WO2018150951A1 - 光学材料用組成物 - Google Patents

光学材料用組成物 Download PDF

Info

Publication number
WO2018150951A1
WO2018150951A1 PCT/JP2018/004015 JP2018004015W WO2018150951A1 WO 2018150951 A1 WO2018150951 A1 WO 2018150951A1 JP 2018004015 W JP2018004015 W JP 2018004015W WO 2018150951 A1 WO2018150951 A1 WO 2018150951A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
compound
mass
optical
optical material
Prior art date
Application number
PCT/JP2018/004015
Other languages
English (en)
French (fr)
Inventor
慶彦 西森
陽介 今川
紘平 竹村
堀越 裕
山本 良亮
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020197023295A priority Critical patent/KR102470216B1/ko
Priority to EP18754377.2A priority patent/EP3584270B1/en
Priority to CN201880007589.4A priority patent/CN110214157B/zh
Priority to JP2018568128A priority patent/JP7077965B2/ja
Priority to US16/483,219 priority patent/US11078363B2/en
Publication of WO2018150951A1 publication Critical patent/WO2018150951A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D331/00Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
    • C07D331/02Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a composition for optical materials used for optical components such as plastic lenses, prisms, optical fibers, information recording boards, filters, and adhesives, especially optical lenses such as eyeglass plastic lenses.
  • optical materials especially plastic materials required for spectacle lenses
  • optical performance are optical performance such as heat resistance, low specific gravity, high transparency and low yellowness, and high refractive index and high Abbe number.
  • a polymerizable composition for an optical material containing a polyepisulfide compound has been proposed (Patent Documents 1 to 3).
  • an optical lens such as a spectacle lens is subjected to dyeing, hard coating, and antireflection coating for the purpose of improving design properties, durability, and optical characteristics. In the process of applying them, optical materials are exposed to high temperatures and problems due to thermal deformation can occur. Therefore, improvement of the heat resistance of the optical material is desired.
  • composition for optical materials that can design optical materials having a wide range of physical properties with improved heat resistance.
  • the present inventors have found that an optical material having a wide range of physical properties can be designed with a specific composition containing a compound represented by the following formula (1) and polythiol (a). That is, the present invention is as follows.
  • a composition for optical materials which contains the compound (A) represented by the following formula (1) and the polythiol (a) and does not contain 1,2,3,5,6-pentathiepan (b).
  • the compound according to [1] wherein the content of the compound (A) is 20 to 80% by mass based on the total amount of the composition.
  • Polythiol (a) is 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldisulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5 -Bis (mercaptomethyl) -1,4-dithiane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9 -Trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-tri Thiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,
  • the composition for optical materials of the present invention has one or more of the following effects. (1) By using the composition for optical materials of the present invention, the heat resistance is improved, the allowable addition amount of comonomer is increased, and an optical material having a wide range of physical properties can be designed. (2) An optical material having both excellent heat resistance and high refractive index can be obtained.
  • One aspect of the present invention is for an optical material containing the compound (A) represented by the following formula (1) and the polythiol (a) and not containing 1,2,3,5,6-pentathiepan (b). Relates to the composition.
  • the composition for optical materials of this form contains other components, such as a compound (B), sulfur, and a polymerization catalyst, as needed.
  • a compound (B) such as sulfur, and a polymerization catalyst
  • the compound (A) is a thioether compound having four thioepoxy groups represented by the following formula (1), and has an effect of increasing the refractive index and heat resistance of the optical material.
  • the method for obtaining this compound is not particularly limited.
  • tetramercaptopentaerythritol can be used as a raw material and can be synthesized by the method described in JP-A 09-110979 and can be suitably used.
  • the ratio of the compound (A) in the composition for optical materials is 0.1 to 99.5% by mass, preferably 3 to 90% by mass, more preferably 5 to 90% by mass, based on the total amount of the composition. More preferably, it is 10 to 90% by mass, more preferably 20 to 90% by mass, particularly preferably 20 to 80% by mass, and most preferably 30 to 80% by mass. By being in this range, a sufficient heat resistance improvement effect can be obtained.
  • the polythiol (a) is a thiol compound having two or more mercapto groups per molecule.
  • Polythiol (a) has the effect of improving the color tone of the resin obtained from the composition for optical materials of the present invention during heating.
  • the polythiol used in the present invention is not particularly limited. However, since the effect of improving color tone is high, preferred specific examples include 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldithiol).
  • Sulfanyl) methanethiol bis (2-mercaptoethyl) sulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4, 8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis Mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, and thiirane methanethiol, particularly bis (2-mercaptoethy
  • the proportion of polythiol (a) is preferably 0.1 to 25% by mass, more preferably 0.1 to 20% by mass, and still more preferably 0.5%, based on the total amount of the composition. -20% by mass, particularly preferably 0.5-15% by mass, and most preferably 0.5-10% by mass. By being in this range, the balance between the color tone stabilizing effect and the heat resistance is improved.
  • 1,2,3,5,6-pentathiepan (b) The composition for optical materials of the present invention does not contain 1,2,3,5,6-pentathiepan (b).
  • 1,2,3,5,6-pentathiepan (b) is a compound represented by the following formula (b).
  • the phrase “does not contain 1,2,3,5,6-pentathiepan (b)” does not intentionally add 1,2,3,5,6-pentathiepan (b) to the optical material composition.
  • “Substantially free of 1,2,3,5,6-pentathiepan (b)” typically means 1,2,3,5,6 in analysis by high performance liquid chromatography (HPLC). -The content of pentathiepan (b) is less than 1 ppm relative to the total amount of the composition, preferably the presence of 1,2,3,5,6-pentathiepan (b) is not detected (below the detection limit) That is). Analysis by HPLC can be performed, for example, by the following method.
  • a cured product with improved heat resistance can be obtained by containing the compound (A) and the polythiol (a) without containing 1,2,3,5,6-pentathiepan (b).
  • the composition for optical materials may contain a compound (B) as needed.
  • the compound (B) is an episulfide compound having two episulfide groups represented by the following formula (2).
  • the compound (B) can be copolymerized with the compound (A) and has an effect of increasing the curing reactivity when used together with the compound (A).
  • m represents an integer of 0 to 4
  • n represents an integer of 0 to 2.
  • bis ( ⁇ -epithiopropyl) sulfide and bis ( ⁇ -epithiopropyl) disulfide are preferable, and bis ( ⁇ -epithiopropyl) sulfide is particularly preferable.
  • the content of the compound (B) in the composition for optical materials is 0 to 70% by mass, preferably 0 to 60% by mass, and more preferably 0 to 50% by mass with respect to the total amount of the composition. By being in this range, the curing reactivity can be improved while ensuring the heat resistance.
  • the mass ratio of the compound (A) to the compound (B) is preferably 20:80 to 100: 0, and preferably 30:70 to 100: 0. More preferably, it is more preferably 40:60 to 100: 0. By being in this range, heat resistance can be improved while maintaining a high refractive index.
  • the composition for optical materials may contain sulfur as necessary.
  • Sulfur has an effect of improving the refractive index of the optical material (resin) obtained from the composition for optical materials of the present invention.
  • the shape of sulfur used in the present invention may be any shape. Specific examples of sulfur include finely divided sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimated sulfur and the like, and finely divided finely divided sulfur is preferable from the viewpoint of dissolution rate.
  • the particle size (diameter) of sulfur used in the present invention is preferably smaller than 10 mesh. When the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve sulfur.
  • the particle size of sulfur is more preferably smaller than 30 mesh, and most preferably smaller than 60 mesh.
  • the purity of sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, still more preferably 99.5% or more, and most preferably 99.9% or more.
  • the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity is less than 98%.
  • Sulfur satisfying the above conditions is easily available as a commercially available product and can be suitably used.
  • the ratio of sulfur is 0 to 40% by mass (eg 1 to 40% by mass), preferably 0 to 30% by mass (eg 5 to 30% by mass, 10% by mass) with respect to the total amount of the composition.
  • 30% by mass more preferably 0 to 25% by mass (for example, 5 to 25% by mass), and particularly preferably 0 to 20% by mass (for example, 5 to 20% by mass). It is because it is excellent in the balance of a refractive index improvement effect and solubility by being in this range.
  • composition of a preferable composition for optical materials is as follows.
  • Composition for optical material is as follows.
  • Compound (A) 20 to 80% by mass (more preferably 30 to 80% by mass); Compound (B) 0 to 70% by mass (more preferably 0 to 60% by mass); Polythiol (a) 0.1 to 20% by mass (more preferably 0.5 to 10% by mass); Sulfur 0-25% by mass (more preferably 0-20% by mass); Polymerization catalyst 0 to 10% by mass (more preferably 0 to 5% by mass); and polymerization regulator 0 to 5% by mass (more preferably 0.0001 to 5.0% by mass) Containing Does not contain 1,2,3,5,6-pentathiepan (b) (for example, less than 1 ppm in the analysis by HPLC), Composition for optical material.
  • the composition for optical materials of this invention may contain the other polymerizable compound copolymerizable with a compound (A).
  • examples of other polymerizable compounds include episulfide compounds other than the compound (A) and the compound (B), vinyl compounds, methacrylic compounds, acrylic compounds, and allyl compounds.
  • the amount of other polymerizable compound added is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, 0 to 30% by mass relative to the total amount of the composition.
  • the composition components of the present invention are used as various performance improvers. It is also possible to polymerize and cure by adding a compound capable of reacting with part or all of (including). Specific examples of such compounds that can react with some or all of the components include epoxy compounds, iso (thio) cyanates, carboxylic acids, carboxylic anhydrides, phenols, amines, vinyl compounds. , Allyl compounds, acrylic compounds, and methacrylic compounds. The amount of these compounds added is not particularly limited as long as it does not impair the effects of the present invention, and is, for example, 0 to 10% by mass relative to the total amount of the composition.
  • the composition for optical materials may contain a well-known polymerization catalyst and / or a polymerization regulator for polymerization hardening.
  • One form of the composition for optical materials further comprises a polymerization catalyst.
  • One form of the composition for optical materials further comprises a polymerization catalyst.
  • polymerization catalyst examples include amines, phosphines, quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, silicic acids, four Fluoroborates, peroxides, azo compounds, aldehyde and ammonia compounds condensates, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates, Examples thereof include acidic phosphate esters.
  • the polymerization catalyst may be used alone or in combination of two or more.
  • the addition amount of the polymerization catalyst is not particularly limited, and is, for example, 0.0001 to 10% by mass with respect to the total amount of the composition.
  • One form of the composition for optical materials further contains a polymerization regulator.
  • the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Among these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group.
  • the polymerization regulator may be used alone or in combination of two or more.
  • the addition amount of the polymerization regulator is not particularly limited, and is, for example, 0.0001 to 5.0% by mass with respect to the total amount of the composition.
  • additives such as known antioxidants, bluing agents, ultraviolet absorbers, deodorants, adhesion improvers and mold release improvers can also be added.
  • the amount of these additives is not particularly limited as long as the effect of the present invention is not impaired, and is, for example, 0 to 10% by mass with respect to the total amount of the composition.
  • composition for optical materials of the present invention is prepared by mixing compound (A), polythiol (a), and, if necessary, compound (B), sulfur, and other components in a uniform state. .
  • composition for optical materials can be cast into a mold such as a mold and polymerized to obtain an optical material. It is preferable to perform a deaeration treatment before injecting the polymerizable composition for an optical material into a mold from the viewpoint of achieving high transparency of the optical material. In casting the composition for optical materials of the present invention, it is preferable to remove impurities by filtering with a filter having a pore diameter of about 0.1 to 5 ⁇ m from the viewpoint of improving the quality of the optical material of the present invention.
  • Polymerization (curing) of the composition for optical materials of the present invention is usually performed under the following conditions.
  • the curing time is usually 1 to 100 hours, and the curing temperature is usually ⁇ 10 ° C. to 140 ° C.
  • Polymerization (curing) is performed by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising a temperature of 0.1 ° C. to 100 ° C./h, a step of lowering a temperature of 0.1 ° C. to 100 ° C./h, or these A combination of these steps is performed.
  • the curing time refers to the polymerization curing time including the temperature rising / falling temperature process, etc.
  • the temperature is raised and cooled to the predetermined polymerization (curing) temperature.
  • the process of carrying out is included. Further, after the curing is completed, it is preferable to anneal the obtained optical material at a temperature of 50 to 150 ° C. for about 10 minutes to 5 hours in order to remove distortion of the optical material of the present invention. Further, the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistant coating, antireflection or imparting antifogging properties as necessary.
  • an optical material can be produced by polymerizing and curing the composition for optical material.
  • the present invention also includes a method for producing an optical material comprising polymerizing and curing the above composition for optical material.
  • an optical material molded body; cured product; cured resin obtained by curing the composition for optical materials is also included in the present invention.
  • the composition for an optical material of the present invention contains the compound (A) and the polythiol (a) and does not contain 1,2,3,5,6-pentathiepan (b). It can be achieved, and the influence of a decrease in heat resistance due to the addition of other comonomer can be reduced. Therefore, various comonomers can be blended in the composition for optical materials and the blending amount thereof can be increased, thereby enabling the design of optical materials having a wide range of physical properties.
  • the composition for an optical material according to an embodiment of the present invention can provide an optical material particularly excellent in heat resistance while maintaining a high refractive index.
  • the refractive index of the optical material when the optical material composition is cured is preferably 1.70 or more, more preferably 1.72 or more, and particularly preferably 1.73 or more.
  • the refractive index can be measured by a refractometer, and is a value measured at 25 ° C. and e-line (wavelength 546.1 nm).
  • As the heat resistance of the optical material there is no softening point when the optical material is heated, or the softening point is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and particularly preferably 65 ° C. or higher.
  • the softening point can be measured by TMA (thermomechanical analysis).
  • the peak value of DTMA which is the temperature differential curve of the TMA curve, is because softening is less likely to occur due to heat
  • the peak value of DTMA is preferably 1.5 ⁇ m / ° C. or less, and preferably 1 ⁇ m / ° C. or less. More preferred.
  • optical material of the present invention is useful for various applications such as optical materials, mechanical component materials, electrical / electronic component materials, automotive component materials, civil engineering and building materials, molding materials, paint materials, adhesive materials, and the like.
  • optical materials such as eyeglass lenses, (digital) camera imaging lenses, light beam condensing lenses, light diffusion lenses, LED sealing materials, optical adhesives, optical transmission bonding materials, optical fibers , Prisms, filters, diffraction gratings, watch glasses, optical glass such as cover glass for display devices, cover glass, etc .; LCD, organic EL, PDP display element substrates, color filter substrates, touch panel substrates
  • display device applications such as information recording substrates, display backlights, light guide plates, display protective films, antireflection films, antifogging films and other coating agents (coating films) are suitable.
  • an optical material such as an optical lens, a prism, an optical fiber, an information recording substrate, and a filter, particularly an optical lens is preferable.
  • Optical lenses manufactured using the composition for optical materials of the present invention are excellent in stability, hue, transparency, etc., and conventionally, expensive, high-refractive index glass lenses such as telescopes, binoculars, and television projectors are used. It can be used in the fields that have been used and is extremely useful. If necessary, it is preferably used in the form of an aspheric lens.
  • the optical material was analyzed and evaluated by the following method.
  • the refractive index of optical material was measured using a digital precision refractometer (manufactured by Shimadzu Corporation, KPR-2000) and the refractive index of e-line at 25 ° C.
  • Tetrakis ( ⁇ -epoxypropylthiomethyl) methane (20.1 g, 0.047 mol) was added with toluene (100 mL), methanol (100 mL), acetic anhydride (1.24 g, 0.012 mol), and thiourea (30.5 g, 0.40 mol). And stirred at 20 ° C. for 24 hours. Thereafter, 400 mL of toluene and 400 mL of 5% sulfuric acid were added, the toluene layer was washed with water three times, and the solvent was distilled off to obtain 16.8 g of a tetrakis ( ⁇ -epithiopropylthiomethyl) methane crude product.
  • Compound A1 used in the following experiments was synthesized by this method.
  • Example 1 80 parts by mass of tetrakis ( ⁇ -epithiopropylthiomethyl) methane (compound A1) as the compound (A), 20 parts by mass of bis (2-mercaptoethyl) sulfide (compound a1) as the compound (a) and tetra as the polymerization catalyst Vacuum deaeration was performed while mixing 0.02 parts by mass of n-butylphosphonium bromide and 0.05 parts by mass of di-n-butyltin dichloride as a polymerization regulator to obtain a composition for optical materials. The obtained composition for an optical material was heated at 30 ° C. for 10 hours, heated to 100 ° C. over 10 hours, and finally heated at 100 ° C. for 5 hours to be polymerized and cured. After standing to cool, an annealing treatment was performed at 120 ° C. for 30 minutes. The evaluation of the obtained optical material is summarized in Table 1.
  • A1 Tetrakis ( ⁇ -epithiopropylthiomethyl) methane a1: Bis (2-mercaptoethyl) sulfide a2: 1,3-bis (mercaptomethyl) benzene a3: 1,2,6,7-tetramercapto-4- Thiaheptane B1: Bis ( ⁇ -epithiopropyl) sulfide B2: Bis ( ⁇ -epithiopropyl) disulfide Compound a3 can be synthesized, for example, by the method described in JP-A-2005-267991.
  • the compound (A) represented by the formula (1) and the polythiol (a), and optionally containing the compound (B) and / or sulfur, 1,2,3,5,6-pentathiepan When the composition for optical materials not containing (b) is used (Examples 1 to 11), it is confirmed that an optical material having excellent heat resistance can be obtained while maintaining a high refractive index. On the other hand, it is confirmed that Comparative Examples 1, 3, 4 and 1, 2, 3, 5, 6-pentathiepan (b) containing no compound (A) are inferior in heat resistance.
  • the cured product obtained by polymerizing and curing the composition for optical materials of the present invention can be suitably used as optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, filters, and adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Eyeglasses (AREA)
  • Epoxy Resins (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

広範な物性を持つ光学材料を設計可能となる光学材料用組成物を提供する。本発明の光学材料用組成物は、下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物。

Description

光学材料用組成物
 本発明は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、及び、接着剤等の光学部品、中でも眼鏡用プラスチックレンズ等の光学レンズに用いられる光学材料用組成物に関するものである。
 光学材料、中でも眼鏡レンズに要求されるプラスチック材料の主な性能は、耐熱性、低比重、高透明性および低黄色度、ならびに高屈折率および高アッベ数などの光学性能であり、近年、高屈折率と高アッベ数を達成する為にポリエピスルフィド化合物を含有する光学材料用重合性組成物が提案されている(特許文献1~3)。
 また、眼鏡レンズ等の光学レンズには意匠性、耐久性、及び光学特性の向上を目的として、染色、ハードコート、及び、反射防止コートが施される。それらを施す工程において光学材料は高温にさらされ、熱変形に起因する問題が起こることがある。そのため光学材料の耐熱性の向上が望まれている。光学材料の高屈折率化や色調安定性を向上する目的で光学材料用組成物に種々のコモノマーの添加が行われている。
 しかしながら、コモノマーの添加によって重合後に得られる光学材料の架橋密度が低下して耐熱性が悪化する傾向があり、耐熱性の面からコモノマーの添加量が限られ、光学材料の特性の向上可能な範囲が限定されてしまう課題がある。基準となる耐熱性を向上することでコモノマーの添加許容量を増加させ、広範な物性を持つ光学材料を設計可能となる光学材料用組成物が望まれる。
特開平10-298287号公報 特開2001-002933号公報 特開2010-242093号公報
 耐熱性が向上した、広範な物性を持つ光学材料を設計可能となる光学材料用組成物を提供することが望まれている。
 本発明者らは、下記式(1)で表される化合物及びポリチオール(a)を含有する特定の組成物により広範な物性を持つ光学材料を設計可能であることを見出した。すなわち、本発明は以下の通りである。
[1] 下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物。
Figure JPOXMLDOC01-appb-C000003
[2] 化合物(A)の含有量が、組成物総量に対して、20~80質量%である、[1]に記載の化合物。
[3] さらに硫黄を含有する、[1]または[2]に記載の組成物。
[4] さらに下記式(2)で表される化合物(B)を含有する、[1]~[3]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000004
 
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)
[5] 化合物(B)の含有量が、組成物総量に対して、0~70質量%である、[4]に記載の化合物。
[6] ポリチオール(a)は、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールから選択される少なくとも1種である、[1]~[5]のいずれかに記載の組成物。
[7] 組成物総量に対して、
 化合物(A)                20~80質量%;
 化合物(B)                 0~70質量%;
 ポリチオール(a)            0.1~20質量%;及び
 硫黄                     0~25質量%;
を含有する[1]~[6]のいずれかに記載の組成物。
[7a] 組成物総量に対して、
 化合物(A)                20~80質量%;
 化合物(B)                 0~70質量%;
 ポリチオール(a)            0.1~20質量%;
 硫黄                     0~25質量%;
 重合触媒                   0~10質量%;及び
 重合調整剤                  0~5質量%
を含有する[1]~[7]のいずれかに記載の組成物。
[8] [1]~[7]、[7a]のいずれかに記載の組成物を硬化した光学材料。
[9] [8]に記載の光学材料を含む光学レンズ。
 本発明の光学材料用組成物は以下の一以上の効果を有する。
 (1)本発明の光学材料用組成物を用いることで耐熱性が向上し、コモノマーの添加許容量を増加させ、広範な物性を持つ光学材料を設計可能となる。
 (2)優れた耐熱性および高屈折率を両立する光学材料が得られ得る。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 本発明の一形態は、下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物に関する。
Figure JPOXMLDOC01-appb-C000005
 本形態の光学材料用組成物は、必要に応じて、化合物(B)、硫黄、および重合触媒などの他の成分を含有する。
 以下、各構成要素について詳細に説明する。
[化合物(A)]
 化合物(A)は、下記式(1)で表される4つのチオエポキシ基を有するチオエーテル化合物であり、光学材料の屈折率と耐熱性を高める効果がある。
Figure JPOXMLDOC01-appb-C000006
 この化合物の入手方法は特に限定されないが、例えば、テトラメルカプトペンタエリスリトールを原料として特開平09-110979記載の方法にて合成可能であり好適に用いることができる。
 光学材料用組成物中の化合物(A)の割合は、組成物総量に対して、0.1~99.5質量%であり、好ましくは3~90質量%、より好ましくは5~90質量%、さらに好ましくは10~90質量%、一層好ましくは20~90質量%であり、特に好ましくは20~80質量%であり、最も好ましくは30~80質量%である。この範囲にあることで、十分な耐熱性向上効果を得ることができる。
[ポリチオール(a)]
 ポリチオール(a)は、1分子あたりメルカプト基を2つ以上有するチオール化合物である。ポリチオール(a)は本発明の光学材料用組成物から得られる樹脂の加熱時の色調を改善させる効果がある。
 本発明において使用されるポリチオールは特に限定されないが、色調改善効果が高いことから、好ましい具体例として、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールが挙げられ、特にビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタンが好ましい。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。
 光学材料用組成物においてポリチオール(a)の割合は、組成物総量に対して、好ましくは0.1~25質量%、より好ましくは0.1~20質量%であり、さらに好ましくは0.5~20質量%であり、特に好ましくは0.5~15質量%であり、最も好ましくは0.5~10質量%である。この範囲にあることで、色調安定効果と耐熱性とのバランスがよくなる。
[1,2,3,5,6-ペンタチエパン(b)]
 本発明の光学材料用組成物は1,2,3,5,6-ペンタチエパン(b)を含有しない。1,2,3,5,6-ペンタチエパン(b)は、下記式(b)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
なお、「1,2,3,5,6-ペンタチエパン(b)を含有しない」とは、1,2,3,5,6-ペンタチエパン(b)を光学材料用組成物に意図的に添加しないことを意味し、以下の態様を含む:
1)本発明の光学材料用組成物中に1,2,3,5,6-ペンタチエパン(b)が全く存在しない;及び
2)本発明の光学材料用組成物中に1,2,3,5,6-ペンタチエパン(b)が実質的に存在しない。
「1,2,3,5,6-ペンタチエパン(b)が実質的に存在しない」とは、典型的には、高速液体クロマトグラフィー(HPLC)による分析において、1,2,3,5,6-ペンタチエパン(b)の含有量が、組成物総量に対して1ppm未満であることをいい、好ましくは、1,2,3,5,6-ペンタチエパン(b)の存在が検出されない(検出限界以下である)ことをいう。HPLCによる分析は、例えば下記方法により行うことができる。
 [HPLC分析方法]
カラムオーブン温度:40℃
カラム:一般財団法人化学物質評価研究機構製 VP-ODS、カラムサイズ4.6φ×150mm)
溶離液:アセトニトリル/蒸留水(容積比)=50/50
溶液調製:サンプル5mgを0.1%ギ酸溶液(アセトニトリル溶媒)10mlで希釈し分析試料とする。
 1,2,3,5,6-ペンタチエパン(b)を含有せず、化合物(A)とポリチオール(a)とを含有する構成とすることにより、耐熱性が向上した硬化物が得られる。
[化合物(B)]
 光学材料用組成物は必要に応じて化合物(B)を含んでもよい。化合物(B)は、下記式(2)で表される、2つのエピスルフィド基を有するエピスルフィド化合物である。化合物(B)は化合物(A)と共重合可能であり、化合物(A)とともに用いることで硬化反応性を高める効果がある。
Figure JPOXMLDOC01-appb-C000008
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)
 中でもビス(β-エピチオプロピル)スルフィドおよびビス(β-エピチオプロピル)ジスルフィドが好ましく、ビス(β-エピチオプロピル)スルフィドが特に好ましい。ビス(β-エピチオプロピル)スルフィドは上記式(2)においてm=n=0の化合物に相当し、ビス(β-エピチオプロピル)ジスルフィドは上記式(2)においてm=0かつn=1である化合物に相当する。
 光学材料用組成物中の化合物(B)の含有量は、組成物総量に対して、0~70質量%であり、好ましくは0~60質量%、より好ましくは0~50質量%である。この範囲にあることで、耐熱性を確保しつつ、硬化反応性を向上し得る。
 化合物(A)と化合物(B)のと質量比(化合物(A):化合物(B))は、20:80~100:0であることが好ましく、30:70~100:0であることがより好ましく、40:60~100:0であることがさらに好ましい。この範囲にあることで、高い屈折率を維持しつつ耐熱性を向上し得る。
[硫黄]
 光学材料用組成物は必要に応じて硫黄を含んでもよい。硫黄は本発明の光学材料用組成物から得られる光学材料(樹脂)の屈折率を向上させる効果がある。
 本発明で用いる硫黄の形状はいかなる形状でもかまわない。具体的には、硫黄としては、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等が挙げられ、溶解速度の観点から好ましくは、粒子の細かい微粉硫黄である。
 本発明に用いる硫黄の粒径(直径)は10メッシュより小さいことが好ましい。硫黄の粒径が10メッシュより大きい場合、硫黄が完全に溶解しにくい。硫黄の粒径は、30メッシュより小さいことがより好ましく、60メッシュより小さいことが最も好ましい。
 本発明に用いる硫黄の純度は、好ましくは98%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上であり、最も好ましくは99.9%以上である。硫黄の純度が98%以上であると、98%未満である場合に比べて、得られる光学材料の色調がより改善する。
 上記条件を満たす硫黄は、市販品を容易に入手可能であり、好適に用いることができる。
 光学材料用組成物において硫黄の割合は、組成物総量に対して、0~40質量%(例えば1~40質量%)であり、好ましくは0~30質量%(例えば5~30質量%、10~30質量%)、より好ましくは0~25質量%(例えば5~25質量%)であり、特に好ましくは0~20質量%(例えば5~20質量%)である。この範囲にあることで、屈折率向上効果と溶解性のバランスに優れるためである。
 好ましい光学材料用組成物の組成の一例は、以下の通りである。
 組成物総量に対して、
 化合物(A)                20~80質量%(より好ましくは30~80質量%);
 化合物(B)                 0~70質量%(より好ましくは0~60質量%);
 ポリチオール(a)              0.1~20質量%(より好ましくは0.5~10質量%);及び
 硫黄                     0~25質量%(より好ましくは0~20質量%);
を含有し、
 1,2,3,5,6-ペンタチエパン(b)を含有しない(例えば、HPLCによる分析において1ppm未満)、
光学材料用組成物。
 好ましい光学材料用組成物の組成の他の一例は、以下の通りである。
 組成物総量に対して、
 化合物(A)                20~80質量%(より好ましくは30~80質量%);
 化合物(B)                 0~70質量%(より好ましくは0~60質量%);
 ポリチオール(a)              0.1~20質量%(より好ましくは0.5~10質量%); 
 硫黄                     0~25質量%(より好ましくは0~20質量%); 
 重合触媒                   0~10質量%(より好ましくは0~5質量%);及び
 重合調整剤                  0~5質量%(より好ましくは0.0001~5.0質量%)
を含有し、
 1,2,3,5,6-ペンタチエパン(b)を含有しない(例えば、HPLCによる分析において1ppm未満)、
光学材料用組成物。
 [その他の成分]
 また、本発明の光学材料用組成物は、化合物(A)と共重合可能な他の重合性化合物を含んでも良い。
 他の重合性化合物としては、化合物(A)および化合物(B)以外のエピスルフィド化合物、ビニル化合物、メタクリル化合物、アクリル化合物、及びアリル化合物が挙げられる。
 他の重合性化合物の添加量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~30質量%である。
 また、耐酸化性、耐候性、染色性、強度及び屈折率等の各種性能改良を目的として、各種性能改良剤として、本発明の組成成分(組成成分を予備重合反応させて得られる重合物を含む)の一部もしくは全部と反応可能な化合物を添加して、重合硬化する事も可能である。
 このような組成成分の一部もしくは全部と反応可能な化合物の具体例としては、エポキシ化合物類、イソ(チオ)シアネート類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、及びメタクリル化合物類が挙げられる。これらの化合物の添加量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~10質量%である。
 また、重合硬化のために光学材料用組成物は公知の重合触媒および/または重合調節剤を含んでもよい。一形態の光学材料用組成物は重合触媒をさらに含む。
 一形態の光学材料用組成物は重合触媒をさらに含む。
 重合触媒としては、例えば、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ化系合物、アルデヒドとアンモニア系化合物の縮合物、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩類、酸性リン酸エステル類等を挙げることができる。好ましくは、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類である。重合触媒は単独でも2種類以上を混合して使用してもかまわない。
 重合触媒の添加量は、特に制限されず、例えば、組成物総量に対して、0.0001~10質量%である。
 一形態の光学材料用組成物は重合調整剤をさらに含む。
 重合調整剤は、長期周期律表における第13~16族のハロゲン化物を挙げることができる。これらのうち好ましいものは、ケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物であり、より好ましいものはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。重合調整剤は単独でも2種類以上を混合して使用してもかまわない。
 重合調整剤の添加量は、特に制限されず、例えば、組成物総量に対して、0.0001~5.0質量%である。
 また、公知の酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、密着性改善剤及び離型性改善剤等の添加剤を添加することもできる。これらの添加剤の量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総量に対して、0~10質量%である。
[光学材料用組成物]
 本発明の光学材料用組成物は、化合物(A)、ポリチオール(a)、及び、必要に応じて、化合物(B)、硫黄、及びその他の成分を均一な状態に混合することにより調製される。
[光学材料用組成物の硬化]
 光学材料用組成物はモールド等の型に注型し、重合させることで光学材料とすることができる。光学材料用重合性組成物をモールドに注入する前にあらかじめ脱気処理を行うことは、光学材料の高度な透明性を達成する面から好ましい。
 本発明の光学材料用組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める点から好ましい。
 本発明の光学材料用組成物の重合(硬化)は通常以下の条件で行われる。
 硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合(硬化)は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。なお、硬化時間とは昇温過程・降温過程等を含めた重合硬化時間をいい、所定の重合(硬化)温度で保持する工程に加えて、所定の重合(硬化)温度へと昇温・冷却する工程を含む。
 また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
 上記のとおり、上記光学材料用組成物を重合硬化することで光学材料を製造することができる。本発明は、上記光学材料用組成物を重合硬化することを含む光学材料の製造方法をも包含するものである。
 さらに、上記光学材料用組成物を硬化して得られる光学材料(成形体;硬化物;硬化樹脂)もまた、本発明に包含される。
 本発明の光学材料用組成物は、化合物(A)およびポリチオール(a)を含有し、かつ、1,2,3,5,6-ペンタチエパン(b)を含有しないことにより、優れた耐熱性を達成でき、その他のコモノマーの添加による耐熱性低下の影響を低減できる。したがって、光学材料用組成物に種々のコモノマーを配合し、かつ、その配合量を増加させることが可能であり、これにより広範な物性を持つ光学材料の設計が可能となる。
 特に、本発明の一実施形態の光学材料用組成物は、高い屈折率を維持しつつ、耐熱性に特に優れた光学材料を与えることができる。
 光学材料用組成物を硬化させた際の光学材料の屈折率は、1.70以上であることが好ましく、1.72以上であることがより好ましく、1.73以上であることが特に好ましい。屈折率は屈折率計により測定することができ、25℃、e線(波長546.1nm)で測定した値である。
 光学材料の耐熱性としては、光学材料を昇温した際に軟化点が存在しないか、あるいは軟化点が、50℃以上であることが好ましく、60℃以上がより好ましく、65℃以上が特に好ましい。軟化点はTMA(熱機械分析)により測定できる。TMA曲線の温度微分曲線であるDTMAのピーク値が小さいほど熱による軟化が起こりにくいため好ましく、DTMAのピーク値が、1.5μm/℃以下であることが好ましく、1μm/℃以下であることがより好ましい。
 本発明の光学材料は、例えば、光学部材、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料等の他、塗料や接着剤の材料等の各種用途に有用である。中でも、光学材料、例えば、眼鏡レンズ、(デジタル)カメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ、LED用封止材、光学用接着剤、光伝送用接合材料、光ファイバー、プリズム、フィルター、回折格子、ウォッチガラス、表示装置用のカバーガラス等の透明ガラスやカバーガラス等の光学用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、情報記録基板、ディスプレイバックライト、導光板、ディスプレイ保護膜、反射防止フィルム、防曇フィルム等のコーティング剤(コーティング膜)などの表示デバイス用途等が好適である。上記光学材料としては、特に、光学レンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でも光学レンズが好適である。
 本発明の光学材料用組成物を用いて製造される光学レンズは、安定性、色相、透明性などに優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明の効果を奏する限りにおいて適宜実施形態を変更することができる。
 光学材料の分析・評価は以下の方法で行った。
[光学材料の屈折率]
 光学材料の屈折率はデジタル精密屈折率計(株式会社島津製作所製、KPR-2000)を用い、25℃におけるe線の屈折率を測定した。
[光学材料の耐熱性評価]
 サンプルを厚さ3mmに切り出し、0.5mmφのピンに50gの荷重を与え、10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行って、得られたTMA曲線の温度微分曲線であるDTMAのピーク温度、及びDTMAピーク値により評価を行った。
 このDTMAピーク値が小さいほど熱による軟化が起こりにくく耐熱性が高いと評価される。特にピーク値が負、またはピークが無い場合は軟化点無しとした。DTMDTMAピーク値が1.0以下のものをA、1.0を超えて1.5以下であるものをB、DTMAピーク値が1.5を超えるものCとして評価した。
[合成例1]
 テトラメルカプトペンタエリスリトール10.0g(0.050mol)にメタノール50mLを加え、5℃に冷却した。その溶液に48%水酸化ナトリウム水溶液0.42g(0.0049mol)を加えた後、溶液を15℃以下に保ちながらエピクロロヒドリン20.3g(0.22mol)を滴下した。滴下終了後、更に1時間5℃で撹拌を行った。
 その後、溶液を5℃に冷却しつつ、48%水酸化ナトリウム水溶液16.3g(0.20mol)をメタノール20mLに溶かした溶液を滴下した。滴下終了後更に2時間撹拌を行い、トルエン100mLおよび水100mLを加えた。トルエン層を3回水洗し、溶媒を留去してテトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)を得た。
 得られたテトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)にトルエン100mL、メタノール100mL、無水酢酸1.24g(0.012mol)、およびチオ尿素30.5g(0.40mol)を加えて、20℃で24時間撹拌を行った。その後、トルエン400mLおよび5%硫酸400mLを加えてトルエン層を3回水洗し、溶媒を留去することで16.8gのテトラキス(β-エピチオプロピルチオメチル)メタンの粗製物を得た。粗製物を更にシリカゲルカラム精製を行うことで11.2g(0.023mol)のテトラキス(β-エピチオプロピルチオメチル)メタン(以下、化合物A1と称する)を得た。
 以下の実験で用いた化合物A1はこの方法で合成したものである。
[実施例1]
 化合物(A)であるテトラキス(β-エピチオプロピルチオメチル)メタン(化合物A1)80質量部、(a)化合物としてビス(2-メルカプトエチル)スルフィド(化合物a1)20質量部及び重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.02質量部及び重合調整剤としてジ-n-ブチルスズジクロライド0.05質量部を混合しながら真空脱気を行い、光学材料用組成物を得た。
 得られた光学材料用組成物を30℃で10時間加熱し、100℃まで10時間かけて昇温させ、最後に100℃で5時間加熱し、重合硬化させた。放冷後、120℃で30分アニール処理を行った。得られた光学材料の評価を表1にまとめた。
[実施例2~11、比較例1~4]
 表1に示される組成に従い、実施例1と同様の操作を行うことにより、光学材料を得た。
 得られた光学材料の評価を表1にまとめた。
Figure JPOXMLDOC01-appb-T000009
 なお、表中の数値は、組成物中の化合物の含有量(質量部)を示す。また、表中の数値と併記したa1~a3およびB1、B2の表記は使用した化合物を示す。表中の化合物としては、以下のものを使用した。
A1:テトラキス(β-エピチオプロピルチオメチル)メタン
a1:ビス(2-メルカプトエチル)スルフィド
a2:1,3-ビス(メルカプトメチル)ベンゼン
a3:1,2,6,7-テトラメルカプト-4-チアへプタン
B1:ビス(β-エピチオプロピル)スルフィド
B2:ビス(β-エピチオプロピル)ジスルフィド
 
 なお、化合物a3は、例えば、特開2005-263791号記載の方法で合成可能である。
 上記表1から、式(1)で表される化合物(A)およびポリチオール(a)、ならびに必要に応じて化合物(B)および/または硫黄を含み、1,2,3,5,6-ペンタチエパン(b)を含まない光学材料用組成物を用いた場合(実施例1~11)には、高い屈折率を維持しつつ優れた耐熱性を有する光学材料が得られることが確認される。
 一方、化合物(A)を含まない比較例1,3,4や1,2,3,5,6-ペンタチエパン(b)を含む比較例2では、耐熱性に劣ることが確認される。
 本発明の光学材料用組成物を重合硬化した硬化物は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター、及び、接着剤などの光学材料として好適に用いることができる。
 

Claims (9)

  1.  下記式(1)で表される化合物(A)及びポリチオール(a)を含有し、1,2,3,5,6-ペンタチエパン(b)を含有しない、光学材料用組成物。
    Figure JPOXMLDOC01-appb-C000001
  2.  化合物(A)の含有量が、組成物総量に対して、20~80質量%である、請求項1に記載の化合物。
  3.  さらに硫黄を含有する、請求項1または2に記載の組成物。
  4.  さらに下記式(2)で表される化合物(B)を含有する、請求項1~3のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは0~4の整数を示し、nは0~2の整数を示す。)
  5.  化合物(B)の含有量が、組成物総量に対して、0~70質量%である、請求項4に記載の化合物。
  6.  ポリチオール(a)は、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールから選択される少なくとも1種である、請求項1~5のいずれか一項に記載の組成物。
  7.  組成物総量に対して、
     化合物(A)               20~80質量%;
     化合物(B)                0~70質量%;
     ポリチオール(a)           0.1~20質量%;及び
     硫黄                    0~25質量%;
    を含有する請求項1~6のいずれか一項に記載の組成物。
  8.  請求項1~7のいずれか一項に記載の組成物を硬化した光学材料。
  9.  請求項8に記載の光学材料を含む光学レンズ。
PCT/JP2018/004015 2017-02-17 2018-02-06 光学材料用組成物 WO2018150951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197023295A KR102470216B1 (ko) 2017-02-17 2018-02-06 광학재료용 조성물
EP18754377.2A EP3584270B1 (en) 2017-02-17 2018-02-06 Optical material composition
CN201880007589.4A CN110214157B (zh) 2017-02-17 2018-02-06 光学材料用组合物
JP2018568128A JP7077965B2 (ja) 2017-02-17 2018-02-06 光学材料用組成物
US16/483,219 US11078363B2 (en) 2017-02-17 2018-02-06 Optical material composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017027502 2017-02-17
JP2017-027502 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150951A1 true WO2018150951A1 (ja) 2018-08-23

Family

ID=63170270

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/004014 WO2018150950A1 (ja) 2017-02-17 2018-02-06 光学材料用組成物
PCT/JP2018/004015 WO2018150951A1 (ja) 2017-02-17 2018-02-06 光学材料用組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004014 WO2018150950A1 (ja) 2017-02-17 2018-02-06 光学材料用組成物

Country Status (7)

Country Link
US (2) US11078363B2 (ja)
EP (2) EP3584269B1 (ja)
JP (2) JP7014188B2 (ja)
KR (2) KR102464231B1 (ja)
CN (2) CN110214157B (ja)
TW (2) TWI761449B (ja)
WO (2) WO2018150950A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464231B1 (ko) * 2017-02-17 2022-11-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물
EP3848733B1 (en) * 2018-09-07 2022-11-30 Mitsubishi Gas Chemical Company, Inc. Composition for optical material and optical material
KR102372880B1 (ko) 2019-05-21 2022-03-08 주식회사 엘지화학 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
CN110776491B (zh) * 2019-11-25 2021-01-29 山东益丰生化环保股份有限公司 一种多支化硫醚型环硫化合物及其制备方法和应用
KR20230088885A (ko) * 2020-10-19 2023-06-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 조성물 그리고 이것을 이용한 광학재료 및 렌즈
EP4230616A4 (en) * 2020-10-19 2024-04-24 Mitsubishi Gas Chemical Co COMPOSITION, AND OPTICAL MATERIAL AS WELL AS LENS USING THIS COMPOSITION
EP4270094A1 (en) * 2020-12-25 2023-11-01 Mitsubishi Gas Chemical Company, Inc. Composition, and optical material and lens using same
WO2022191574A1 (ko) * 2021-03-10 2022-09-15 주식회사 엘지화학 경화성 조성물 및 이를 포함하는 광학 부재
CN116478108B (zh) * 2023-03-31 2023-10-13 益丰新材料股份有限公司 一种含硫杂环化合物及其光学材料组合物和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971580A (ja) * 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) * 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JPH10298287A (ja) 1997-04-22 1998-11-10 Mitsubishi Gas Chem Co Inc 新規な光学材料用樹脂
JP2000128988A (ja) * 1998-08-17 2000-05-09 Mitsubishi Gas Chem Co Inc エピチオ構造を有する化合物の処理方法
JP2001002933A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2005263791A (ja) 2004-02-17 2005-09-29 Mitsubishi Gas Chem Co Inc ビシナルジチオールの製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ
JP2010242093A (ja) 2010-06-18 2010-10-28 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
WO2010131631A1 (ja) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 高屈折率高強度光学材料用組成物
WO2011105320A1 (ja) * 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP2011231185A (ja) * 2010-04-26 2011-11-17 Nikon-Essilor Co Ltd 光学レンズ成形用プレポリマーの製造方法及び光学レンズの製造方法
WO2016204080A1 (ja) * 2015-06-17 2016-12-22 三菱瓦斯化学株式会社 光学材料用組成物及びそれを用いた光学材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807975A (en) 1995-08-16 1998-09-15 Mitsubishi Gas Chemical Company,Inc. Alkyl sulfide type episulfide compound
US5945504A (en) 1996-01-17 1999-08-31 Mitsubishi Gas Chemical Company, Inc. Episulfide compound
US6180753B1 (en) 1998-08-17 2001-01-30 Mitsubishi Gas Chemical Company, Inc. Process for treating a compound having epithio structures for disposal
JP3373825B2 (ja) * 1999-07-23 2003-02-04 三井化学株式会社 重合性組成物およびそれからなる光学用樹脂の製造方法
EP1524289B1 (en) * 2002-07-08 2009-09-16 Mitsubishi Gas Chemical Company, Inc. Polymerizable composition, optical material comprising the composition and method for producing the material
JP2004043526A (ja) 2002-07-08 2004-02-12 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP4127169B2 (ja) 2002-09-27 2008-07-30 三菱瓦斯化学株式会社 光学材料の製造方法
JP4965838B2 (ja) 2005-09-27 2012-07-04 Hoya株式会社 スルフィド化合物及びその製造方法
WO2012112015A2 (ko) * 2011-02-19 2012-08-23 주식회사 케이오씨솔루션 고리개환을 통해 사슬연장된 폴리티올화합물과 그 제조 방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
TWI633140B (zh) * 2013-12-26 2018-08-21 三菱瓦斯化學股份有限公司 Composition for optical material and method of producing the same
JP6179690B1 (ja) 2015-12-10 2017-08-16 三菱瓦斯化学株式会社 光硬化性組成物及び光学材料
KR102464231B1 (ko) 2017-02-17 2022-11-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물
KR102012013B1 (ko) * 2018-10-15 2019-08-19 경남산업개발 주식회사 단열형 창호 구조물

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JPH0971580A (ja) * 1995-09-08 1997-03-18 Mitsubishi Gas Chem Co Inc 新規な分岐アルキルスルフィド型エピスルフィド化合物
JPH09255781A (ja) * 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JPH10298287A (ja) 1997-04-22 1998-11-10 Mitsubishi Gas Chem Co Inc 新規な光学材料用樹脂
JP2000128988A (ja) * 1998-08-17 2000-05-09 Mitsubishi Gas Chem Co Inc エピチオ構造を有する化合物の処理方法
JP2001002933A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2005263791A (ja) 2004-02-17 2005-09-29 Mitsubishi Gas Chem Co Inc ビシナルジチオールの製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ
WO2010131631A1 (ja) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 高屈折率高強度光学材料用組成物
WO2011105320A1 (ja) * 2010-02-25 2011-09-01 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP2011231185A (ja) * 2010-04-26 2011-11-17 Nikon-Essilor Co Ltd 光学レンズ成形用プレポリマーの製造方法及び光学レンズの製造方法
JP2010242093A (ja) 2010-06-18 2010-10-28 Mitsubishi Gas Chemical Co Inc 光学材料用組成物
WO2016204080A1 (ja) * 2015-06-17 2016-12-22 三菱瓦斯化学株式会社 光学材料用組成物及びそれを用いた光学材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584270A4

Also Published As

Publication number Publication date
EP3584269B1 (en) 2022-04-27
CN110198969B (zh) 2021-09-17
CN110214157A (zh) 2019-09-06
KR102464231B1 (ko) 2022-11-07
TW201840654A (zh) 2018-11-16
EP3584269A4 (en) 2020-03-04
CN110198969A (zh) 2019-09-03
JPWO2018150951A1 (ja) 2019-12-12
TW201840653A (zh) 2018-11-16
WO2018150950A1 (ja) 2018-08-23
US20200216616A1 (en) 2020-07-09
TWI761449B (zh) 2022-04-21
US10982094B2 (en) 2021-04-20
KR20190114993A (ko) 2019-10-10
TWI818903B (zh) 2023-10-21
EP3584270B1 (en) 2022-06-15
CN110214157B (zh) 2022-10-04
EP3584270A1 (en) 2019-12-25
US11078363B2 (en) 2021-08-03
JP7077965B2 (ja) 2022-05-31
EP3584270A4 (en) 2020-01-01
KR102470216B1 (ko) 2022-11-23
KR20190112280A (ko) 2019-10-04
EP3584269A1 (en) 2019-12-25
JP7014188B2 (ja) 2022-02-01
JPWO2018150950A1 (ja) 2019-12-12
US20200024450A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP7077965B2 (ja) 光学材料用組成物
CN107735428B (zh) 光学材料用组合物及使用其的光学材料
WO2022085330A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
KR101177613B1 (ko) 티에탄 화합물, 이것을 포함하는 중합성 조성물 및 그 사용
WO2022085329A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
JP7284590B2 (ja) 硬化性複合材料及びそれを用いたインプリント方法
WO2022137715A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
WO2020031815A1 (ja) 新規アリル化合物および光学材料用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568128

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754377

Country of ref document: EP

Effective date: 20190917