WO2019117588A1 - 웨어러블 디바이스 - Google Patents

웨어러블 디바이스 Download PDF

Info

Publication number
WO2019117588A1
WO2019117588A1 PCT/KR2018/015680 KR2018015680W WO2019117588A1 WO 2019117588 A1 WO2019117588 A1 WO 2019117588A1 KR 2018015680 W KR2018015680 W KR 2018015680W WO 2019117588 A1 WO2019117588 A1 WO 2019117588A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic lens
light
base material
lens base
less
Prior art date
Application number
PCT/KR2018/015680
Other languages
English (en)
French (fr)
Inventor
김혜민
김영석
김부경
장영래
신부건
추소영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020529389A priority Critical patent/JP2021504760A/ja
Priority to EP18888365.6A priority patent/EP3712683A4/en
Priority to CN201880078779.5A priority patent/CN111448501B/zh
Priority to US16/765,888 priority patent/US11681154B2/en
Publication of WO2019117588A1 publication Critical patent/WO2019117588A1/ko
Priority to JP2022078261A priority patent/JP7412843B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Definitions

  • the present invention relates to a wearable device.
  • a wearable device such as a virtual reality device or an augmented reality device can form a diffracted light guide pattern on a lens such as a general eyeglass to make a desired image visible to a user.
  • a lens base material for a wearable device uses a glass base material having a high refractive index.
  • the glass base material has an advantage of having a high refractive index and a light transmittance, but can damage the eyeball of the user at the time of breakage, There is an inconvenience in wearing for a long time.
  • the present invention provides a wearable device. Specifically, the present invention provides a wearable device to which a plastic lens substrate is applied.
  • One embodiment of the present invention relates to a plastic lens substrate; And a diffracting light guide portion provided on the plastic lens base material, wherein the thickness of the plastic lens base material is 0.4 mm or more and 1.5 mm or less, and the thickness deviation with respect to the average thickness of the plastic lens base material is 1 %, And the total number of times of total reflection of diffracted light is 30 times or more and 40 times or more and 100 times or less for a length of 30 mm on the plastic lens base material.
  • the wearable device according to one embodiment of the present invention is advantageous in that it is lighter than a wearable device to which a conventional glass substrate is applied as a lens substrate, and is relatively safe at the time of breakage.
  • the wearable device can prevent the total amount of diffracted light from being adjusted to be excessively high so that the amount of extracted light is not weakened.
  • the wearable device can realize excellent resolution by applying a plastic lens base material having a small thickness deviation.
  • the wearable device according to one embodiment of the present invention is advantageous in that the volume of the product can be made smaller by applying a thin plastic lens base material.
  • FIG. 1 is a view schematically showing that light incident on a plastic lens substrate applied to a wearable device according to an embodiment of the present invention is diffracted and totally reflected on the inside of the plastic lens substrate.
  • FIG. 2 is a view schematically showing a diffraction light guiding pattern of a diffractive light guiding part provided on a plastic lens substrate applied to a wearable device according to an embodiment of the present invention, and diffracting incident light by the pattern.
  • FIG. 3 is a view schematically showing that the total number of times of total reflection of diffracted light varies in the plastic substrate depending on the thickness of a plastic lens base material applied to a wearable device according to an embodiment of the present invention.
  • FIG. 4 is a view schematically showing a process of extracting light input from a micro-display through a user's eyes through a plastic lens base applied to a wearable device according to an embodiment of the present invention.
  • Fig. 5 is a graph showing the relationship between the incident angle [theta] o and the diffraction angle [theta] when the refractive index of the diffracting light guiding portion on the plastic lens substrate applied to the wearable device according to an embodiment of the present invention is 1.7 and the pitch is 425 nm and the wavelength of the incident light is 532 nm. &thetas; d ).
  • FIG. 6 is a graph showing an image analyzed by an image-J program by an image output by a wearable device according to an embodiment of the present invention.
  • a member When a member is referred to herein as being “on " another member, it includes not only a member in contact with another member but also another member between the two members.
  • the term "length of the substrate” means a direction parallel to the substrate surface and a direction from the center of the first region to the center of the second region in the diffractive light guiding portion on the plastic lens substrate.
  • the particle size of the particles can be measured by a scanning electron microscope (SEM) image, a transmission electron microscope (TEM) image or a particle size analyzer (Malvern, Japan).
  • the particle size of the particles may be a secondary particle size measured by dynamic light scattering on a colloidal nano solution using a particle size analyzer.
  • the average particle diameter of the particles is measured by TEM (transmission electron microscope), and the maximum diameter of 50 to 100 particles is measured at a magnification ratio of one smallest particle to 2 mm to 5 mm
  • the average value can be obtained by the average particle diameter.
  • the glass transition temperature (T g ) is measured using a DSC (Differential Scanning Calorimeter) (DSC 823e; Mettler Toledo) at a heating rate of 10 ° C / min in a temperature range of -15 ° C to 200 ° C And may be a value determined as the midpoint of the DSC curve.
  • DSC Different Scanning Calorimeter
  • the optical refractive index can be a value measured based on a wavelength of 532 nm using a Cauchy Film Model using Spectroscopy Ellipsometry (Ellipsometer M-2000, J.A. Woollam) at 25 ⁇ and 50 RH%.
  • the field of view may mean the range of the incident angle at which the traveling angle of the diffracted light becomes larger than the minimum traveling angle at which total reflection in the plastic lens base is possible.
  • the light transmittance may be a value measured in a transmittance mode using a Solidspec 3700, a UV-Vis-NIR Spectrophotometer equipment of SHIMADZU.
  • haze may be a value measured by COH-400 of Nippon Denshoku.
  • the surface flatness can be an Ra value measured by Park Systems' AFM machine NX10 for 4 ⁇ x 4 ⁇ area using Nanoworld's NCHR-50 AFM Probe.
  • the duty can mean "width of pattern structure / pitch of pattern structure ".
  • brightness and resolution can be measured from an image that is incident on a plastic lens substrate using a specific light source, and is output through total reflection.
  • a surface light source was formed by adhering a diffuser in front of the LED light source (SML-LX1610RGBW, A, 525 nm), and then a UASF 1951 resolution chart was attached.
  • the distance between the incident portion of the specimen and the light source was set to 1 mm do.
  • the incident light should be incident in a direction perpendicular to the specimen.
  • position the CCD monitor CA 2000 so that the distance between the exit of the specimen and the specimen is 17 mm.
  • the image output from the diffracted light guiding sample is analyzed using an Image-J program, and the maximum value (I max ) of the measured luminance is taken as the luminance value.
  • the resolution can be measured by a modulation transfer function (MTF) measurement method.
  • MTF modulation transfer function
  • the MTF of each horizontal and vertical stripe is calculated and the arithmetic mean is used as the MTF value of the diffracted light guiding sample.
  • the MTF is obtained by analyzing the image of the photograph output from the diffracted light guide sample using an Image-J program and using the following equation (1).
  • I max and I min are values of three points as shown in the area (I max : red circle, I min : blue circle) shown in FIG. 6, and each average value is used.
  • the inventors of the present invention have found that the refractive index of the diffractive light guide portion, Thickness, thickness variation, and total number of incidence of incident light have a significant effect on the performance of the wearable device. Further, by adjusting the refractive index of the diffracting light guide portion and the pitch of the diffracting light guiding pattern applied to the wearable device to control the diffraction angle of the diffracted light advancing in the plastic lens base material and adjusting the refractive index, thickness, The inventors invented a plastic lens substrate optimized for a wearable device by controlling the total reflection characteristic of the light.
  • One embodiment of the present invention relates to a plastic lens substrate; And a diffracting light guiding portion including a diffracting light guiding pattern provided on the plastic lens substrate.
  • FIG. 1 is a view schematically showing that light incident on a plastic lens substrate applied to a wearable device according to an embodiment of the present invention is diffracted and totally propagates through the inside of the plastic lens substrate
  • FIG. 2 is a cross- The diffraction light guiding pattern of the diffracting light guiding portion provided on the substrate is enlarged and the diffracting light guiding pattern diffracts the incident light.
  • the incident light 210 incident on the diffracting light guiding unit 100 is incident at an incident angle of 0
  • Diffracted light 220 propagates the inside of the plastic lens base 300 to the diffraction angle of? D.
  • the diffraction angle of the light incident on the diffracting light guiding portion in which the diffracting light guiding pattern is formed can be obtained by the following expression (2).
  • n denotes the refractive index of the diffracting light guide
  • n 0 denotes the refractive index of air
  • a denotes the pitch of the diffractive light guiding pattern.
  • the thickness of the plastic lens base material is 0.4 mm or more and 1.5 mm or less.
  • the thickness of the plastic lens base material may be 0.4 mm or more and 1.3 mm or less, 0.5 mm or more and 1.1 mm or less, or 0.6 mm or more and 1 mm or less.
  • Fig. 3 is a view schematically showing that the total number of times of total reflection of diffracted light in the plastic substrate varies depending on the thickness of the plastic lens base material.
  • the thickness of the plastic lens base 300 is reduced, the total number of times of diffraction light 220 having the same diffraction angle is increased. Therefore, when the thickness of the plastic lens base material 300 is within the above range, it is possible to prevent an excessive amount of total reflection of the diffracted light 220, thereby minimizing the loss of the light amount and further advantageously minimizing the volume of the wearable device have.
  • the thickness deviation with respect to the average thickness of the plastic lens base material is 1% or less. Specifically, the thickness deviation with respect to the average thickness of the plastic lens base material may be 0.5% or less.
  • the thickness deviation with respect to the average thickness of the plastic lens base material can be derived by the following equation (3).
  • Thickness deviation (%) ⁇ (maximum thickness - minimum thickness) / average thickness ⁇ x 100
  • the maximum thickness, the minimum thickness and the average thickness of a member can be obtained by a noncontact measurement method using OWTM (Optical Wafer Thickness Measurement) equipment of FiberPro at 25 ⁇ and 50 RH%. Specifically, a sample having a size of 50 mm x 50 mm was prepared, and the thickness was measured at intervals of 1 mm and width with respect to an area of 40 mm x 40 mm excluding 5 mm from the ends of the corners, After obtaining the thickness value, the highest value is the maximum thickness, the lowest value is the minimum thickness, and the average thickness can be obtained through the arithmetic average value of the total 1681 points measured.
  • OWTM Optical Wafer Thickness Measurement
  • the "thickness deviation with respect to the average thickness” can be used in the same meaning as “thickness deviation ".
  • the thickness deviation of the plastic lens base material is much lower than the thickness deviation (2% to 5%) of a general plastic lens base material, Can be output.
  • the total number of times of total reflection of the diffracted light is 30 times or more and 100 times or less per 30 mm in length on the plastic lens substrate.
  • the total number of times of total reflection of diffracted light per 30 mm of the length on the plastic lens substrate may be 40 or more and 80 or less, 40 or more or 50 or less, or 40 or more and 45 or less.
  • the total reflection number may be based on light having a wavelength of 532 nm.
  • the refractive index of the diffracting light guide portion and the plastic lens base material at a wavelength of 532 nm may be 1.65 or more.
  • a high refractive index glass substrate may have a refractive index of 1.65 or more at a wavelength of 532 nm
  • the plastic lens base material according to an embodiment of the present invention has a refractive index equal to or higher than that of the glass base material, The present invention can be applied to a wearable device.
  • the refractive index difference between the diffracting light guiding portion and the plastic lens substrate may be 0.05 or less.
  • the refractive index difference is in the above range, the loss of light between the diffracting light guiding portion and the plastic lens base material can be minimized.
  • the wearable device may have a viewing angle of 30 degrees or more. More specifically, the viewing angle may be 40 DEG or more.
  • the viewing angle may be 40 DEG or more.
  • FIG. 5 is a graph showing the relationship between the refractive index of the diffracting light guiding portion of the plastic lens base material applied to the wearable device and the wavelength of incident light of 532 nm and the pitch of the diffracted light guiding pattern included in the diffracting light guiding portion of the wearable device according to an embodiment of the present invention is 425 nm shows a diffraction angle ( ⁇ d) of the incident angle ( ⁇ o) when.
  • the minimum diffraction angle (? Min , critical angle) at which total reflection occurs can be obtained by the following expression (4).
  • the pitch of the diffracting light guide pattern may be 100 nm or more and 800 nm or less, and the height may be more than 0 nm and 500 nm or less.
  • the pitch of the diffracting light guide pattern is 100 nm or more and 500 nm or less, 100 nm or more and 300 nm or less, 200 nm or more and 700 nm or less, 200 nm or more and 500 nm or less, 200 nm or more and 300 nm or less, 400 nm or more and 700 nm or less, 400 nm or more and 500 nm or less, 500 nm or more and 700 nm or less, or 600 nm or more and 700 nm or less.
  • the height of the diffracting light guide pattern may be more than 0 nm and not more than 400 nm, more than 0 nm and not more than 300 nm, or more than 0 nm and not more than 200 nm.
  • the duty and the Slanted angle of the diffracting light guide pattern can be appropriately adjusted within a range to be applied to a normal diffracting light guide portion.
  • the haze of the plastic lens substrate may be 1% or less.
  • the light transmittance of the plastic lens base material at a wavelength of 532 nm may be 80% or more.
  • the range of the haze and the light transmittance of the plastic lens base material is within the above range, it is possible to have a transparency suitable for the wearable device application and further to increase the resolution of the image output through the plastic lens base material.
  • the surface flatness of the plastic lens substrate may be 1 m or less.
  • the surface flatness may be as defined surface roughness (R a). Specifically, when the surface flatness is within the above range, the path of the diffracted light in the plastic lens base can be prevented from being distorted. Furthermore, degradation in resolution of an image output through the plastic lens base can be minimized.
  • the plastic lens base material may include inorganic particles having a refractive index at a wavelength of 532 nm of 1.8 or more and a particle diameter of 50 nm or less.
  • the inorganic particles may include at least one selected from silica, alumina, zirconia, zeolite, and titanium oxide.
  • the inorganic particles may have a refractive index at the wavelength of 532 nm of 1.8 or more, specifically 1.9 or more, more specifically 2.0 or more.
  • the optical refractive index of an inorganic particle can be measured using an Abbe's refractometer. Further, the refractive index of the plastic substrate prepared by mixing the inorganic particles and the acrylate binder can be easily calculated by measuring the refractive index with an Ellipsometer.
  • the plastic substrate prepared by mixing 50 parts by weight of inorganic particles with 50 parts by weight of acrylate HR6042 has a refractive index of RI based and a volume fraction of acrylate of V acrylic
  • the inorganic particles can play a role of realizing a refractive index of the plastic lens base material of 1.65 or more.
  • the particle size of the inorganic particles may be 50 nm or less. Specifically, the particle size of the inorganic particles may be 40 nm or less, 35 nm or less, or 30 nm or less. The particle size of the inorganic particles may be 5 nm or more, or 10 nm or more. Furthermore, the particle size of the inorganic particles may be an average particle size.
  • the inorganic particles can maintain a high dispersibility at the time of manufacturing the plastic lens substrate, and further, transparency can be imparted to the plastic lens substrate, thereby greatly improving the optical refractive index.
  • the content of the inorganic particles may be 20 parts by weight or more and 70 parts by weight or less based on 100 parts by weight of the polymer matrix of the plastic lens base.
  • the content of the inorganic particles may be 25 parts by weight or more and 70 parts by weight or less, or 30 parts by weight or more and 70 parts by weight or less, based on 100 parts by weight of the polymer matrix of the plastic lens base.
  • the refractive index of the plastic lens base material may be 1.65 or more at a wavelength of 532 nm.
  • the plastic lens substrate may be formed using a matrix composition comprising a sulfur-containing compound containing at least 20 wt% of sulfur atoms.
  • the sulfur-containing compound may serve to control the refractive index of the plastic lens base material to a high level.
  • the sulfur-containing compound may include at least one selected from a thiol group-containing compound, a thiourethane group-containing compound and a thioepoxy group-containing compound.
  • the thiol group-containing compound is a compound containing at least one thiol group (-SH) in the molecule, and examples thereof include methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, Dithiol, 1,3-propanedithiol, 2,2-propanedithiol, 1,6-hexanedithiol, 1,2,3-propanetriethiol, bis (2-mercaptoethyl) , 3-dimercaptopropanyl) sulfide, bis (2,3-dimercaptopropanyl) disulfide, bis (mercaptomethyl) -3,6,9-trithiandecane-1,11- (2-mercaptoacetate), pentaerythritol tris (3-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), triaeritoltetrakis thioglycolate And methylol
  • the thiourethane group-containing compound can be prepared by using a compound having at least one isocyanate group (-NCO) and at least one thiol group, and by controlling the molar ratio (SH / NCO) of isocyanate to thiol, various thiourethane groups Containing compound can be prepared.
  • the compound having an isocyanate group include hexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate, xylene diisocyanate, and dimethylphenylene diisocyanate.
  • Examples of the thioepoxy group-containing compound include bis (2,3-epithiopropyl) sulfide, bis (2,3-epithiopropyl) disulfide, bis , 3-epithiopropylthio) cyclohexane, bis (2,3-epithiopropylthiocyclohexyl) sulfide, and the like.
  • the plastic lens base material may be one in which the inorganic particles are dispersed in an acrylic polymer matrix.
  • the plastic lens base material can be produced using an acrylic monomer and / or an acrylic copolymer, and a matrix composition comprising the sulfur-containing compound.
  • the glass transition temperature (T g ) of the plastic lens base material may be 40 ° C or higher.
  • T g the glass transition temperature of the plastic lens base material
  • the plastic lens base material has an advantage that the glass transition temperature is 40 ⁇ ⁇ or higher and the change in physical properties according to temperature can be minimized even when used as a lens base material of a wearable device.
  • the diffracting light guide portion may include a first region where light is incident and a second region where light is extracted.
  • the diffracting light guiding portion is provided on the plastic lens substrate and may include a diffracting light guiding pattern.
  • the diffracting light guiding portion may include a thermosetting resin or a photocurable resin containing a high-refraction component.
  • the thermosetting resin or the photocurable resin may include at least one selected from an acrylic resin including urethane acrylate or epoxy acrylate, a polyamide resin, a polyimide resin, a silicone resin, an epoxy resin and a polyester However, it does not limit the kind.
  • FIG. 4 is a view schematically showing a process of extracting light input from a micro-display through a user's eyes through a plastic lens base applied to a wearable device according to an embodiment of the present invention.
  • the first region or the second region may include a diffraction light-guiding pattern whose height gradually increases from one side to the other side.
  • the diffractive light guiding pattern of the second region may be provided at an inclination angle of 50 ° or more and less than 90 ° with respect to the plastic lens base material.
  • the height of the diffraction light guiding pattern of the second region is gradually increased from one side to the other side of the second region, whereby light is diffracted from one side to the other side of the second region It is possible to prevent the amount of light from being reduced in the second area, and to make the light intensity of the light emitted by each part of the second area constant.
  • the second region may include a diffraction light-guiding pattern gradually increasing in duty from one side to the other side.
  • the second region includes a diffractive light guiding pattern gradually increasing in duty from one side to the other side, thereby gradually increasing the light refractive index from one side to the other side of the second region.
  • the duty ratio of the diffraction light-guiding pattern gradually increases from one side to the other side of the second region, whereby the refractive index of the second region can be gradually increased from one side to the other side.
  • the optical refraction index is gradually increased from one side of the second region to the other side, so that the light diffraction efficiency from one side to the other side of the second region can be gradually increased.
  • the duty of the diffraction light guiding pattern included in the second region may be 0.1 or more and 1.0 or less.
  • the pitch of the diffracting light-guiding pattern of the second region of the diffracting light guiding portion to be constant and gradually increasing the width of the diffracting light guiding pattern from one side to the other side of the second region
  • the duty of the diffractive light guiding pattern can be gradually increased from one side to the other side of the second region.
  • the wearable device may be an augmented reality device or a virtual reality device.
  • the plastic lens base material is a lens base material of the wearable device, and may be applied as a base material for inputting, moving, and transmitting inputted optical information including a diffracting light guide portion on the one surface.
  • the plastic lens base material has a high optical refractive index, optical loss can be minimized and optical information can be moved. Furthermore, since the plastic lens base material has a high glass transition temperature, it is possible to minimize changes in physical properties due to heat generated by the operation of the wearable device, thereby realizing high durability. Further, with the plastic lens substrate, the present invention can provide a wearable device that is lighter and more stable than a wearable device to which a conventional glass lens substrate is applied.
  • a plastic lens base material having a refractive index of 1.70 at a wavelength of 0.5 mm and 532 nm was produced by a mold casting method using a buffered spacer using MGC Lumiplus LPJ-1102 as a material.
  • the thickness deviation of the produced plastic lens base material was 0.5%.
  • the produced plastic lens base material was cut into 50 x 50 mm < 2 >, and a UV curing type imprint resin was applied on one side to a thickness of 1 mu m.
  • a mold in the form of a film having a pitch of 425 nm, a depth of 125 nm, and a duty of 0.4 was formed on the mold in the form of an engraved pattern, and then exposed to UV to produce a diffracted light guide portion having a diffractive light guiding pattern on the plastic lens base.
  • the plastic lens base material according to Examples 2 to 4 and Comparative Examples 1 to 3 and the diffractive light guide portion on the plastic lens base material were produced in the same manner as in Example 1 except that the physical properties of the plastic lens base material were adjusted as shown in Table 1 Respectively.
  • the total number of times of total reflection of the diffracted light and the glass transition temperature were measured per 30 mm of the length of the base of the plastic lens substrate prepared according to Examples 1 to 4 and Comparative Examples 1 to 3, and the results are shown in Table 1 below.
  • Example 1 36 ⁇ 41 ⁇ 2.23 0.21 89.3 0.2
  • Example 2 36 ⁇ 41 ⁇ 10.95 0.36 88.7 0.3
  • Example 3 36 ⁇ 41 ⁇ 19.25 0.64 88.4 0.3
  • Example 4 35 ⁇ 44 ⁇ 18.99 0.53 87.2 0.2
  • Comparative Example 1 42 ⁇ 29 ⁇ 5.19 0.17 90.4 0.4
  • Comparative Example 2 36 ⁇ 41 ⁇ 0.17 0.16 89.8 0.3 Comparative Example 3 36 ⁇ 41 ⁇ 19.03 0.19 88.4 0.3
  • the wearable device according to Examples 1 to 4 is characterized in that the plastic lens base material has a thickness deviation of 0.4 mm or more and 1.5 mm or less and 1% or less and 40 times or more and 100 times or less
  • the plastic lens base material has a thickness deviation of 0.4 mm or more and 1.5 mm or less and 1% or less and 40 times or more and 100 times or less
  • Comparative Examples 1 and 3 the thickness deviation of the plastic lens base material was as large as 4% and 5%, respectively, and the resolution of the image to be emitted was low.
  • the viewing angle was narrow and the haze was high, Can be confirmed. It is confirmed that the plastic lens base material of Comparative Example 2 in which the thickness of the plastic lens base material is as thin as 0.4 mm or less and the total number of times of reflection is 30 or more per 100 mm is extremely low in brightness and is unsuitable for wearable devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Eyeglasses (AREA)

Abstract

본 발명은 유리 기재를 렌즈 기재로 적용한 웨어러블 디바이스에 비하여 가볍고, 파손 시 상대적으로 안전하며, 제품의 부피를 보다 작게 할 수 있는 웨어러블 디바이스에 관한 것이다.

Description

웨어러블 디바이스
본 명세서는 2017년 12월 15일에 한국특허청에 제출된 한국 특허출원 제10-2017-0173187호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다. 본 발명은 웨어러블 디바이스에 관한 것이다.
가상 현실 디바이스 또는 증강 현실 디바이스와 같은 웨어러블 디바이스는 일반적인 안경과 같은 렌즈에 회절 도광 패턴을 형성하여 원하는 이미지를 사용자에게 보이도록 할 수 있다. 일반적으로, 웨어러블 디바이스 용도의 렌즈 기재는 굴절률이 높은 유리 기재를 사용하게 되는데, 유리 기재는 높은 굴절률 및 광투과도를 가지는 장점이 있으나, 파손 시 사용자의 안구에 치명적인 손상을 가할 수 있고, 무게가 무거워 장시간 착용에 불편함이 존재한다.
이에 따라, 기존의 유리 기재 렌즈를 대체할 수 있는 렌즈 기재를 적용한 웨어러블 디바이스에 대한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개공보: KR 10-2015-0060562 A
본 발명은 웨어러블 디바이스를 제공한다. 구체적으로, 본 발명은 플라스틱 렌즈 기재를 적용한 웨어러블 디바이스를 제공한다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는, 플라스틱 렌즈 기재; 및 상기 플라스틱 렌즈 기재 상에 구비된, 회절 도광 패턴을 포함하는 회절 도광부를 포함하고, 상기 플라스틱 렌즈 기재의 두께는 0.4 ㎜ 이상 1.5 ㎜ 이하이며, 상기 플라스틱 렌즈 기재의 평균 두께에 대한 두께 편차는 1 % 이내이고, 상기 플라스틱 렌즈 기재상의 길이 30 ㎜ 당 회절광의 전반사 횟수가 40 회 이상 100 회 이하인 것인 웨어러블 디바이스를 제공한다.
본 발명의 일 실시상태에 따른 웨어러블 디바이스는 기존의 유리 기재를 렌즈 기재로 적용한 웨어러블 디바이스에 비하여 가볍고, 파손 시 상대적으로 안전한 장점이 있다.
본 발명의 일 실시상태에 따른 웨어러블 디바이스는 회절광의 전반사 횟수를 지나치게 높지 않게 조절하여, 추출되는 광량이 약해지는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따른 웨어러블 디바이스는 두께 편차가 낮은 플라스틱 렌즈 기재를 적용함으로써, 우수한 해상도를 구현할 수 있다.
본 발명의 일 실시상태에 따른 웨어러블 디바이스는 얇은 두께의 플라스틱 렌즈 기재를 적용하여, 제품의 부피를 보다 작게 할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재에 입사된 빛이 회절되어 상기 플라스틱 렌즈 기재의 내부를 전반사하며 진행하는 것을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재 상에 구비된 회절 도광부의 회절 도광 패턴을 확대하여 상기 패턴이 입사광을 회절시키는 것을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재의 두께에 따라 상기 플라스틱 기재 내부에서 회절광의 전반사 횟수가 달라지는 것을 개략적으로 나타낸 도면이다.
도 4는 마이크로-디스플레이로부터 입력되는 광이 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재를 통하여 사용자의 눈으로 추출되는 과정을 개략적으로 나타낸 도면이다.
도 5는 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재 상의 회절 도광부의 굴절률이 1.7, 피치가 425 nm이고, 입사광의 파장이 532 nm일 때 입사각(θo)과 회절각(θd)의 관계 그래프를 나타낸 도면이다.
도 6은 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 의하여 출사된 이미지를 Image-J 프로그램에 의하여 분석한 그래프를 나타낸 도면이다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, "기재상의 길이"란 기재면에 평행한 방향으로서, 플라스틱 렌즈 기재상의 회절 도광부에서 제1영역의 중심으로부터 제2영역의 중심을 향하는 방향을 의미한다.
본 명세서에 있어서, 입자의 입경은 SEM(scanning electron microscope) 이미지, TEM(transmission electron microscope) 이미지 또는 입도 분석기(Malvern, 일본)로 측정될 수 있다. 구체적으로, 입자의 입경은 입도 분석기를 이용하여, 콜로이드 나노 용액 상의 동적 광산란에 의하여 2차 입도를 측정한 것일 수 있다.
본 명세서에 있어서, 입자의 평균 입경은 입자를 TEM(transmission electron microscope)으로 사진을 찍어, 가장 작은 입자 1개의 크기가 2 ㎜ 내지 5 ㎜가 되는 배율로 50 내지 100 개의 입자의 최대 지름을 측정하고 그 평균치를 평균 입경으로 구할 수 있다.
본 명세서에 있어서, 유리 전이 온도(Tg)는 DSC(Differential Scanning Calorimeter)(DSC 823e; Mettler Toledo사)를 이용하여 -15 ℃ 내지 200 ℃ 의 온도 범위에서 가열속도 10 ℃/min으로 승온하여 측정하여 DSC 곡선의 중간점으로 결정된 값일 수 있다.
본 명세서에 있어서, 광굴절률은 25 ℃ 및 50 RH%에서 Spectroscopy Ellipsometry(Ellipsometer M-2000, J.A. Woollam)를 사용하고, Cauchy Film Model을 이용하여 532 ㎚ 파장을 기준으로 측정된 값일 수 있다.
본 명세서에 있어서, 시야각(FOV, Field Of View)이란, 회절광의 진행각이 플라스틱 렌즈 기재 내에서 전반사가 가능한 최소 진행각보다 크게 되는 입사각의 범위를 의미할 수 있다.
본 명세서에 있어서, 광투과율은 SHIMADZU의 UV-Vis-NIR Spectrophotometer 장비인 Solidspec 3700을 사용하여 Transmittance mode로 측정된 값일 수 있다.
본 명세서에 있어서, 헤이즈는 Nippon Denshoku의 COH-400로 측정된 값일 수 있다.
본 명세서에 있어서, 표면 평탄도는 Nanoworld의 NCHR-50의 AFM Probe를 이용하여 4 ㎛ × 4 ㎛ 면적에 대하여, Park Systems의 AFM 장비인 NX10로 측정된 Ra 값일 수 있다.
본 명세서에서, 듀티는 "패턴 구조체의 폭/패턴 구조체의 피치"를 의미할 수 있다.
본 명세서에 있어서, 휘도와 해상도는 특정 광원을 사용하여 입사된 영상이 플라스틱 렌즈 기재 내에서 전반사를 거쳐 출사된 영상으로부터 측정될 수 있다.
구체적으로, LED 광원(SML-LX1610RGBW, A, 525 nm) 앞에 디퓨저(diffuser)를 밀착시켜 면 광원을 형성시킨 후 UASF 1951 resolution chart를 부착하고 시편의 입사부와 광원간 이격이 1 mm가 되도록 배치한다. 입사광은 시편과 수직한 방향에서 입사되도록 한다. 또한, CCD monitor (CA 2000)와 시편의 출사부간 이격이 17 mm가 되도록 배치한다. 회절 도광 샘플로부터 출력된 사진을 Image-J 프로그램을 사용하여 이미지를 분석하여, 측정된 휘도의 최대치(Imax)를 휘도값으로 취한다.
또한, 해상도는 MTF(Modulation Transfer Fucntion, 변조전달함수) 측정법에 의하여 측정될 수 있다. 구체적으로는, 휘도 측정과 같은 방법으로 출력된 사진에서 Group 2의 Element 1 (4 cycle/degree)에 대하여 가로 세로 줄무늬 각각의 MTF를 계산하고 산술 평균을 취하여 회절 도광 샘플의 MTF 값으로 사용한다. MTF는 Image-J 프로그램으로 상기 회절 도광 샘플로부터 출력된 사진의 이미지를 분석한 뒤 하기 식 1을 이용하여 구한다. Imax, Imin은 도 6에서 표시된 영역 (Imax: 적색원, Imin: 청색 원) 과 같이 3점의 값을 취하여 각 평균치를 사용한다.
[식 1]
MTF=(Imax-Imin)/(Imax+Imin)
본 발명자들은 기존의 웨어러블 디바이스에 적용되는 유리 소재의 렌즈 기재를 플라스틱 소재의 렌즈 기재로 대체하기 위한 연구를 지속한 결과, 회절 도광부의 굴절률, 회절 도광 패턴 피치, 높이 등의 특성과 플라스틱 렌즈 기재의 두께, 두께 편차 및 입사된 빛의 전반사 횟수 등의 물성이 웨어러블 디바이스의 성능에 중요한 영향을 미치는 것을 발견하였다. 나아가, 웨어러블 디바이스에 적용되는 회절 도광부의 굴절률 및 회절 도광 패턴의 피치를 조절하여 플라스틱 렌즈 기재 내에서 진행하는 회절광의 회절각을 제어하고 플라스틱 렌즈 기재의 광굴절률 및 두께, 두께 편차 등을 조절함으로써 회절된 빛의 전반사 특성을 제어함으로써 웨어러블 디바이스에 최적화된 플라스틱 렌즈 기재를 발명하게 되었다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 플라스틱 렌즈 기재; 및 상기 플라스틱 렌즈 기재 상에 구비된, 회절 도광 패턴을 포함하는 회절 도광부를 포함하는 웨어러블 디바이스를 제공한다.
도 1은 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재에 입사된 빛이 회절되어 상기 플라스틱 렌즈 기재의 내부를 전반사하며 진행하는 것을 개략적으로 나타낸 도면이고, 도 2는 상기 플라스틱 렌즈 기재 상에 구비된 회절 도광부의 회절 도광 패턴을 확대하여 상기 회절 도광 패턴이 입사광을 회절시키는 것을 개략적으로 나타낸 도면이다. 도 1 및 도 2를 참고하면, 회절 도광부(100)에 입사하는 입사광(210)은 θ0의 입사각으로 입사하여 상기 회절 도광부(100)의 회절 도광 패턴(110)에 의하여 회절하며, 회절된 회절광(220)은 상기 플라스틱 렌즈 기재(300)의 내부를 θd의 회절각으로 진행한다.
상기 회절 도광 패턴이 형성된 회절 도광부에 입사된 빛의 회절각은 하기 식 2에 의해 구할 수 있다.
[식 2]
n sinθd - n0 sinθ0 = λ/a
본 명세서 전체에서, n은 회절 도광부의 굴절률, n0은 공기의 굴절률, λ은 파장, a는 회절 도광 패턴의 피치를 각각 의미한다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 두께는 0.4 ㎜ 이상 1.5 ㎜ 이하이다. 구체적으로, 상기 플라스틱 렌즈 기재의 두께는 0.4 mm 이상 1.3 mm 이하, 0.5 mm 이상 1.1 mm 이하, 또는 0.6 mm 이상 1 mm 이하일 수 있다.
도 3은 플라스틱 렌즈 기재의 두께에 따라 상기 플라스틱 기재 내부에서 회절광의 전반사 횟수가 달라지는 것을 개략적으로 나타낸 도면이다. 도 3을 참고하면, 플라스틱 렌즈 기재(300)의 두께가 얇을수록 동일한 회절각을 갖는 회절광(220)이라도 전반사 횟수가 많아지게 된다. 따라서, 플라스틱 렌즈 기재(300)의 두께가 상기 범위 내인 경우, 회절광(220)의 지나치게 많은 전반사를 방지하여 광량의 손실을 최소화할 수 있으며, 나아가, 웨어러블 디바이스의 부피를 최소화할 수 있는 이점이 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 평균 두께에 대한 두께 편차는 1 % 이하이다. 구체적으로는, 상기 플라스틱 렌즈 기재의 평균 두께에 대한 두께 편차는 0.5 % 이하일 수 있다. 상기 플라스틱 렌즈 기재의 평균 두께에 대한 두께 편차는 하기 식 3에 의하여 도출될 수 있다.
[식 3]
두께 편차(%) = {(최대 두께 - 최소 두께)/평균 두께} × 100
본 명세서에서, 부재의 최대 두께, 최소 두께 및 평균 두께는 25 ℃ 및 50 RH%에서 파이버프로 사의 OWTM(Optical Wafer Thickness Measurement system) 장비를 이용한 비접촉식 측정 방법으로 구할 수 있다. 구체적으로, 크기 50 ㎜ × 50 ㎜의 샘플을 준비하고, 각 모서리의 말단으로부터 5 ㎜씩을 제외한 40 ㎜ × 40 ㎜의 면적에 대하여 가로, 세로 1 ㎜ 간격으로 두께를 측정하여, 총 1681점에 대한 두께 값을 얻은 후, 이 중 가장 높은 값은 최대 두께로 하고, 가장 낮은 값을 최소 두께로 하며, 측정된 총 1681점에 대한 산술 평균 값을 통하여 평균 두께를 구할 수 있다.
본 명세서에 있어서, "평균 두께에 대한 두께 편차"는 "두께 편차"와 동일한 의미로 사용될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 두께 편차는 일반적인 플라스틱 렌즈 기재의 두께 편차(2 % 내지 5 %)에 비하여 월등하게 낮은 값을 가지므로, 상기 웨어러블 디바이스는 우수한 해상도의 광정보를 출력할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재상의 길이 30 mm 당 회절광의 전반사 횟수가 40 회 이상 100 회 이하이다. 구체적으로, 상기 플라스틱 렌즈 기재상의 길이 30 ㎜ 당 회절광의 전반사 횟수가 40회 이상 80 회 이하, 40 회 이상 50 회 이하, 또는 40 회 이상 45 회 이하일 수 있다.
상기 플라스틱 렌즈 기재 내에서 일어나는 전반사 횟수를 상기 범위로 제어하여 추출되는 광량을 높임으로써 출력 화상의 휘도를 높일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전반사 횟수는 532 ㎚ 파장의 빛을 기준으로 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광부 및 상기 플라스틱 렌즈 기재의 532 nm 파장에서의 광굴절률은 1.65 이상일 수 있다. 일반적인 고굴절 유리 기재의 경우, 광굴절률이 532 ㎚ 파장에서 1.65 이상일 수 있으며, 본 발명의 일 실시상태에 따른 상기 플라스틱 렌즈 기재는 유리 기재와 동등 또는 그 이상의 광굴절률을 가지므로, 유리 재질의 렌즈 기재를 대체하여 웨어러블 디바이스에 적용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광부와 상기 플라스틱 렌즈 기재의 굴절률 차이는 0.05 이하일 수 있다. 상기 범위의 굴절률 차이를 갖는 경우, 상기 회절 도광부와 상기 플라스틱 렌즈 기재 사이에서의 빛의 손실이 최소화될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 웨어러블 디바이스는 시야각이 30˚ 이상일 수 있다. 더욱 구체적으로는 시야각이 40˚ 이상일 수 있다. 전술한 범위의 시야각을 가짐으로써 더 넓은 범위의 이미지를 제공할 수 있어 우수한 품질의 영상을 사용자에게 제공할 수 있다.
도 5는 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재 상의 회절 도광부의 광 굴절률이 1.7이고 입사광의 파장이 532 nm이며, 상기 회절 도광부에 포함된 회절 도광 패턴의 피치가 425 nm일 때 입사각(θo)에 따른 회절각(θd)을 나타낸 것이다. 회절광 중 θmin 이상의 회절각을 갖는 회절광만이 상기 플라스틱 렌즈 기재 내부에서 전반사되어 출사부로 진행할 수 있다. 전반사가 일어나는 최소 회절각(θmin, 임계각)은 하기 식 4에 의하여 구할 수 있다.
[식 4]
n sin θmin = n0/n
본 발명의 일 실시상태에 따르면, 상기 회절 도광 패턴의 피치는 100 nm 이상 800 nm 이하일 수 있고, 높이는 0 nm 초과 500 nm 이하일 수 있다. 구체적으로는, 상기 회절 도광 패턴의 피치는 100 nm 이상 500 nm 이하, 100nm 이상 300 nm 이하, 200 nm 이상 700 nm 이하, 200 nm 이상 500 nm 이하, 200 nm 이상 300 nm 이하, 300 nm 이상 700 nm 이하, 300 nm 이상 500 nm 이하, 400 nm 이상 700 nm 이하, 400 nm 이상 500 nm 이하, 500 nm 이상 700 nm 이하 또는 600 nm 이상 700 nm 이하일 수 있다.
또한, 구체적으로 상기 회절 도광 패턴의 높이는 0 nm 초과 400 nm 이하, 0 nm 초과 300 nm 이하 또는 0 nm 초과 200 nm 이하일 수 있다. 회절 도광 패턴이 상기 범위 내의 피치 및 높이를 가짐으로써, 회절광이 플라스틱 렌즈 기재 내에서 효율적으로 전반사될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광 패턴의 듀티와 경사각(Slanted angle)은 통상의 회절 도광부에 적용되는 범위 내에서 적절히 조절될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 헤이즈는 1 % 이하일 수 있다. 또한, 본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 532 nm 파장에서의 광투과율은 80 % 이상일 수 있다.
상기 플라스틱 렌즈 기재의 헤이즈 및 광투과율의 범위가 상기 범위 이내인 경우, 웨어러블 디바이스 용도로서 적절한 투명도를 가질 수 있으며, 나아가 상기 플라스틱 렌즈 기재를 통하여 출력되는 화상의 해상도를 높일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 표면 평탄도는 1 ㎛ 이하일 수 있다. 상기 표면 평탄도는 표면 거칠기(Ra)와 동일한 의미일 수 있다. 구체적으로, 상기 표면 평탄도가 상기 범위 이내인 경우, 상기 플라스틱 렌즈 기재 내에서 회절광의 경로가 틀어지는 것을 방지할 수 있다. 나아가, 상기 플라스틱 렌즈 기재를 통하여 출력되는 화상의 해상도 저하를 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재는 532 ㎚ 파장에서의 광굴절률이 1.8 이상이고, 입경이 50 ㎚ 이하인 무기 입자를 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 무기 입자는 실리카, 알루미나, 지르코니아, 제올라이트 및 티타늄 산화물 중에서 선택된 1종 이상을 포함하는 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 무기 입자는 532 ㎚ 파장에서의 광굴절률이 1.8 이상, 구체적으로 1.9 이상, 보다 구체적으로 2.0 이상일 수 있다.
본 명세서에서, 무기 입자의 광굴절률은 아베 굴절계를 이용하여 측정될 수 있다. 또한, 무기 입자와 아크릴레이트 바인더를 혼합하여 제조한 플라스틱 기재의 굴절률을 Ellipsometer로 측정하여 간단히 계산할 수 있다. 예를 들어, 아크릴레이트 HR6042(RI아크릴, 굴절률 1.60, 밀도 1.18) 50 중량부에 무기 입자 50 중량부를 혼합하여 제조한 플라스틱 기재의 굴절률이 RI기재이고 아크릴레이트의 부피 분율이 V아크릴, 무기 입자의 부피 분율이 V입자 인 경우, RI기재 = (RI아크릴 × V아크릴) + (RI입자 × V입자)이므로 이를 이용하여 무기 입자의 굴절률을 구할 수 있다.
상기 무기 입자는 상기 플라스틱 렌즈 기재의 광굴절률을 1.65 이상으로 구현할 수 있도록 하는 역할을 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 무기 입자의 입경은 50 ㎚ 이하일 수 있다. 구체적으로, 상기 무기 입자의 입경은 40 ㎚ 이하, 35 ㎚ 이하, 또는 30 ㎚ 이하일 수 있다. 또한, 상기 무기 입자의 입경은 5 ㎚ 이상, 또는 10 ㎚ 이상일 수 있다. 나아가, 상기 무기 입자의 입경은 평균 입경일 수 있다.
상기 무기 입자의 입경이 상기 범위 내인 경우, 상기 무기 입자는 상기 플라스틱 렌즈 기재의 제조시 높은 분산성을 유지할 수 있으며, 나아가, 상기 플라스틱 렌즈 기재에 투명성을 부여하여 광굴절률을 크게 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 무기 입자의 함량은, 상기 플라스틱 렌즈 기재의 고분자 매트릭스 100 중량부에 대하여, 20 중량부 이상 70 중량부 이하일 수 있다. 구체적으로, 상기 무기 입자의 함량은, 상기 플라스틱 렌즈 기재의 고분자 매트릭스 100 중량부에 대하여, 25 중량부 이상 70 중량부 이하, 또는 30 중량부 이상 70 중량부 이하일 수 있다.
상기 무기 입자의 함량이 상기 범위 내인 경우, 상기 플라스틱 렌즈 기재의 광굴절률이 532 ㎚ 파장에서 1.65 이상으로 구현될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재는 황 원자가 20 wt% 이상 함유된 황 함유 화합물을 포함한 매트릭스 조성물을 이용하여 형성된 것일 수 있다. 상기 황 함유 화합물은 상기 플라스틱 렌즈 기재의 광굴절률을 높게 조절하는 역할을 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 황 함유 화합물은 티올기 함유 화합물, 티오우레탄기 함유 화합물 및 티오에폭시기 함유 화합물 중에서 선택된 1종 이상을 포함할 수 있다.
상기 티올기 함유 화합물은 분자 내에 하나 이상의 티올기(-SH)를 함유한 화합물로서, 예를 들어 메탄디티올, 1,2-에탄디티올, 1,1-프로판디티올, 1,2-프로판디티올, 1,3-프로판디티올, 2,2-프로판디티올, 1,6-헥산디티올, 1,2,3-프로판트리티올, 비스(2- 메르캅토에틸) 설파이드, 비스(2,3-디메르캅토프로파닐) 설파이드, 비스(2,3- 디메르캅토프로파닐) 디설파이드, 비스(메르캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 펜타에리트리톨 테트라키스 티오글리콜레이트, 펜타에리트리톨 테트라키스(2-머캅토아세테이트), 펜타에리트리톨 트리스(3-머캅토아세테이트), 트리메티롤프로판트리스(3-머캅토프로피오네이트), 트리메티롤프로판 테트라키스(3-머캅토프로피오네이트) 등을 들 수 있으나 이에 제한되는 것은 아니다.
상기 티오우레탄기 함유 화합물은 하나 이상의 이소시아네이트기(-NCO)를 갖는 화합물과 하나 이상의 티올기를 갖는 화합물을 사용하여 제조할 수 있으며, 이소시아네이트와 티올의 몰비(SH/NCO)를 조절하여 다양한 티오우레탄기 함유 화합물을 제조할 수 있다. 상기 이소시아네이트기를 갖는 화합물은, 예를 들어 헥사메틸렌 디이소시아네이트, 이소포론 디이소시아네이트, 톨루엔 디이소시아네이트, 자일렌 디이소시아네이트, 디메틸페닐렌 디이소시아네이트 등을 들 수 있다.
상기 티오에폭시기 함유 화합물로서, 예를 들어 비스(2,3-에피티오프로필) 설파이드, 비스(2,3-에피티오프로필) 디설파이드, 비스(2,3-에피티오프로필)트리설파이드, 비스(2,3-에피티오프로필 티오) 시클로헥산, 비스(2,3-에피티오프로필 티오시클로헥실)설파이드 등을 들 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재는 아크릴계 고분자 매트릭스 내에 상기 무기 입자가 분산된 것일 수 있다. 구체적으로, 상기 플라스틱 렌즈 기재는 아크릴계 단량체 및/또는 아크릴계 공중합체, 및 상기 황 함유 화합물을 포함하는 매트릭스 조성물을 이용하여 제조될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 플라스틱 렌즈 기재의 유리전이온도(Tg)는 40 ℃ 이상일 수 있다. 웨어러블 디바이스의 경우, 지속적인 영상의 전송 및 출력이 진행될 수 있으며, 이에 따라 렌즈 기재의 온도가 상승할 수 있다. 이에, 상기 플라스틱 렌즈 기재는 유리전이온도가 40 ℃ 이상으로서, 웨어러블 디바이스의 렌즈 기재로 사용하더라도 온도에 따른 물성 변화를 최소화할 수 있는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광부는 광이 입사되는 제1 영역 및 광이 추출되는 제2 영역을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광부는 상기 플라스틱 렌즈 기재 상에 구비되고, 회절 도광 패턴을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 회절 도광부는 고굴절 성분을 함유하는 열경화성 수지 또는 광경화성 수지를 포함할 수 있다. 구체적으로, 상기 열경화성 수지 또는 광경화성 수지는 우레탄 아크릴레이트 또는 에폭시 아크릴레이트 등을 포함하는 아크릴계 수지, 폴리아미드 수지, 폴리이미드 수지, 실리콘 수지, 에폭시 수지 및 폴리에스테르 중에서 선택된 1종 이상을 포함할 수 있으나, 그 종류를 제한하는 것은 아니다.
도 4는 마이크로-디스플레이로부터 입력되는 광이 본 발명의 일 실시상태에 따른 웨어러블 디바이스에 적용되는 플라스틱 렌즈 기재를 통하여 사용자의 눈으로 추출되는 과정을 개략적으로 나타낸 도면이다.
도 4를 참고하면, 상기 제1 영역 또는 상기 제2 영역은 일측에서 타측까지 점진적으로 높이가 증가하는 회절 도광 패턴을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 영역의 회절 도광 패턴은 상기 플라스틱 렌즈 기재에 대하여 50 ° 이상 90 ° 미만의 경사각을 이루며 구비될 수 있다.
본 발명의 일 실시상태에 따르면, 제2 영역의 회절 도광 패턴의 높이를 상기 제2 영역의 일측에서 타측방향을 따라 점진적으로 증가시킴으로써, 상기 제2 영역의 일측에서 타측방향으로 광이 회절되는 과정에서 광량이 감소되는 것을 방지하여, 상기 제2 영역의 부분별 출사되는 광의 광도를 일정하게 할 수 있다.
본 발명의 일 실시상태에 따르면, 제2 영역은 일측에서 타측까지 점진적으로 듀티가 증가하는 회절 도광 패턴을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 제2 영역은 일측에서 타측까지 점진적으로 듀티가 증가하는 회절 도광 패턴을 포함함으로써, 상기 제2 영역의 일측에서 타측까지 광굴절률을 점진적으로 증가시킬 수 있다. 상기 제2 영역의 일측에서 타측방향을 따라 회절 도광 패턴의 듀티가 점진적으로 증가됨으로써, 상기 제2 영역은 일측에서 타측방향으로 광굴절률이 점진적으로 증가될 수 있다. 상기 제2 영역의 일측에서 타측으로 광굴절률이 점진적으로 증가됨으로써, 상기 제2 영역의 일측에서 타측까지 광 회절 효율이 점진적으로 증가될 수 있다.
본 발명의 일 실시상태에 따르면, 제2 영역에 포함되는 회절 도광 패턴의 듀티는 0.1 이상 1.0 이하일 수 있다. 상기 제2 영역에 포함되는 상기 회절 도광 패턴의 듀티를 상기 범위로 조절함으로써, 광 회절 효율이 우수한 제2 영역을 구현할 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 회절 도광부의 제2 영역의 회절 도광 패턴의 피치는 일정하게 설정하고, 제2 영역의 일측에서 타측방향으로 상기 회절 도광 패턴의 폭을 점진적으로 증가시킴으로써, 상기 회절 도광 패턴의 듀티를 상기 제2 영역의 일측에서 타측까지 점진적으로 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 웨어러블 디바이스는 증강현실 디바이스 또는 가상현실 디바이스일 수 있다.
상기 플라스틱 렌즈 기재는 상기 웨어러블 디바이스의 렌즈 기재로서, 상기 일면 상에 회절 도광부를 포함하여 입력된 광 정보의 입력, 이동 및 송출을 하는 기재로서 적용될 수 있다.
상기 플라스틱 렌즈 기재는 높은 광굴절률을 가지므로, 광손실을 최소화하며 광 정보의 이동을 도모할 수 있다. 나아가, 상기 플라스틱 렌즈 기재는 높은 유리전이온도를 가지므로, 웨어러블 디바이스의 작동에 따른 열에 의하여 물성의 변화를 최소화하여 높은 내구성을 구현할 수 있다. 나아가, 상기 플라스틱 렌즈 기재에 의하여, 본원 발명은 종래의 유리 렌즈 기재를 적용한 웨어러블 디바이스에 비하여 가볍고 안정성이 높은 웨어러블 디바이스를 제공할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
[ 실시예 1]
MGC社 Lumiplus LPJ-1102를 재료로 이용하여, 완충형 스페이서가 적용된 몰드 캐스팅 방법으로 두께가 0.5 ㎜ 및 532 ㎚ 파장에서의 광굴절률이 1.70인 플라스틱 렌즈 기재 제조하였다. 제조된 플라스틱 렌즈 기재의 두께 편차는 0.5 %였다.
나아가, 제조된 플라스틱 렌즈 기재를 50 × 50 ㎟로 재단한 후, 한 면에 UV 경화형 임프린트용 수지를 1 ㎛ 두께로 도포하였다. 피치 425 nm, 깊이 125 nm, 듀티가 0.4인 회절 도광 패턴이 음각으로 형성된 필름 형태의 몰드를 압착한 후 UV를 노광하여 플라스틱 렌즈 기재 상에 회절 도광 패턴을 가지는 회절 도광부를 제조하였다.
플라스틱 렌즈 기재의 물성을 하기 표 1과 같이 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2 내지 4 및 비교예 1 내지 3에 따른 플라스틱 렌즈 기재 및 상기 플라스틱 렌즈 기재 상의 회절 도광부를 제조하였다. 또한, 상기 실시예 1 내지 4 및 비교예 1 내지 3에 따라 제조된 플라스틱 렌즈 기재의 기재상 길이 30 mm 당 회절광의 전반사 횟수 및 유리전이온도를 측정하여 하기 표 1에 나타내었다.
실시예 및 비교예 플라스틱 렌즈 기재의 재료 광굴절률(@ 532 nm) 플라스틱 렌즈 기재 길이 30 mm 당회절광의 전반사 횟수 두께(mm) 두께 편차(%) Tg(℃)
실시예 1 LPJ-1102 1.7 83 0.5 <1 90
실시예 2 LPJ-1102 1.7 52 0.8 <1 90
실시예 3 LPJ-1102 1.7 41 1 <1 90
실시예 4 LPJ-1102+비스(2,3-에피티오프로필) 디설파이드 1.74 43 1 <1 85
비교예 1 폴리카보네이트 1.49 67 0.5 4 145
비교예 2 LPJ-1102 1.7 138 0.3 <1 90
비교예 3 LPJ-1102 1.7 41 1 5 90
또한, 제조된 상기 실시예 1 내지 4 및 비교예 1 내지 3의 회절 도광부에 대하여 임계각, 휘도, 해상도, 시야각, 투과도 및 헤이즈를 측정하여 하기 표 2에 나타내었다.
구분 임계각(θmin) 시야각(FOV) 휘도(cd/㎡) 해상도(MTF) 투과도(%) Haze(%)
실시예 1 36˚ 41˚ 2.23 0.21 89.3 0.2
실시예 2 36˚ 41˚ 10.95 0.36 88.7 0.3
실시예 3 36˚ 41˚ 19.25 0.64 88.4 0.3
실시예 4 35˚ 44˚ 18.99 0.53 87.2 0.2
비교예 1 42˚ 29˚ 5.19 0.17 90.4 0.4
비교예 2 36˚ 41˚ 0.17 0.16 89.8 0.3
비교예 3 36˚ 41˚ 19.03 0.19 88.4 0.3
상기 표 1 및 2를 참고하면, 실시예 1 내지 4에 의한 웨어러블 디바이스는 플라스틱 렌즈 기재가 0.4 mm 이상 1.5 mm 이하, 1% 이하의 두께 편차 및 기재상의 길이 30 mm 당 40 회 이상 100 회 이하의 회절광 전반사 횟수를 가짐으로써, 적절한 휘도와 해상도를 갖는 영상을 사용자에게 제공할 수 있다. 또한 41˚ 이상의 넓은 시야각을 제공하여 우수한 품질의 영상을 사용자에게 제공할 수 있는 것을 확인할 수 있다.
반면에, 비교예 1 및 3은 플라스틱 렌즈 기재의 두께 편차가 각각 4 % 및 5 %로 커서, 출사되는 영상의 해상도가 낮으며, 특히 비교예 1은 시야각이 좁고 헤이즈가 높아 영상 품질이 떨어짐을 확인할 수 있다. 플라스틱 렌즈 기재의 두께가 0.4 mm 이하로 얇아 30 mm 당 전반사 횟수가 100 이상인 비교예 2의 플라스틱 렌즈 기재는 휘도가 매우 낮아서 웨어러블 디바이스에 쓰기에 부적합한 것을 확인할 수 있다.
[부호의 설명]
100: 회절 도광부
110: 회절 도광 패턴
210: 입사광
220: 회절광
300: 플라스틱 렌즈 기재

Claims (11)

  1. 플라스틱 렌즈 기재; 및 상기 플라스틱 렌즈 기재 상에 구비된, 회절 도광 패턴을 포함하는 회절 도광부를 포함하고,
    상기 플라스틱 렌즈 기재의 두께는 0.4 ㎜ 이상 1.5 ㎜ 이하이며,
    상기 플라스틱 렌즈 기재의 평균 두께에 대한 두께 편차는 1 % 이하이고,
    상기 플라스틱 렌즈 기재상의 길이 30 ㎜ 당 회절광의 전반사 횟수가 40 회 이상 100 회 이하인 것인 웨어러블 디바이스.
  2. 청구항 1에 있어서,
    상기 플라스틱 렌즈 기재의 532 ㎚ 파장에서의 광굴절률은 1.65 이상인 것인 웨어러블 디바이스.
  3. 청구항 1에 있어서,
    시야각이 30˚ 이상인 것인 웨어러블 디바이스.
  4. 청구항 1에 있어서,
    상기 회절 도광 패턴의 피치(Pitch)는 100 nm 이상 800 nm 이하이고, 높이가 500 nm 이하인 웨어러블 디바이스.
  5. 청구항 1에 있어서,
    상기 플라스틱 렌즈 기재의 헤이즈(Haze)는 1 % 이하인 것인 웨어러블 디바이스.
  6. 청구항 1에 있어서,
    상기 플라스틱 렌즈 기재의 532 ㎚ 파장에서의 광투과율은 80 % 이상인 것인 웨어러블 디바이스.
  7. 청구항 1에 있어서,
    상기 플라스틱 렌즈 기재의 유리전이온도(Tg)는 40 ℃ 이상인 것인 웨어러블 디바이스.
  8. 청구항 1에 있어서,
    상기 회절 도광부는 광이 입사되는 제1 영역 및 이동된 광이 추출되는 제2 영역을 포함하는 것인 웨어러블 디바이스.
  9. 청구항 8에 있어서,
    상기 제2 영역의 회절 도광 패턴은 일측에서 타측까지 점진적으로 높이가 증가하는 것인 웨어러블 디바이스.
  10. 청구항 8에 있어서,
    상기 제2 영역의 회절 도광 패턴은 일측에서 타측까지 점진적으로 듀티(Duty)가 증가하는 것인 웨어러블 디바이스.
  11. 청구항 1에 있어서,
    상기 웨어러블 디바이스는 증강현실 디바이스 또는 가상현실 디바이스인 것인 웨어러블 디바이스.
PCT/KR2018/015680 2017-12-15 2018-12-11 웨어러블 디바이스 WO2019117588A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020529389A JP2021504760A (ja) 2017-12-15 2018-12-11 ウェアラブルデバイス
EP18888365.6A EP3712683A4 (en) 2017-12-15 2018-12-11 WEARABLE DEVICE
CN201880078779.5A CN111448501B (zh) 2017-12-15 2018-12-11 可穿戴设备
US16/765,888 US11681154B2 (en) 2017-12-15 2018-12-11 Wearable device including a plastic lens substrate
JP2022078261A JP7412843B2 (ja) 2017-12-15 2022-05-11 ウェアラブルデバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170173187 2017-12-15
KR10-2017-0173187 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117588A1 true WO2019117588A1 (ko) 2019-06-20

Family

ID=66820891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015680 WO2019117588A1 (ko) 2017-12-15 2018-12-11 웨어러블 디바이스

Country Status (6)

Country Link
US (1) US11681154B2 (ko)
EP (1) EP3712683A4 (ko)
JP (2) JP2021504760A (ko)
KR (1) KR102215705B1 (ko)
CN (1) CN111448501B (ko)
WO (1) WO2019117588A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182598A1 (ko) * 2020-03-13 2021-09-16
JP2022552201A (ja) * 2019-10-08 2022-12-15 マジック リープ, インコーポレイテッド 拡張現実/複合現実用途のための色選択性導波管

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345954B2 (ja) * 2019-08-14 2023-09-19 エルジー・ケム・リミテッド 回折導光板および回折導光板の製造方法
KR102647662B1 (ko) * 2020-01-16 2024-03-13 주식회사 엘지화학 광학 렌즈 및 이를 포함하는 웨어러블 디바이스
KR102686409B1 (ko) * 2022-06-16 2024-07-19 엑스퍼아이 주식회사 이미지 표시 광학장치 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310491A1 (en) * 2010-06-17 2011-12-22 Seiko Epson Corporation Virtual image display device and light guide plate therefor
US8848289B2 (en) * 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
KR20150060562A (ko) 2013-11-25 2015-06-03 주식회사 엘지화학 플라스틱 필름 및 이의 제조방법
KR20150105941A (ko) * 2013-01-10 2015-09-18 소니 주식회사 화상 표시 장치, 화상 생성 장치 및 투과형 공간 광변조 장치
US20170010465A1 (en) * 2015-07-06 2017-01-12 Google Inc. Adding prescriptive correction to eyepieces for see-through head wearable displays
US20170336552A1 (en) * 2014-11-11 2017-11-23 Sharp Kabushiki Kaisha Light guide plate and virtual image display device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117150A (ja) * 1985-11-15 1987-05-28 Alps Electric Co Ltd 光学式ピツクアツプ
KR100509510B1 (ko) 1997-07-15 2005-10-21 삼성전자주식회사 균일한 평면 광도파로 제작방법
JP4114283B2 (ja) 1999-07-29 2008-07-09 日本ゼオン株式会社 導光板及びその製造方法
US6757105B2 (en) * 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
CN1662373A (zh) * 2002-06-24 2005-08-31 富士胶片株式会社 塑料膜和图象显示单元
TWI223103B (en) * 2003-10-23 2004-11-01 Ind Tech Res Inst Wire grid polarizer with double metal layers
JP5119667B2 (ja) 2004-03-29 2013-01-16 ソニー株式会社 光学装置及び虚像表示装置
KR100857501B1 (ko) * 2004-10-28 2008-09-08 아사히 가세이 케미칼즈 가부시키가이샤 광학용 메타크릴 수지 압출판의 제조 방법
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
JP2007010830A (ja) * 2005-06-29 2007-01-18 Nikon Corp 画像表示光学系及び画像表示装置
CN101379133A (zh) 2006-02-10 2009-03-04 富士胶片株式会社 有机-无机混合组合物、制备该组合物的方法、模制品和光学元件
KR20100099744A (ko) * 2008-01-23 2010-09-13 후지필름 가부시키가이샤 플라스틱 렌즈
JP5357629B2 (ja) 2008-07-01 2013-12-04 新日鉄住金化学株式会社 光導波路用樹脂組成物およびそれを用いた光導波路
WO2011089433A1 (en) * 2010-01-25 2011-07-28 Bae Systems Plc Projection display
KR101172248B1 (ko) * 2010-11-19 2012-08-07 엘지이노텍 주식회사 렌즈 어셈블리, 이의 제조방법 및 이를 포함하는 카메라 모듈
GB2495477A (en) 2011-10-04 2013-04-17 Exxelis Ltd Method of making a lightguide
JP5946354B2 (ja) 2012-07-31 2016-07-06 バンドー化学株式会社 フレキシブル導光板及びフレキシブル導光板の製造方法
CN103453355B (zh) 2013-04-09 2016-04-27 邓维增 一种实现led消毒兼容照明的方法及器具
JP6171740B2 (ja) 2013-09-02 2017-08-02 セイコーエプソン株式会社 光学デバイス及び画像表示装置
JP6322975B2 (ja) 2013-11-29 2018-05-16 セイコーエプソン株式会社 光学デバイスおよび電子機器
WO2015125794A1 (ja) * 2014-02-21 2015-08-27 旭硝子株式会社 導光素子および映像表示装置
US9423552B2 (en) 2014-02-24 2016-08-23 Google Inc. Lightguide device with outcoupling structures
KR102242018B1 (ko) * 2014-03-27 2021-04-19 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP2015194549A (ja) * 2014-03-31 2015-11-05 セイコーエプソン株式会社 光学デバイス、画像投影装置及び電子機器
JP2015207686A (ja) * 2014-04-22 2015-11-19 株式会社日立製作所 部品配置決定方法および部品配置決定装置
JP6417589B2 (ja) 2014-10-29 2018-11-07 セイコーエプソン株式会社 光学素子、電気光学装置、装着型表示装置および光学素子の製造方法
KR102322340B1 (ko) * 2015-01-10 2021-11-05 레이아 인코포레이티드 제어된 회절 결합 효율을 갖는 회절 격자-기반 백라이팅
US10670862B2 (en) * 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
CN107167919B (zh) 2016-03-07 2021-08-03 精工爱普生株式会社 导光装置以及虚像显示装置
JP6694158B2 (ja) 2016-05-20 2020-05-13 株式会社リコー 虚像表示装置及び虚像表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310491A1 (en) * 2010-06-17 2011-12-22 Seiko Epson Corporation Virtual image display device and light guide plate therefor
US8848289B2 (en) * 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
KR20150105941A (ko) * 2013-01-10 2015-09-18 소니 주식회사 화상 표시 장치, 화상 생성 장치 및 투과형 공간 광변조 장치
KR20150060562A (ko) 2013-11-25 2015-06-03 주식회사 엘지화학 플라스틱 필름 및 이의 제조방법
US20170336552A1 (en) * 2014-11-11 2017-11-23 Sharp Kabushiki Kaisha Light guide plate and virtual image display device
US20170010465A1 (en) * 2015-07-06 2017-01-12 Google Inc. Adding prescriptive correction to eyepieces for see-through head wearable displays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552201A (ja) * 2019-10-08 2022-12-15 マジック リープ, インコーポレイテッド 拡張現実/複合現実用途のための色選択性導波管
JP7419512B2 (ja) 2019-10-08 2024-01-22 マジック リープ, インコーポレイテッド 拡張現実/複合現実用途のための色選択性導波管
JPWO2021182598A1 (ko) * 2020-03-13 2021-09-16
WO2021182598A1 (ja) * 2020-03-13 2021-09-16 三菱ケミカル株式会社 導光板、及びarディスプレイ
CN115244449A (zh) * 2020-03-13 2022-10-25 三菱化学株式会社 导光板以及ar显示器

Also Published As

Publication number Publication date
KR102215705B1 (ko) 2021-02-18
KR20190072435A (ko) 2019-06-25
CN111448501A (zh) 2020-07-24
JP2021504760A (ja) 2021-02-15
EP3712683A4 (en) 2020-12-23
JP7412843B2 (ja) 2024-01-15
JP2022103280A (ja) 2022-07-07
CN111448501B (zh) 2022-03-15
EP3712683A1 (en) 2020-09-23
US20200355932A1 (en) 2020-11-12
US11681154B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2019117588A1 (ko) 웨어러블 디바이스
US7250209B2 (en) Transparent composite composition
US20070225466A1 (en) Curable organometallic composition, organometallic polymer material and optical component
WO2018150951A1 (ja) 光学材料用組成物
KR101992555B1 (ko) 중합성 조성물, 광학 부재, 플라스틱 렌즈 및 안경 렌즈
WO2021215606A1 (ko) 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈
WO2015020482A1 (ko) 고굴절 광학재료용 중합성 조성물 및 고굴절 광학재료의 제조방법
WO2016060476A1 (ko) 광학 필름 코팅용 조성물 및 이를 포함하는 광학 필름
WO2017164605A1 (ko) 촬영 렌즈 광학계
WO2020197156A1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
WO2010128770A2 (ko) 내열성 및 반응성이 우수한 우레탄계 광학 렌즈용 수지조성물
CN111373291A (zh) 光学玻璃、光学部件和光学设备
Jha et al. Development of high refractive index plastics
WO2019031713A1 (ko) 액정표시장치
WO2018194374A1 (ko) 광결정 필름, 이의 제조방법 및 이를 포함하는 위조방지 물품
WO2020235913A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2020218784A1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2016178522A2 (ko) 티오에폭시계 광학재료의 제조방법과 티오에폭시계 광학재료용 중합성 조성물
KR20210020423A (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2020242127A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
WO2024122936A1 (ko) 타일링형 표시 장치
WO2021177688A1 (ko) 광학 필름 및 이를 포함하는 마이크로 엘이디 디스플레이
JP3245535B2 (ja) 光学用樹脂
WO2020242129A1 (ko) 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
KR20210102699A (ko) 회절 도광판, 그 제조방법 및 이를 포함하는 웨어러블 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018888365

Country of ref document: EP

Effective date: 20200616