WO2018043896A1 - 광학 재료용 폴리티올 조성물 및 이의 제조방법 - Google Patents

광학 재료용 폴리티올 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2018043896A1
WO2018043896A1 PCT/KR2017/006861 KR2017006861W WO2018043896A1 WO 2018043896 A1 WO2018043896 A1 WO 2018043896A1 KR 2017006861 W KR2017006861 W KR 2017006861W WO 2018043896 A1 WO2018043896 A1 WO 2018043896A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polythiol
compound
composition
polythiol composition
Prior art date
Application number
PCT/KR2017/006861
Other languages
English (en)
French (fr)
Inventor
홍승모
심종민
서현명
신정환
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Publication of WO2018043896A1 publication Critical patent/WO2018043896A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/22Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/52Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • Examples relate to polythiol compositions used as raw materials for polythiourethane-based optical materials and methods for their preparation. Embodiments also relate to polymeric compositions comprising the polythiol compositions and optical materials obtained therefrom.
  • optical materials using plastics are lighter than the optical materials made of inorganic materials such as glass, are not easily broken, and have excellent dyeability, plastic materials of various resins are widely used as optical materials such as eyeglass lenses and camera lenses. Recently, as the demand for higher performance and convenience increases, studies on optical materials having characteristics such as high transparency, high refractive index, low specific gravity, high heat resistance, and high impact resistance have continued.
  • Polythiourethane-based compounds are widely used as optical materials due to their excellent optical properties and mechanical properties.
  • the polythiourethane compound may be prepared by reacting a polythiol compound and an isocyanate compound. At this time, the purity of the polythiol compound has a great influence on the physical properties of the polythiourethane-based compound prepared therefrom.
  • X is a halogen atom
  • X is a halogen atom
  • Republic of Korea Patent No. 10-1533207 uses NaOH aqueous solution as a reaction catalyst in the reaction of 2-mercaptoethanol and epihalohydrin
  • Republic of Korea Patent Publication No. 195-0023666 discloses 2-mercaptoethanol and epi It is disclosed to prepare a tetrafunctional polythiol compound based on the above process using triethylamine as a reaction catalyst in the reaction with halohydrin.
  • the embodiment is to provide a tetrafunctional polythiol composition having a high purity and a method for producing the same by the low content of trifunctional polythiol as a by-product.
  • Example is a polythiol composition comprising a tetrafunctional polythiol and a trifunctional polythiol represented by the following formula (1), wherein the peak area of the trifunctional polythiol represented by the formula (1) in the gel permeation chromatography measurement of the polythiol compound A tetrafunctional polythiol composition is provided that is 6 or less relative to a total peak area of 100.
  • an embodiment provides a polymerizable composition comprising the tetrafunctional polythiol composition and an isocyanate compound.
  • the embodiment also provides a method of producing an optical material by polymerizing and molding the polymerizable composition.
  • the Example provides the optical material obtained by the said manufacturing method.
  • the embodiment is (1) tertiary amine, quaternary ammonium salt, triphenylphosphine and trivalent chromium-based compound in the presence of at least one catalyst selected from the group consisting of a compound of the formula Reacting a compound of 2-mercaptoethanol to prepare a compound of Formula 3;
  • X is a halogen atom.
  • the method for preparing a polythiol composition it is possible to obtain a tetrafunctional polythiol composition having a low purity and high content of trifunctional polythiol as a by-product by suppressing side reactions during the preparation of the polythiol compound. Therefore, the polymerizable composition and the optical material obtained from the highly functional tetrafunctional polythiol composition have excellent optical properties such as refractive index and heat resistance, and thus can be usefully used for the production of various plastic optical materials such as spectacle lenses and camera lenses.
  • Example 1 is a graph obtained by performing gel permeation chromatography on the polythiol composition of Example 2, in which an arrow indicates the content (peak) of the trifunctional polythiol compound.
  • FIG. 2 is a graph obtained by performing gel permeation chromatography on the polythiol composition of Comparative Example 3, in which an arrow indicates the content (peak) of a trifunctional polythiol compound.
  • the tetrafunctional polythiol composition according to the embodiment includes a tetrafunctional polythiol and a trifunctional polythiol represented by Formula 1 below, wherein the peak area of the trifunctional polythiol represented by Formula 1 when measured by gel permeation chromatography is poly
  • the total peak area 100 of the thiol compound may be 6 or less, specifically 1 to 5.5.
  • the tetrafunctional polythiol may be one or more compounds selected from compounds represented by the following Chemical Formulas 5 to 7.
  • the compound represented by Chemical Formulas 5 to 7 may be obtained by reacting the compound of Chemical Formula 4 with thiourea and then hydrolyzing it.
  • the tetrafunctional polythiol composition comprising the compound of Formulas 5 to 7 is (1) in the presence of at least one catalyst selected from the group consisting of tertiary amines, quaternary ammonium salts, triphenylphosphine and trivalent chromium-based compounds- Reacting the compound of Formula 2 with 2-mercaptoethanol at a temperature of 5 to 15 ° C. to produce a compound of Formula 3; (2) reacting a compound of Formula 3 with a metal sulfide to produce a compound of Formula 4; And (3) reacting and hydrolyzing the compound of Formula 4 with thiourea (see Scheme 1).
  • at least one catalyst selected from the group consisting of tertiary amines, quaternary ammonium salts, triphenylphosphine and trivalent chromium-based compounds- Reacting the compound of Formula 2 with 2-mercaptoethanol at a temperature of 5 to 15 ° C. to produce a compound of Formula 3; (2) reacting a compound
  • X may be a halogen atom such as F, Cl, Br, I and the like.
  • the diol compound of formula 3 may be prepared by reacting 2-mercaptoethanol with a compound of formula 2 in the presence of a base as a reaction catalyst.
  • the reaction may not use water.
  • the reaction may be carried out for 2 to 10 hours, 2 to 8 hours or 2 to 5 hours at a temperature of -5 to 15 °C, 0 to 12 °C or 5 to 10 °C.
  • the content of 2-mercaptoethanol may be 0.5 mol to 3 mol, specifically 0.7 mol to 2 mol, and more specifically 0.9 mol to 1.1 mol, based on 1 mol of the compound of Formula 2.
  • a base can use a catalytic amount.
  • the base content may be 0.001 mol to 0.1 mol with respect to 1 mol of the compound of Formula 2.
  • the base as the reaction catalyst may be selected from the group consisting of tertiary amines, quaternary ammonium salts, triphenylphosphine and trivalent chromium compounds, for example, triethylamine, triphenylphosphine, triethyl Ammonium chloride, chromium (III) octoate, and the like.
  • a metallic catalyst such as sodium hydroxide, potassium hydroxide, or the like is used as a catalyst, or when the reaction temperature is higher than 15 ° C., a side reaction such as Scheme 2 occurs, thereby producing a trifunctional polythiol compound of Chemical Formula 1. If the reaction temperature is less than -5 °C, the reaction does not proceed smoothly.
  • a tetraol compound of formula 4 may be prepared by reacting a diol compound of formula 3 with a metal sulfide in a solvent. The reaction may be carried out for 1 to 10 hours, 1 to 8 hours or 1 to 5 hours at a temperature of 10 to 50 °C, specifically 20 to 40 °C.
  • the metal sulfide may be, for example, sodium sulfide (Na 2 S).
  • the metal sulfide may be used in an aqueous solution or in a solid form.
  • the metal sulfide may be used in an amount of 0.4 to 0.6 mol, specifically 0.45 to 0.57 mol, and more specifically 0.48 to 0.55 mol, based on 1 mol of the diol compound represented by Chemical Formula 3.
  • step (3) the tetraol compound of Formula 4 obtained above is reacted with thiourea to obtain isothiouronium salt, and then hydrolyzed to prepare the compound of Formula 5-7.
  • the isothiouronium salt may be obtained by mixing the compound of Formula 4 and thiourea and refluxing under acidic conditions.
  • the thiourea may be used in an amount of 3 mol or more, specifically 3 mol to 6 mol, and more specifically 4.6 mol to 5 mol, based on 1 mol of the compound of Formula 4.
  • a hydrochloric acid solution or hydrogen chloride gas may be used, and these may be used in an amount of 3 mol or more, specifically 3 mol to 12 mol, based on 1 mol of the compound of Formula 4.
  • hydrogen chloride By using hydrogen chloride, sufficient reaction rate can be obtained and coloring of a product can be prevented.
  • Reflux can be carried out at 90 to 120 °C, specifically 100 to 110 °C for 1 to 10 hours.
  • the reaction solution containing isothiouronium salt is maintained at a temperature range of 20 to 60 ° C, specifically 25 to 55 ° C, more specifically 25 to 50 ° C, while the reaction solution is 80 minutes or less and 70 minutes.
  • the basic aqueous solution can then be added for 20 to 60 minutes or 20 to 30 minutes.
  • the addition time of basic aqueous solution is so short that it is preferable, it is set within the said time in consideration of a cooling facility, a facility, etc.
  • the basic aqueous solution may be dissolved in water to generate a hydroxyl group (—OH), for example, metal hydroxides such as sodium hydroxide and potassium hydroxide; And aqueous solutions of basic substances such as amines such as ammonia and triethylamine.
  • the basic substance may be used in an amount of 1 mol or more, specifically 1 mol to 3 mol, and more specifically 1.1 mol to 2 mol, with respect to 1 mol of the hydrogen chloride.
  • the basic aqueous solution may be added at room temperature or at reflux temperature range. When the basic aqueous solution is added, the reaction temperature may be 0 to 80 ° C. or 0 to 50 ° C., and the coloring of the obtained polythiol compound does not occur easily within the above range.
  • the organic solvent may be added before adding the basic aqueous solution.
  • Organic solvents can inhibit the production of by-products.
  • the organic solvent may be added in an amount of 0.1 to 3.0 times, specifically 0.2 to 2.0 times, relative to the isothiouronium salt reaction solution.
  • Examples of the organic solvent include toluene, xylene, chlorobenzene, dichlorobenzene, and the like, specifically, toluene.
  • the hydrolysis reaction temperature may be 10 to 130 °C, specifically 30 to 80 °C.
  • the hydrolysis time may be 0.1 to 24 hours, specifically 0.5 to 12 hours, more specifically 1 to 8 hours.
  • Steps (1) to (3) may be carried out in air or under a nitrogen atmosphere, and when carried out under a nitrogen atmosphere, it is preferable in terms of color.
  • the polythiol composition obtained above can be further refined.
  • a plurality of alkali washings and a plurality of water washings can be performed.
  • the washing process can remove impurities and the like remaining in the polythiol, thereby improving the color of the polythiol and improving the color of the optical material obtained therefrom.
  • the embodiment provides a polymerizable composition comprising the tetrafunctional polythiol composition and an isocyanate compound.
  • the isocyanate compound may be a conventional one used in the synthesis of polythiourethane.
  • isocyanate compound 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate and the like can be used.
  • the polymerizable composition may further include additives such as an internal mold release agent, a heat stabilizer, a reaction catalyst, an ultraviolet absorber, and a blueing agent according to the purpose.
  • additives such as an internal mold release agent, a heat stabilizer, a reaction catalyst, an ultraviolet absorber, and a blueing agent according to the purpose.
  • ultraviolet absorber benzophenone-based, benzotriazole-based, salicylate-based, cyanoacrylate-based, oxanilide-based, and the like may be used.
  • the internal mold release agent includes a fluorine-based nonionic surfactant having a perfluoroalkyl group, a hydroxyalkyl group or a phosphate ester group; Silicone-based nonionic surfactants having a dimethylpolysiloxane group, a hydroxyalkyl group or a phosphate ester group; Alkyl quaternary ammonium salts such as trimethylcetyl ammonium salt, trimethylstearyl, dimethylethylcetyl ammonium salt, triethyldodecyl ammonium salt, trioctylmethyl ammonium salt, diethylcyclohexadodecyl ammonium salt and the like; And components selected from acidic phosphate esters may be used alone or in combination of two or more thereof.
  • the well-known reaction catalyst used for manufacture of a polythiourethane type resin can be added suitably.
  • Dialkyl tin halide system such as dibutyl tin dichloride and dimethyl tin dichloride
  • Dialkyl tin dicarboxylates such as dimethyl tin diacetate, dibutyl tin dioctanoate and dibutyl tin dilaurate
  • Dialkyl tin dialkoxides such as dibutyl tin dibutoxide and dioctyl tin dibutoxide
  • Dialkyl tin dithio alkoxides such as dibutyl tin di (thiobutoxide)
  • Dialkyl tin oxides such as di (2-ethylhexyl) tin oxide, dioctyltin oxide and bis (butoxydibutyltin) oxide
  • It may be selected from the group consisting of dial
  • the thermal stabilizer may be used one or two or more metal fatty acid salts, phosphorus, lead, organotin.
  • the bluing agent has an absorption band in the wavelength range of orange to yellow in the visible light region, and has a function of adjusting the color of the optical material made of resin.
  • the bluing agent may include, but is not particularly limited to, a substance which shows, specifically, “blue to purple”.
  • examples of the bluing agent may include dyes, fluorescent whitening agents, fluorescent pigments, inorganic pigments, and the like, and may be appropriately selected according to physical properties, resin colors, and the like required for optical components to be manufactured.
  • the bluing agent may be used alone, or a combination of two or more species. In view of solubility in the polymerizable composition and transparency of the resulting optical material, a dye is preferred as the bluing agent.
  • the dye may specifically be a dye having a maximum absorption wavelength of 520 to 600 nm, and more specifically, a dye having a maximum absorption wavelength of 540 to 580 nm. From the viewpoint of the structure of the compound, an anthraquinone dye is preferable as the dye.
  • the addition method of a bluing agent is not specifically limited, It can add to the preliminary monomer type. Specifically, the method of adding the bluing agent may be dissolved in a monomer, or a master solution containing a high concentration of bluing agent is prepared, and the method of dilution with a monomer or another additive using the master solution is used. There are three ways to do this.
  • the example provides a polythiourethane-based compound obtained from the polymerizable composition as described above.
  • the polythiourethane-based compound is prepared by polymerizing (and curing) the polythiol composition and an isocyanate compound.
  • the molar ratio of the SH group / NCO group in the polymerization reaction may be 0.5 to 3.0, specifically 0.6 to 2.0, more specifically 0.8 to 1.3, within the above range, the refractive index, heat resistance required as an optical material Such characteristics and balance can be improved.
  • the above-mentioned reaction catalyst which is commonly used for the preparation of polythiourethane may be added.
  • An Example provides the molded object obtained by hardening
  • the optical material may be prepared by polymerizing and molding the polymerizable composition.
  • the polymerizable composition is degassed under reduced pressure, and then injected into a mold for molding an optical material.
  • degassing and mold injection can be carried out, for example, in a temperature range of 20 to 40 ° C.
  • polymerization is usually carried out by gradually heating from a low temperature to a high temperature.
  • the temperature of the polymerization reaction may be, for example, 20 to 150 °C, specifically may be 25 to 120 °C.
  • a reaction catalyst commonly used in the preparation of polythiourethane may be added, and specific types thereof are as described above.
  • the polythiourethane-based optical material is then separated from the mold.
  • the optical material may have various shapes by changing a mold of a mold used in manufacturing. Specifically, it may be in the form of a spectacle lens, a camera lens, a light emitting diode (LED).
  • a mold of a mold used in manufacturing may be in the form of a spectacle lens, a camera lens, a light emitting diode (LED).
  • LED light emitting diode
  • the optical material may have a refractive index of 1.65 to 1.75 or 1.65 to 1.70.
  • the optical material may have a heat deflection temperature (Tg) of 100 to 110 ° C or 100 to 105 ° C.
  • the optical material may be an optical lens, specifically a plastic optical lens.
  • the optical lens may be subjected to surface polishing, antistatic treatment, hard coat treatment, anti-reflective coating treatment, dyeing treatment, and dimming to provide antireflection, high hardness, abrasion resistance, chemical resistance, weather resistance, or fashion, as necessary. It can improve by performing physical and chemical treatments, such as optical processing.
  • the method for preparing a polythiol composition it is possible to obtain a tetrafunctional polythiol composition having a high purity and low content of trifunctional polythiol as a by-product by suppressing side reactions during the preparation of the polythiol compound. Therefore, the polymerizable composition and the optical material obtained from the highly functional tetrafunctional polythiol composition have excellent optical properties such as refractive index and heat resistance, and thus can be usefully used for the production of various plastic optical materials such as spectacle lenses and camera lenses.
  • reaction solution was cooled to 45 ° C. and 214.0 parts by weight of toluene was added, followed by cooling to 26 ° C., and 317.5 parts (2.83 mol) of 50% by weight aqueous potassium hydroxide solution was added at 38 ° C. for 30 minutes, and then at 1 ° C. at 57 ° C. A hydrolysis process was further performed for a time to obtain a reaction solution.
  • Example 2 Except for using 0.2 parts by weight of triphenylphosphine instead of 0.2 parts by weight of triethylamine, the same method as in Example 1 was carried out to obtain a polythiol composition containing the compounds of formulas 5 to 7 as a main component.
  • Example 1 Except for using 0.2 parts by weight of triethylammonium chloride instead of 0.2 parts by weight of triethylamine, the same method as in Example 1 was carried out to obtain a polythiol composition containing the compounds of formulas 5 to 7 as a main component.
  • a compound of Chemical Formulas 5 to 7 was prepared in the same manner as in Example 1, except that 0.2 parts by weight of HYCAT 3000S (Chrome (III) Octoate, Dimension Technology Chemical Systems Inc., USA) was used instead of 0.2 parts by weight of triethylamine.
  • the polythiol composition which has a main component was obtained.
  • a polythiol composition was obtained in the same manner as in Example 1, except that 20 parts by weight of 10% sodium hydroxide was used instead of 0.2 parts by weight of triethylamine.
  • a polythiol composition was obtained in the same manner as in Example 1, except that 20 parts by weight of 10% potassium hydroxide was used instead of 0.2 parts by weight of triethylamine.
  • a polythiol composition was obtained in the same manner as in Example 1 except that the reaction of 2-mercaptoethanol and epichlorohydrin was performed at 38 ° C. instead of 8 ° C.
  • Example 1 49.3 parts by weight of the polythiol composition prepared in Example 1 was uniformly mixed with 50.7 parts by weight of xylene diisocyanate (Takenate® 500). To this, 0.01 parts by weight of dibutyltin dichloride as a polymerization catalyst and 0.1 parts by weight of Zelec®UN as an internal mold release agent were added and mixed uniformly to prepare a polymerizable composition.
  • the polymerizable compositions of Examples 6 to 8 and Comparative Examples 4 to 6 were prepared by the same method as Example 5, except that the polythiol compositions of Examples 2 to 4 and Comparative Examples 1 to 3 were used, respectively. It was.
  • SH value (g / eq.) Sample weight (g) / ⁇ 0.1 ⁇ amount of iodine consumed (L) ⁇ .
  • the refractive index at 25 ° C. was measured for the polythiol composition prepared in Examples 1 to 4 and Comparative Examples 1 to 3 using a liquid refractometer RA-600 (Kyoto Electronics Co., Ltd.).
  • the polymerizable compositions prepared in Examples 5 to 8 and Comparative Examples 4 to 6 were degassed at 600 Pa for 1 hour and then filtered through a 3 ⁇ m Teflon filter.
  • the filtered polymerizable composition was injected into a glass mold mold assembled by tape.
  • the mold mold was heated at a rate of 5 ° C./min from 25 ° C. to 120 ° C., and polymerization was carried out at 120 ° C. for 18 hours.
  • the cured resin in the glass mold mold was further cured at 130 ° C. for 4 hours, and then the molded body was released from the glass mold mold.
  • the molded body was a circular lens (optical material) having a center thickness of 1.2 mm (deviation -5.00) and a diameter of 72 mm.
  • the lens was impregnated in ST11TN-8H hard coating solution (Finecoat Co., Ltd.) and then coated by thermosetting.
  • the refractive index of the lens was measured at 20 ° C. using an Abe refractometer, DR-M4 (Atago).
  • the glass transition temperature (Tg, heat deformation) at the permeation method (50 g load, pin wire 0.5 mm ⁇ , heating rate 10 degrees / min) using TMA Q400 (TA) Temperature) was measured.
  • the content of the trifunctional polythiol compound in the polythiol composition of Examples 1 to 4 are all measured to 6 or less with respect to the total peak area 100 of the total polythiol compound, Comparative Examples 1 to 3 It can be seen that the content of the trifunctional polythiol in the polythiol composition of is significantly higher than that.
  • both the refractive index before curing and after curing was higher than the comparative example, it can be seen that the heat deformation temperature after curing is also higher than the comparative example. Therefore, it is expected that the optical lens manufactured in the embodiment can be usefully used as an optical material because of excellent refractive index and heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

실시예는 광학 재료용 폴리티올 조성물 및 이의 제조방법에 관한 것으로, 실시예에 따른 폴리티올 조성물의 제조방법에 의하면, 폴리티올 화합물 제조시 부반응을 억제하여 부산물인 3관능 폴리티올의 함량이 적고 순도가 높은 4관능 폴리티올 조성물을 얻을 수 있다. 따라서, 순도가 높은 4관능 폴리티올 조성물로부터 얻은 중합성 조성물 및 광학재료는 굴절률, 내열성 등의 광학 특성이 우수하므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학 재료의 제조에 유용하게 사용될 수 있다.

Description

광학 재료용 폴리티올 조성물 및 이의 제조방법
실시예는 폴리티오우레탄계 광학 재료의 원료로서 사용되는 폴리티올 조성물 및 이의 제조방법에 관한 것이다. 또한, 실시예는 상기 폴리티올 조성물을 포함하는 중합성 조성물 및 이로부터 얻은 광학 재료에 관한 것이다.
플라스틱을 이용한 광학 재료는, 유리와 같은 무기 재료로 이루어지는 광학 재료에 비해 경량이면서 쉽게 깨지지 않고 염색성이 우수하기 때문에, 다양한 수지의 플라스틱 재료들이 안경 렌즈, 카메라 렌즈 등의 광학 재료로 널리 이용되고 있다. 최근 보다 높은 성능 및 편리함에 대한 수요가 늘어남에 따라, 고투명성, 고굴절율, 저비중, 고내열성, 고내충격성 등의 특성을 갖는 광학 재료에 대한 연구가 계속되고 있다.
폴리티오우레탄계 화합물은 그의 우수한 광학 특성 및 기계적 물성에 기인하여 광학 재료로서 널리 사용되고 있다. 폴리티오우레탄계 화합물은 폴리티올 화합물과 이소시아네이트 화합물을 반응시켜 제조할 수 있다. 이때, 상기 폴리티올 화합물의 순도는 이로부터 제조되는 폴리티오우레탄계 화합물의 물성에 큰 영향을 미친다.
하기 반응식 1에 나타낸 바와 같이, 2-메르캅토에탄올과 에피할로히드린을 반응시켜 디올 화합물을 제조하고, 이를 금속황화물과 반응시켜 테트라올 화합물을 제조한 후, 이를 티오우레아와 반응시키고 가수분해하여 3종의 4관능 폴리티올 화합물을 제조하는 공정이 알려져 있다.
[반응식 1]
Figure PCTKR2017006861-appb-I000001
상기 식에서, X는 할로겐 원자이다.
그러나, 이 제조공정을 수행할 경우, 2-메르캅토에탄올과 에피할로히드린과의 반응에 의해 제조된 디올 화합물의 할로겐기가 2-메르캅토에탄올의 메르캅토기와 쉽게 치환될 수 있어, 하기 반응식 2에서 볼 수 있는 바와 같이, 원치않는 트리올 중간체가 생성되는 부반응이 일어나 3관능 폴리티올 화합물이 부산물로서 생성되어 목적 화합물인 4관능 폴리티올 화합물의 순도가 낮아지는 문제가 있었다.
[반응식 2]
Figure PCTKR2017006861-appb-I000002
상기 식에서, X는 할로겐 원자이다.
대한민국 등록특허 제10-1533207호는 2-메르캅토에탄올과 에피할로히드린과의 반응시 NaOH 수용액을 반응 촉매로 사용하고, 대한민국 공개특허공보 제1995-0023666호는 2-메르캅토에탄올과 에피할로히드린과의 반응시 트리에틸아민을 반응촉매로 사용하여 상기 공정에 기초하여 4관능 폴리티올 화합물을 제조하는 것을 개시하고 있다.
그러나, 대한민국 등록특허 제10-1533207호에 개시된 제법에 따르면, 상술한 바와 같은 디올 화합물 중간체와 2-메르캅토에탄올과의 반응이 쉽게 일어나 원치 않는 부반응이 여전히 발생하였다. 또한, 대한민국 공개특허공보 제1995-0023666호에 개시된 제법에 따르면, 2-메르캅토에탄올과 에피할로히드린과의 반응을 35 내지 60℃의 고온에서 수행해야 하기 때문에, 상술한 바와 같은 부반응이 여전히 부분적으로 발생하였다.
따라서, 실시예는 부산물인 3관능 폴리티올의 함량이 적어 순도가 높은 4관능 폴리티올 조성물 및 이의 제조방법을 제공하고자 한다.
실시예는 4관능 폴리티올 및 하기 화학식 1로 표시되는 3관능 폴리티올을 포함하는 폴리티올 조성물에 있어서, 겔 투과 크로마토그래피 측정 시 화학식 1로 표시되는 3관능 폴리티올의 피크 면적이 폴리티올 화합물의 총 피크 면적 100에 대하여 6 이하인 4관능 폴리티올 조성물을 제공한다.
[화학식 1]
Figure PCTKR2017006861-appb-I000003
나아가, 실시예는 상기 4관능 폴리티올 조성물 및 이소시아네이트계 화합물을 포함하는 중합성 조성물을 제공한다.
또한, 실시예는 상기 중합성 조성물을 중합 및 성형하여 광학 재료를 제조하는 방법을 제공한다.
나아가, 실시예는 상기 제조방법에 의해 얻어진 광학 재료를 제공한다.
나아가, 실시예는 (1) 3차 아민, 4차 암모늄염, 트리페닐포스핀 및 3가 크롬계 화합물로 이루어진 군에서 1종 이상 선택되는 촉매 존재 하에 -5 내지 15℃의 온도에서, 하기 화학식 2의 화합물을 2-메르캅토에탄올과 반응시켜 하기 화학식 3의 화합물을 제조하는 단계;
(2) 화학식 3의 화합물을 금속황화물과 반응시켜 하기 화학식 4의 화합물을 제조하는 단계; 및
(3) 화학식 4의 화합물을 티오우레아와 반응 및 가수분해시키는 단계를 포함하는, 폴리티올 조성물의 제조방법을 제공한다:
[화학식 2]
Figure PCTKR2017006861-appb-I000004
[화학식 3]
Figure PCTKR2017006861-appb-I000005
[화학식 4]
Figure PCTKR2017006861-appb-I000006
상기 식에서,
X는 할로겐 원자이다.
실시예에 따른 폴리티올 조성물의 제조방법에 의하면, 폴리티올 화합물 제조시 부반응을 억제하여 부산물인 3관능 폴리티올의 함량이 적고 순도가 높은 4관능 폴리티올 조성물을 얻을 수 있다. 따라서, 순도가 높은 4관능 폴리티올 조성물로부터 얻은 중합성 조성물 및 광학 재료는 굴절률, 내열성 등의 광학 특성이 우수하므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학 재료의 제조에 유용하게 사용될 수 있다.
도 1은 실시예 2의 폴리티올 조성물에 대하여 겔 투과 크로마토그래피를 수행하여 얻은 그래프로서, 화살표 부분은 3관능 폴리티올 화합물의 함량(피크)을 나타낸다.
도 2는 비교예 3의 폴리티올 조성물에 대하여 겔 투과 크로마토그래피를 수행하여 얻은 그래프로서, 화살표 부분은 3관능 폴리티올 화합물의 함량(피크)을 나타낸다.
실시예에 따른 4관능 폴리티올 조성물은 4관능 폴리티올 및 하기 화학식 1로 표시되는 3관능 폴리티올을 포함하며, 이때 겔 투과 크로마토그래피 측정 시 화학식 1로 표시되는 3관능 폴리티올의 피크 면적은 폴리티올 화합물의 총 피크 면적 100에 대하여 6 이하, 구체적으로 1 내지 5.5일 수 있다.
[화학식 1]
Figure PCTKR2017006861-appb-I000007
상기 4관능 폴리티올은 하기 화학식 5 내지 7로 표시되는 화합물로부터 선택되는 1종 이상의 화합물일 수 있다.
[화학식 5]
Figure PCTKR2017006861-appb-I000008
[화학식 6]
Figure PCTKR2017006861-appb-I000009
[화학식 7]
Figure PCTKR2017006861-appb-I000010
나아가, 상기 화학식 5 내지 7로 표시되는 화합물은 하기 화학식 4의 화합물을 티오우레아와 반응시킨 후 가수분해시켜 얻어질 수 있다.
[화학식 4]
Figure PCTKR2017006861-appb-I000011
상기 화학식 5 내지 7의 화합물을 포함하는 4관능 폴리티올 조성물은 (1) 3차 아민, 4차 암모늄염, 트리페닐포스핀 및 3가 크롬계 화합물로 이루어진 군에서 1종 이상 선택되는 촉매 존재 하에 -5 내지 15℃의 온도에서, 하기 화학식 2의 화합물을 2-메르캅토에탄올과 반응시켜 하기 화학식 3의 화합물을 제조하는 단계; (2) 화학식 3의 화합물을 금속황화물과 반응시켜 하기 화학식 4의 화합물을 제조하는 단계; 및 (3) 화학식 4의 화합물을 티오우레아와 반응 및 가수분해시키는 단계를 포함하는 방법에 의해 제조될 수 있다(반응식 1 참조).
[반응식 1]
Figure PCTKR2017006861-appb-I000012
상기 식에서, X는 할로겐 원자, 예컨대, F, Cl, Br, I 등일 수 있다.
구체적으로, 상기 단계 (1)에서는, 반응 촉매로서 염기 존재 하에 2-메르캅토에탄올과 화학식 2의 화합물을 반응시킴으로써 화학식 3의 디올 화합물을 제조할 수 있다. 이때, 상기 반응은 물을 사용하지 않을 수 있다. 상기 반응은 -5 내지 15℃, 0 내지 12℃ 또는 5 내지 10℃의 온도에서 2 내지 10시간, 2 내지 8시간 또는 2 내지 5시간 동안 수행될 수 있다. 나아가, 2-메르캅토에탄올의 함량은 화학식 2의 화합물 1몰에 대하여 0.5몰 내지 3몰, 구체적으로는 0.7몰 내지 2몰, 보다 구체적으로는 0.9몰 내지 1.1몰일 수 있다. 또한, 염기는 촉매량 사용할 수 있다. 구체적으로 상기 염기의 함량은 화학식 2의 화합물 1몰에 대하여 0.001몰 내지 0.1몰일 수 있다. 이때, 반응 촉매로서의 염기는 3차 아민, 4차 암모늄염, 트리페닐포스핀 및 3가 크롬계 화합물로 이루어진 군에서 1종 이상 선택될 수 있고, 예컨대, 트리에틸아민, 트리페닐포스핀, 트리에틸암모늄 클로라이드, 크롬(III) 옥토에이트 등일 수 있다.
이때, 금속성 촉매, 예컨대 수산화나트륨, 수산화칼륨 등을 촉매로 사용하거나, 반응온도가 15℃보다 높으면 상기 반응식 2와 같은 부반응이 일어나 화학식 1의 3관능 폴리티올 화합물이 생성된다. 반응 온도가 -5℃ 미만이면 반응이 원활하게 진행되지 않는다.
단계 (2)에서, 화학식 3의 디올 화합물을 용매 중에서 금속황화물과 반응시킴으로써 하기 화학식 4의 테트라올 화합물을 제조할 수 있다. 상기 반응은 10 내지 50℃, 구체적으로는 20 내지 40℃의 온도에서 1 내지 10시간, 1 내지 8시간 또는 1 내지 5시간 동안 수행될 수 있다. 상기 금속황화물은 예컨대, 황화나트륨(Na2S)일 수 있다. 상기 금속황화물은 수용액 또는 고체 형태로 사용할 수 있다. 상기 금속황화물은 상기 화학식 3의 디올 화합물 1몰에 대하여 0.4 내지 0.6몰, 구체적으로 0.45 내지 0.57 몰, 보다 구체적으로는 0.48 내지 0.55 몰의 양으로 사용할 수 있다.
단계 (3)에서, 상기 얻어진 화학식 4의 테트라올 화합물을 티오우레아와 반응시켜 이소티오우로늄염(isothiouronium salt)을 얻은 뒤, 이를 가수분해하여 화학식 5 내지 7의 화합물을 제조할 수 있다. 먼저, 화학식 4의 화합물과 티오우레아를 혼합하고 산 조건에서 환류시켜 이소티오우로늄염을 얻을 수 있다. 상기 티오우레아는 상기 화학식 4의 화합물 1몰에 대하여 3몰 이상, 구체적으로 3몰 내지 6몰, 보다 구체적으로 4.6몰 내지 5몰의 양으로 사용할 수 있다. 상기 산 조건 형성을 위해서는, 염산 용액 또는 염화수소 가스 등을 사용할 수 있고, 이들은 상기 화학식 4의 화합물 1몰에 대하여 3몰 이상, 구체적으로 3몰 내지 12몰의 양으로 사용할 수 있다. 염화수소를 사용함으로써, 충분한 반응속도가 얻어지고, 제품의 착색을 방지할 수 있다. 환류는 90 내지 120℃, 구체적으로 100 내지 110℃에서 1 내지 10시간 동안 수행할 수 있다.
이후, 상기 얻어진 이소티오우로늄염을 염기 조건 및 유기용매 중에서 가수분해하여 화학식 5 내지 7의 4관능 폴리티올 화합물을 얻을 수 있다.
구체적으로는, 이소티오우로늄염을 포함하는 반응액을 20 내지 60℃, 구체적으로 25 내지 55℃, 보다 구체적으로 25 내지 50℃의 온도 범위로 유지하면서, 그 반응액에 80분 이하, 70분 이하, 20 내지 60분 또는 20 내지 30분 동안 염기성 수용액을 첨가할 수 있다. 염기성 수용액의 첨가 시간은 짧을수록 바람직하지만, 냉각 시설, 설비 시설 등을 고려하여 상기 시간 내로 설정된다.
염기성 수용액은 물에 녹아 수산기(-OH)를 발생할 수 있는 것으로, 예컨대, 수산화나트륨, 수산화칼륨 등의 금속수산화물; 및 암모니아, 트리에틸아민 등의 아민류와 같은 염기성 물질의 수용액일 수 있다. 상기 염기성 물질은 상기 염화수소 1몰에 대하여 1몰 이상, 구체적으로는 1몰 내지 3몰, 보다 구체적으로는 1.1몰 내지 2몰의 양으로 사용할 수 있다. 상기 염기성 수용액은 실온 또는 환류 온도 범위에서 첨가될 수 있다. 염기성 수용액 첨가 시 반응 온도는 0 내지 80℃ 또는 0 내지 50℃일 수 있고, 상기 범위 내이면 수득한 폴리티올 화합물의 착색이 잘 일어나지 않는다.
상기 염기성 수용액을 첨가하기 전에 유기용매를 첨가할 수 있다. 유기용매는 부산물의 생성을 억제할 수 있다. 유기용매는 이소티오우로늄염 반응액에 대해 0.1 내지 3.0배량, 구체적으로는 0.2 내지 2.0배량으로 첨가할 수 있다. 유기용매의 예로는 톨루엔, 크실렌, 클로로벤젠, 디클로로벤젠 등을 들 수 있고, 구체적으로는 톨루엔일 수 있다.
상기 가수분해 반응온도는 10 내지 130℃, 구체적으로는 30 내지 80℃일 수 있다. 상기 가수분해 시간은 0.1 내지 24시간일 수 있고, 구체적으로 0.5 내지 12시간, 보다 구체적으로 1 내지 8시간일 수 있다.
상기 단계 (1) 내지 (3)은 공기 중 또는 질소 분위기 하에서 수행될 수 있고, 질소 분위기 하에서 수행되는 경우 색상 면에서 바람직하다.
이상 얻어진 폴리티올 조성물은 추가로 정제를 거칠 수 있다.
예를 들면, 복수회의 알칼리 세정과 복수회의 수 세정을 실시할 수 있다. 세정 공정을 통해 폴리티올 중에 잔존하는 불순물 등을 제거할 수 있고, 이로서 폴리티올의 색상을 개선시켜 이로부터 얻어지는 광학 재료의 색상을 향상시킬 수 있다.
이후, 필요에 따라, 건조, 여과 등을 수행하여 목적하는 4관능 폴리티올 조성물을 얻을 수 있다.
실시예는 상기 4관능 폴리티올 조성물 및 이소시아네이트계 화합물을 포함하는 중합성 조성물을 제공한다.
상기 이소시아네이트계 화합물은 폴리티오우레탄의 합성에 사용되는 통상적인 것을 사용할 수 있다.
구체적으로는 이소포론디이소시아네이트, 디시클로헥실메탄-4,4-디이소시아네이트, 헥사메틸렌디이소시아네이트, 2,2-디메틸펜탄디이소시아네이트, 2,2,4-트리메틸헥산디이소시아네이트, 부텐디이소시아네이트, 1,3-부타디엔-1,4-디이소시아네이트, 2,4,4-트리메틸헥사메틸렌디이소시아네이트, 1,6,11-운데카트리이소시아네이트, 1,3,6-헥사메틸렌트리이소시아네이트, 1,8-디이소시아네이트-4-이소시아네이토메틸옥탄, 비스(이소시아네이토에틸)카보네이트, 비스(이소시아네이토에틸)에테르, 1,2-비스(이소시아네이토메틸)시클로헥산, 1,3-비스(이소시아네이토메틸)시클로헥산, 1,4-비스(이소시아네이토메틸)시클로헥산, 디시클로헥실메탄디이소시아네이트, 시클로헥산디이소시아네이트, 메틸시클로헥산디이소시아네이트, 디시클로헥실디메틸메탄이소시아네이트, 2,2-디메틸디시클로헥실메탄이소시아네이트, 비스(이소시아네이토에틸)설피드, 비스(이소시아네이토프로필)설피드, 비스(이소시아네이토헥실)설피드, 비스(이소시아네이토메틸)설폰, 비스(이소시아네이토메틸)디설피드, 비스(이소시아네이토프로필)디설피드, 비스(이소시아네이토메틸티오)메탄, 비스(이소시아네이토에틸티오)메탄, 비스(이소시아네이토에틸티오)에탄, 비스(이소시아네이토메틸티오)에탄, 1,5-디이소시아네이토-2-이소시아네이토메틸-3-티아펜탄, 2,5-디이소시아네이토티오펜, 2,5-비스(이소시아네이토메틸)티오펜, 2,5-디이소시아네이토테트라히드로티오펜, 2,5-비스(이소시아네이토메틸)테트라히드로티오펜, 3,4-비스(이소시아네이토메틸)테트라히드로티오펜, 2,5-디이소시아네이토-1,4-디티안, 2,5-비스(이소시아네이토메틸)-1,4-디티안, 4,5-디이소시아네이토-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-2-메틸-1,3-디티오란 등을 포함하는 지방족 이소시아네이트계 화합물; 및 비스(이소시아네이토에틸)벤젠, 비스(이소시아네이토프로필)벤젠, 비스(이소시아네이토부틸)벤젠, 비스(이소시아네이토메틸)나프탈렌, 비스(이소시아네이토메틸)디페닐에테르, 페닐렌디이소시아네이트, 에틸페닐렌디이소시아네이트, 이소프로필페닐렌디이소시아네이트, 디메틸페닐렌디이소시아네이트, 디에틸페닐렌디이소시아네이트, 디이소프로필페닐렌디이소시아네이트, 트리메틸벤젠트리이소시아네이트, 벤젠트리이소시아네이트, 비페닐디이소시아네이트, 톨루엔디이소시아네이트, 톨루이딘디이소시아네이트, 4,4-디페닐메탄디이소시아네이트, 3,3-디메틸디페닐메탄-4,4-디이소시아네이트, 비벤질-4,4-디이소시아네이트, 비스(이소시아네이토페닐)에틸렌, 3,3-디메톡시비페닐-4,4-디이소시아네이트, 헥사히드로벤젠디이소시아네이트, 헥사히드로디페닐메탄-4,4-디이소시아네이트, o-크실렌디이소시아네이트, m-크실렌디이소시아네이트, p-크실렌디이소시아네이트, 자일렌디이소시아네이트, X-자일렌디이소시아네이트, 1,3-비스(이소시아네이토메틸)사이클로헥산, 디페닐설피드-2,4-디이소시아네이트, 디페닐설피드-4,4-디이소시아네이트, 3,3-디메톡시-4,4-디이소시아네이토디벤질티오에테르, 비스(4-이소시아네이토메틸벤젠)설피드, 4,4-메톡시벤젠티오에틸렌글리콜-3,3-디이소시아네이트, 디페닐디설피드-4,4-디이소시아네이트, 2,2-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메틸디페닐디설피드-6,6-디이소시아네이트, 4,4-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메톡시디페닐디설피드-4,4-디이소시아네이트, 4,4-디메톡시디페닐디설피드-3,3-디이소시아네이트 등을 포함하는 방향족 이소시아네이트계 화합물로 이루어진 군으로부터 1종 이상을 사용할 수 있다.
구체적으로 상기 이소시아네이트계 화합물은 1,3-비스(이소시아네이토메틸)사이클로헥산, 헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 자일렌디이소시아네이트, 톨루엔디이소시아네이트 등을 사용할 수 있다.
상기 중합성 조성물은 목적에 따라 내부 이형제, 열안정제, 반응촉매, 자외선 흡수제, 블루잉제(blueing agent) 등의 첨가제를 더 포함할 수 있다.
상기 자외선 흡수제로는 벤조페논계, 벤조트라이아졸계, 살리실레이트계, 시아노아크릴레이트계, 옥사닐라이드계 등이 사용될 수 있다.
상기 내부 이형제로는 퍼플루오르알킬기, 히드록시알킬기 또는 인산에스테르기를 지닌 불소계 비이온 계면활성제; 디메틸폴리실록산기, 히드록시알킬기 또는 인산에스테르기를 가진 실리콘계 비이온 계면활성제; 트리메틸세틸 암모늄염, 트리메틸스테아릴, 디메틸에틸세틸 암모늄염, 트리에틸도데실 암모늄염, 트리옥틸메틸 암모늄염, 디에틸시클로헥사도데실 암모늄염 등과 같은 알킬계 4급 암모늄염; 및 산성 인산에스테르 중에서 선택된 성분이 단독으로 혹은 2종 이상 함께 사용될 수 있다.
상기 반응촉매로는 폴리티오우레탄계 수지의 제조에 사용되는 공지의 반응촉매를 적절히 첨가할 수 있다. 예를 들면, 디부틸주석디클로라이드, 디메틸주석디클로라이드 등의 디알킬주석할로겐화물계; 디메틸주석디아세테이트, 디부틸주석디옥타노에이트, 디부틸주석디라우레이트 등의 디알킬주석디카르복실레이트계; 디부틸주석디부톡사이드, 디옥틸주석디부톡사이드 등의 디알킬주석디알콕사이드계; 디부틸주석디(티오부톡사이드) 등의 디알킬주석디티오알콕사이드계; 디(2-에틸헥실)주석옥사이드, 디옥틸주석옥사이드, 비스(부톡시디부틸주석)옥사이드 등의 디알킬주석산화물계; 디부틸주석술피드 등의 디알킬주석황화물계로 이루어진 군에서 선택될 수 있다. 구체적으로는, 디부틸주석디클로라이드, 디메틸주석디클로라이드 등의 디알킬주석할로겐화물계로 이루어진 군에서 선택될 수 있다.
상기 열안정제로는 금속 지방산염계, 인계, 납계, 유기주석계 등이 1종 또는 2종 이상 사용될 수 있다.
상기 블루잉제는 가시광 영역 중 오렌지색으로부터 황색의 파장역에 흡수대를 가지며, 수지로 이루어지는 광학 재료의 색상을 조정하는 기능을 가진다. 상기 블루잉제는, 구체적으로, 청색으로부터 보라색을 나타내는 물질을 포함할 수 있으나, 특별히 한정되는 것은 아니다. 또한, 상기 블루잉제의 예로는 염료, 형광증백제, 형광 안료, 무기 안료 등을 들 수 있으나, 제조되는 광학 부품에 요구되는 물성이나 수지 색상 등에 맞추어 적절히 선택될 수 있다. 상기 블루잉제는 각각 단독, 또는 2 종 이상의 조합을 사용할 수 있다. 중합성 조성물에 대한 용해성 및 얻어지는 광학 재료의 투명성의 측면에서, 상기 블루잉제로서 염료가 바람직하다. 흡수 파장의 관점에서, 상기 염료는 구체적으로, 극대 흡수 파장 520 내지 600nm의 염료일 수 있으며, 더욱 구체적으로, 극대 흡수 파장 540 내지 580nm의 염료일 수 있다. 또한, 화합물의 구조의 관점에서, 상기 염료로는 안트라퀴논계 염료가 바람직하다. 블루잉제의 첨가 방법은 특별히 한정되지 않으며, 미리 모노머계에 첨가할 수 있다. 구체적으로, 상기 블루잉제의 첨가 방법은 모노머에 용해시켜 두는 방법, 또는 고농도의 블루잉제를 함유하는 마스터 용액을 조제해 두고, 상기 마스터 용액을 사용하는 모노머나 다른 첨가제로 희석하여 첨가하는 방법 등 여러 가지의 방법을 사용할 수 있다.
실시예는 상술한 바와 같은 중합성 조성물로부터 얻은 폴리티오우레탄계 화합물을 제공한다. 상기 폴리티오우레탄계 화합물은 상기 폴리티올 조성물과 이소시아네이트 화합물이 중합(및 경화)되어 제조된다. 상기 중합 반응에서 SH기/NCO기의 반응 몰비는 0.5 내지 3.0일 수 있고, 구체적으로는 0.6 내지 2.0, 보다 구체적으로는 0.8 내지 1.3일 수 있고, 상기 범위 내이면 광학재료로서 요구되는 굴절률, 내열성 등의 특성 및 밸런스를 향상시킬 수 있다. 또한, 반응 속도를 조절하기 위해서, 폴리티오우레탄의 제조에 통상적으로 이용되는 상기 언급된 반응 촉매가 첨가될 수 있다.
실시예는 상기 중합성 조성물을 경화시켜 얻은 성형체 및 상기 성형체로 이루어지는 광학 재료를 제공한다. 상기 광학 재료는 중합성 조성물이 중합 및 성형되어 제조될 수 있다.
먼저, 상기 중합성 조성물을 감압하에 탈기(degassing)한 후, 광학 재료 성형용 몰드에 주입한다. 이와 같은 탈기 및 몰드 주입은 예를 들어 20 내지 40℃의 온도 범위에서 수행될 수 있다. 몰드에 주입한 후에는 통상 저온으로부터 고온으로 서서히 가열하여 중합을 수행한다.
상기 중합 반응의 온도는 예를 들어 20 내지 150℃일 수 있고, 구체적으로 25 내지 120℃일 수 있다. 또한, 반응 속도를 조절하기 위해서, 폴리티오우레탄의 제조에 통상적으로 이용되는 반응 촉매가 첨가될 수 있으며, 이의 구체적인 종류는 앞서 예시한 바와 같다.
이후 폴리티오우레탄계 광학 재료를 몰드로부터 분리한다.
상기 광학 재료는 제조시 사용하는 주형의 몰드를 바꾸는 것으로 여러 가지 형상일 수 있다. 구체적으로, 안경렌즈, 카메라 렌즈, 발광다이오드(LED) 등의 형태일 수 있다.
상기 광학 재료는 1.65 내지 1.75 또는 1.65 내지 1.70의 굴절률을 가질 수 있다. 상기 광학 재료는 100 내지 110℃ 또는 100 내지 105℃의 열변형온도(Tg)를 가질 수 있다.
상기 광학 재료는 광학 렌즈, 구체적으로 플라스틱 광학 렌즈일 수 있다. 상기 광학 렌즈는 필요에 따라 반사 방지, 고경도 부여, 내마모성 향상, 내약품성 향상, 방운성 부여 또는 패션성 부여를 위해 표면연마, 대전 방지 처리, 하드 코트 처리, 무반사 코트 처리, 염색 처리, 조광(調光)처리 등의 물리적, 화학적 처리를 실시하여 개량할 수 있다.
이와 같이, 실시예에 따른 폴리티올 조성물의 제조방법에 의하면, 폴리티올 화합물 제조시 부반응을 억제하여 부산물인 3관능 폴리티올의 함량이 적고 순도가 높은 4관능 폴리티올 조성물을 얻을 수 있다. 따라서, 순도가 높은 4관능 폴리티올 조성물로부터 얻은 중합성 조성물 및 광학 재료는 굴절률, 내열성 등의 광학 특성이 우수하므로, 안경렌즈, 카메라 렌즈 등 각종 플라스틱 광학 재료의 제조에 유용하게 사용될 수 있다.
이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
[ 실시예 ]
폴리티올 조성물의 제조
실시예 1
Figure PCTKR2017006861-appb-I000013
반응기 내에 2-메르캅토에탄올 51.7중량부(0.66몰), 트리에틸아민 0.2중량부를 투입한 후, 에피클로로히드린 61.8중량부(0.67몰)를 8℃로 유지하면서 4시간에 걸쳐 적하한 후 1시간동안 교반을 실시하여 1차 반응을 진행하였다. 이어서, 50%의 황화나트륨 수용액 53.0중량부(0.34몰)를 22℃에서 5.5시간에 걸쳐 적하하고, 120분 동안 교반을 실시하였다. 그리고 36%의 염산 278.4 중량부 (2.74몰)를 첨가하고, 그 다음 티오우레아 124.5중량부(1.6몰)를 첨가한 다음, 110℃ 환류하면서 3시간 동안 티오우로늄염화 반응시켜 반응액을 수득하였다.
상기 반응액을 45℃로 냉각하고 톨루엔 214.0중량부를 첨가한 후 26℃까지 냉각하고, 50중량%의 수산화 칼륨 수용액 317.5중량부(2.83몰)를 38℃에서 30분 동안 첨가한 후 57℃에서 1시간 동안 가수분해공정을 더 수행하여 반응액을 수득하였다.
상기 반응액의 톨루엔 부분을 분리한 다음, 상기 톨루엔에 36% 염산 59.4중량부를 추가하여 혼합하고, 30분 후 36℃에서 분별 깔대기를 이용하여 물 부분을 제거하였다(산 세정 공정). 상기 산 세정 공정을 2회 반복 실시하였다. 그 다음, 산세정이 완료된 반응액에 증류수 118.7중량부를 추가하여 혼합하고, 30분 후 36℃에서 분별 깔대기를 이용하여 물 부분을 제거하는 증류수 세정 공정을 5회 반복 실시하였다.
이후, 가열 감압 공정을 통해 톨루엔과 미량의 물을 완전히 제거한 후, 1μm의 테프론 필터로 여과하여 폴리티올 화합물로서, 4,8-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸(화학식 5), 4,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸(화학식 6), 및 5,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸 (화학식 7)을 주성분으로 하는 폴리티올 조성물을 얻었다.
실시예 2
트리에틸아민 0.2 중량부 대신 트리페닐포스핀 0.2 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 화학식 5 내지 7의 화합물을 주성분으로 하는 폴리티올 조성물을 얻었다.
실시예 3
트리에틸아민 0.2 중량부 대신 트리에틸암모늄 클로라이드 0.2 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 화학식 5 내지 7의 화합물을 주성분으로 하는 폴리티올 조성물을 얻었다.
실시예 4
트리에틸아민 0.2 중량부 대신 HYCAT 3000S(크롬(III) 옥토에이트, DimensionTechnology Chemical Systems Inc., USA) 0.2 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 화학식 5 내지 7의 화합물을 주성분으로 하는 폴리티올 조성물을 얻었다.
비교예 1
트리에틸아민 0.2 중량부 대신 10% 수산화나트륨 20 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 폴리티올 조성물을 얻었다.
비교예 2
트리에틸아민 0.2 중량부 대신 10% 수산화칼륨 20 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 폴리티올 조성물을 얻었다.
비교예 3
2-메르캅토에탄올과 에피클로로히드린과의 반응시 온도 8℃ 대신 38℃에서 반응을 수행한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 폴리티올 조성물을 얻었다.
<원소분석>
이론치 실시예1 실시예2 실시예3 실시예4 비교예1 비교예2 비교예3
C 32.7 32.8 32.7 32.8 32.6 32.4 32.3 32.1
H 6.2 6.1 6.3 6.0 6.2 6.2 6.2 6.4
S 61.1 61.1 61.0 61.2 61.2 61.4 61.5 61.5
FT-IR: 2540cm-1 (-SH 신축피크).
중합성 조성물의 제조
실시예 5
상기 실시예 1에서 제조된 폴리티올 조성물 49.3 중량부를 자일렌 디이소시아네이트(Takenate®500) 50.7중량부와 균일하게 혼합하였다. 여기에 중합촉매로 디부틸틴 디클로라이드 0.01 중량부, 및 내부이형제로 Zelec®UN 0.1 중량부를 첨가하고 균일하게 혼합하여 중합성 조성물을 제조하였다.
실시예 6 내지 8 및 비교예 4 내지 6
실시예 2 내지 4 및 비교예 1 내지 3의 폴리티올 조성물을 각각 사용한 것을 제외하고는, 실시예 5와 동일한 방법을 수행하여 실시예 6 내지 8 및 비교예 4 내지 6의 중합성 조성물을 각각 제조하였다.
실험예 : 물성 확인
상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조한 폴리티올 조성물, 및 상기 실시예 5 내지 8, 및 비교예 4 내지 6에서 제조한 중합성 조성물을 대상으로 하기 기재된 바에 따라 물성을 측정하였으며, 측정 결과는 하기 표 3에 나타냈다.
(1) 3관능 폴리티올 함량
상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조한 폴리티올 조성물에 대하여 겔 투과 크로마토그래피를 수행한 후, 40℃에서 RID 검출기(Waters)를 이용하여 R/T 5.7 내지 5.8분에 생성되는 피크를 통해 3관능 폴리티올 화합물의 함량을 측정하고, 실시예 2 및 비교예 3의 결과를 각각 도 1 및 2에 나타내었다. 이때, 겔 투과 크로마토그래피의 조건은 다음과 같다.
기기 APC system(Waters)
컬럼(Column) Acquity APC XT Column 45A (4.6*150mm)x2(Waters)
이동상 테트라하이드로퓨란(THF)
유량 0.5mL/분
총 운전시간 10분
주입량 10 ㎕
(2) SH값
비커에 상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조한 폴리티올 조성물을 각각 약 0.1g 넣은 후, 클로로포름 40mL를 추가하여 10분간 교반한 다음, 이소프로필 알콜 20mL를 추가하여 10분간 다시 교반하였다. 상기 용액을 0.1N 요오드 표준용액을 이용하여 적정하고, 하기 수학식 1에 적용하여 SH값을 계산하였다(이론값=91.3):
[수학식 1]
SH값(g/eq.)= 시료무게(g)/{0.1x소비된 요오드양(L)}.
(3) 액상 굴절률
상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조한 폴리티올 조성물에 대하여 액상 굴절계 Refractometer RA-600(교토전자사)를 이용하여 25℃에서의 굴절률을 측정하였다.
(4) 고상 굴절률
상기 실시예 5 내지 8, 및 비교예 4 내지 6에서 제조한 중합성 조성물을 600Pa에서 1 시간 동안 탈기(degassing)한 후 3 ㎛의 테프론 필터에 여과하였다. 여과된 중합성 조성물을 테이프에 의해 조립된 유리 몰드 주형에 주입하였다. 상기 몰드 주형을 25℃에서 120℃까지 5℃/분의 속도로 승온하고, 120℃에서 18시간 중합을 진행하였다. 유리 몰드 주형에서 경화된 수지를 130℃에서 4시간 동안 추가 경화한 후 유리 몰드 주형으로부터 성형체를 이형시켰다. 상기 성형체는 중심 두께 1.2mm(편차 -5.00) 및 지름 72mm의 원형 렌즈(광학 재료)이었다. 상기 렌즈를 ST11TN-8H 하드코팅액(㈜ 화인코트)에 함침한 후 열경화하여 코팅하였다.
상기 렌즈에 대해 아베굴절계인 DR-M4(Atago 사)를 이용하여 20℃에서 굴절률을 측정하였다.
(5) 내열성(열변형)
상기 항목 (4)의 광학 렌즈에 대해, TMA Q400(TA 사)를 이용하여 페네트레이션법(50g 하중, 핀 선 0.5mmф, 승온속도 10도/min)에서의 유리전이온도(Tg, 열변형온도)를 측정하였다.
Figure PCTKR2017006861-appb-T000001
상기 표 3에서 보는 바와 같이, 실시예 1 내지 4의 폴리티올 조성물 중 3관능 폴리티올 화합물의 함량은 모두 전체 폴리티올 화합물의 총 피크 면적 100에 대하여 6 이하로 측정된 반면, 비교예 1 내지 3의 폴리티올 조성물 중의 3관능 폴리티올의 함량은 그보다 현저히 많음을 알 수 있다. 또한, 경화전 및 경화후의 굴절률 모두 실시예가 비교예보다 높았으며, 경화후 열변형 온도도 실시예가 비교예에 비해 높은 것을 알 수 있다. 따라서, 실시예에서 제조된 광학 렌즈는 굴절률 및 내열성이 우수하여 광학 재료로서 유용하게 사용될 수 있을 것으로 예상된다.

Claims (11)

  1. 4관능 폴리티올 및 하기 화학식 1로 표시되는 3관능 폴리티올을 포함하는 폴리티올 조성물에 있어서,
    겔 투과 크로마토그래피 측정 시 화학식 1로 표시되는 3관능 폴리티올의 피크 면적이 폴리티올 화합물의 총 피크 면적 100에 대하여 6 이하인, 4관능 폴리티올 조성물.
    [화학식 1]
    Figure PCTKR2017006861-appb-I000014
  2. 제1항에 있어서,
    상기 4관능 폴리티올이 하기 화학식 5 내지 7로 표시되는 화합물로부터 선택되는 1종 이상의 화합물인, 4관능 폴리티올 조성물.
    [화학식 5]
    Figure PCTKR2017006861-appb-I000015
    [화학식 6]
    Figure PCTKR2017006861-appb-I000016
    [화학식 7]
    Figure PCTKR2017006861-appb-I000017
  3. 제2항에 있어서,
    상기 화학식 5 내지 7로 표시되는 화합물이 하기 화학식 4의 화합물을 티오우레아와 반응시킨 후 가수분해시켜 얻어진 것인, 4관능 폴리티올 조성물.
    [화학식 4]
    Figure PCTKR2017006861-appb-I000018
  4. (1) 3차 아민, 4차 암모늄염, 트리페닐포스핀 및 3가 크롬계 화합물로 이루어진 군에서 1종 이상 선택되는 촉매 존재 하에 -5 내지 15℃의 온도에서, 하기 화학식 2의 화합물을 2-메르캅토에탄올과 반응시켜 하기 화학식 3의 화합물을 제조하는 단계;
    (2) 화학식 3의 화합물을 금속황화물과 반응시켜 하기 화학식 4의 화합물을 제조하는 단계; 및
    (3) 화학식 4의 화합물을 티오우레아와 반응 및 가수분해시키는 단계를 포함하는, 폴리티올 조성물의 제조방법:
    [화학식 2]
    Figure PCTKR2017006861-appb-I000019
    [화학식 3]
    Figure PCTKR2017006861-appb-I000020
    [화학식 4]
    Figure PCTKR2017006861-appb-I000021
    상기 식에서,
    X는 할로겐 원자이다.
  5. 제4항에 있어서,
    상기 단계 (3)에서, 하기 화학식 5 내지 7로 표시되는 화합물이 제조되는, 폴리티올 조성물의 제조방법.
    [화학식 5]
    Figure PCTKR2017006861-appb-I000022
    [화학식 6]
    Figure PCTKR2017006861-appb-I000023
    [화학식 7]
    Figure PCTKR2017006861-appb-I000024
  6. 제4항에 있어서,
    물을 사용하지 않는, 폴리티올 조성물의 제조방법.
  7. 제1항 내지 제3항 중 어느 한 항의 4관능 폴리티올 조성물 및 이소시아네이트계 화합물을 포함하는, 중합성 조성물.
  8. 제7항의 중합성 조성물을 중합 및 성형하여 광학 재료를 제조하는 방법.
  9. 제8항의 제조방법에 의해 얻어진 광학 재료.
  10. 제9항에 있어서,
    상기 광학 재료가 1.65 내지 1.75의 굴절률을 갖는, 광학 재료.
  11. 제9항에 있어서,
    상기 광학 재료가 100 내지 110℃의 열변형온도(Tg)를 갖는, 광학 재료.
PCT/KR2017/006861 2016-08-30 2017-06-29 광학 재료용 폴리티올 조성물 및 이의 제조방법 WO2018043896A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0110987 2016-08-30
KR1020160110987A KR101885879B1 (ko) 2016-08-30 2016-08-30 광학 재료용 폴리티올 조성물 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2018043896A1 true WO2018043896A1 (ko) 2018-03-08

Family

ID=61301375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006861 WO2018043896A1 (ko) 2016-08-30 2017-06-29 광학 재료용 폴리티올 조성물 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR101885879B1 (ko)
TW (1) TWI646073B (ko)
WO (1) WO2018043896A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628031A (zh) * 2019-10-04 2019-12-31 汤杰 一种双交联聚硫氨酯及其作为水凝胶敷料的应用
CN116075541A (zh) * 2020-09-10 2023-05-05 Skc株式会社 多硫醇组合物和包括其的光学组合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075644A (ko) * 2019-12-13 2021-06-23 에스케이씨 주식회사 폴리티올 조성물의 제조 방법
JP7059343B2 (ja) * 2019-12-13 2022-04-25 エスケイシー・カンパニー・リミテッド ポリチオール組成物の調製方法
WO2022050662A1 (ko) * 2020-09-01 2022-03-10 에스케이씨 주식회사 폴리티올 조성물, 광학 조성물 및 광학 제품
KR102661152B1 (ko) * 2020-11-24 2024-04-26 주식회사 신아티앤씨 나노 반도체 입자 리간드용 화합물, 이의 제조방법, 상기 화합물로 형성된 리간드를 포함하는 나노 반도체 입자, 상기 나노 반도체 입자를 포함하는 자발광 감광성 수지 조성물, 컬러필터, 화상표시장치 및 상기 화합물의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005917B1 (ko) * 1988-12-22 1992-07-24 미쯔이도오아쯔가가꾸 가부시기가이샤 메르캅토화합물 및 그 제조방법
KR0180926B1 (ko) * 1994-01-26 1999-05-15 사토 아키오 폴리티올 그 제조방법 이것을 사용한 황함유우레탄계수지 그 수지의 제조방법 및 렌즈
KR20110033960A (ko) * 2006-04-20 2011-04-01 미쓰이 가가쿠 가부시키가이샤 광학재료용 폴리티올 화합물의 제조방법 및 그것을 포함하는 중합성 조성물
KR20120058635A (ko) * 2010-08-13 2012-06-08 주식회사 케이오씨솔루션 광학렌즈용 폴리티올 화합물의 제조법 및 이를 포함하는 수지 조성물
KR20140141723A (ko) * 2012-08-14 2014-12-10 미쓰이 가가쿠 가부시키가이샤 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005917B1 (ko) * 1988-12-22 1992-07-24 미쯔이도오아쯔가가꾸 가부시기가이샤 메르캅토화합물 및 그 제조방법
KR0180926B1 (ko) * 1994-01-26 1999-05-15 사토 아키오 폴리티올 그 제조방법 이것을 사용한 황함유우레탄계수지 그 수지의 제조방법 및 렌즈
KR20110033960A (ko) * 2006-04-20 2011-04-01 미쓰이 가가쿠 가부시키가이샤 광학재료용 폴리티올 화합물의 제조방법 및 그것을 포함하는 중합성 조성물
KR20120058635A (ko) * 2010-08-13 2012-06-08 주식회사 케이오씨솔루션 광학렌즈용 폴리티올 화합물의 제조법 및 이를 포함하는 수지 조성물
KR20140141723A (ko) * 2012-08-14 2014-12-10 미쓰이 가가쿠 가부시키가이샤 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628031A (zh) * 2019-10-04 2019-12-31 汤杰 一种双交联聚硫氨酯及其作为水凝胶敷料的应用
CN116075541A (zh) * 2020-09-10 2023-05-05 Skc株式会社 多硫醇组合物和包括其的光学组合物

Also Published As

Publication number Publication date
KR20180024561A (ko) 2018-03-08
TWI646073B (zh) 2019-01-01
TW201811741A (zh) 2018-04-01
KR101885879B1 (ko) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2018043896A1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
WO2019132491A1 (ko) 안정성 및 반응성이 개선된 이소시아네이트 조성물, 및 이를 이용한 광학 렌즈
KR101945883B1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
WO2018043901A1 (ko) 광학 재료용 폴리티올 화합물의 제조방법
WO2013176506A1 (ko) 신규한 폴리티올 화합물의 제조방법 및 이를 포함하는 광학재료용 중합성 조성물
KR20140142375A (ko) 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
KR20120058635A (ko) 광학렌즈용 폴리티올 화합물의 제조법 및 이를 포함하는 수지 조성물
WO2012112014A2 (ko) 신규 폴리티올화합물과 그 제조방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
WO2014035166A1 (ko) 티오우레탄계 광학재료의 제조방법
WO2013111999A1 (ko) 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 광학재료용 조성물
WO2010076942A1 (ko) 신규 티올 화합물을 이용한 광학렌즈용 경량성 고굴절 수지 조성물 및 이를 이용한 광학렌즈
WO2013069965A1 (ko) 폴리티올 화합물의 제조 방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2016204547A2 (ko) 3-메르캅토프로피온산의 제조방법과 이를 이용한 메르캅토기를 갖는 카르본산에스테르화합물 및 티오우레탄계 광학재료의 제조방법
WO2013112028A1 (ko) 3-메르캅토프로피온산의 제조방법과 이를 이용한 메르캅토기를 갖는 카르본산에스테르화합물 및 티오우레탄계 광학재료의 제조방법
WO2012112015A2 (ko) 고리개환을 통해 사슬연장된 폴리티올화합물과 그 제조 방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
WO2010128770A2 (ko) 내열성 및 반응성이 우수한 우레탄계 광학 렌즈용 수지조성물
KR101993972B1 (ko) 티오우레탄계 광분산용 플라스틱 렌즈 및 그 제조방법
US10669367B2 (en) Polythiol composition for plastic lens
WO2020197156A1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
WO2016190599A1 (ko) 티오에폭시계 초고굴절 광학수지 조성물과 티오에폭시계 광학재료의 제조방법
WO2021201459A1 (ko) 티오우레탄계 광학재료용 수지 조성물과 티오우레탄계 광학재료용 수지의 제조방법
WO2013112001A1 (ko) 티오에폭시계 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 티오에폭시계 광학재료용 공중합체 조성물
WO2016178522A2 (ko) 티오에폭시계 광학재료의 제조방법과 티오에폭시계 광학재료용 중합성 조성물
KR20200026853A (ko) 폴리티올 조성물 및 이의 제조방법
KR101813258B1 (ko) 광학 재료용 실록산 티올 올리고머

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846821

Country of ref document: EP

Kind code of ref document: A1