 20 GPa or more, 40 GPa or more, respectively.
  • the flexural modulus of the flat bottom substrate and the flat top substrate is within the above range, the bowing phenomenon of the flat top substrate can be minimized, so that the thickness uniformity of the manufactured plastic substrate can be greatly increased There are advantages.
  • the surface flatness of the planar lower substrate and the planar upper substrate may be 5 ⁇ or less, respectively.
  • the surface flatness of the planar lower substrate and the planar upper substrate may be 2 ⁇ ⁇ or less, or 1 ⁇ ⁇ or less, respectively.
  • the surface flatness of the planar lower substrate and the planar upper substrate is within the above range, the surface flatness of the plastic substrate to be manufactured can be significantly improved as compared with a general plastic substrate.
  • the surface flatness can be measured by measuring the ASI (aspheric stitching interferometry) equipment of QED Co., Ltd. at 25 ⁇ and 50 RH%, one point per 0.16 ⁇ 0.16 mm2 in the region of 200 mm diameter, Using a shape measuring instrument, this could mean the difference between the highest and lowest values of the height measured at 5 mm and 11.25 degrees of radius in relation to any origin in the 200 mm diameter region.
  • ASI aspheric stitching interferometry
  • the compression modulus of the buffered spacer may be 0.1 MPa or more and 10 MPa or less.
  • the compressive elastic modulus of the buffered spacer may be 0.1 MPa or more and 5 MPa or less, 0.1 MPa or more and 3 MPa or less, or 0.1 MPa or more and 2 MPa or less.
  • the uniformity of the thickness of the plastic substrate can be increased by transmitting a load to the curable composition uniformly when the flat top substrate is contacted.
  • the compressive elastic modulus of the buffered spacer is measured using a TA Textile Analyzer in an atmosphere of 25 ⁇ and 50 RH%, and the compressive elastic modulus of the compressive elastic modulus measured at a compression rate of 1 mm / min (Initial thickness - thickness after deformation) / initial thickness) of the specimen.
  • the compressive elastic modulus of the buffered spacer in the case where the buffered spacer is composed of two or more different layers can be measured by measuring the compressive elastic modulus of the specimen with a force of 1 mm / (Initial thickness - thickness after deformation) / initial thickness).
  • the buffered spacer may be a structure in which a non-elastic layer and an elastic layer are laminated, a structure in which an elastic layer is provided between non-elastic layers, or a structure in which an inelastic layer is provided between elastic layers.
  • the compressive elastic modulus of the buffered spacer is And may be a compressive elastic modulus of the elastic layer.
  • the buffered spacer can be designed in consideration of the degree of shrinkage of the curable composition, it can serve as a support for the non-elastic layer and can control the height change due to shrinkage of the curable composition with the elastic layer have.
  • the curing shrinkage of the curable composition may be 15% or less.
  • the curing shrinkage percentage of the curable composition may be 1% or more and 15% or less, 1% or more and 12% or less, or 1% or more and 10% or less.
  • the curing shrinkage ratio of the curable composition can be derived as shown in the following general formula (1).
  • Cure shrinkage (%) ⁇ (volume before curing - volume after full curing) / volume before curing ⁇ X 100.
  • the thickness of the plastic substrate is 400 ⁇ m or more and 2,000 ⁇ m or less, and the thickness variation of the plastic substrate may be within 1%.
  • the plastic substrate manufactured according to one embodiment of the present invention can have a thickness uniformity of 1% or less and a very good thickness uniformity.
  • the thickness of the plastic substrate may be controlled according to the distance between the flat plate-like lower substrate and the flat plate-like upper substrate and the hardening shrinkage percentage of the hardening composition. Further, the thickness of the plastic substrate may be adjusted within the above range depending on the use of the plastic substrate.
  • the thickness deviation of the plastic substrate can be derived as shown in the following general formula (2).
  • Thickness deviation (%) (maximum deviation / average thickness) ⁇ 100
  • the thickness of the member can be measured by using a contact type measurement method using a Digimatic Thick 547-401 equipment of Mitsutoyo at 25 ⁇ and 50 RH% atmosphere. Also, in the present specification, the thickness of a member can be measured by using a non-contact type measurement method using IFS-2405-1 or IFC-2451-MP equipment of Micro-Epsilon at 25 ⁇ and 50 RH% have.
  • the average thickness of the members is measured by using a contact-type measurement method using a Digitsick Thick 547-401 instrument manufactured by Mitsutoyo Co., Ltd. at 25 ° C and 50 RH% atmosphere, Mm and an interval of 22.5 degrees.
  • the average thickness of the members is measured by using a non-contact type measurement method using an OWTM (Optical Wavelength Thickness Measurement system) equipment of FiberPro at 25 ⁇ and 50 RH% atmosphere, And may be an average value of the thickness measured at an interval of 1 mm with respect to each of the horizontal and vertical directions as the origin.
  • OWTM Optical Wavelength Thickness Measurement system
  • the curable composition may be a photo-curable composition or a thermosetting composition.
  • the curable composition may be a thermosetting composition.
  • the planar lower substrate and the planar upper substrate may each be a transparent substrate.
  • the planar lower substrate and the planar upper substrate may each be an organic substrate, which can effectively perform photo-curing of the curable composition by an excellent translucency.
  • One embodiment of the present invention includes a step of removing the planar top substrate and the planar bottom substrate to obtain a plastic substrate. Removing the planar top substrate and the planar bottom substrate means separating the planar top substrate and the planar bottom substrate from the plastic substrate which is a cured product of the curable composition after the curing of the curable composition is completed can do.
  • the surfaces of the planar lower substrate and the planar upper substrate may be surface treated with a release agent.
  • the release agent may be applied without limitation as long as it is commonly used in the art.
  • the surface treated with the above releasing agent may be a surface-coated with a fluorine-based silane coupling agent.
  • the step of obtaining the plastic substrate it is possible to minimize the damage to the surface of the plastic substrate and to remove the planar lower substrate and the planar upper substrate when the surface is coated using the releasing agent.
  • the curable composition can be applied without limitation as long as it is for producing a plastic substrate.
  • the curable composition can be applied without limitation as long as it can produce a plastic substrate using mold casting.
  • One embodiment of the present invention provides a plastic substrate produced by the method for producing a plastic substrate.
  • the plastic substrate can satisfy the following physical properties.
  • the plastic substrate may have a refractive index of 1.65 or more at a wavelength of 532 nm.
  • the refractive index of light is 1.65 or more at a wavelength of 532 nm.
  • the plastic substrate according to an embodiment of the present invention is a plastic material, since it can realize a light refraction index equivalent to that of a glass substrate, it can be replaced with a glass substrate.
  • the glass transition temperature of the plastic substrate may be 40 ° C or higher.
  • the plastic substrate according to one embodiment of the present invention can realize a glass transition temperature of 40 ° C or higher, so that even when used as a lens substrate of a wearable device, a change in physical properties according to temperature can be minimized.
  • the plastic substrate may be for a diffractive light guiding lens substrate of a wearable device.
  • An embodiment of the present invention provides a wearable device including the plastic substrate.
  • the wearable device may be an augmented reality device or a virtual reality device.
  • the plastic substrate may be included as a lens substrate of the wearable device, and the plastic substrate may include a diffracted light-guiding pattern portion on one surface, and may be applied as a substrate for inputting, moving, and transmitting inputted optical information.
  • the plastic substrate according to one embodiment of the present invention has a high optical refractive index, when used as a lens substrate of a wearable device, optical loss can be minimized and optical information can be moved. Furthermore, since the plastic substrate has a high glass transition temperature, it is possible to minimize the change in physical properties due to the heat generated by the operation of the wearable device, thereby realizing high durability.
  • the curing shrinkage force of the curable composition thus prepared was measured by the aforementioned method of measuring the curing shrinkage force and found to be 2.00 ⁇ 10 -4 N / mm3.
  • a glass substrate having a flexural modulus of 70 GPa, a surface flatness of 0.5 ⁇ ⁇ , a thickness of 30 mm and a diameter of 200 mm was used as the lower substrate, and a compression modulus of 1.0 MPa, a height of 427 ⁇ ⁇ and a cross section of 10 ⁇ ⁇ 10 mm2
  • a buffering spacer made of a silicon material was provided at an interval of 120 DEG to contact with the circumference of the lower substrate to form a molding space and then the curable composition prepared according to the preparation example was injected into a molding space, The curable composition was buffered in the molding space using a glass substrate having a pressure of 70 GPa, a load of 8.2 N, a diameter of 200 mm and a surface flatness of 0.5 ⁇ ⁇ .
  • the curable composition was placed in a convection oven of JITO TECH, left at room temperature for 2 hours, set at a heating rate of 1 DEG C / min, and then heated at 45 DEG C for 2 hours, at 60 DEG C for 2 hours, And thermally cured at 90 DEG C for 4 hours to prepare a plastic substrate.
  • a plastic substrate was prepared in the same manner as in Example 1, except that the height of the spacer was adjusted to 1,007 ⁇ m.
  • the structure of the spacer was changed to the structure of the elastic layer (430 ⁇ m) / the non-elastic layer (500 ⁇ m) by using a silicone elastic layer having a compressive elastic modulus of 1.0 MPa and a non-elastic layer of glass having a compressive elastic modulus of 70 MPa.
  • a plastic substrate was prepared in the same manner as in Example 1 except that
  • a plastic substrate was prepared in the same manner as in Example 1, except that a polycarbonate spacer having a compression modulus of 2 GPa and a height of 502 ⁇ was used.
  • the structure of the spacer was formed into a structure of an elastic layer (160 ⁇ ⁇ ) / inelastic layer (829 ⁇ ⁇ ) using an ultraviolet crosslinked polyolefin-based elastic layer having a compressive modulus of elasticity of 0.16 MPa and an inelastic layer of glass having a compressive elastic modulus of 70 GPa
  • a plastic substrate was prepared in the same manner as in Example 1,
  • a plastic substrate was prepared in the same manner as in Example 2, except that the thermal curing conditions were changed to a temperature raising rate of 3 ⁇ ⁇ / min and a temperature of 60 ⁇ ⁇ for 2 hours and 90 ⁇ ⁇ for 4 hours.
  • the appearance of the plastic substrate shown in Table 1 was judged by whether or not there was a spalling phenomenon of the plastic substrate with the naked eye. It was evaluated as good when the malignant phenomenon was not found by the naked eye and bad when the malignant phenomenon was found with the naked eye.
  • the plastic substrate manufactured according to the embodiment exhibits a very low thickness deviation and thus has a high thickness uniformity.
  • Comparative Examples 1 and 2 since the compressive stress of the spacer is too high, the adhesive force with the upper substrate can not be maintained during shrinkage due to curing of the curable composition as in the embodiment, It can be confirmed that the thickness uniformity is obtained. Furthermore, the plastic substrate produced according to Comparative Examples 1 and 2 was separated from the upper substrate during curing, and the appearance of the plastic substrate was poor. In the case of Comparative Example 3, the compressive stress of the spacer was low, indicating that the thickness deviation was very poor.
  • the method of manufacturing a plastic substrate according to the present invention can realize a plastic substrate having excellent thickness uniformity and excellent appearance characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

본 명세서는 두께 균일도가 우수한 플라스틱 기판의 제조방법 및 이에 의하여 제조된 두께 균일도가 우수한 플라스틱 기판에 관한 것이다.

Description

플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판
본 명세서는 2017년 11월 3일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0145903호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다. 본 발명은 플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판의 제조방법에 관한 것이다.
최근 가상 현실 디바이스(Virtual Reality Device) 및 증강 현실 디바이스(Augmented Reality Device) 등을 이용하여, 사용자에게 3차원의 화상을 제공하는 장치의 개발이 이루어지고 있다.
가상 현실 디바이스 또는 증강 현실 디바이스는 일반적인 안경과 같은 렌즈에 회절 도광 패턴을 형성하여 원하는 이미지를 사용자에게 보이도록 할 수 있다. 일반적으로, 가상 현실 디바이스 또는 증강 현실 디바이스 용도의 렌즈는 굴절율이 높은 유리 기재를 사용하게 되는데, 유리 기재는 높은 굴절율 및 광투과도를 가지는 장점이 있으나, 파손 시 사용자의 안구에 치명적인 손상을 가할 수 있고, 무게가 무거워 장시간 착용에 불편함이 존재한다.
이에 따라, 가상 현실 디바이스 또는 증강 현실 디바이스 용도로 사용할 수 있도록, 높은 광투과도, 높은 굴절율을 가지며, 나아가 가볍고 파손 시 상대적으로 안전한 렌즈 기재에 대한 연구가 필요하다.
유리 기재를 대체하기 위한 플라스틱 기재의 경우, 표면 평탄도 및 두께 균일도와 같은 물성이 기존의 유리 기재에 크게 미치지 못하는 문제점이 있으므로, 이의 개선을 위한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개공보: KR 10-2015-0060562A
본 발명은 플라스틱 기판의 제조방법을 제공한다. 구체적으로, 본 발명은 두께 균일도가 우수한 플라스틱 기판의 제조방법을 제공한다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는, 평판형 하부 기판, 평판형 상부 기판, 및 상기 평판형 하부 기판과 상기 평판형 상부 기판 사이에 완충형 스페이서를 포함하고, 상기 완충형 스페이서에 의하여 몰딩 공간이 구획되는 몰드 장비를 준비하는 단계;
상기 몰딩 공간에 경화성 조성물을 완충하는 단계;
상기 평판형 상부 기판의 하중으로 상기 경화성 조성물을 압축하며, 상기 경화성 조성물을 경화하는 단계; 및
상기 평판형 상부 기판 및 상기 평판형 하부 기판을 제거하여 플라스틱 기판을 수득하는 단계;를 포함하고,
상기 경화성 조성물을 경화하는 단계는 하기 식 1을 만족하는 것인 플라스틱 기판의 제조방법을 제공한다.
[식 1]
{(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.95} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.05}
본 발명의 일 실시상태는, 상기 플라스틱 기판의 제조방법에 의하여 제조된 플라스틱 기판을 제공한다.
본 발명의 일 실시상태에 따른 플라스틱 기판의 제조방법에 따르면, 표면 평탄도 및 두께 균일도가 우수한 플라스틱 기판을 제조할 수 있다.
본 발명의 일 실시상태에 따른 플라스틱 기판의 제조방법에 따르면, 간단한 방법으로 우수한 두께 균일도 및 두께 평탄도를 가지는 플라스틱 기판을 제조할 수 있다.
도 1은 본 발명의 일 실시상태에 따른 경화성 조성물을 경화하는 단계에서의 단면을 도시한 것이다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서, 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본 발명자들은 경화성 조성물을 몰드에 주입한 후 경화하여 플라스틱 기판을 제조하는 경우, 경화성 조성물의 경화 수축에 의하여 경화 도중 몰드 기판에서 박리되어, 제조되는 플라스틱 기판의 표면에 박리 자국이 남고, 두께 균일도가 크게 훼손되는 문제점이 있음을 인식하고, 본 발명을 개발하기에 이르렀다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 평판형 하부 기판, 평판형 상부 기판, 및 상기 평판형 하부 기판과 상기 평판형 상부 기판 사이에 완충형 스페이서를 포함하고, 상기 완충형 스페이서에 의하여 몰딩 공간이 구획되는 몰드 장비를 준비하는 단계;
상기 몰딩 공간에 경화성 조성물을 완충하는 단계;
상기 평판형 상부 기판의 하중으로 상기 경화성 조성물을 압축하며, 상기 경화성 조성물을 경화하는 단계; 및
상기 평판형 상부 기판 및 상기 평판형 하부 기판을 제거하여 플라스틱 기판을 수득하는 단계;를 포함하고,
상기 경화성 조성물을 경화하는 단계는 하기 식 1을 만족하는 것인 플라스틱 기판의 제조방법을 제공한다.
[식 1]
{(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.95} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.05}
본 발명의 일 실시상태에 따른 플라스틱 기판의 제조방법은 완충형 스페이서를 이용하여, 경화성 조성물의 경화시 수축에 따른 몰드 장비의 기판에서 박리되는 현상을 최소화하여, 표면 평탄도 및 두께 균일도가 매우 우수한 플라스틱 기판을 제조할 수 있는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 완충형 스페이서의 압축 응력은 상기 식 1을 만족한다. 상기 완충형 스페이서의 압축 응력은 상기 평판형 상부 기판의 하중과 상기 경화성 조성물의 경화 수축력의 합의 5 % 이내의 차이를 가지고 있으므로, 상기 경화성 조성물을 경화하는 단계에서 상기 경화성 조성물의 경화시 수축에 따라 상기 평판형 상부 기판이 상기 경화성 조성물에 밀착되게 된다. 이에 따라, 제조되는 플라스틱 기판은 우수한 표면 평탄도를 나타내게 되며, 나아가, 두께 균일도도 우수하게 구현될 수 있다. 한편, 상기 완충형 스페이서의 압축 응력이 {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.95} 보다 작은 경우, 평형이 도달하기 전에 경화가 완료되어 플라스틱 기판 두께의 불균일이 발생할 수 있다. 그리고, 상기 완충형 스페이서의 압축 응력이 {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.05} 보다 큰 경우, 경화시 수축의 불균일이 발생하여 플라스틱 기판의 외관 특성이 불량할 수 있다.
구체적으로, 본 발명의 일 실시상태에 따르면, 상기 식 1은 하기 식 1-1, 식 1-2, 또는 식 1-3을 만족할 수 있다.
[식 1-1]
{(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.97} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.03}
[식 1-2]
{(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.98} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.02}
[식 1-3]
{(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.99} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.01}
구체적으로, 상기 완충형 스페이서의 압축 응력은 상기 평판형 상부 기판의 하중과 상기 경화성 조성물의 경화 수축력의 합의 3 % 이내, 2 % 이내, 또는 1 % 이내의 차이를 가질 수 있으며, 이에 따라 제조되는 플라스틱 기판은 보다 우수한 표면 평탄도를 나타내게 되며, 두께 균일도도 보다 우수하게 구현될 수 있다.
본 발명에 있어서, 상기 평판형 상부 기판의 하중, 상기 경화 수축력 및 상기 압축 응력의 단위는 kgf 또는 N일 수 있다.
상기 완충형 스페이서는 상기 경화성 조성물의 경화에 따른 수축에 따라 상기 경화성 조성물이 상기 평판형 상부 기판과 박리되는 것을 방지하도록 하는 역할을 한다. 구체적으로, 상기 완충형 스페이서는 상기 경화성 조성물이 경화됨에 따라 수축하는 정도 및 상기 평판형 상부 기판의 하중을 고려한 압축 응력을 가지므로, 상기 경화성 조성물의 수축에 따라 상기 평판형 상부 기판의 하중에 의해 압축되어, 상기 경화성 조성물을 경화하는 단계에서 상기 경화성 조성물과 상기 평판형 상부 기판이 밀착된 상태를 유지하도록 하는 역할을 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 평판형 상부 기판의 하중은 3.4 N 이상 34 N 이하일 수 있다. 구체적으로, 상기 평판형 상부 기판의 하중은 5.9 N 이상 27 N 이하일 수 있다.
상기 평판형 상부 기판의 하중이 상기 범위 내인 경우, 상기 경화성 조성물의 경화시 경화 수축에 의한 변형을 최소화할 수 있다. 또한, 상기 평판형 상부 기판의 하중이 상기 범위 내인 경우, 상기 경화성 조성물의 광경화시 투과율 저하를 최소화할 수 있고, 또한 상기 경화성 조성물의 열경화시 반응열의 배출 불균일을 최소화하여, 상기 경화성 조성물의 균일한 경화를 유도할 수 있다.
본 명세서에 있어서, 경화성 조성물의 경화 수축력은 하기와 같은 방법으로 측정될 수 있다. 구체적으로, 25 ℃ 및 50 RH% 분위기에서 TA 사의 Texure Analyzer 장비를 사용하여, 하부 지그 위에 일정량의 경화성 조성물을 도포 후 상부 지그를 하강하여 경화성 조성물과 접촉시켜 힘의 초기값을 기록한다. 그리고, 온도를 90 ℃로 상승시켜 5시간 유지한 후 힘의 최종값을 기록하여 힘의 최종값과 초기값 간의 차이로 얻어진 값으로 측정될 수 있다.
본 명세서에 있어서, 완충형 스페이서의 압축 응력은 25 ℃ 및 50 RH% 분위기에서, TA 사의 Texture Analyzer를 사용하여 시편 면적 5 Х 5 ㎟, 압축 속도 1 mm/min으로 압축 시, 시편의 변형((초기 두께-변형 후 두께)/초기 두께)에 도달하는 순간의 힘의 측정값일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 몰딩 공간은 상기 완충형 스페이서에 의하여 구획되는, 상기 평판형 하부 기판과 상기 평판형 상부 기판 사이에 구비되는 빈 공간을 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 경화성 조성물을 완충하는 단계는 상기 몰딩 공간에 상기 경화성 조성물을 주입하여 상기 경화성 조성물이 상기 평판형 하부 기판과 상기 평판형 상부 기판과 밀착되도록 충분히 채워 넣는 것을 의미할 수 있다. 구체적으로, 상기 경화성 조성물을 완충하는 단계는 상기 몰딩 공간에 상기 경화성 조성물은 95 vol% 이상, 97 vol% 이상, 99 vol% 이상, 바람직하게는 100 vol%로 주입하는 것을 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 경화성 조성물을 완충하는 단계는 상기 완충형 스페이서가 구비된 평판형 하부 기판의 몰딩 공간에 상기 경화성 조성물을 주입하고, 상기 평판형 상부 기판을 적층하는 방법, 또는 상기 몰드 장비에 주입구를 구비하여 상기 경화성 조성물을 주입하는 방법 등 다양한 방법을 이용할 수 있다.
도 1은 상기 경화성 조성물을 경화하는 단계에서의 단면을 도시한 것이다. 구체적으로, 도 1은 평판형 하부 기판(101)과 평판형 상부 기판(102) 사이에 구비되는 완충형 스페이서(201, 202)를 포함하는 몰딩 장비의 몰딩 공간에 경화성 조성물(300)을 주입하여 완충된 것을 나타낸 것이다. 이와 같이, 경화성 조성물이 완충된 후, 광경화 및/또는 열경화를 하여 플라스틱 기판을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열경화를 하기 위하여 상기 경화성 조성물에 열처리 시 승온 속도는 2 ℃/min 이하일 수 있다. 구체적으로, 상기 승온 속도는 1 ℃/min 이하일 수 있다. 상기 승온 속도가 상기 범위 내인 경우, 상기 경화성 조성물에 전달되는 열의 위치 간 편차를 최소화하고 반응열의 배출 불균일을 최소화하여 상기 경화성 조성물의 균일한 경화를 유도할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열경화 시 최종 온도는 85 ℃ 이상 100 ℃ 이하일 수 있으며, 상기 최종 온도 도달 전 최종 온도보다 낮은 온도에서 등온 유지 구간을 세 번 이상 둠으로써 상기 경화성 조성물에 전달되는 열의 위치 간 편차를 최소화할 수 있다. 상기 등온 유지 구간 사이의 온도 차이는 10 ℃ 이상 20 ℃ 이하일 수 있으며, 상기 등온 유지 구간의 유지 시간은 각각 1 시간 이상 5 시간 이하일 수 있다. 예를 들어, 상기 경화성 조성물을 상온(25 ℃)에서 2 시간 방치 한 후, 45 ℃에서 2 시간, 60 ℃에서 2 시간, 75 ℃에서 2 시간, 90 ℃에서 4 시간 동안 열경화하여 플라스틱 기판을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 굴곡 탄성율은 각각 3 GPa 이상일 수 있다. 구체적으로, 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 굴곡 탄성율은 각각 10 GPa 이상, 20 GPa 이상, 40 GPa 이상일 수 있다.
상기 평판형 하부 기판 및 상기 평판형 상부 기판의 굴곡 탄성율이 상기 범위 내인 경우, 상기 평판형 상부 기판의 보잉(bowing) 현상을 최소화할 수 있으므로, 제조되는 플라스틱 기판의 두께 균일도를 크게 증가시킬 수 있는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면 평탄도는 각각 5 ㎛ 이하일 수 있다. 구체적으로, 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면 평탄도는 각각 2 ㎛ 이하, 또는 1 ㎛ 이하일 수 있다.
상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면 평탄도가 상기 범위 내인 경우, 제조되는 플라스틱 기판의 표면 평탄도도 일반적인 플라스틱 기판보다 매우 향상될 수 있다.
본 명세서에 있어서, 상기 표면 평탄도는 25 ℃ 및 50 RH% 분위기에서, QED 사의 ASI(aspheric stitching interferometry) 장비로 지름 200 ㎜ 영역에서 0.16 Х 0.16 ㎟ 당 한 점을 측정하거나, 또는 덕인 사의 3차원 형상 측정기 장비를 사용하여, 지름 200 ㎜ 영역에서 임의의 원점을 기준으로 반지름 5 ㎜ 및 11.25 도 간격으로 측정된 높이의 최고값과 최저값 간의 차이를 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 완충형 스페이서의 압축 탄성 계수는 0.1 MPa 이상 10 MPa 이하일 수 있다. 구체적으로, 상기 완충형 스페이서의 압축 탄성 계수는 0.1 MPa 이상 5 MPa 이하, 0.1 MPa 이상 3 MPa 이하, 또는 0.1 MPa 이상 2 MPa 이하일 수 있다.
상기 완충형 스페이서의 압축 탄성 계수가 상기 범위 내인 경우, 상기 평판형 상부 기판의 접촉시 균일하게 상기 경화성 조성물에 하중을 전달하여, 상기 플라스틱 기판의 두께 균일도를 높일 수 있다.
본 발명에 있어서, 완충형 스페이서의 압축 탄성 계수는 25 ℃ 및 50 RH%의 분위기에서, TA 사의 Texture Analyzer를 사용하여 시편 면적 5 Х 5 ㎟, 압축 속도 1 mm/min으로 압축 시 측정되는 힘의 시편 변형 ((초기 두께-변형 후 두께)/초기 두께)에 대한 기울기를 의미할 수 있다. 또한, 완충형 스페이서가 2 이상의 상이한 층으로 구성되는 경우의 완충형 스페이서의 압축 탄성 계수는, 적층된 시편을 면적 5 Х 5 ㎟로 준비하여 압축 속도 1 mm/min으로 압축 시 측정되는 힘의 시편 변형 ((초기 두께-변형 후 두께)/초기 두께)에 대한 기울기를 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 완충형 스페이서는 비탄성층과 탄성층이 적층된 구조, 비탄성층 사이에 탄성층이 구비된 구조, 또는 탄성층 사이에 비탄성층이 구비된 구조일 수 있다. 한편, 상기 완충형 스페이서가 비탄성층과 탄성층이 적층된 구조, 비탄성층 사이에 탄성층이 구비된 구조, 또는 탄성층 사이에 비탄성층이 구비된 구조인 경우 상기 완충형 스페이서의 압축 탄성 계수는 탄성층의 압축 탄성 계수를 의미하는 것일 수 있다.
상기 완충형 스페이서는 상기 경화성 조성물의 수축 정도를 고려하여 설계될 수 있으므로, 상기 비탄성층으로 지지 역할을 수행하고, 상기 탄성층으로 상기 경화성 조성물의 수축에 따른 높이 변화를 조절하는 역할을 수행할 수 있다.
본 발명의 일 실시상태예 따르면, 상기 경화성 조성물의 경화 수축률은 15 % 이하일 수 있다. 구체적으로, 상기 경화성 조성물의 경화 수축률은 1 % 이상 15 % 이하, 1 % 이상 12 % 이하, 또는 1 % 이상 10 % 이하일 수 있다.
상기 경화성 조성물의 경화 수축률은 하기 일반식 1과 같이 도출될 수 있다.
[일반식 1]
경화 수축률(%) = {(경화 전 부피 - 완전 경화 후 부피) / 경화 전 부피} Х 100.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 기판의 두께는 400 ㎛ 이상 2,000 ㎛ 이하이고, 상기 플라스틱 기판의 두께 편차는 1 % 이내일 수 있다.
구체적으로, 상기 플라스틱 기판의 두께 편차 값이 낮을수록 상기 플라스틱 기판의 두께 균일도는 높을 수 있다. 즉, 본 발명의 일 실시상태에 따라 제조되는 플라스틱 기판은 두께 편차가 1 % 이내로서 매우 우수한 두께 균일도를 가질 수 있다.
상기 플라스틱 기판의 두께는 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 이격 거리 및 상기 경화성 조성물의 경화 수축률에 따라 조절될 수 있다. 나아가, 상기 플라스틱 기판의 용도에 따라 상기 범위 내에서 상기 플라스틱 기판의 두께를 조절할 수 있다.
또한, 상기 플라스틱 기판의 두께 편차는 하기 일반식 2와 같이 도출될 수 있다.
[일반식 2]
두께 편차(%) = (최대 편차/평균 두께) Х 100
본 명세서에서, 부재의 두께는 25 ℃ 및 50 RH% 분위기에서, Mitsutoyo사의 Digimatic Thick 547-401 장비를 이용한 접촉식 측정방법을 이용하여, 최대 두께 또는 최소 두께를 측정할 수 있다. 또한, 본 명세서에서, 부재의 두께는 25 ℃ 및 50 RH%에서 Micro-Epsilon 사의 IFS-2405-1 또는 IFC-2451-MP 장비를 이용한 비접촉식 측정 방법을 이용하여 최대 두께 또는 최소 두께를 측정할 수 있다.
본 명세서에서, 부재의 평균 두께는 25 ℃ 및 50 RH% 분위기에서, Mitsutoyo사의 Digimatic Thick 547-401 장비를 이용한 접촉식 측정방법을 이용하여, 임의로 배치된 시편의 임의의 점을 원점으로, 반지름 10 ㎜ 및 22.5 도의 간격으로 측정된 두께의 평균값일 수 있다. 또한, 본 명세서에서, 부재의 평균 두께는 25 ℃ 및 50 RH% 분위기에서, 파이버프로 사의 OWTM(Optical Waper Thickness Measurement system) 장비를 이용한 비접촉식 측정방법을 이용하여, 임의로 배치된 시편의 임의의 점을 원점으로, 가로 및 세로 각각에 대하여 1 mm 간격으로 측정된 두께의 평균값일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 경화성 조성물은 광경화성 조성물 또는 열경화성 조성물일 수 있다. 구체적으로, 상기 경화성 조성물은 열경화성 조성물일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 평판형 하부 기판 및 상기 평판형 상부 기판은 각각 투명 기판일 수 있다. 구체적으로, 상기 평판형 하부 기판 및 상기 평판형 상부 기판은 각각 유기 기판일 수 있으며, 이는 우수한 투광성에 의하여 효과적으로 상기 경화성 조성물의 광경화를 수행할 수 있다.
본 발명의 일 실시상태는, 상기 평판형 상부 기판 및 상기 평판형 하부 기판을 제거하여 플라스틱 기판을 수득하는 단계를 포함한다. 상기 평판형 상부 기판 및 상기 평판형 하부 기판을 제거하는 것은, 상기 경화성 조성물의 경화가 완료된 이후, 상기 평판형 상부 기판과 상기 평판형 하부 기판을 상기 경화성 조성물의 경화물인 플라스틱 기판에서 분리하는 것을 의미할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면은 각각 이형제로 표면 처리된 것일 수 있다. 상기 이형제는 당업계에서 일반적으로 사용되는 것이라면 제한 없이 적용할 수 있다. 일 예로 상기 이형제로 표면 처리한 것은 불소계 실란 커플링제를 이용하여 표면 코팅된 것일 수 있다.
상기 이형제를 이용하여 표면 코팅된 경우, 상기 플라스틱 기판을 수득하는 단계에서, 상기 플라스틱 기판의 표면에 손상을 최소화하며 상기 평판형 하부 기판 및 상기 평판형 상부 기판을 제거할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 경화성 조성물은 플라스틱 기판을 제조하기 위한 것이라면 제한 없이 적용할 수 있다. 구체적으로, 상기 경화성 조성물은 몰드 캐스팅을 이용하여 플라스틱 기판을 제조할 수 있는 것이라면 제한 없이 적용될 수 있다.
본 발명의 일 실시상태는, 상기 플라스틱 기판의 제조방법에 의하여 제조된 플라스틱 기판을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 기판은 하기의 물성을 만족시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 기판의 532 ㎚ 파장에서의 광굴절율은 1.65 이상일 수 있다.
일반적인 유리 기재의 경우, 광굴절율이 532 ㎚ 파장에서 1.65 이상이다. 본 발명의 일 실시예에 따른 플라스틱 기판은 플라스틱 재질임에도 불구하고, 유리 기재와 동등한 수준의 광굴절율을 구현할 수 있으므로, 유리 기재를 대체할 수 있는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 기판의 유리전이온도는 40 ℃ 이상일 수 있다.
웨어러블 디바이스의 경우, 지속적인 영상의 전송 및 출력이 진행될 수 있으며, 이에 따라 렌즈 기재의 온도가 상승할 수 있다. 본 발명의 일 실시상태에 따른 플라스틱 기판은 유리전이온도가 40 ℃ 이상으로 구현할 수 있으므로, 웨어러블 디바이스의 렌즈 기재로 사용하더라도 온도에 따른 물성 변화를 최소화할 수 있는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 기판은 웨어러블 디바이스의 회절 도광 렌즈 기재용일 수 있다.
본 발명의 일 실시상태는, 상기 플라스틱 기판을 포함하는 웨어러블 디바이스를 제공한다. 구체적으로, 상기 웨어러블 디바이스는 증강현실 디바이스 또는 가상현실 디바이스일 수 있다. 상기 플라스틱 기판은 상기 웨어러블 디바이스의 렌즈 기재로 포함될 수 있으며, 상기 플라스틱 기판은 일면 상에 회절 도광 패턴부를 포함하여 입력된 광정보의 입력, 이동 및 송출을 하는 기재로서 적용될 수 있다.
본 발명의 일 실시상태에 따른 플라스틱 기판은 높은 광굴절율을 가지므로, 웨어러블 디바이스의 렌즈 기재로 사용되는 경우, 광손실을 최소화하며 광정보의 이동을 도모할 수 있다. 나아가, 상기 플라스틱 기판은 높은 유리전이온도를 가지므로, 웨어러블 디바이스의 작동에 따른 열에 의하여 물성의 변화를 최소화하여 높은 내구성을 구현할 수 있다.
[부호의 설명]
101: 평판형 하부 기판
102: 평판형 상부 기판
201, 202: 완충형 스페이서
300: 경화성 조성물
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
[ 제조예 ] - 경화성 조성물의 제조
비스(2,3-에피티오프로필)디설파이드(Bis(2,3-epithiopropyl)disulfide) 88.5 중량부, 2,2'-티오디에탄티올(2,2'-Thiodiethanethiol) 6.5 중량부, 이소포론 디이소시아네이트(Isophorone diisocyanate) 5.0 중량부 및 테트라부틸포스포늄 브로마이드(Tetrabutylphosphonium bromide) 0.07 중량부를 포함하는 경화성 조성물을 제조하였다.
제조된 경화성 조성물의 경화 수축력은, 전술한 경화 수축력의 측정방법으로 측정한 결과, 2.00 Х 10-4 N/㎣ 였다.
[ 실시예 1]
하부 기판으로서 굴곡 탄성률 70 GPa, 표면 평탄도가 0.5 ㎛, 두께가 30 ㎜, 지름이 200 ㎜인 유리 기판을 이용하고, 압축 탄성 계수가 1.0 MPa, 높이가 427 ㎛, 단면적이 10 Х 10 ㎟인 실리콘 재질의 완충형 스페이서를 상기 하부 기판의 원주에 접하도록 120° 간격으로 구비하여 몰딩 공간을 형성한 후, 상기 제조예에 따라 제조된 경화성 조성물을 몰딩 공간에 주입한 후, 상부 기판으로서 굴곡 탄성률 70 GPa, 하중이 8.2 N, 지름이 200 ㎜, 표면 평탄도가 0.5 ㎛인 유리 기판을 이용하여 상기 경화성 조성물을 몰딩 공간에 완충시켰다.
나아가, 상기 경화성 조성물을 제이오텍 사의 대류 오븐에 넣고, 상온에서 2 시간 방치 한 후, 승온 속도를 1 ℃/min으로 설정한 후 45 ℃에서 2 시간, 60 ℃에서 2 시간, 75 ℃에서 2 시간, 90 ℃에서 4 시간 동안 열경화하여 플라스틱 기판을 제조하였다.
[ 실시예 2]
스페이서의 높이를 1,007 ㎛로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 실시예 3]
압축 탄성계수가 0.16 MPa인 자외선 가교 폴리올레핀계 탄성층 및 압축 탄성계수가 70 GPa인 유리 재질의 비탄성층을 이용하여, 스페이서의 구조를 탄성층(171 ㎛)/비탄성층(829 ㎛) 의 구조로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 실시예 4]
압축 탄성계수가 0.16 MPa인 자외선 가교 폴리올레핀계 탄성층 및 압축 탄성계수가 70 GPa인 유리 재질의 비탄성층을 이용하여, 스페이서의 구조를 비탄성층(198 ㎛)/탄성층(164 ㎛)/비탄성층(198 ㎛)의 구조로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 실시예 5]
압축 탄성계수가 1.0 MPa인 실리콘 재질의 탄성층 및 압축 탄성계수가 70 MPa인 유리 재질의 비탄성층을 이용하여, 스페이서의 구조를 탄성층(430 ㎛)/비탄성층(500 ㎛) 의 구조로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 비교예 1]
압축 탄성계수가 2 GPa이고 높이 502 ㎛인 폴리카보네이트계 스페이서를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 비교예 2]
압축 탄성계수가 0.16 MPa인 자외선 가교 폴리올레핀계 탄성층 및 압축 탄성계수가 70 GPa인 유리 재질의 비탄성층을 이용하여, 스페이서의 구조를 탄성층(160 ㎛)/비탄성층(829 ㎛)의 구조로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 플라스틱 기판을 제조하였다.
[ 비교예 3]
열경화 조건을 승온 속도 3 ℃/min으로 설정하여 60 ℃에서 2 시간, 90 ℃에서 4 시간으로 변경한 것을 제외하고는 실시예 2와 동일한 방법으로 플라스틱 기판을 제조하였다.
실시예 1 내지 실시예 5 및 비교예 1 내지 비교예 3에 따른 구체적인 사항 및 제조된 플라스틱 기판의 물성은 하기 표 1과 같다.
스페이서의 압축 탄성계수(MPa) 스페이서의 높이(㎛) 스페이서의 압축 응력(N) 경화성 조성물의 수축력(N) 상부 기판의 하중(N) 플라스틱 기판의 지름(㎜) 플라스틱 기판의 두께(㎛) 두께 편차(%) 외관
탄성층 비탄성층 탄성층 비탄성층
실시예 1 1.0 - 427 - 9.84 1.46 8.2 150 413 0.4 양호
실시예 2 1.0 - 1,007 - 11.62 3.40 8.2 150 968 0.4 양호
실시예 3 0.16 70,000 171 829 11.51 3.40 8.2 150 959 0.2 양호
실시예 4 0.16 70,000/70,000 164 198/198 9.95 1.86 8.2 150 526 0.3 양호
실시예 5 1.0 70,000 430 500 11.86 3.24 8.2 150 913 0.2 양호
비교예 1 2,000 - 502 - 4,780.88 1.76 8.2 150 478 8.4 불량
비교예 2 0.16 70,000 160 829 20.10 3.18 8.2 150 922 4.5 불량
비교예 3 1.0 - 1,007 - 8.04 3.42 8.2 150 980 4.1 양호
상기 표 1의 플라스틱 기판의 외관에 대한 평가는 육안으로 플라스틱 기판의 맥리 현상이 있는지 여부로 판단하였다. 육안으로 맥리 현상이 발견되지 않는 경우 양호, 육안으로 맥리 현상이 발견되는 경우 불량으로 평가하였다.
나아가, 상기 표 1의 스페이서의 압축 탄성계수, 스페이서의 압축 응력, 경화성 조성물의 수축, 및 두께 편차 등은 전술한 바와 같이 측정하였다.
상기 표 1에 따르면, 실시예에 따라 제조된 플라스틱 기판은 매우 낮은 두께 편차를 나타내므로, 높은 두께 균일도를 가지는 것을 알 수 있다. 한편, 비교예 1 및 2의 경우, 스페이서의 압축 응력이 지나치게 높아, 실시예와 같이, 경화성 조성물의 경화에 따른 수축시 상부 기판과의 밀착력을 유지하지 못하여, 매우 불량한 두께 편차를 나타내므로, 낮은 두께 균일도를 가지는 것을 확인할 수 있다. 나아가, 비교예 1 및 2에 따라 제조된 플라스틱 기판은 경화 시 상부 기판과의 이격에 의하여 표면에 맥리 현상이 나타나 외관 특성도 불량한 것을 확인할 수 있다. 또한, 비교예 3의 경우, 스페이서의 압축 응력이 낮아, 매우 불량한 두께 편차를 나타내는 것을 확인 할 수 있다.
따라서, 본 발명에 따른 플라스틱 기판의 제조 방법은 두께 균일도가 우수하며 외관 특성이 우수한 플라스틱 기판을 구현할 수 있음을 알 수 있다.

Claims (10)

  1. 평판형 하부 기판, 평판형 상부 기판, 및 상기 평판형 하부 기판과 상기 평판형 상부 기판 사이에 완충형 스페이서를 포함하고, 상기 완충형 스페이서에 의하여 몰딩 공간이 구획되는 몰드 장비를 준비하는 단계;
    상기 몰딩 공간에 경화성 조성물을 완충하는 단계;
    상기 평판형 상부 기판의 하중으로 상기 경화성 조성물을 압축하며, 상기 경화성 조성물을 경화하는 단계; 및
    상기 평판형 상부 기판 및 상기 평판형 하부 기판을 제거하여 플라스틱 기판을 수득하는 단계;를 포함하고,
    상기 경화성 조성물을 경화하는 단계는 하기 식 1을 만족하는 것인 플라스틱 기판의 제조방법:
    [식 1]
    {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 0.95} ≤ 완충형 스페이서의 압축 응력 ≤ {(평판형 상부 기판의 하중 + 경화성 조성물의 경화 수축력) Х 1.05}.
  2. 청구항 1에 있어서,
    상기 평판형 하부 기판 및 상기 평판형 상부 기판의 굴곡 탄성율은 각각 3 GPa 이상인 것인 플라스틱 기판의 제조방법.
  3. 청구항 1에 있어서,
    상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면 평탄도는 각각 5 ㎛ 이하인 것인 플라스틱 기판의 제조방법.
  4. 청구항 1에 있어서,
    상기 완충형 스페이서의 압축 탄성 계수는 0.1 MPa 이상 10 MPa 이하인 것인 플라스틱 기판의 제조방법.
  5. 청구항 1에 있어서,
    상기 완충형 스페이서는 비탄성층과 탄성층이 적층된 구조, 비탄성층 사이에 탄성층이 구비된 구조, 또는 탄성층 사이에 비탄성층이 구비된 구조인 것인 플라스틱 기판의 제조방법.
  6. 청구항 1에 있어서,
    상기 경화성 조성물의 경화 수축률은 15 % 이하인 것인 플라스틱 기판의 제조방법.
  7. 청구항 1에 있어서,
    상기 플라스틱 기판의 두께는 400 ㎛ 이상 2,000 ㎛ 이하이고,
    상기 플라스틱 기판의 두께 편차는 1 % 이내인 것인 플라스틱 기판의 제조방법.
  8. 청구항 1에 있어서,
    상기 평판형 하부 기판 및 상기 평판형 상부 기판의 표면은 각각 이형제로 표면 처리된 것인 플라스틱 기판의 제조방법.
  9. 청구항 1에 따른 플라스틱 기판의 제조방법에 의하여 제조된 플라스틱 기판.
  10. 청구항 9에 있어서,
    상기 플라스틱 기판은 웨어러블 디바이스의 회절 도광 렌즈 기재용인 것인 플라스틱 기판.
PCT/KR2018/013263 2017-11-03 2018-11-02 플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판 WO2019088764A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/757,914 US11648710B2 (en) 2017-11-03 2018-11-02 Method of manufacturing plastic substrate and plastic substrate manufactured thereby
JP2020523770A JP6976637B2 (ja) 2017-11-03 2018-11-02 プラスチック基板の製造方法
CN201880069632.XA CN111278634B (zh) 2017-11-03 2018-11-02 制造塑料基板的方法和由此制造的塑料基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0145903 2017-11-03
KR20170145903 2017-11-03

Publications (1)

Publication Number Publication Date
WO2019088764A1 true WO2019088764A1 (ko) 2019-05-09

Family

ID=66332618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013263 WO2019088764A1 (ko) 2017-11-03 2018-11-02 플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판

Country Status (5)

Country Link
US (1) US11648710B2 (ko)
JP (1) JP6976637B2 (ko)
KR (1) KR102236737B1 (ko)
CN (1) CN111278634B (ko)
WO (1) WO2019088764A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220315707A1 (en) * 2019-08-14 2022-10-06 Lg Chem, Ltd. Diffraction light guide plate and manufacturing method thereof
CN116425660A (zh) * 2023-03-31 2023-07-14 益丰新材料股份有限公司 一种光学材料用组合物及光学材料制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186228A (ja) * 1993-12-27 1995-07-25 Canon Inc 射出成形品の変形量予測方法及びその装置
JP2009069553A (ja) * 2007-09-14 2009-04-02 Sun-Lux Optical Co Ltd プラスチックレンズの製造方法
JP2011255627A (ja) * 2010-06-11 2011-12-22 Maxell Sliontec Ltd プラスチックレンズ成型方法
KR20150022665A (ko) * 2013-08-23 2015-03-04 주식회사 지앤아이솔루션 광학 렌즈, 광학 렌즈 제조 장치 및 제조 방법
JP2016107524A (ja) * 2014-12-08 2016-06-20 日本合成化学工業株式会社 プラスチックシートの製造方法およびそれにより得られるプラスチックシート並びにディスプレイ用プラスチック基板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018459A1 (fr) * 1997-10-02 1999-04-15 Asahi Glass Company Ltd. Tete optique et element de diffraction conçu pour cette tete optique, et procede de fabrication de l'element de diffraction et de la tete optique
US6247986B1 (en) 1998-12-23 2001-06-19 3M Innovative Properties Company Method for precise molding and alignment of structures on a substrate using a stretchable mold
JP3898394B2 (ja) 1999-09-28 2007-03-28 京セラ株式会社 スペーサ付基板の製造方法
JP3979018B2 (ja) 2001-03-07 2007-09-19 三菱化学株式会社 硬化樹脂シートの製造方法及びそれに用いる成形型
JP4063225B2 (ja) * 2004-01-21 2008-03-19 ソニー株式会社 液晶表示装置および液晶表示装置の製造方法
JP2006224193A (ja) * 2005-02-15 2006-08-31 Olympus Corp 電子装置及び電子装置の製造方法
JP2007017655A (ja) * 2005-07-07 2007-01-25 Jsr Corp 液晶表示素子用部材及び液晶表示素子
JP5127577B2 (ja) * 2007-08-03 2013-01-23 富士フイルム株式会社 スペーサ及びその製造方法、液晶表示装置用基板、液晶表示装置
WO2009025507A2 (en) * 2007-08-23 2009-02-26 Lg Chem, Ltd. Method and gaskets for casting acrylic films
KR101457254B1 (ko) * 2007-09-28 2014-10-31 아사히 가라스 가부시키가이샤 광경화성 조성물, 미세 패턴 형성체의 제조 방법 및 광학 소자
KR101671430B1 (ko) 2013-11-25 2016-11-01 주식회사 엘지화학 플라스틱 필름 및 이의 제조방법
JP2016010950A (ja) 2014-06-30 2016-01-21 株式会社リコー 光学素子の製造システム、光学素子の製造方法、及びプログラム
JP5873584B1 (ja) * 2015-03-12 2016-03-01 株式会社ホプニック研究所 プラスチックレンズの製造方法、フィルムの位置決め方法
KR20170003181A (ko) 2015-06-30 2017-01-09 코오롱인더스트리 주식회사 곡면형 투명 플라스틱 시트 및 그 제조 방법
KR20170018216A (ko) 2015-08-07 2017-02-16 한국생산기술연구원 실리카 나노 입자 파우더 혼합 에폭시 수지 조성물을 이용한 회로기판 제조 방법과 그 회로기판 및 그 회로기판 제조용 실리카 나노 입자 파우더 혼합 에폭시 수지 조성물
KR101995725B1 (ko) * 2016-03-11 2019-07-03 주식회사 엘지화학 경화성 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186228A (ja) * 1993-12-27 1995-07-25 Canon Inc 射出成形品の変形量予測方法及びその装置
JP2009069553A (ja) * 2007-09-14 2009-04-02 Sun-Lux Optical Co Ltd プラスチックレンズの製造方法
JP2011255627A (ja) * 2010-06-11 2011-12-22 Maxell Sliontec Ltd プラスチックレンズ成型方法
KR20150022665A (ko) * 2013-08-23 2015-03-04 주식회사 지앤아이솔루션 광학 렌즈, 광학 렌즈 제조 장치 및 제조 방법
JP2016107524A (ja) * 2014-12-08 2016-06-20 日本合成化学工業株式会社 プラスチックシートの製造方法およびそれにより得られるプラスチックシート並びにディスプレイ用プラスチック基板

Also Published As

Publication number Publication date
JP6976637B2 (ja) 2021-12-08
KR20190050718A (ko) 2019-05-13
CN111278634A (zh) 2020-06-12
CN111278634B (zh) 2022-04-05
JP2021500255A (ja) 2021-01-07
US20200338792A1 (en) 2020-10-29
US11648710B2 (en) 2023-05-16
KR102236737B1 (ko) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019088764A1 (ko) 플라스틱 기판의 제조방법 및 이에 의하여 제조된 플라스틱 기판
WO2014204165A9 (ko) 편광판 및 이를 포함하는 디스플레이 장치
WO2015064928A1 (ko) 고경도 다층시트
WO2020004828A1 (ko) 고경도 적층체
WO2017155229A1 (ko) 경화성 조성물
WO2016060476A1 (ko) 광학 필름 코팅용 조성물 및 이를 포함하는 광학 필름
WO2016032078A1 (ko) 사출압축성형이 적용된 필름인서트성형 장치 및 그 방법
WO2019117588A1 (ko) 웨어러블 디바이스
WO2016173113A1 (zh) 平面显示面板及制作方法
WO2019013604A1 (ko) 액정 패널 및 이의 제조방법
WO2011007979A2 (ko) 광경화형 함불소 수지 조성물 및 이를 이용한 수지 몰드의 제조방법
AU708513B2 (en) Treatment of glass substrates to compensate for warpage and distortion
WO2013187539A1 (ko) 에폭시 아크릴계 광학렌즈용 수지의 주형 중합 방법 및 내부 이형제를 포함한 에폭시 아크릴계 광학렌즈용 수지 조성물
WO2020218784A1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2014077589A1 (ko) 에폭시 아크릴계의 고굴절 광학재료용 중합성 조성물 및 에폭시 아크릴계 고굴절 광학재료의 제조방법
KR102181942B1 (ko) 플라스틱 기재의 제조방법 및 이에 의하여 제조된 플라스틱 기재
KR102456679B1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
KR102375853B1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2017171490A2 (ko) 화합물
WO2021029693A1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
KR20210020423A (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2011004966A2 (ko) 마이크로 렌즈 어레이 제조장치 및 마이크로 렌즈 어레이 제조방법
WO2018088713A1 (ko) 경화성 조성물
WO2020242129A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2020242127A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872031

Country of ref document: EP

Kind code of ref document: A1