WO2021215606A1 - 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈 - Google Patents

디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈 Download PDF

Info

Publication number
WO2021215606A1
WO2021215606A1 PCT/KR2020/016358 KR2020016358W WO2021215606A1 WO 2021215606 A1 WO2021215606 A1 WO 2021215606A1 KR 2020016358 W KR2020016358 W KR 2020016358W WO 2021215606 A1 WO2021215606 A1 WO 2021215606A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
diisocyanate
mercaptoethylthio
dithiol
propane
Prior art date
Application number
PCT/KR2020/016358
Other languages
English (en)
French (fr)
Inventor
명정환
김정무
배재영
한혁희
Original Assignee
에스케이씨 주식회사
우리화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사, 우리화인켐 주식회사 filed Critical 에스케이씨 주식회사
Priority to CN202080100043.0A priority Critical patent/CN115443296B/zh
Publication of WO2021215606A1 publication Critical patent/WO2021215606A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3874Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing heterocyclic rings having at least one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the embodiment relates to a diisocyanate composition and an optical lens manufactured using the same. More specifically, the embodiment relates to a diisocyanate composition comprising two kinds of diisocyanate and having a controlled viscosity, a polymerizable composition and an optical lens prepared using the diisocyanate composition.
  • plastic optical material is lightweight, does not break easily, and has excellent dyeability, compared to an optical material made of an inorganic material such as glass, plastic materials of various resins are widely used as optical materials for spectacle lenses, camera lenses, and the like. In recent years, higher performance of optical materials has been demanded, and specifically, high transparency, high refractive index, low specific gravity, high heat resistance, high impact resistance, and the like are required.
  • Polythiourethane-based compounds are widely used as optical materials due to their excellent optical properties and mechanical properties.
  • the polythiourethane-based compound can be prepared by reacting a polythiol compound with an isocyanate compound, and lenses prepared from the polythiourethane-based compound are widely used because of their high refractive index, light weight, and relatively high impact resistance.
  • plastic optical materials have a problem in that the glass transition temperature is not sufficiently high, so that deformation due to heat is easy to occur when exposed to high temperatures during post-processing of lenses or during use of lenses.
  • the plastic optical material has another problem that cracks are likely to occur when exposed to a high-temperature environment.
  • the present inventors have tried to find a diisocyanate composition that suppresses both thermal deformation and cracking, and as a result, the diisocyanate composition includes p-xylylene diisocyanate and m-xylylene diisocyanate, and has a viscosity in a specific range. It has been found that an optical lens that satisfies the desired physical properties can be manufactured.
  • An object of the present invention is to provide an optical lens in which all cracks are suppressed.
  • a diisocyanate composition comprising p-xylylene diisocyanate and m-xylylene diisocyanate and having a viscosity of 4.5 to 15 cPs at 25°C.
  • a diisocyanate composition comprising p-xylylene diisocyanate and m-xylylene diisocyanate, and a viscosity at 25° C. of 4.5 to 15 cPs is provided. .
  • a diisocyanate composition comprising p-xylylene diisocyanate and m-xylylene diisocyanate, and the viscosity at 25° C. is 4.5 to 15 cPs,
  • An optical lens is provided.
  • a high-quality optical lens may be manufactured by adjusting the composition and physical properties of the isocyanate composition used for manufacturing the polythiourethane-based optical lens.
  • Polythiourethane prepared by using such an isocyanate composition not only satisfies the properties such as refractive index, Abbe's number, transparency, yellowness, etc., which are basically required for optical lenses, but also suppresses thermal deformation and cracking at high temperatures. , spectacle lenses, camera lenses, and the like.
  • isocyanate means a compound having an NCO group
  • diisocyanate means a compound having two NCO groups at the terminal, and depending on the skeleton of an aliphatic chain, an aliphatic ring, and an aromatic ring It can have a wide variety of structures.
  • diisocyanate examples include orthoxylylenediisocyanate, metaxylylenediisocyanate, paraxylylenediisocyanate, hexamethylenediisocyanate, 2,5-bis(isocyanatomethyl)-bicyclo[2.2.1] Heptane, 2,6-bis(isocyanatomethyl)-bicyclo[2.2.1]heptane, bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,2 -Diisocyanatobenzene, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, ethylphenylene diisocyanate, dimethylphenylene diisocyanate, biphenyldi Isocyanate, toluidine diisocyanate, to
  • composition is a chemical concept comprising two or more chemical components, as is well known, in which these components are mixed or combined in solid, liquid, and/or gaseous forms while generally maintaining their respective unique properties.
  • diisocyanate composition means a composition containing diisocyanate as a main component.
  • the content of the main component in the composition may be 80% by weight or more or 90% by weight or more, for example, may be 90% by weight to 99.9% by weight.
  • the diisocyanate composition according to an exemplary embodiment may include p-xylylene diisocyanate and m-xylylene diisocyanate, and may have a viscosity of 4.5 to 15 cPs at 25°C.
  • a weight ratio of the p-xylylene diisocyanate and the m-xylylene diisocyanate may be 1:20 to 20:1. Specifically, 0.5: 9.5 to 10: 1, 0.5: 9.5 to 8: 2, 0.5: 9.5 to 6: 4, 0.5: 9.5 to 5.5: 4.5, 1: 9 to 1:1, 2: 8 to 6: 4 , 2: 8 to 5.5: 4.5, 2.5: 7.5 to 1:1, 3: 7 to 6: 4, 4: 6 to 6: 4, or 4.5: 5.5 to 5.5: 4.5.
  • the weight ratio of the two kinds of diisocyanates is adjusted within the above range, the effect of suppressing deformation due to heat and cracks occurring in an optical lens manufactured using the diisocyanate composition may be more excellent.
  • the diisocyanate composition according to the embodiment may include 1 to 99% by weight of p-xylylene diisocyanate based on the total weight of the diisocyanate composition. Specifically, 5 to 60 wt%, 10 to 50 wt%, 20 to 60 wt%, 5 to 40 wt%, 25 to 50 wt%, 10 to 25 wt%, 40 to 60 wt% of p-xylylene diisocyanate % or 45 to 55% by weight, but is not particularly limited thereto.
  • p-xylylene diisocyanate is included within the above range, there is an advantage in, for example, the heat resistance of the product.
  • p-xylylene diisocyanate is included in an amount of 60% by weight or less, and when it is included in an amount exceeding 60% by weight, since fairness deteriorates for reasons such as not mixing with other materials, it may be difficult to commercialize.
  • the diisocyanate composition according to the embodiment may include 1 to 99% by weight of m-xylylene diisocyanate based on the total weight of the diisocyanate composition. Specifically, 40 to 95% by weight, 50 to 90% by weight, 40 to 80% by weight, 60 to 95% by weight, 50 to 75% by weight, 75 to 90% by weight, 40 to 60% by weight of m-xylylene diisocyanate % or 45 to 55% by weight.
  • the diisocyanate composition according to the embodiment has a viscosity measured at 25° C. of 4.5 to 15 cPs, specifically, 5 to 12 cPs, 5.5 to 11.2 cPs, 6 to 12 cPs, 5 to 10 cPs, 5 to 6 cPs, 6 to 10 cPs, or 10 to 12 cPs.
  • the viscosity of the diisocyanate composition affects the polymerization reaction of the diisocyanate and the thiol or episulfide
  • the thermal expansion properties of the optical lens comprising the polythiourethane in which they are polymerized change, the optical The occurrence of cracks in the lens may be suppressed.
  • the viscosity of the diisocyanate composition according to the embodiment may be controlled through a commonly known viscosity control method.
  • the viscosity of the diisocyanate composition may be controlled by further including a viscosity modifier.
  • the viscosity control method is not particularly limited as long as the diisocyanate composition has a viscosity in the above range.
  • the diisocyanate composition according to the embodiment may have a specific gravity of 1.05 to 1.35 at 20°C. Specifically, the specific gravity may be 1.10 to 1.30, or 1.15 to 1.25.
  • the diisocyanate composition according to the embodiment may include a viscosity modifier based on the total weight of the diisocyanate composition.
  • the viscosity modifier includes, for example, an acrylic compound and a silicone compound, but is not particularly limited thereto.
  • the diisocyanate composition may include a viscosity modifier in an amount of 0.005% to 2% by weight, based on the total weight of the diisocyanate composition, and specifically 0.005% to 1.5% by weight, 0.005 to 1% by weight, or 0.005 to 0.5% by weight % can be included.
  • the viscosity modifier is included in excess of the above range, the appearance quality of a product manufactured using the diisocyanate composition may be deteriorated.
  • a product manufactured using an isocyanate composition containing two kinds of isocyanates and having a controlled viscosity can not only satisfy high optical properties, but also have suppressed deformation and cracking due to heat, so plastics It can be usefully used in the manufacture of an optical material, specifically, a plastic optical lens.
  • a polymerizable composition can be provided by combining the diisocyanate composition according to the above embodiment with other components.
  • the polymerizable composition according to one embodiment, a diisocyanate composition; and thiol or episulfide, wherein the diisocyanate composition includes p-xylylene diisocyanate and m-xylylene diisocyanate, and the viscosity at 25° C. may be 4.5 to 15 cPs.
  • the diisocyanate composition is the same as described above.
  • the polymerizable composition according to the embodiment may include the diisocyanate composition and the thiol or episulfide in a mixed state or in a separate state. That is, in the polymerizable composition, the isocyanate composition and the thiol or episulfide may be in a mixed state in contact with each other, or may be in a separated state so as not to contact each other.
  • the thiol may be a polythiol including two or more SH groups, and may have an aliphatic, alicyclic, or aromatic skeleton.
  • episulfide may have two or more thioepoxy groups, and may have an aliphatic, cycloaliphatic, or aromatic backbone.
  • thiol examples include 4,8-bis(mercaptomethyl)-3,6,9-trithiaundecan-1,11-dithiol, 4,7-bis(mercaptomethyl)-3,6, 9-trithiaundecan-1,11-dithiol, 5,7-bis(mercaptomethyl)-3,6,9-trithiaundecan-1,11-dithiol, bis(2-mercaptoethyl) ) sulfide, 4-mercaptomethyl-3,6-dithiaoctane-1,8-dithiol, 2,3-bis(2-mercaptoethylthio)propane-1-thiol, 2,2-bis( Mercaptomethyl) propane-1,3-dithiol, 2-(2-mercaptoethylthio)propane-1,3-dithiol, 2-(2,3-bis(2-mercaptoethylthio)propylthio ) ethanethiol, bis(
  • the thiol may be any one or two or more of the exemplary compounds, but is not limited thereto.
  • episulfide examples include bis( ⁇ -epithiopropylthio)methane, 1,2-bis( ⁇ -epithiopropylthio)ethane, 1,3-bis( ⁇ -epithiopropylthio)propane , 1,2-bis( ⁇ -epithiopropylthio)propane, 1-( ⁇ -epithiopropylthio)-2-( ⁇ -epithiopropylthiomethyl)propane, 1,4-bis( ⁇ -epithio Propylthio)butane, 1,3-bis( ⁇ -epithiopropylthio)butane, 1-( ⁇ -epithiopropylthio)-3-( ⁇ -epithiopropylthiomethyl)butane, 1,5-bis( ⁇ -epithiopropylthio)pentane, 1-( ⁇ -epithiopropylthio)-4-( ⁇
  • the episulfide may be any one or two or more of the exemplary compounds, but is not limited thereto.
  • the episulfide may be a compound in which at least one hydrogen of a thioepoxy group is substituted with a methyl group.
  • the polymerizable composition according to the embodiment contains the thiol or episulfide and the diisocyanate composition in a weight ratio of 1: 9 to 9: 1, 2: 8 to 8: 2, or 3: 7 to 7: 3 by weight.
  • the thiol or episulfide and the diisocyanate composition in a weight ratio of 1: 9 to 9: 1, 2: 8 to 8: 2, or 3: 7 to 7: 3 by weight.
  • the polymerizable composition according to the embodiment may include 10 to 90% by weight of the disocyanate composition based on the total weight of the polymerizable composition.
  • the diisocyanate composition may be included in an amount of 20 to 80% by weight, 30 to 70% by weight, 40 to 60% by weight, or 45 to 55% by weight, but is not particularly limited thereto.
  • the polymerizable composition according to the embodiment may include 10 to 90 wt% of thiol or episulfide based on the total weight of the polymerizable composition.
  • the thiol or episulfide may be included in an amount of 20 to 80% by weight, 30 to 70% by weight, 40 to 60% by weight, or 45 to 55% by weight.
  • the polymerizable composition may have a molar ratio of SH groups/NCO groups in the composition of 0.5 to 3.0, specifically, 0.8 to 1.2 or 0.9 to 1.1, but is not limited thereto.
  • the optical lens according to an embodiment may include polythiourethane in which the diisocyanate composition prepared in the embodiment is polymerized with thiol or episulfide.
  • the optical lens according to an embodiment includes a diisocyanate composition; and polythiourethane polymerized with thiol or episulfide, wherein the diisocyanate composition includes p-xylylene diisocyanate and m-xylylene diisocyanate, and the viscosity at 25° C. may be 4.5 to 15 cPs. have.
  • the diisocyanate composition and the thiol or episulfide are the same as described above.
  • the polythiourethane may be one in which the thiol or episulfide is polymerized in an amount of 80 to 120 wt%, specifically 90 to 110 wt%, based on the total weight of p-xylylene diisocyanate and m-xylylene diisocyanate.
  • polythiourethane may have a molar ratio of SH group/NCO group in polythiourethane, 0.8 to 1.2, specifically, 0.9 to 1.1, but is not limited thereto.
  • a reaction catalyst commonly used in the production of poly(thio)urethane may be added to control the reaction rate.
  • a tin-based catalyst specifically, dibutyltin dichloride, dibutyltin dilaurate, dimethyl dichloride, and the like may be used.
  • the optical lens according to the embodiment may include 50 to 100% by weight of polythiourethane based on the total weight of the optical lens, and specifically, 60 to 100% by weight, 70 to 100% by weight, 80 to 100 Weight %, 90 to 100% by weight, 95 to 100% by weight, or 97.5 to 100% by weight may be included.
  • the optical lens according to the embodiment may have a refractive index of 1.5 to 1.85. Specifically, it may be 1.55 to 1.80, 1.60 to 1.75, or 1.65 to 1.70.
  • the lens may have an Abbe's number of 20 or more, specifically 25 or more or 30 or more. More specifically, it may be 20 to 50, 25 to 50, 25 to 45, or 25 to 40.
  • the optical lens may have a light transmittance, for example, a light transmittance of 80 to 99.9%, 85 to 99%, or 85 to 95% at a wavelength of 395 nm.
  • the optical lens may have a yellowness of 25 or less or 20 or less, specifically 1 to 25, 1 to 25, 3 to 20, or 5 to 20.
  • the optical lens may have a glass transition temperature of 70°C or more, 80°C or more, or 90°C or more, specifically in the range of 70°C to 130°C, 80°C to 120°C, 90°C to 120°C, or 103°C to 120°C. °C.
  • the optical lens may have a crack generation temperature of 100°C or higher, 110°C or higher, or 120°C or higher.
  • the crack generation temperature may be 130 °C to 200 °C, 135 °C to 200 °C, 140 °C to 190 °C, 145 °C to 180 °C, or 145 °C to 175 °C.
  • the crack generation temperature is, when the surface of the lens is measured with a surface tester equipped with a Mercury lamp in a heating and cooling cycle test performed by increasing the heating temperature in units of 10°C from 50°C, the first crack occurs It can be temperature. More specifically, in the heating and cooling cycle test, the optical lens is placed in an oven, heated by setting the target heating temperature in units of 50°C to 10°C, and after standing for 10 minutes each time the target temperature is reached, the optical lens is removed It can be carried out by taking it out of the oven and cooling it at 25° C. for 10 minutes.
  • the optical lens includes the two specific isocyanates described above and is manufactured using a diisocyanate composition having a specific range of viscosity, so that high optical properties can be satisfied, and deformation and cracking due to heat are suppressed.
  • the optical lens may be manufactured by polymerizing (and curing) the above-described diisocyanate composition and thiol or episulfide and then molding.
  • the optical lens is first, after degassing the polymerizable composition including the diisocyanate composition described above under reduced pressure, and then injected into a mold for molding an optical lens, heated to a high temperature to perform polymerization, and polymerized polythiol It can be prepared by separating the urethane from the mold.
  • the defoaming process may be performed, for example, in a temperature range of 10 °C to 40 °C or 15 °C to 40 °C, and the polymerization process is 10 °C to 150 °C, specifically, 15 °C to 150 °C, 20 °C to 150 °C or It may be 25 °C to 140 °C.
  • a reaction catalyst commonly used in the production of poly (thio) urethane may be added, and specific types thereof are as exemplified above.
  • the optical lens may be subjected to surface polishing, antistatic treatment, hard coat treatment, anti-reflection coating treatment, to provide anti-reflection, high hardness, abrasion resistance, chemical resistance, anti-fogging, or fashion if necessary. It can be improved by performing physical and chemical treatment such as dyeing treatment and light control treatment.
  • a diisocyanate composition having a viscosity of 6.4 cPs at 25°C and a specific gravity of 1.20 at 20°C.
  • a diisocyanate composition having a viscosity of 11.2 cPs at 25°C and a specific gravity of 1.20 at 20°C.
  • m-xylylene diisocyanate 100 parts by weight of m-xylylene diisocyanate and 0.005 parts by weight of a viscosity modifier were mixed to obtain a diisocyanate composition having a viscosity of 3.5 cPs at 25°C and a specific gravity of 1.20 at 20°C.
  • a diisocyanate composition having a viscosity of 16 cPs at 25°C and a specific gravity of 1.20 at 20°C.
  • a diisocyanate composition having a viscosity of 3.5 cPs at 25°C and a specific gravity of 1.20 at 20°C.
  • the polymerizable composition prepared above was injected into a mold made of a glass mold and a tape. After maintaining the mold at 10° C. to 25° C. for 8 hours, the temperature was slowly raised to 130° C. at a constant rate for 8 hours, followed by polymerization at 130° C. for 2 hours. After the molding was released from the mold, it was further cured at 120° C. for 2 hours to obtain an optical lens.
  • the glass transition temperature was measured by the penetration method (load 50 g, pin tip 0.5 mm?, heating rate 10° C.) using a thermomechanical analyzer (TMA Q400, manufactured by TA Instruments).
  • the solid-state refractive index (nd20) was measured at 20°C using an Abbe refractometer (DR-M4).
  • the Abbe number (ne20) was measured at 20° C. using an Abbe refractometer (DR-M4) for the optical lens.
  • An optical lens was manufactured in the form of a cylinder with a radius of 16 mm and a height of 45 mm, and the light was transmitted in the height direction, and yellowness and transmittance were measured at a wavelength of 395 nm with a UV/VIS spectrometer (UV/VIS Lambda 365, PerkinElmer). .
  • the yellowness was calculated by Equation 1 below based on the measurement results of x 1 and y 1 .
  • the viscosity was measured at 10° C. for 24 hours using a non-contact viscometer (EMS-1000 manufactured by KEM), and the reactivity was calculated by Equation 2 below.
  • Equation 2 y 2 is log 10 (viscosity), a is a constant, b is reactive, x 2 represents time, and b is expressed by rounding to the third decimal place of the measured value.
  • the crack generation temperature was evaluated for the optical lens through a heating and cooling cycle test. Specifically, the optical lens is put into an oven and heated by setting the target heating temperature in units of 50°C to 10°C, and after standing for 10 minutes each time the target heating temperature is reached, the optical lens is taken out of the oven and heated at 25°C. After cooling for 10 minutes, the occurrence of cracks was checked using a surface inspection device (Yeongmulsan Y-100G) equipped with a Mercury lamp. At this time, the target heating temperature when cracks first occurred was evaluated as the crack occurrence temperature.
  • a surface inspection device Yeongmulsan Y-100G
  • the optical lens made of a diisocyanate composition containing both m-XDI and p-XDI and having a viscosity of 4.5 to 15 cPs, as in the Examples, has a high glass transition temperature and crack generation temperature. , since deformation and crack generation due to heat are suppressed, it is suitable for use as a high-quality optical lens.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

2종의 디이소시아네이트를 포함하며 점도가 조절된 디이소시아네이트 조성물과, 상기 디이소시아네이트 조성물을 이용하여 제조되는 중합성 조성물 및 광학 렌즈가 제공된다.

Description

디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈
구현예는 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈에 관한 것이다. 보다 구체적으로, 구현예는 2종의 디이소시아네이트를 포함하며 점도가 조절된 디이소시아네이트 조성물과, 상기 디이소시아네이트 조성물을 이용하여 제조되는 중합성 조성물 및 광학 렌즈에 관한 것이다.
플라스틱 광학 재료는 유리와 같은 무기 재료로 이루어지는 광학 재료에 비해 경량이면서 쉽게 깨지지 않고 염색성이 우수하기 때문에, 다양한 수지의 플라스틱 재료들이 안경 렌즈, 카메라 렌즈 등의 광학 재료로 널리 이용되고 있다. 최근에는 한층 더 광학 재료의 고성능화가 요구되고 있으며, 구체적으로 고투명성, 고굴절율, 저비중, 고내열성, 고내충격성 등이 요구되고 있다.
폴리티오우레탄계 화합물은 그의 우수한 광학 특성 및 기계적 물성으로 인해 광학 재료로서 널리 사용되고 있다. 폴리티오우레탄계 화합물은 폴리티올 화합물과 이소시아네이트 화합물을 반응시켜 제조할 수 있으며, 폴리티오우레탄계 화합물로부터 제조된 렌즈는 굴절률이 높고 가벼우며 비교적 내충격성이 높아 널리 사용되고 있다.
그러나, 이와 같은 플라스틱 광학 재료는 여전히 유리 광학 재료에 비해서는 내열성과 기계적 물성이 부족하여 한계를 가지고 있기에, 이에 대한 개선 요구가 지속적으로 제기되어 왔다.
특히, 플라스틱 광학 재료는 대부분 유리전이온도가 충분히 높지 않아 렌즈의 후가공 중이나 렌즈의 사용 중에 고온에 노출되는 경우 열에 의한 변형이 발생하기 쉽다는 문제점이 있다. 또한, 플라스틱 광학 재료는 고온의 환경에 노출되는 경우 크랙이 발생하기 쉽다는 또 다른 문제점을 가진다.
열에 의한 변형과 크랙은 렌즈 자체의 투과 기능을 현저히 떨어뜨리게 된다. 특히 렌즈 등과 같은 광학 재료는 직사광선에 노출된 자동차의 내부, 사우나의 내부, 헤어 드라이어의 사용 등 고온의 환경에 자주 노출되므로, 이러한 열에 의한 변형과 크랙 발생을 억제하는 것이 시급하게 요구된다.
이에 따라 본 발명자들은 열에 의한 변형과 크랙 발생을 모두 억제하는 디이소시아네이트 조성물을 찾아내기 위해 노력한 결과, 디이소시아네이트 조성물이 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하며, 특정 범위의 점도를 가지면, 원하는 물성을 만족하는 광학 렌즈를 제조할 수 있음을 밝혀내었다.
따라서, 후술하는 구현예에서는, p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs인, 디이소시아네이트 조성물을 사용함으로써, 고온에서의 열 변형과 크랙 발생이 모두 억제된 광학 렌즈를 제공하고자 한다.
일 구현예에 따르면, p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs인, 디이소시아네이트 조성물이 제공된다.
다른 구현예에 따르면, 디이소시아네이트 조성물; 및 티올 또는 에피설피드를 포함하고, 상기 디이소시아네이트 조성물이 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하며, 25℃에서의 점도가 4.5 내지 15 cPs인, 중합성 조성물이 제공된다.
또 다른 구현예에 따르면, 디이소시아네이트 조성물; 및 티올 또는 에피설피드가 중합된 폴리티오우레탄을 포함하고, 상기 디이소시아네이트 조성물이 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs인, 광학 렌즈가 제공된다.
구현예에 따르면, 폴리티오우레탄계 광학 렌즈의 제조에 사용되는 이소시아네이트 조성물의 조성과 물성을 조절하여 고품질의 광학 렌즈를 제조할 수 있다.
즉, p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 점도가 조절된 이소시아네이트 조성물을 이용함으로써 최종 광학 렌즈의 물성을 효과적으로 충족시킬 수 있다.
이와 같은 이소시아네이트 조성물을 이용하여 제조된 폴리티오우레탄은, 광학 렌즈에 기본적으로 요구되는 굴절률, 아베수, 투명도, 황색도 등의 특성을 충족할 뿐만 아니라, 고온에서의 열 변형과 크랙 발생이 억제되어, 안경 렌즈, 카메라 렌즈 등의 분야에서 유용하다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에 기재된 구성성분의 물성 값, 함량, 치수 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.
본 명세서에서 "이소시아네이트(isocyanate)"는 NCO기를 갖는 화합물을 의미하고, "디이소시아네이트(diisocyanate)"는 말단에 NCO기를 두 개 갖는 화합물을 의미하며, 지방족 사슬, 지방족 고리, 방향족 고리의 골격에 따라 매우 다양한 구조를 가질 수 있다. 상기 디이소시아네이트의 구체적인 예로는 오르쏘자일릴렌디이소시아네이트, 메타자일릴렌디이소시아네이트, 파라자일릴렌디이소시아네이트, 헥사메틸렌디이소시아네이트, 2,5-비스(이소시아네이토메틸)-비시클로[2.2.1]헵탄, 2,6-비스(이소시아네이토메틸)-비시클로[2.2.1]헵탄, 비스(이소시아네이토메틸)시클로헥산, 디시클로헥실메탄디이소시아네이트, 이소포론디이소시아네이트, 1,2-디이소시아네이토벤젠, 1,3-디이소시아네이토벤젠, 1,4-디이소시아네이토벤젠, 2,4-디이소시아네이토톨루엔, 에틸페닐렌디이소시아네이트, 디메틸페닐렌디이소시아네이트, 비페닐디이소시아네이트, 톨루이딘디이소시아네이트, 4,4'-메틸렌비스(페닐이소시아네이트), 1,2-비스(이소시아네이토메틸)벤젠, 1,3-비스(이소시아네이토메틸)벤젠, 1,4-비스(이소시아네이토메틸)벤젠, 1,2-비스(이소시아네이토에틸)벤젠, 1,3-비스(이소시아네이토에틸)벤젠, 1,4-비스(이소시아네이토에틸)벤젠, 4,4'-디이소시아네이토디시클로헥실메탄, α,α,α',α'-테트라메틸자일릴렌디이소시아네이트, 비스(이소시아네이토메틸)나프탈린, 비스(이소시아네이토메틸페닐)에테르, 비스(이소시아네이토메틸)설피드, 비스(이소시아네이토에틸)설피드, 비스(이소시아네이토프로필)설피드, 2,5-디이소시아네이토테트라하이드로티오펜, 2,5-디이소시아네이토메틸테트라하이드로티오펜, 3,4-디이소시아네이토메틸테트라하이드로티오펜, 2,5-디이소시아네이토-1,4-디티안, 2,5-디이소시아네이토메틸-1,4-디티안 등을 들 수 있다.
본 명세서에서 "조성물"은 잘 알려진 바와 같이 2종 이상의 화학적 성분을 포함하는 화학적 개념으로서, 이들 성분이 개개의 고유한 특성을 대체로 유지한 채로 고상, 액상 및/또는 기상으로 혼합 또는 결합된 형태를 의미할 수 있다.
또한 본 명세서에는 다양한 조성물들간의 명확하고 손쉬운 구분을 위하여, 조성물 내 주성분의 명칭과 함께 복합하여 용어를 기재하기도 하였으며, 예를 들어 "디이소시아네이트 조성물"은 디이소시아네이트를 주성분으로 포함하는 조성물을 의미한다. 이때 조성물 내의 주성분의 함량은 80 중량% 이상 또는 90 중량% 이상일 수 있고, 예를 들어 90 중량% 내지 99.9 중량%일 수 있다.
[디이소시아네이트 조성물]
일 구현예에 따른 디이소시아네이트 조성물은 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs일 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물에서 상기 p-자일릴렌 디이소시아네이트 및 상기 m-자일릴렌 디이소시아네이트의 중량비는 1 : 20 내지 20 : 1일 수 있다. 구체적으로, 0.5 : 9.5 내지 10 : 1, 0.5 : 9.5 내지 8 : 2, 0.5 : 9.5 내지 6 : 4, 0.5 : 9.5 내지 5.5 : 4.5, 1 : 9 내지 1 : 1, 2 : 8 내지 6 : 4, 2 : 8 내지 5.5 : 4.5, 2.5 : 7.5 내지 1 : 1, 3 : 7 내지 6 : 4, 4 : 6 내지 6 : 4, 또는 4.5 : 5.5 내지 5.5 : 4.5일 수 있다. 상기 범위로 2종의 디이소시아네이트의 중량비가 조절될 경우, 디이소시아네이트 조성물을 이용해 제조된 광학 렌즈에 발생하는 열에 의한 변형과 크랙 발생이 열에 의한 변형이 억제되는 효과가 더욱 우수해질 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물은, 상기 디이소시아네이트 조성물의 총 중량을 기준으로 p-자일릴렌 디이소시아네이트를 1 내지 99 중량%로 포함할 수 있다. 구체적으로, p-자일릴렌 디이소시아네이트를 5 내지 60 중량%, 10 내지 50 중량%, 20 내지 60 중량%, 5 내지 40 중량%, 25 내지 50 중량%, 10 내지 25 중량%, 40 내지 60 중량% 또는 45 내지 55 중량%로 포함할 수 있으나, 이에 특별히 제한되지 않는다. p-자일릴렌 디이소시아네이트가 상기 범위 내로 포함될 경우, 예컨대 제품의 내열성 등에서 이점이 있다. 한편, p-자일릴렌 디이소시아네이트가 60 중량% 이하로 포함하는 것이 바람직하며, 60 중량%를 초과하여 포함될 경우 다른 물질과 혼합되지 않는 등의 이유로 공정성이 악화되므로, 제품화가 어려울 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물은, 상기 디이소시아네이트 조성물의 총 중량을 기준으로 m-자일릴렌 디이소시아네이트를 1 내지 99 중량%로 포함할 수 있다. 구체적으로, m-자일릴렌 디이소시아네이트를 40 내지 95 중량%, 50 내지 90 중량%, 40 내지 80 중량%, 60 내지 95 중량%, 50 내지 75 중량%, 75 내지 90 중량%, 40 내지 60 중량% 또는 45 내지 55 중량%로 포함할 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물은 25℃에서 측정된 점도가 4.5 내지 15 cPs, 구체적으로, 5 내지 12 cPs, 5.5 내지 11.2 cPs, 6 내지 12 cPs, 5 내지 10 cPs, 5 내지 6 cPs, 6 내지 10 cPs, 또는 10 내지 12 cPs일 수 있다. 상기 범위로 점도가 조절된 디이소시아네이트 조성물을 이용하여 광학 렌즈를 제조함으로써, 고온에서 광학 렌즈의 크랙 발생을 억제할 수 있다. 특정 이론에 구속되지 않으나, 디이소시아네이트 조성물의 점도가 디이소시아네이트와 티올 또는 에피설피드의 중합 반응에 영향을 미쳐, 이들이 중합된 폴리티오우레탄을 포함하는 광학 렌즈의 열 팽창 특성이 변화함에 따라, 광학 렌즈의 크랙 발생이 억제된 것일 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물은 통상적으로 알려진 점도 조절 방법을 통해 점도가 조절될 수 있다. 예컨대, 디이소시아네이트 조성물은 점도 조절제를 추가로 포함함으로써 점도가 조절될 수 있다. 점도 조절 방법은 디이소시아네이트 조성물이 상기 범위의 점도를 갖는 한 특별히 제한되지 않는다.
상기 구현예에 따른 디이소시아네이트 조성물은 20℃에서의 비중이 1.05 내지 1.35일 수 있다. 구체적으로, 상기 비중은 1.10 내지 1.30, 또는 1.15 내지 1.25일 수 있다.
상기 구현예에 따른 디이소시아네이트 조성물은, 상기 디이소시아네이트 조성물의 총 중량을 기준으로 점도 조절제를 포함할 수 있다. 이러한 점도 조절제로는 예컨대 아크릴계 화합물 및 실리콘계 화합물이 있으나, 이에 특별히 제한되지 않는다. 디이소시아네이트 조성물은 점도 조절제를 상기 디이소시아네이트 조성물의 총 중량을 기준으로 0.005 중량% 내지 2 중량%로 포함할 수 있으며, 구체적으로 0.005 중량% 내지 1.5 중량%, 0.005 내지 1 중량% 또는 0.005 내지 0.5 중량%로 포함할 수 있다. 점도 조절제가 상기 범위를 초과하여 포함될 경우, 상기 디이소시아네이트 조성물을 사용하여 제조되는 제품의 외관 품질이 저하될 수 있다.
따라서, 상기와 같이 2종의 이소시아네이트를 포함하며 점도가 조절된 이소시아네이트 조성물을 이용하여 제조된 제품은 높은 광학적 특성을 충족할 수 있을 뿐만 아니라, 열에 의한 변형과 크랙 발생이 억제된 것일 수 있으므로, 플라스틱 광학 재료, 구체적으로, 플라스틱 광학 렌즈의 제조에 유용하게 사용될 수 있다.
[중합성 조성물]
상기 구현예에 따른 디이소시아네이트 조성물을 다른 성분과 조합함으로써 중합성 조성물을 제공할 수 있다.
즉, 일 구현예에 따른 중합성 조성물은, 디이소시아네이트 조성물; 및 티올 또는 에피설피드를 포함하고, 상기 디이소시아네이트 조성물은 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하며, 25℃에서의 점도가 4.5 내지 15 cPs일 수 있다.
상기 디이소시아네이트 조성물은 앞서 설명한 바와 같다.
상기 구현예에 따른 중합성 조성물은, 상기 디이소시아네이트 조성물과 티올 또는 에피설피드를 혼합 상태로 포함하거나 또는 분리된 상태로 포함할 수 있다. 즉, 상기 중합성 조성물 내에서, 상기 이소시아네이트 조성물과 티올 또는 에피설피드는, 서로 접촉하여 배합된 상태이거나, 또는 서로 접촉하지 않도록 분리된 상태일 수 있다.
상기 구현예에 따른 중합성 조성물에서, 티올은 2개 이상의 SH기를 포함하는 폴리티올일 수 있으며, 지방족, 지환족, 또는 방향족 골격을 가질 수 있다. 또한, 에피설피드는 2개 이상의 티오에폭시기를 가질 수 있으며, 지방족, 지환족, 또는 방향족 골격을 가질 수 있다.
상기 티올의 구체적인 예는 4,8-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 4,7-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 5,7-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 비스(2-머캅토에틸)설피드, 4-머캅토메틸-3,6-디티아옥탄-1,8-디티올, 2,3-비스(2-머캅토에틸티오)프로판-1-티올, 2,2-비스(머캅토메틸)프로판-1,3-디티올, 2-(2-머캅토에틸티오)프로판-1,3-디티올, 2-(2,3-비스(2-머캅토에틸티오)프로필티오)에탄티올, 비스(2,3-디머캅토프로판닐)설피드, 비스(2,3-디머캅토프로판닐)디설피드, 1,2-비스(2-(2-머캅토에틸티오)-3-머캅토프로필티오)에탄, 비스(2-(2-머캅토에틸티오)-3-머캅토프로필)디설피드, 2-(2-머캅토에틸티오)-2-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2-(2-머캅토에틸티오)-3-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2-(2-머캅토에틸티오)-3-(2-(2-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]에틸티오)에틸티오)-프로판-1-티올, (4R,11S)-4,11-비스(머캅토메틸)-3,6,9,12-테트라티아테트라데칸-1,14-디티올, (S)-3-((R-2,3-디머캅토프로필)티오)프로판-1,2-디티올, 4,14-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (S)-3-((R-3-머캅토-2-((2-머캅토에틸)티오)프로필)티오)-2-((2-머캅토에틸)티오)프로판-1-티올, 3,3'-디티오비스(프로판-1,2-디티올), (7R,11S)-7,11-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (7R,12S)-7,12-비스(머캅토메틸)-3,6,9,10,13,16-헥사티아옥타데칸-1,18-디티올, 2-(2-머캅토에틸티오)-3-[4-(1-{4-[3-머캅토-2-(2-머캅토에틸티오)-프로폭시]-페닐}-1-메틸에틸)-페녹시]-프로판-1-티올, 2,2 -비스-(3-머캅토-프로피오닐옥시메틸)-부틸 에스테르, 펜타에리트리톨 테트라키스(3-머캅토프로피오네이트), 펜타에트리톨 테트라키스(2-머캅토아세테이트), 비스펜타에리트리톨-에테르-헥사키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(2-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-머캅토프로피오네이트), 글리세롤 트리머캅토프로피오네이트, 1,1,3,3-테트라키스(머캅토메틸티오)프로판, 1,1,2,2-테트라키스(머캅토메틸티오)에탄, 4,6-비스(머캅토메틸티오)-1,3-디티안, 2-(2,2-비스(머캅토메틸티오)에틸)-1,3-디티안, 및 2,5-비스머캅토메틸-1,4-디티안 등을 포함할 수 있다.
상기 티올은 상기 예시 화합물들 중 중 어느 하나 또는 둘 이상일 수 있으나, 이들로 한정되는 것은 아니다.
또한, 상기 에피설피드의 구체적인 예는 비스(β-에피티오프로필티오)메탄, 1,2-비스(β-에피티오프로필티오)에탄, 1,3-비스(β-에피티오프로필티오)프로판, 1,2-비스(β-에피티오프로필티오)프로판, 1-(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)프로판, 1,4-비스(β-에피티오프로필티오)부탄, 1,3-비스(β-에피티오프로필티오)부탄, 1-(β-에피티오프로필티오)-3-(β-에피티오프로필티오메틸)부탄, 1,5-비스(β-에피티오프로필티오)펜탄, 1-(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)펜탄, 1,6-비스(β-에피티오프로필티오)헥산, 1-(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)헥산, 1-(β-에피티오프로필티오)-2-[(2-β-에피티오프로필티오에틸)티오]에탄, 1-(β-에피티오프로필티오)-2-[[2-(2-β-에피티오프로필티오에틸)티오에틸]티오]에탄, 테트라키스(β-에피티오프로필티오메틸)메탄, 1,1,1-트리스(β-에피티오프로필티오메틸)프로판, 1,5-비스(β-에피티오프로필티오)-2-(β-에피티오프로필티오메틸)-3-티아펜탄, 1,5-비스(β-에피티오프로필티오)-2,4-비스(β-에피티오프로필티오메틸)-3-티아펜탄, 1-(β-에피티오프로필티오)-2,2-비스(β-에피티오프로필티오메틸)-4-티아헥산, 1,5,6-트리스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3-티아헥산, 1,8-비스(β-에피티오프로필티오)-4-(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-4,4-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,4,5-트리스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,8-비스(β-에피티오프로필티오)-2,5-비스(β-에피티오프로필티오메틸)-3,6-디티아옥탄, 1,9-비스(β-에피티오프로필티오)-5-(β-에피티오프로필티오메틸)-5-[(2-β-에피티오프로필티오에틸)티오메틸]-3,7-디티아노난, 1,10-비스(β-에피티오프로필티오)-5,6-비스[(2-β-에피티오프로필티오에틸)티오]-3,6,9-트리티아데칸, 1,11-비스(β-에피티오프로필티오)-4,8-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-5,7-[(2-β-에피티오프로필티오에틸)티오메틸]-3,6,9-트리티아운데칸, 1,11-비스(β-에피티오프로필티오)-4,7-비스(β-에피티오프로필티오메틸)-3,6,9-트리티아운데칸, 1,3-비스(β-에피티오프로필티오)시클로헥산, 1,4-비스(β-에피티오프로필티오)시클로헥산, 1,3-비스(β-에피티오프로필티오메틸)시클로헥산, 1,4-비스(β-에피티오프로필티오메틸)시클로헥산, 비스[4-(β-에피티오프로필티오)시클로헥실]메탄, 2,2-비스[4-(β-에피티오프로필티오)시클로헥실]프로판, 비스[4-(β-에피티오프로필티오)시클로헥실] 설피드, 2,5-비스(β-에피티오프로필티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸티오메틸)-1,4-디티안, 1,3-비스(β-에피티오프로필티오)벤젠, 1,4-비스(β-에피티오프로필티오)벤젠, 1,3-비스(β-에피티오프로필티오메틸)벤젠, 1,4-비스(β-에피티오프로필티오메틸)벤젠, 비스[4-(β-에피티오프로필티오)페닐]메탄, 2,2-비스[4-(β-에피티오프로필티오)페닐]프로판, 비스[4-(β-에피티오프로필티오)페닐] 설피드, 비스[4-(β-에피티오프로필티오)페닐] 술폰, 4,4'-비스(β-에피티오프로필티오)비페닐 등을 포함한다.
상기 에피설피드는 상기 예시 화합물들 중 어느 하나 또는 둘 이상일 수 있으나, 이들로 한정되는 것은 아니다. 또한 상기 에피설피드는 이의 티오에폭시기의 수소 중 적어도 1개가 메틸기로 치환된 화합물일 수도 있다.
이 때, 상기 구현예에 따른 중합성 조성물은 상기 티올 또는 에피설피드를 상기 디이소시아네이트 조성물과 1 : 9 내지 9 : 1, 2 : 8 내지 8 : 2, 또는 3 : 7 내지 7 : 3의 중량비로 포함할 수 있다.
상기 구현예에 따른 중합성 조성물은, 상기 중합성 조성물의 총 중량을 기준으로 상기 디소시아네이트 조성물을 10 내지 90 중량%로 포함할 수 있다. 구체적으로, 상기 디이소시아네이트 조성물을 20 내지 80 중량%, 30 내지 70 중량%, 40 내지 60 중량%, 또는 45 내지 55 중량%로 포함할 수 있으나, 이에 특별히 제한되지 않는다.
상기 구현예에 따른 중합성 조성물은, 상기 중합성 조성물의 총 중량을 기준으로 티올 또는 에피설피드를 10 내지 90 중량%로 포함할 수 있다. 이에 제한되지는 않지만, 상기 티올 또는 에피설피드를 20 내지 80 중량%, 30 내지 70 중량%, 40 내지 60 중량%, 또는 45 내지 55 중량%로 포함할 수 있다.
상기 중합성 조성물은, 조성물 내의 SH기/NCO기의 몰비가 0.5 내지 3.0일 수 있고, 구체적으로, 0.8 내지 1.2 또는 0.9 내지 1.1일 수 있으나, 이에 제한되지 않는다.
[광학 렌즈]
일 구현예에 따른 광학 렌즈는 상기 구현예에서 제조된 디이소시아네이트 조성물이 티올 또는 에피설피드와 중합된 폴리티오우레탄을 포함할 수 있다.
즉, 일 구현예에 따른 광학 렌즈는, 디이소시아네이트 조성물; 및 티올 또는 에피설피드가 중합된 폴리티오우레탄을 포함하고, 상기 디이소시아네이트 조성물은 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs일 수 있다.
상기 디이소시아네이트 조성물과, 티올 또는 에피설피드는 앞서 설명한 바와 같다.
상기 폴리티오우레탄은 상기 티올 또는 에피설피드가 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트의 총 중량에 대하여 80 내지 120 중량%, 구체적으로 90 내지 110 중량%로 중합된 것일 수 있다.
또한, 상기 폴리티오우레탄은 폴리티오우레탄 내의 SH기/NCO기의 몰비가, 0.8 내지 1.2일 수 있으며, 구체적으로, 0.9 내지 1.1일 수 있으나, 이에 제한되지 않는다.
상기 중합에는 반응 속도를 조절하기 위해서 폴리(티오)우레탄의 제조에 통상적으로 사용되는 반응 촉매가 첨가될 수 있다. 예컨대, 주석계 촉매, 구체적으로, 디부틸틴디클로라이드, 디부틸틴디라우레이트, 디메틸디클로라이드 등이 사용될 수 있다.
상기 구현예에 따른 광학 렌즈는 상기 광학 렌즈의 총 중량을 기준으로 폴리티오우레탄을 50 내지 100 중량%으로 포함할 수 있으며, 구체적으로, 60 내지 100 중량%, 70 내지 100 중량%, 80 내지 100 중량%, 90 내지 100 중량%, 95 내지 100 중량%, 또는 97.5 내지 100 중량%로 포함할 수 있다.
또한, 상기 구현예에 따른 광학 렌즈는 굴절률이 1.5 내지 1.85일 수 있다. 구체적으로, 1.55 내지 1.80, 1.60 내지 1.75, 또는 1.65 내지 1.70일 수 있다.
상기 렌즈는 아베수가 20 이상일 수 있으며, 구체적으로 25 이상 또는 30 이상일 수 있다. 보다 구체적으로, 20 내지 50, 25 내지 50, 25 내지 45, 또는 25 내지 40일 수 있다.
상기 광학 렌즈는 광투과율, 예를 들어, 395 nm 파장에서의 광투과율이 80 내지 99.9%, 85 내지 99%, 또는 85 내지 95%일 수 있다. 또한, 상기 광학 렌즈는 황색도가 25 이하 또는 20 이하일 수 있고, 구체적으로 1 내지 25, 1 내지 25, 3 내지 20, 또는 5 내지 20일 수 있다.
상기 광학 렌즈는 유리전이온도가 70℃ 이상, 80℃ 이상, 또는 90℃ 이상일 수 있고, 구체적으로 70℃ 내지 130℃의 범위, 80℃ 내지 120℃, 90℃ 내지 120℃, 또는 103℃ 내지 120℃일 수 있다.
또한 상기 광학 렌즈는 크랙 발생 온도가 100℃ 이상, 110℃ 이상, 또는 120℃ 이상일 수 있다. 구체적으로, 크랙 발생 온도가 130℃ 내지 200℃, 135℃ 내지 200℃, 140℃ 내지 190℃, 145℃ 내지 180℃, 또는 145℃ 내지 175℃일 수 있다.
상기 크랙 발생 온도는, 50℃에서부터 10℃ 단위로 가열 온도를 높이며 수행되는 가열 및 냉각 사이클 시험에서 머큐리 램프가 구비된 표면 검사장치(surface tester)로 렌즈의 표면을 측정할 때 최초로 크랙이 발생하는 온도일 수 있다. 더욱 구체적으로, 가열 및 냉각 사이클 시험은 광학 렌즈를 오븐에 투입하고 50℃부터 10℃ 단위로 목표 가열 온도로 설정하여 가열하고, 목표 온도에 도달할 때마다 10분 동안 정치한 후, 광학 렌즈를 오븐에서 꺼내어 25℃에서 10분 동안 냉각하여 수행될 수 있다.
상기 광학 렌즈는 앞서 설명한 2종의 특정 이소시아네이트를 포함하며 특정 범위의 점도를 갖는 디이소시아네이트 조성물을 이용하여 제조되므로, 높은 광학적 특성을 충족할 수 있을 뿐만 아니라, 열에 의한 변형과 크랙 발생이 억제된 것일 수 있다.
상기 광학 렌즈는, 상술한 디이소시아네이트 조성물과, 티올 또는 에피설피드를 중합(및 경화)한 후 성형하여 제조될 수 있다.
보다 구체적으로, 상기 광학 렌즈는, 먼저 상술한 디이소시아네이트 조성물을 포함하는 중합성 조성물을 감압하에 탈포한 후, 광학 렌즈 성형용 몰드에 주입하고, 고온으로 가열하여 중합을 수행하고, 중합된 폴리티오우레탄을 몰드에서 분리하여 제조될 수 있다. 상기 탈포 공정은 예컨대 10℃ 내지 40℃ 또는 15℃ 내지 40℃의 온도 범위에서 수행될 수 있으며, 상기 중합 공정은 10℃ 내지 150℃, 구체적으로, 15℃ 내지 150℃, 20℃ 내지 150℃ 또는 25℃ 내지 140℃일 수 있다. 또한, 반응 속도를 조절하기 위해서 폴리(티오)우레탄의 제조에 통상적으로 사용되는 반응 촉매가 첨가될 수 있으며, 이의 구체적인 종류는 앞서 예시한 바와 같다.
상기 광학 렌즈는 필요에 따라 반사 방지, 고경도 부여, 내마모성 향상, 내약품성 향상, 방운성(anti-fogging) 부여 또는 패션성 부여를 위해 표면연마, 대전 방지 처리, 하드 코트 처리, 무반사 코트 처리, 염색 처리, 조광(調光)처리 등의 물리적, 화학적 처리를 실시하여 개량할 수 있다.
[실시예]
이하에서 보다 구체적인 실시예를 예시하지만 이로 한정되지는 않는다.
<디이소시아네이트 조성물의 제조>
실시예 1
p-자일릴렌 디이소시아네이트 10 중량부, m-자일릴렌 디이소시아네이트 90 중량부 및 점도 조절제 0.005 중량부를 혼합하여, 점도가 25℃에서 5.5 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
실시예 2
p-자일릴렌 디이소시아네이트 25 중량부, m-자일릴렌 디이소시아네이트 75 중량부 및 점도 조절제 0.005 중량부를 혼합하여, 점도가 25℃에서 6.4 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
실시예 3
p-자일릴렌 디이소시아네이트 50 중량부, m-자일릴렌 디이소시아네이트 50 중량부 및 점도 조절제 0.005 중량부를 혼합하여, 점도가 25℃에서 11.2 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
비교예 1
m-자일릴렌 디이소시아네이트 100 중량부 및 점도 조절제 0.005 중량부를 혼합하여, 점도가 25℃에서 3.5 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
비교예 2
p-자일릴렌 디이소시아네이트 75 중량부, m-자일릴렌 디이소시아네이트 25 중량부 및 점도 조절제 0.005 중량부를 혼합하여, 점도가 25℃에서 16 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
비교예 3
p-자일릴렌 디이소시아네이트 50 중량부, m-자일릴렌 디이소시아네이트 50 중량부 및 점도 조절제 2 중량부를 혼합하여, 점도가 25℃에서 3.5 cPs이며, 비중이 20℃에서 1.20인 디이소시아네이트 조성물을 얻었다.
상기 실시예 1 내지 3 및 비교예 1 내지 3의 성분 및 물성을 정리하면 아래와 같다.
구분 p-XDI 및 m-XDI 중량비 점도 (cPs, 25℃) 비중 (20℃)
p-XDI m-XDI
실시예 1 10 90 5.5 1.20
실시예 2 25 75 6.4 1.20
실시예 3 50 50 11.2 1.20
비교예 1 0 100 3.5 1.20
비교예 2 75 25 16.0 1.20
비교예 3 50 50 3.5 1.20
<중합성 조성물의 제조>
실시예 1 내지 3 및 비교예 1 내지 3에 따라 제조된 디이소시아네이트 조성물 50.7 중량부, 4,8-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올 49.3 중량부, 다이부틸 틴 클로라이드 0.01 중량부, ZELEC® UN Stepan사 인산에스테르 이형제 0.1 중량부를 균일하게 혼합하고 600 Pa에서 1시간 동안 탈포 공정을 진행한 후, 3 μm 테프론 필터에 여과하여 중합성 조성물을 제조하였다.
<광학 렌즈의 제조>
앞서 제조된 중합성 조성물을 글라스 몰드와 테이프로 제작된 몰드에 주입하였다. 상기 몰드를 10℃ 내지 25℃에서 8시간 유지한 후 130℃까지 8시간 동안 일정한 속도로 천천히 승온하고 130℃에서 2시간 중합하였다. 성형물을 몰드에서 이형한 후, 120℃에서 2시간 동안 추가 경화하여 광학 렌즈를 얻었다.
<평가 방법>
상기 실시예 및 비교예를 아래와 같이 평가하였다.
(1) 유리전이온도(Tg)
광학 렌즈에 대해 열기계분석기(TA instruments사 TMA Q400)를 사용한 페네트레이션법(하중 50 g, 핀 끝 0.5 mmΤ, 가열속도 10℃)으로 유리전이온도를 측정하였다.
(2) 굴절률(nd20)
광학 렌즈에 대해 아베 굴절계(DR-M4)를 이용하여 20℃에서 고상 굴절률(nd20)을 측정하였다.
(3) 아베수(ve)
광학 렌즈에 대해 아베 굴절계(DR-M4)를 이용하여 20℃에서 아베수(ne20)를 측정하였다.
(4) 황색도(Y.I.) 및 광투과율
반지름 16 mm 및 높이 45 mm의 원기둥 형태로 광학 렌즈를 제작하고, 높이 방향으로 광을 투과하여 UV/VIS 분광기(PerkinElmer사 UV/VIS Lambda 365)로 395 nm의 파장에서 황색도 및 투과율을 측정하였다. 황색도는 측정 결과인 x1와 y1의 값을 바탕으로 하기 수학식 1에 의해 산출하였다.
[수학식 1]
Y.I = (234 x1 + 106 y1) / y1
(5) 반응성(reactivity slope)
중합성 조성물에 대해 비접촉식 점도계(KEM사 EMS-1000)를 이용하여 10℃에서 24시간 동안 점도를 측정하였으며, 하기 수학식 2에 의해 반응성을 산출하였다.
[수학식 2]
y2 = a × exp(b × x2)
상기 수학식 2에서, y2는 log10(점도)이고, a는 상수이며, b는 반응성이고, x2는 시간을 나타내며, b는 측정값의 소수점 셋째자리에서 반올림하여 표기하였다.
(6) 크랙 발생 온도
광학 렌즈에 대해 가열 및 냉각 사이클 시험(heating and cooling cycle test)을 통해 크랙 발생 온도를 평가하였다. 구체적으로, 광학 렌즈를 오븐에 투입하고 50℃부터 10℃ 단위로 목표 가열 온도로 설정하여 가열하고, 목표 가열 온도에 도달할 때마다 10분 동안 정치한 후, 광학 렌즈를 오븐에서 꺼내어 25℃에서 10분 동안 냉각하고, 머큐리 램프가 구비된 표면 검사장치(영물산사 Y-100G)를 이용하여 크랙 발생 여부를 확인하였다. 이 때, 크랙이 최초로 발생할 때의 목표 가열 온도를 크랙 발생 온도로 평가하였다.
또한, 가열 온도에서 광학 렌즈에 크랙이 존재할 경우 "O"로 표시하였으며, 크랙이 존재하지 않을 경우 "X"로 표시하였다.
이상의 실시예 및 비교예의 평가 결과를 아래 표 2 및 표 3에 나타내었다.
구 분 Tg (℃) nd20 ve 황색도 광투과율 (%) 반응성
실시예 1 104 1.668 31.0 18 90 0.25
실시예 2 107 1.668 31.6 19 90 0.30
실시예 3 111 1.669 31.3 17 90 0.35
비교예 1 102 1.668 31.0 17 90 0.19
비교예 2 112 1.668 31.3 17 90 0.34
비교예 3 107 1.668 31.4 18 90 0.30
구 분 가열 및 냉각 사이클 시험 크랙 발생 온도 (℃)
50℃ 60℃ 70℃ 80℃ 90℃ 100℃ 110℃ 120℃ 130℃ 140℃ 150℃ 160℃ 170℃ 180℃
실시예 1 X X X X X X X X X X O O O O 150
실시예 2 X X X X X X X X X X X O O O 160
실시예 3 X X X X X X X X X X X X O O 170
비교예 1 X X X X X X X X X O O O O O 140
비교예 2 X X X X X X X X O O O O O O 130
비교예 3 X X X X X X X X O O O O O O 130
상기 표 2 및 3에서 보듯이, 실시예와 같이 m-XDI 및 p-XDI를 모두 포함하며 점도가 4.5 내지 15 cPs인 디이소시아네이트 조성물로 제조된 광학 렌즈는, 유리전이온도와 크랙 발생 온도가 높아, 열에 의한 변형과 크랙 발생이 억제된 것이므로, 양질의 광학 렌즈로 사용되기에 적합했다.

Claims (9)

  1. p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs인, 디이소시아네이트 조성물.
  2. 제 1 항에 있어서,
    상기 p-자일릴렌 디이소시아네이트 및 상기 m-자일릴렌 디이소시아네이트의 중량비가 1 : 9 내지 1 : 1인, 디이소시아네이트 조성물.
  3. 제 1 항에 있어서,
    상기 디이소시아네이트 조성물의 총 중량을 기준으로, p-자일릴렌 디이소시아네이트를 5 내지 60 중량%로 포함하고, m-자일릴렌 디이소시아네이트를 95 내지 40 중량%로 포함하는, 디이소시아네이트 조성물.
  4. 제 1 항에 있어서,
    20℃에서의 비중이 1.05 내지 1.35인, 디이소시아네이트 조성물.
  5. 디이소시아네이트 조성물; 및 티올 또는 에피설피드를 포함하고,
    상기 디이소시아네이트 조성물이 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하며, 25℃에서의 점도가 4.5 내지 15 cPs인, 중합성 조성물.
  6. 제 5 항에 있어서,
    상기 티올이 4,8-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 4,7-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 5,7-비스(머캅토메틸)-3,6,9-트리티아운데칸-1,11-디티올, 비스(2-머캅토에틸)설피드, 4-머캅토메틸-3,6-디티아옥탄-1,8-디티올, 2,3-비스(2-머캅토에틸티오)프로판-1-티올, 2,2-비스(머캅토메틸)프로판-1,3-디티올, 2-(2-머캅토에틸티오)프로판-1,3-디티올, 2-(2,3-비스(2-머캅토에틸티오)프로필티오)에탄티올, 비스(2,3-디머캅토프로판닐)설피드, 비스(2,3-디머캅토프로판닐)디설피드, 1,2-비스(2-(2-머캅토에틸티오)-3-머캅토프로필티오)에탄, 비스(2-(2-머캅토에틸티오)-3-머캅토프로필)디설피드, 2-(2-머캅토에틸티오)-2-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2-(2-머캅토에틸티오)-3-머캅토-3-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2-(2-머캅토에틸티오)-3-(2-(2-[3-머캅토-2-(2-머캅토에틸티오)-프로필티오]에틸티오)에틸티오)-프로판-1-티올, (4R,11S)-4,11-비스(머캅토메틸)-3,6,9,12-테트라티아테트라데칸-1,14-디티올, (S)-3-((R-2,3-디머캅토프로필)티오)프로판-1,2-디티올, 4,14-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (S)-3-((R-3-머캅토-2-((2-머캅토에틸)티오)프로필)티오)-2-((2-머캅토에틸)티오)프로판-1-티올, 3,3'-디티오비스(프로판-1,2-디티올), (7R,11S)-7,11-비스(머캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (7R,12S)-7,12-비스(머캅토메틸)-3,6,9,10,13,16-헥사티아옥타데칸-1,18-디티올, 2-(2-머캅토에틸티오)-3-[4-(1-{4-[3-머캅토-2-(2-머캅토에틸티오)-프로폭시]-페닐}-1-메틸에틸)-페녹시]-프로판-1-티올, 2,2 -비스-(3-머캅토-프로피오닐옥시메틸)-부틸 에스테르, 펜타에리트리톨 테트라키스(3-머캅토프로피오네이트), 펜타에트리톨 테트라키스(2-머캅토아세테이트), 비스펜타에리트리톨-에테르-헥사키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(2-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-머캅토프로피오네이트), 글리세롤 트리머캅토프로피오네이트, 1,1,3,3-테트라키스(머캅토메틸티오)프로판, 1,1,2,2-테트라키스(머캅토메틸티오)에탄, 4,6-비스(머캅토메틸티오)-1,3-디티안, 2-(2,2-비스(머캅토메틸티오)에틸)-1,3-디티안, 및 2,5-비스머캅토메틸-1,4-디티안에서 선택되는 하나 이상인, 중합성 조성물.
  7. 디이소시아네이트 조성물; 및 티올 또는 에피설피드가 중합된 폴리티오우레탄을 포함하고,
    상기 디이소시아네이트 조성물이 p-자일릴렌 디이소시아네이트 및 m-자일릴렌 디이소시아네이트를 포함하고, 25℃에서의 점도가 4.5 내지 15 cPs인, 광학 렌즈.
  8. 제 7 항에 있어서,
    유리전이온도가 104℃ 내지 111℃인, 광학 렌즈.
  9. 제 7 항에 있어서,
    50℃에서부터 10℃ 단위로 가열 온도를 높이며 수행되는 가열 및 냉각 사이클 시험에서 머큐리 램프가 구비된 표면 검사장치(surface tester)로 렌즈의 표면을 측정할 때 크랙이 발생하는 가열 온도가 150℃ 이상인, 광학 렌즈.
PCT/KR2020/016358 2020-04-20 2020-11-19 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈 WO2021215606A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080100043.0A CN115443296B (zh) 2020-04-20 2020-11-19 二异氰酸酯组合物和使用其生产的光学透镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0047606 2020-04-20
KR1020200047606A KR102394396B1 (ko) 2020-04-20 2020-04-20 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈

Publications (1)

Publication Number Publication Date
WO2021215606A1 true WO2021215606A1 (ko) 2021-10-28

Family

ID=78232740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016358 WO2021215606A1 (ko) 2020-04-20 2020-11-19 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈

Country Status (3)

Country Link
KR (1) KR102394396B1 (ko)
CN (1) CN115443296B (ko)
WO (1) WO2021215606A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107648A3 (en) * 2021-12-09 2023-08-03 Massachusetts Institute Of Technology Synthesis of ester, carbonate, and carbamate-derived novel biodegradable ionizable lipids from methyl ricinoleate or methyl 12-hydroxystearate and its applications
CN117285688A (zh) * 2023-09-28 2023-12-26 益丰新材料股份有限公司 一种多硫醇组合物及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4442725A1 (en) * 2021-11-30 2024-10-09 Hanwha Solutions Corporation Isocyanate composition and optical composition
KR20230081352A (ko) * 2021-11-30 2023-06-07 한화솔루션 주식회사 이소시아네이트 조성물 및 이의 제조방법
KR20240030797A (ko) * 2022-08-31 2024-03-07 한화솔루션 주식회사 이소시아네이트 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180722A (ja) * 2014-03-04 2015-10-15 三井化学株式会社 ポリイソシアヌレート組成物およびその製造方法
KR20180104330A (ko) * 2016-04-11 2018-09-20 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
KR20180125871A (ko) * 2018-02-13 2018-11-26 에스케이씨 주식회사 광학 렌즈에 사용되는 이소시아네이트 조성물 및 이의 제조방법
KR20180130154A (ko) * 2017-05-29 2018-12-07 에스케이씨 주식회사 광학 렌즈에 사용되는 이소시아네이트 조성물 및 이의 제조방법
KR20190139153A (ko) * 2018-06-07 2019-12-17 우리화인켐 주식회사 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639639A1 (en) * 1988-11-30 1990-06-01 Rhone Poulenc Chimie Organosoluble chitosan derivatives, process for their preparation and their uses
JP3334295B2 (ja) * 1993-11-30 2002-10-15 大日本インキ化学工業株式会社 ポリウレタン樹脂の製造方法
KR101835082B1 (ko) 2017-05-16 2018-03-06 에스케이씨 주식회사 광학 렌즈에 사용되는 이소시아네이트 조성물 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180722A (ja) * 2014-03-04 2015-10-15 三井化学株式会社 ポリイソシアヌレート組成物およびその製造方法
KR20180104330A (ko) * 2016-04-11 2018-09-20 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
KR20180130154A (ko) * 2017-05-29 2018-12-07 에스케이씨 주식회사 광학 렌즈에 사용되는 이소시아네이트 조성물 및 이의 제조방법
KR20180125871A (ko) * 2018-02-13 2018-11-26 에스케이씨 주식회사 광학 렌즈에 사용되는 이소시아네이트 조성물 및 이의 제조방법
KR20190139153A (ko) * 2018-06-07 2019-12-17 우리화인켐 주식회사 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107648A3 (en) * 2021-12-09 2023-08-03 Massachusetts Institute Of Technology Synthesis of ester, carbonate, and carbamate-derived novel biodegradable ionizable lipids from methyl ricinoleate or methyl 12-hydroxystearate and its applications
CN117285688A (zh) * 2023-09-28 2023-12-26 益丰新材料股份有限公司 一种多硫醇组合物及其应用
WO2024188359A1 (zh) * 2023-09-28 2024-09-19 益丰新材料股份有限公司 一种多硫醇组合物及其应用

Also Published As

Publication number Publication date
CN115443296A (zh) 2022-12-06
KR20210129504A (ko) 2021-10-28
KR102394396B1 (ko) 2022-05-06
CN115443296B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2021215606A1 (ko) 디이소시아네이트 조성물 및 이를 이용하여 제조된 광학 렌즈
KR102148975B1 (ko) 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법
WO2012091493A2 (ko) 우레탄계 광학재료용 수지의 제조방법과 이를 위한 수지 조성물 및 제조된 광학재료
WO2019132491A1 (ko) 안정성 및 반응성이 개선된 이소시아네이트 조성물, 및 이를 이용한 광학 렌즈
KR101827033B1 (ko) 광학 재료용 조성물
WO2014035166A1 (ko) 티오우레탄계 광학재료의 제조방법
WO2018043896A1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
WO2013176506A1 (ko) 신규한 폴리티올 화합물의 제조방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2013069965A1 (ko) 폴리티올 화합물의 제조 방법 및 이를 포함하는 광학재료용 중합성 조성물
EP3831861A1 (en) Diisocyanate composition, preparation method thereof and optical material using same
WO2014046523A1 (ko) 에피설파이드 화합물의 보관방법과 이 에피설파이드 화합물을 이용한 티오에폭시계 광학재료의 제조방법
WO2012112015A2 (ko) 고리개환을 통해 사슬연장된 폴리티올화합물과 그 제조 방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
WO2020197156A1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
WO2013103277A1 (ko) 티오에폭시계 광학재료용 중합성 조성물과 티오에폭시계 광학재료의 제조방법
WO2010128770A2 (ko) 내열성 및 반응성이 우수한 우레탄계 광학 렌즈용 수지조성물
WO2015190809A1 (ko) 새로운 티올화합물과 이를 포함하는 중합성 조성물
WO2016190599A1 (ko) 티오에폭시계 초고굴절 광학수지 조성물과 티오에폭시계 광학재료의 제조방법
WO2013103276A1 (ko) 티오에폭시 화합물, 폴리이소시아네이트 화합물 및 폴리티올 화합물을 포함하는 고굴절 광학렌즈용 공중합체 조성물과 광학렌즈의 제조방법
KR102293746B1 (ko) 디이소시아네이트 조성물 및 이의 제조방법 및 이를 이용한 광학 재료
WO2016178522A2 (ko) 티오에폭시계 광학재료의 제조방법과 티오에폭시계 광학재료용 중합성 조성물
WO2021172771A1 (ko) 내광성이 향상된 에피설파이드계 고굴절 광학재료용 조성물 및 광학재료의 제조방법
WO2021201459A1 (ko) 티오우레탄계 광학재료용 수지 조성물과 티오우레탄계 광학재료용 수지의 제조방법
WO2013112001A1 (ko) 티오에폭시계 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 티오에폭시계 광학재료용 공중합체 조성물
WO2021167256A1 (ko) 광학재료용 에피설파이드 화합물, 이를 포함하는 고굴절 광학재료용 조성물 및 광학재료의 제조방법
WO2013069964A1 (ko) 티오우레탄계 광학재료의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932096

Country of ref document: EP

Kind code of ref document: A1