WO2022085330A1 - 組成物並びにこれを用いた光学材料およびレンズ - Google Patents

組成物並びにこれを用いた光学材料およびレンズ Download PDF

Info

Publication number
WO2022085330A1
WO2022085330A1 PCT/JP2021/033315 JP2021033315W WO2022085330A1 WO 2022085330 A1 WO2022085330 A1 WO 2022085330A1 JP 2021033315 W JP2021033315 W JP 2021033315W WO 2022085330 A1 WO2022085330 A1 WO 2022085330A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
bis
composition
group
composition according
Prior art date
Application number
PCT/JP2021/033315
Other languages
English (en)
French (fr)
Inventor
陽介 今川
紘平 竹村
良介 杉原
万里子 佐渡
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US18/030,847 priority Critical patent/US20230374191A1/en
Priority to EP21882471.2A priority patent/EP4206187A4/en
Priority to KR1020237005046A priority patent/KR20230088885A/ko
Priority to CN202180053277.9A priority patent/CN115989217A/zh
Priority to JP2022557278A priority patent/JPWO2022085330A1/ja
Publication of WO2022085330A1 publication Critical patent/WO2022085330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D331/00Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
    • C07D331/02Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D341/00Heterocyclic compounds containing rings having three or more sulfur atoms as the only ring hetero atoms

Definitions

  • the present invention relates to a composition and an optical material and a lens using the composition.
  • Optical materials are required to have optical performance such as heat resistance, low specific gravity, high transparency, low yellowness, high refractive index, and high Abbe number.
  • optical performance such as heat resistance, low specific gravity, high transparency, low yellowness, high refractive index, and high Abbe number.
  • further improvement in performance has been required, and in particular, an optical material having a high refractive index and a high Abbe number is required.
  • Patent Document 1 describes a polymerizable composition containing a thioepoxy compound having a refractive index (nd) of 1.71 or more and having one or more disulfide bonds in the molecule.
  • nd refractive index
  • the invention according to is described. At this time, it is described that bis (2,3-epithiopropyl) disulfide is the most preferable as the thioepoxy compound having one or more disulfide bonds in the molecule.
  • an optical material having a high refractive index can be obtained.
  • an optical material having a higher refractive index It has been found that the heat resistance may decrease when sulfur or the like is added to increase the refractive index of the optical material. Therefore, the present invention provides a composition capable of obtaining an optical material having a high refractive index and excellent heat resistance.
  • the present inventors have conducted diligent research to solve the above problems. As a result, they have found that the above-mentioned problems can be solved by combining an episulfide compound having an aromatic skeleton and 1,2,3,5,6-pentathiepan, and have completed the present invention. That is, the present invention is, for example, as follows.
  • the polythiol (d) is 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldisulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2, 5-bis (mercaptomethyl) -1,4-dithian, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6, 9-Trithiaundecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiaundecane, 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9- Trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercap
  • the prepolymerization catalyst is selected from the group consisting of 2-mercapto-1-methylimidazole, 2-methyl-N-imidazole, and 1,2,2,6,6-pentamethylpiperidylmethacrylate.
  • the composition according to the above [11] which comprises at least one of the above.
  • An optical lens comprising the optical material according to the above [14].
  • composition capable of obtaining an optical material having a high refractive index and excellent heat resistance.
  • composition contains the compound (a) represented by the formula (1) and 1,2,3,5,6-pentathiepan (b).
  • the compound (c) represented by the formula (2), polythiol (d), sulfur, a polymerizable compound, a prepolymerization catalyst, a polymerization catalyst, a polymerization modifier, an additive and the like may be further contained.
  • the composition contains the compound (a) represented by the formula (1), that is, the episulfide compound having an aromatic skeleton, high refractive index and high heat resistance can be achieved. Further, when the composition contains 1,2,3,5,6-pentathiepan (b), the refractive index can be further increased, and the refractive index of the cured product (optical material) obtained by combining these can be obtained. Heat resistance can be increased. Therefore, the composition is preferably a composition for an optical material.
  • Ar indicates an aromatic ring.
  • the aromatic ring include an aromatic ring composed of carbon and hydrogen, and a complex aromatic ring (aromatic ring containing a hetero atom).
  • Ar has 2 or more carbon atoms, preferably 2 to 18, more preferably 2 to 12, and even more preferably 3 to 6. Further, Ar is preferably a 5-membered ring or a 6-membered ring, and more preferably a 6-membered ring.
  • the aromatic ring composed of carbon and hydrogen is not particularly limited, and examples thereof include a benzene ring, a naphthalene ring, a fluorene ring, an anthracene ring, and a phenanthrene ring. Of these, the aromatic ring composed of carbon and hydrogen is preferably a benzene ring.
  • the heteroaromatic ring is not particularly limited, but is limited to a furan ring, a pyran ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a triazole ring, a thiaziazole ring, a pyridine ring, and the like.
  • Examples thereof include a pyrazine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, an indole ring, an isoindole ring, an indazole ring, a quinoline ring, an isoquinoline ring, a phthalazine ring, a phenanthridine ring, and an acridin ring.
  • the heteroaromatic ring includes a furan ring, a pyran ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, an isooxazole ring, a thiazole ring, an isothiazole ring, a triazole ring, a thiadiazole ring, a pyridine ring, and a pyrazine ring.
  • Ar is preferably an aromatic ring composed of carbon and hydrogen, and more preferably a benzene ring.
  • M represents an integer of 2 to 8, and is preferably 2, 3, or 6, more preferably 2 or 3, and even more preferably 3 from the viewpoint of heat resistance and ease of synthesis.
  • N represents an integer of 0 to 6, preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • M + n is not more than the number of carbon atoms constituting the aromatic ring, preferably 2 to 6, more preferably 3 to 6, still more preferably 2 to 3, and particularly preferably 3. It should be noted that when m + n is 3, the heat resistance is higher, which is preferable. Further, "less than or equal to the number of carbon atoms constituting the aromatic ring” means that the number of carbon atoms possessed as the aromatic ring is not exceeded. For example, in the case of a benzene ring, which is an aromatic ring composed of carbon and hydrogen, the number of carbon atoms constituting the ring is 6, so m + n is 6 or less. Further, in the case of the thiadiazole ring which is a complex aromatic ring, since the number of carbon atoms constituting the ring is 2, m + n is 2 or less.
  • R 1 independently represents an alkylthio group, an epoxyalkylthio group, a thiol group, a halogen group, a hydroxy group, a dialkylthiocarbamoyl group, or a dialkylcarbamoylthio group.
  • the alkylthio group is not particularly limited, and examples thereof include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, and a hexylthio group.
  • the epoxyalkylthio group is not particularly limited, and examples thereof include ⁇ -epoxypropylthio group.
  • the halogen group is not particularly limited, and examples thereof include a fluorine group (-F), a chlorine group (-Cl), a bromine group (-Br), and an iodine group (-I).
  • the dialkylthiocarbamoyl group is not particularly limited, and examples thereof include a dimethylthiocarbamoyl group, a diethylthiocarbamoyl group, and an ethylmethylthiocarbamoyl group.
  • the compound (a) is represented by the following formula (1').
  • m represents an integer of 2 to 6, and is preferably 2, 3, or 6, more preferably 2 or 3, and even more preferably 3 from the viewpoint of color tone and ease of composition. Is.
  • n represents an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • m + n is 6 or less (m + n ⁇ 6), preferably 2 to 6, more preferably 3 to 6, and even more preferably 3. It should be noted that when m + n is 3, the heat resistance is higher, which is preferable.
  • R 1 is the same as the above formula (1).
  • the compound (a) are not particularly limited, but bis (episulfide) such as 1,3-bis ( ⁇ -epithiopropylthio) benzene and 1,4-bis ( ⁇ -epithiopropylthio) benzene.
  • Tris (episulfide) compounds such as benzene; 1-methyl-3,5-bis ( ⁇ -epothiopropylthio) benzene, 1-methyl-2,4-bis ( ⁇ -epothiopropylthio) benzene, 1- Methyl-2,5-bis ( ⁇ -epothiopropylthio) benzene, 1-ethyl-3,5-bis ( ⁇ -epotipropylthio) benzene, 1-t-butylthio-3,5-bis ( ⁇ -) Alkylthio group-substituted bis (episulfide) compounds such as epothiopropylthio)
  • ⁇ -Epithiopropylthio Benzene, 2,5-bis ( ⁇ -Epithiopropylthio) -1,3,4-thia Asiazole, 2,4,6-Tris ( ⁇ -Epithiopropylthio) -1,3 , 5-Triazine is more preferred, and 1,3,5-Tris ( ⁇ -epithiopropylthio) benzene is even more preferred.
  • the above-mentioned compound (a) may be used alone or in combination of two or more.
  • the content of the compound (a) is preferably 0.1 to 99.5% by mass, more preferably 3 to 90% by mass, and 5 to 90% by mass with respect to the total mass of the composition. It is more preferably 20 to 80% by mass, particularly preferably 30 to 60% by mass, and most preferably 35 to 60% by mass. When the content of the compound (a) is in the above range, sufficient heat resistance can be obtained.
  • 1,2,3,5,6-pentathiepan (b) is a compound represented by the following formula, and has an effect of improving the refractive index of the obtained optical material.
  • the method for obtaining 1,2,3,5,6-pentathiepan (b) is not particularly limited, and a commercially available product may be used, or it may be collected and extracted from natural products such as crude oil and animals and plants, and is known. It may be synthesized by a method.
  • a commercially available product may be used, or it may be collected and extracted from natural products such as crude oil and animals and plants, and is known. It may be synthesized by a method.
  • N Takeda et al., Bull. Chem. Soc. Jpn., 68, 2757 (1995), F. Feher Et al., Angew. Chem. Int. Ed., 7, 301 (1968), G. W. Kutney et al., Can. J. Chem, 58, 1233 (1980) and the like.
  • the content of 1,2,3,5,6-pentathiepan (b) is preferably 5 to 70% by mass, more preferably 5 to 40% by mass, based on the total mass of the composition. It is more preferably 5 to 25% by weight.
  • the obtained optical material can achieve both high refractive index and high transparency, which is preferable.
  • the mass ratio of compound (a) to 1,2,3,5,6-pentathiepan (b) is from 25:75 to It is preferably 95: 5.
  • the mass ratio is in the above range, the obtained optical material is preferable because it can achieve both a high refractive index and an excellent color tone.
  • the composition may further comprise compound (c).
  • the compound (c) is represented by the following formula (2).
  • the compound (c) can be copolymerized with the compound (a), and when used together with the compound (a), it has an effect of enhancing the curing reactivity.
  • P indicates an integer of 0 to 4, preferably 0 to 2, and more preferably 0 or 1.
  • Q indicates an integer of 0 to 2, preferably 0 to 2, and more preferably 0 or 1.
  • the compound (c) include, but are not limited to, bis ( ⁇ -epithiopropyl) sulfide and bis ( ⁇ -epithiopropyl) disulfide. Of these, bis ( ⁇ -epithiopropyl) sulfide is preferable.
  • the above-mentioned compound (c) may be used alone or in combination of two or more.
  • the content of the compound (c) is 0 to 50% by mass, preferably 1 to 40% by mass, and more preferably 5 to 40% by mass with respect to the total mass of the composition.
  • the content of the compound (c) is in the above range, it is preferable because the curing reactivity can be improved while ensuring an excellent color tone.
  • the mass ratio of compound (a) to compound (c) is preferably 40:60 to 100: 0, and preferably 50:50 to 100: 0. More preferred.
  • the mass ratio is in the above range, a high refractive index and an excellent color tone can be achieved at the same time, which is preferable.
  • the composition may further comprise polythiol (d).
  • polythiol (d) means a compound having two or more thiol groups (-SH) per molecule. At this time, the compound (a) (episulfide compound having an aromatic skeleton) is not included in the polythiol (d).
  • the polythiol (d) is not particularly limited, but from the viewpoint of high color tone improving effect, 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldisulfanyl) methanethiol.
  • Dissulfanyl) Methanethiol, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane is more preferred, bis (2-mercaptoethyl) sulfide, 1,2,6 , 7-Tetramercapto-4-thiaheptane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane are more preferred.
  • the above-mentioned polythiol (d) may be used alone or in combination of two or more.
  • the content of the polythiol (d) is preferably 0 to 25% by mass, more preferably 0.1 to 20% by mass, and 0.5 to 20% by mass with respect to the total mass of the composition. It is more preferably 1 to 15% by mass, and most preferably 1 to 10% by mass.
  • the content of the polythiol (d) is in the above range, the balance between the color tone stabilizing effect and the heat resistance is improved, which is preferable.
  • the total content of 1,2,3,5,6-pentathiepan (b) and polythiol (d) is preferably 5 to 50% by mass with respect to the total mass of the composition. It is more preferably 5 to 30% by mass, further preferably 5 to 25% by mass. When the total content is in the above range, the heat resistance of the obtained optical material is high, which is preferable.
  • the composition may further contain sulfur.
  • sulfur By containing sulfur, the refractive index of the obtained optical material can be improved.
  • the shape of sulfur is not particularly limited and may be any shape. Specific shapes include fine powder sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimated sulfur and the like. Of these, fine sulfur is preferable from the viewpoint of dissolution rate.
  • the particle size (diameter) of sulfur is preferably smaller than 10 mesh (opening 1.70 mm), more preferably smaller than 30 mesh (opening 500 ⁇ m), and even smaller than 60 mesh (opening 250 ⁇ m). preferable.
  • the particle size of sulfur is smaller than 10 mesh, sulfur is easily dissolved, which is preferable.
  • the purity of sulfur is not particularly limited, but is preferably 98% or more, more preferably 99.0% or more, further preferably 99.5% or more, and 99.9% or more. Is particularly preferred. When the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved, which is preferable.
  • the sulfur content is preferably 0 to 30% by mass, more preferably 0 to 25% by mass, and even more preferably 0.1 to 20% by mass with respect to the total mass of the composition. It is particularly preferably 1 to 15% by mass. When the sulfur content is in the above range, it is preferable because the effect of improving the refractive index and the solubility are excellent.
  • the composition may further comprise a polymerizable compound.
  • the physical characteristics of the optical material can be adjusted by containing the polymerizable compound.
  • the "polymerizable compound” means a compound that can be copolymerized with the compound (a).
  • the polymerizable compound is not particularly limited as long as it is a compound that can be copolymerized with the compound (a), but is an episulfide compound other than the compound (a) and the compound (c), a vinyl compound, a methacrylic compound, an acrylic compound, an allyl compound and the like. Can be mentioned. These compounds may be used alone or in combination of two or more.
  • the amount of the polymerizable compound added is not particularly limited as long as it does not impair the effects of the present invention, and is preferably 0 to 30% by mass, preferably 1 to 30% by mass, based on the total mass of the composition. Is more preferable, and 1 to 20% by mass is further preferable.
  • the composition may further comprise a prepolymerization catalyst.
  • the prepolymerization catalyst By including the prepolymerization catalyst, the pre-cured product described later can be suitably produced.
  • the prepolymerization catalyst is not particularly limited, and examples thereof include imidazoles, phosphines, thioureas, quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, secondary iodonium salts, and hindered amines. .. Of these, imidazoles and hindered amines are preferable from the viewpoint of good compatibility with the composition.
  • the imidazoles are not particularly limited, and examples thereof include N-benzylimidazole, 4-methylimidazole, 4-ethylimidazole, 1-phenylimidazole, 2-methyl-N-methylimidazole and the like.
  • the hindered amine is not particularly limited, but is 1,2,2,6,6-pentamethylpiperidylmethacrylate, 1,2,2,6,6-pentamethylpiperidylacryllate, 1,2, Examples include hindered amines such as 2,6,6-pentamethylpiperidyl-4-vinylbenzoate.
  • the prepolymerization catalyst is selected from the group consisting of 2-mercapto-1-methylimidazole, 2-methyl-N-imidazole, 1,2,2,6,6-pentamethylpiperidylmethacrylate. It is preferable to include at least one.
  • the above-mentioned prepolymerization catalyst may be used alone or in combination of two or more.
  • the amount of the prepolymerization catalyst added varies depending on the composition, the mixing ratio, and the polymerization curing method, and therefore cannot be unconditionally determined.
  • Compound (c), polythiol (d), and sulfur are preferably 0.0001% by mass to 10% by mass, preferably 0.003% by mass to 3.0% by mass, based on 100% by mass of the total. Is more preferable.
  • the amount of the prepolymerization catalyst added is 0.0001% by mass or more, the prepolymerization reaction proceeds favorably, which is preferable.
  • the addition amount of the prepolymerization catalyst is 10% by mass or less, the oxidation resistance is high, which is preferable.
  • the composition may further comprise a polymerization catalyst.
  • the composition can be suitably polymerized to produce an optical material.
  • the polymerization catalyst is not particularly limited, but is not particularly limited, but amines, phosphins, quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, and silica. Acids, boric acid tetrafluoroacids, peroxides, azized compounds, condensates of aldehydes and ammonia compounds, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthogens. Examples thereof include acid salts and acidic phosphate esters. Of these, amines, phosphines, quaternary ammonium salts, and quaternary phosphonium salts are preferable. These polymerization catalysts may be used alone or in combination of two or more.
  • the amount of the polymerization catalyst added is preferably 0.0001 to 10% by mass, more preferably 0.01 to 3% by mass, based on the total mass of the composition.
  • the composition may further comprise a polymerization modifier.
  • the polymerization modifier is not particularly limited, and examples thereof include halides of Groups 13 to 16 in the long-term periodic table. Of these, halides of silicon, germanium, tin and antimony are preferable, and chlorides of germanium, tin and antimony having an alkyl group are more preferable. These polymerization modifiers may be used alone or in combination of two or more.
  • the amount of the polymerization modifier added is preferably 0.0001 to 5.0% by mass, more preferably 0.01 to 2% by mass, based on the total mass of the composition.
  • the composition may further comprise an additive.
  • the additive include, but are not limited to, an antioxidant, a brewing agent, an ultraviolet absorber, a deodorant, an adhesion improving agent, a mold release improving agent, a radical polymerization initiator and the like. These additives may be used alone or in combination of two or more.
  • the content of the additive is preferably 0 to 10% by mass, more preferably 0.5 to 10% by mass, based on the total mass of the composition.
  • composition of composition has the following composition: That is, the composition is based on the total amount of the composition.
  • Compound (a) 20 to 90% by mass, preferably 20 to 80% by mass; 1,2,3,5,6-pentathiepan (b): 5 to 70% by mass, preferably 5 to 40% by mass;
  • Compound (c) 0 to 50% by mass, preferably 0 to 40% by mass;
  • Polythiol (d) 0 to 10% by mass, preferably 0 to 5% by mass; Sulfur: 0-25% by weight, preferably 0-20% by weight;
  • Prepolymerization catalyst 0 to 5% by mass, preferably 0 to 3% by mass
  • Polymerization catalyst 0-5% by weight, preferably 0.0001-3% by weight; and polymerization modifier: 0-5% by weight, preferably 0.0001-3% by weight; including.
  • composition is not particularly limited and can be produced by a known method. Specifically, it is produced by mixing compound (a) and 1,2,3,5,6-pentathiepan (b), and if necessary, compound (c), polythiol (d), sulfur and the like. be able to.
  • a pre-cured product is provided.
  • the pre-cured product is obtained by pre-polymerizing the above-mentioned composition.
  • the pre-cured product is preferable from the viewpoints that the rate of increase in viscosity can be reduced, the transparency of the optical material is improved, and handling is facilitated.
  • the “pre-cured product” means a liquid having a viscosity of 5,000 mps or less, and is compound (a), 1,2,3,5,6-pentathiepan (b), compound (c). , Polythiol (d), sulfur, and a polymer, a partial polymer, an oligomer, etc. formed by at least one of the polymerizable compounds by a polymerization reaction.
  • the value measured by the following method shall be adopted as a "viscosity".
  • Viscosity measurement method The viscosity of the pre-cured product at 30 ° C. was measured using a cone plate type viscometer DV2THA CP (manufactured by AMETEK, Inc.).
  • a method for producing a pre-cured product includes a prepolymerization step of prepolymerizing the composition.
  • the prepolymerization step is a step of prepolymerizing the composition.
  • the composition described above is used.
  • the composition preferably comprises a prepolymerization catalyst.
  • the prepolymerization step is preferably carried out by casting into a mold such as a mold from the viewpoint of carrying out the polymerization step described later after the prepolymerization. At this time, it is preferable to filter and remove impurities with a filter having a pore size of about 0.1 to 5 ⁇ m before casting from the viewpoint of improving the quality of the optical material.
  • the temperature of the prepolymerization is preferably ⁇ 10 to 160 ° C., more preferably 0 to 100 ° C., and even more preferably 20 to 80 ° C.
  • the prepolymerization time is preferably 0.1 to 480 minutes, more preferably 0.1 to 420 minutes, and even more preferably 0.1 to 360 minutes.
  • the prepolymerization is preferably at ⁇ 10 to 160 ° C. for 0.1 to 480 minutes, more preferably 0 to 100 ° C. for 0.1 to 420 minutes, still more preferably 20 to 80 ° C. for 0.1. It takes about 360 minutes.
  • Prepolymerization may be carried out under normal pressure, under pressure, or under reduced pressure.
  • the prepolymerization is carried out under reduced pressure, hydrogen sulfide which promotes the reaction is removed, so that the reaction usually proceeds mildly as compared with the case where the prepolymerization is carried out under normal pressure.
  • the pressure is normal, the pressure may be increased in the atmosphere or in an inert gas.
  • the detection method is not particularly limited, and examples thereof include liquid chromatography, viscosity measurement, specific gravity measurement, and refractive index measurement. Of these, it is preferable to measure the refractive index because it is simple. These detection methods may be used alone or in combination of two or more.
  • the prepolymerization reaction it is preferable to detect the progress of the prepolymerization reaction in-line.
  • it is more preferable to perform in-line detection because it is not necessary to release the pressure or reduced pressure in order to obtain a measurement sample.
  • in-line detection for example, when measuring the refractive index, by immersing the detection unit of the refractive index meter in the composition before prepolymerization and the reaction solution of prepolymerization, the refractive index increases as the reaction progresses. Can be detected and the progress of the reaction can be controlled.
  • the relationship between the temperature of the detection unit and the refractive index is determined. It is preferable to determine in advance. Specifically, it is preferable to use a refractive index meter provided with a temperature correction function that can automatically convert to the refractive index of the reference temperature.
  • the in-line type refractive index meter include a method in which a light emitting diode is used as a light source and the angle of prism reflected light is identified by a CCD cell.
  • an optical material is provided.
  • the optical material is obtained by curing the above-mentioned composition or the above-mentioned pre-cured product. That is, the optical material is a cured product of the composition or the pre-cured product.
  • the optical material according to this embodiment has a high refractive index and excellent heat resistance.
  • the refractive index of the optical material is preferably 1.74 or more, more preferably 1.75 or more, and even more preferably 1.76 or more. That is, in the above-mentioned composition, the refractive index of the obtained optical material is preferably 1.74 or more, more preferably 1.75 or more, still more preferably 1.76 or more.
  • the value of "refractive index" is measured by the method described in Examples.
  • the optical material has no softening point or has a high softening point, so that it has excellent heat resistance.
  • the optical material has no softening point when the temperature of the optical material is raised, or the softening point is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, particularly preferably. Is 70 ° C. or higher, most preferably 75 ° C. or higher. That is, the above-mentioned composition has no softening point of the obtained optical material, or is preferably 55 ° C. or higher, more preferably 60 ° C. or higher, particularly preferably 70 ° C. or higher, and most preferably 75 ° C. or higher.
  • the "softening point" is measured by the method described in Examples.
  • the optical material has excellent heat resistance because it does not easily soften.
  • the DTMA peak value (DTg) of the optical material is preferably 1.0 ⁇ m / ° C or lower, more preferably 0.5 ⁇ m / ° C or lower, and 0.3 ⁇ m / ° C or lower. Is even more preferable.
  • DTMA peak value (DTg) means the peak value of DTMA which is the temperature derivative curve of the TMA curve obtained by TMA (thermomechanical analysis), and is measured by the method of Example.
  • the optical material according to this embodiment has a high refractive index and excellent heat resistance, it is possible to blend various comonomer into the composition and increase the blending amount thereof, thereby having a wide range of physical properties. It is possible to design optical materials.
  • a method for manufacturing an optical material comprises a polymerization step of polymerizing the composition described above or the pre-cured product described above.
  • the polymerization step is a step of polymerizing the above-mentioned composition or the above-mentioned pre-cured product.
  • the polymerization step is usually carried out by casting a composition or a pre-cured product into a mold such as a mold and polymerizing it.
  • a mold such as a mold and polymerizing it.
  • the composition it is preferable to filter and remove impurities with a filter having a pore size of about 0.1 to 5 ⁇ m before casting from the viewpoint of improving the quality of the optical material.
  • the polymerization step includes a step of raising the temperature to the polymerization temperature, a step of maintaining the polymerization temperature, and a step of lowering the temperature.
  • the polymerization may be carried out in multiple stages. That is, the steps for maintaining the polymerization temperature may have two or more steps.
  • the polymerization step is a step of raising the temperature to the first polymerization temperature, a step of holding the temperature at the first polymerization temperature, a step of raising the temperature to the second polymerization temperature, and a step of holding the temperature at the second polymerization temperature. Including the process of polymerizing and the process of lowering the temperature. In this case, the first polymerization temperature is lower than the second polymerization temperature.
  • the polymerization step includes a step of raising the temperature to the first polymerization temperature, a step of holding the temperature at the first polymerization temperature, a step of lowering the temperature to the second polymerization temperature, and a second polymerization. Includes a process of maintaining the temperature and a process of lowering the temperature. In this case, the first polymerization temperature is higher than the second polymerization temperature.
  • the temperature rise rate in the step of raising the temperature is preferably 0.1 ° C to 100 ° C / h. Further, the temperature lowering rate in the step of lowering the temperature is preferably 0.1 ° C. to 100 ° C./h.
  • the polymerization temperature is usually ⁇ 10 ° C. to 140 ° C., preferably 0 to 140 ° C.
  • the polymerization time is usually 1 to 100 hours, preferably 1 to 72 hours.
  • the "polymerization time” means a time including the time of the step of raising the temperature and the step of lowering the temperature.
  • the temperature of the annealing treatment is preferably 50 to 150 ° C.
  • the annealing treatment time is preferably 10 minutes to 5 hours.
  • the obtained optical material may be subjected to surface treatment such as dyeing, hard coating, impact resistance coating, antireflection, and antifogging property, if necessary.
  • optical materials are useful for various applications such as optical members, mechanical component materials, electrical / electronic component materials, automobile component materials, civil engineering and building materials, molding materials, as well as paint and adhesive materials.
  • optical materials include eyeglass lenses, imaging lenses for (digital) cameras, light beam condensing lenses, lenses for light diffusion, encapsulants for LEDs, optical adhesives, bonding materials for optical transmission, and the like.
  • Optical applications such as transparent glass such as optical fiber, prism, filter, diffraction grid, watch glass, cover glass for display device and cover glass; substrate for display elements such as LCD, organic EL and PDP, substrate for color filter, touch panel It is suitably used for display device applications such as substrates, information recording substrates, display backlights, light guide plates, display protective films, antireflection films, antifogging films and other coating agents (coating films).
  • the optical material is particularly preferably used for applications such as optical lenses, prisms, optical fibers, information recording substrates, filters, etc., and more preferably used for optical lenses. That is, in one embodiment, an optical lens including the above-mentioned optical material is provided.
  • the optical lens obtained from the composition according to the present invention is excellent in stability, hue, transparency, etc., it is used in fields such as telescopes, binoculars, television projectors, etc., in which expensive high-refractive index glass lenses have been conventionally used. It can be and is extremely useful. If necessary, it is preferably used in the form of an aspherical lens.
  • the analysis and evaluation of the optical material was performed by the following method.
  • the heat resistance evaluation was made as follows based on the following criteria (X) and (Y). -Reference (X): Tg ⁇ 55 ° C -Criteria (Y): DTg ⁇ 1.0
  • reaction solution was cooled to 25 ° C., 400 g of toluene was added, and then the mixture was washed with 400 g of water three times, and the solvent was distilled off to obtain 45.3 g (132.3 mmol) of 1,3,5-tris (132.3 mmol).
  • TTBB t-butylthio
  • TMB1 TMB purity 100%
  • TMB5 TMB5
  • TMB6 TMB6
  • c-1 Bis ( ⁇ -epithiopropyl) sulfide
  • c-2 Bis ( ⁇ -epithiopropyl) disulfide
  • c-3 Tetrakis ( ⁇ -epithiopropylthiomethyl) methane
  • d-1 Bis (2-mercaptoethyl) sulfide
  • d-2 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecane
  • d-3 1,2,6,7 -Tetra mercapto-4-chia heptane
  • Example 1 Fraction a-1 65 parts by mass, 1,2,3,5,6-pentathiepan (b) (hereinafter, simply referred to as "pentathiepan (b)") 35 parts by mass, tetra-n-butylphosphonium bromide as a polymerization catalyst A composition was produced by vacuum degassing while mixing 0.02 parts by mass and 0.05 parts by mass of di-n-butyltin dichloride as a polymerization modifier at 60 ° C.
  • Examples 2 to 22, Comparative Examples 1 to 4 The composition was produced in the same manner as in Example 1 except that the composition was changed to that shown in Table 3.
  • Table 3 below shows the results of the refractive index and heat resistance evaluation of the manufactured optical material.
  • the cured product (optical material) obtained by curing the compositions of Examples 1 to 22 has a high refractive index and excellent heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

高屈折率かつ耐熱性に優れる光学材料が得られる組成物を提供する。 下記式(1): [上記式中、 Arは、芳香環を示し、 mは2~8の整数を示し、 nは0~6の整数を示し、 ただし、m+nが芳香環を構成する炭素数以下であり、 Rは、それぞれ独立して、アルキルチオ基、エポキシアルキルチオ基、チオール基、ハロゲン基、ヒドロキシ基、ジアルキルチオカルバモイル基、またはジアルキルカルバモイルチオ基を示す。] で表される化合物(a)および1,2,3,5,6-ペンタチエパン(b)を含む、組成物。

Description

組成物並びにこれを用いた光学材料およびレンズ
 本発明は、組成物並びにこれを用いた光学材料およびレンズに関する。
 光学材料、中でも眼鏡レンズの用途に使用される光学材料には、耐熱性、低比重、高透明性、低黄色度、高屈折率、高アッベ数等の光学性能が求められる。近年、さらなる高性能化が求められており、特に高屈折率および高アッベ数の光学材料が求められている。
 高屈折率および高アッベ数を実現するための材料として、エピスルフィド化合物を用いた光学材料用重合性組成物が注目されている。例えば、特許文献1には、特許文献1には、硬化樹脂の屈折率(nd)が1.71以上となる、分子内に1つ以上のジスルフィド結合を有するチオエポキシ化合物を含有する重合性組成物に係る発明が記載されている。この際、前記分子内に1つ以上のジスルフィド結合を有するチオエポキシ化合物としては、ビス(2,3-エピチオプロピル)ジスルフィドが最も好ましいことが記載されている。
特開2002-194083号公報
 特許文献1に記載の重合性組成物によれば、高屈折率の光学材料を得ることができる。しかし、さらなる高屈折率の光学材料が求められている。光学材料の屈折率をより高くするために硫黄等を添加すると、耐熱性が低下する場合があることが判明した。そこで、本発明は、高屈折率かつ耐熱性に優れる光学材料が得られる組成物を提供する。
 本発明者らは、上記課題を解決するべく鋭意研究を行った。その結果、芳香族骨格を有するエピスルフィド化合物および1,2,3,5,6-ペンタチエパンを組み合わせることで、上記課題が解決されうることを見出し、本発明を完成させるに至った。すなわち、本発明は、例えば以下の通りである。
 [1]下記式(1):
Figure JPOXMLDOC01-appb-C000003
[上記式中、
 Arは、芳香環を示し、
 mは2~8の整数を示し、
 nは0~6の整数を示し、
 ただし、m+nが芳香環を構成する炭素数以下であり、
 Rは、それぞれ独立して、アルキルチオ基、エポキシアルキルチオ基、チオール基、ハロゲン基、ヒドロキシ基、ジアルキルチオカルバモイル基、またはジアルキルカルバモイルチオ基を示す。]
で表される化合物(a)および1,2,3,5,6-ペンタチエパン(b)を含む、組成物。
 [2]mが、2または3である、上記[1]に記載の組成物。
 [3]m+nが、2~6である、上記[1]または[2]に記載の組成物。
 [4]前記化合物(a)の含有量が、組成物総質量に対して、20~80質量%である、上記[1]~[3]のいずれかに記載の組成物。
 [5]前記1,2,3,5,6-ペンタチエパン(b)の含有量が、組成物総質量に対して、5~40質量%である、上記[1]~[4]のいずれかに記載の組成物。
 [6]下記式(2):
Figure JPOXMLDOC01-appb-C000004
[上記式中、
 pは0~4の整数を示し、
 qは0~2の整数を示す]
で表される化合物(c)をさらに含む、上記[1]~[5]のいずれかに記載の組成物。
 [7]前記化合物(c)の含有量が、組成物総質量に対して、5~40質量%である、上記[6]に記載の組成物。
 [8]ポリチオ―ル(d)をさらに含む、上記[1]~[7]のいずれかに記載の組成物。
 [9]前記ポリチオール(d)が、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、およびチイランメタンチオールからなる群から選択される少なくとも1つを含む、上記[8]に記載の組成物。
 [10]硫黄をさらに含む、上記[1]~[9]のいずれかに記載の組成物。
 [11]予備重合触媒をさらに含む、上記[1]~[10]のいずれかに記載の組成物。
 [12]前記予備重合触媒が、2-メルカプト-1-メチルイミダゾール、2-メチル-N-イミダゾール、および1,2,2,6,6-ペンタメチルピペリジルメタクリレ-トからなる群から選択される少なくとも1つを含む、上記[11]に記載の組成物。
 [13]上記[1]~[12]のいずれかに記載の組成物を予備重合してなる、予備硬化物。
 [14]上記[1]~[12]のいずれかに記載の組成物または上記[13]に記載の予備硬化物を硬化してなる、光学材料。
 [15]上記[14]に記載の光学材料を含む、光学レンズ。
 本発明によれば、高屈折率かつ耐熱性に優れる光学材料が得られる組成物が提供される。
 以下、本発明について実施形態および例示物等を示して詳細に説明するが、本発明は以下に示す実施形態および例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 <組成物>
 本発明に係る組成物は、式(1)で表される化合物(a)および1,2,3,5,6-ペンタチエパン(b)を含む。その他、式(2)で表される化合物(c)、ポリチオール(d)、硫黄、重合性化合物、予備重合触媒、重合触媒、重合調整剤、添加剤等をさらに含んでいてもよい。
 組成物が、式(1)で表される化合物(a)、すなわち芳香族骨格を有するエピスルフィド化合物を含むことにより、高屈折率化および高耐熱化ができる。また、組成物が1,2,3,5,6-ペンタチエパン(b)を含むことにより、更なる高屈折率化ができ、これらを合わせることで得られる硬化物(光学材料)の屈折率と耐熱性を高めることができる。このため、前記組成物は、好ましくは光学材料用組成物である。
 [化合物(a)]
 化合物(a)は下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
 Arは、芳香環を示す。前記芳香環としては、炭素および水素からなる芳香環、複素芳香環(ヘテロ原子を含む芳香環)が挙げられる。なお、Arは炭素数が2以上であり、好ましくは2~18であり、より好ましくは2~12であり、さらに好ましくは3~6である。また、Arは5員環または6員環であることが好ましく、6員環であることがより好ましい。
 前記炭素および水素からなる芳香環としては、特に制限されないが、ベンゼン環、ナフタレン環、フルオレン環、アントラセン環、フェナントレン環等が挙げられる。これらのうち、炭素および水素からなる芳香環は、ベンゼン環であることが好ましい。
 前記複素芳香環としては、特に制限されないが、フラン環、ピラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、トリアゾール環、チアジアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、イソインドール環、インダゾール環、キノリン環、イソキノリン環、フタラジン環、フェナントリジン環、アクリジン環等が挙げられる。これらのうち、複素芳香環は、フラン環、ピラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、トリアゾール環、チアジアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環であることが好ましく、トリアジン環、チアジアゾール環であることがより好ましく、チアジアゾール環であることがさらに好ましい。
 上述のうち、Arは、炭素および水素からなる芳香環であることが好ましく、ベンゼン環であることがより好ましい。
 mは2~8の整数を示し、耐熱性および合成の簡便さの観点から好ましくは2、3、または6であり、より好ましくは2または3であり、さらに好ましくは3である。
 nは0~6の整数を示し、好ましくは0~2であり、より好ましくは0または1であり、さらに好ましくは0である。
 m+nは芳香環を構成する炭素数以下であり、好ましくは2~6であり、より好ましくは3~6であり、さらに好ましくは2~3であり、特に好ましくは3である。なお、m+nが3であると、耐熱性がより高くなることから好ましい。また、「芳香環を構成する炭素数以下」とは、芳香環として有する炭素数の数を超えないことを意味する。例えば、炭素および水素からなる芳香環であるベンゼン環の場合、環を構成する炭素数は6であるから、m+nは6以下である。また、複素芳香環であるチアジアゾール環の場合、環を構成する炭素数は2であるから、m+nは2以下である。
 Rは、それぞれ独立して、アルキルチオ基、エポキシアルキルチオ基、チオール基、ハロゲン基、ヒドロキシ基、ジアルキルチオカルバモイル基、またはジアルキルカルバモイルチオ基を示す。
 前記アルキルチオ基としては、特に制限されないが、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基等が挙げられる。
 前記エポキシアルキルチオ基としては、特に制限されないが、β-エポキシプロピルチオ基が挙げられる。
 前記ハロゲン基としては、特に制限されないが、フッ素基(-F)、塩素基(-Cl)、臭素基(-Br)、ヨウ素基(-I)等が挙げられる。
 前記ジアルキルチオカルバモイル基としては、特に制限されないが、ジメチルチオカルバモイル基、ジエチルチオカルバモイル基、エチルメチルチオカルバモイル基等が挙げられる。
 また、一実施形態において、化合物(a)は下記式(1’)で表される。
Figure JPOXMLDOC01-appb-C000006
 式(1’)において、mは2~6の整数を示し、色調および合成の簡便さの観点から好ましくは2、3、または6であり、より好ましくは2または3であり、さらに好ましくは3である。
 式(1’)において、nは0~4の整数を示し、好ましくは0~2であり、より好ましくは0または1であり、さらに好ましくは0である。
 式(1’)において、m+nは、6以下(m+n≦6)であり、好ましくは2~6であり、より好ましくは3~6であり、さらに好ましくは3である。なお、m+nが3であると、耐熱性がより高くなることから好ましい。
 式(1’)において、Rは上記式(1)と同様である。
 化合物(a)の具体例としては、特に制限されないが、1,3-ビス(β-エピチオプロピルチオ)ベンゼン、1,4-ビス(β-エピチオプロピルチオ)ベンゼン等のビス(エピスルフィド)化合物;1,3,5-トリス(β-エピチオプロピルチオ)ベンゼン、1,2,4-トリス(β-エピチオプロピルチオ)ベンゼン、1,2,5-トリス(β-エピチオプロピルチオ)ベンゼン等のトリス(エピスルフィド)化合物;1-メチル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-メチル-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-メチル-2,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-エチル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-t-ブチルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン等のアルキルチオ基置換ビス(エピスルフィド)化合物;1-(β-エポキシプロピルチオ)-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-(β-エポキシプロピルチオ)-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-(β-エポキシプロピルチオ)-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のエポキシアルキルチオ基置換ビス(エピスルフィド)化合物;1-メルカプト-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-メルカプト-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-メルカプト-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のチオール基置換ビス(エピスルフィド)化合物;1-フルオロ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-クロロ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ブロモ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-クロロ-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-クロロ-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のハロゲン基置換ビス(エピスルフィド)化合物;1-ヒドロキシ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ヒドロキシ-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-ヒドロキシ-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のヒドロキシ基置換ビス(エピスルフィド)化合物;1-ジメチルチオカルバモイル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-エメチルチオカルバモイル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-エメチルチオカルバモイル-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-エメチルチオカルバモイル-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のジアルキルチオカルバモイル基置換ビス(エピスルフィド)化合物;1-ジメチルカルバモイルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-エメチルカルバモイルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ジメチルカルバモイルチオ-2,4-ビス(β-エポチオプロピルチオ)ベンゼン、1-ジメチルカルバモイルチオ-2,5-ビス(β-エポチオプロピルチオ)ベンゼン等のジアルキルカルバモイルチオ基置換ビス(エピスルフィド)化合物;2,5-ビス(β-エピチオプロピルチオ)-1,3,4-チアジアゾール、3,4-ビス(β-エピチオプロピルチオ)-1,2,5-チアジアゾール、2,4,6-トリス(β-エピチオプロピルチオ)─1,3,5-トリアジン等の複素環系化合物が挙げられる。これらのうち、1,3-ビス(β-エピチオプロピルチオ)ベンゼン、1,4-ビス(β-エピチオプロピルチオ)ベンゼン、1,3,5-トリス(β-エピチオプロピルチオ)ベンゼン、1-アルキルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-エポキシアルキルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-チオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ハロ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ヒドロキシ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-ジアルキルチオカルバモイル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、1-アルキルカルバモイルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン、2,5-ビス(β-エピチオプロピルチオ)-1,3,4-チアジアゾール、3,4-ビス(β-エピチオプロピルチオ)-1,2,5-チアジアゾール、2,4,6-トリス(β-エピチオプロピルチオ)─1,3,5-トリアジンであることが好ましく、1,3-ビス(β-エピチオプロピルチオ)ベンゼン、1,4-ビス(β-エピチオプロピルチオ)ベンゼン、1,3,5-トリス(β-エピチオプロピルチオ)ベンゼン、2,5-ビス(β-エピチオプロピルチオ)-1,3,4-チアジアゾール、2,4,6-トリス(β-エピチオプロピルチオ)─1,3,5-トリアジンであることがより好ましく、1,3,5-トリス(β-エピチオプロピルチオ)ベンゼンであることがさらに好ましい。なお、上述の化合物(a)は単独で用いても、2種以上を組み合わせて用いてもよい。
 化合物(a)の含有量は、組成物総質量に対して、0.1~99.5質量%であることが好ましく、3~90質量%であることがより好ましく、5~90質量%であることがさらに好ましく、20~80質量%であることが特に好ましく、30~60質量%であることが極めて好ましく、35~60質量%が最も好ましい。化合物(a)の含有量が上記範囲にあると、十分な耐熱性を得ることができる。
 [1,2,3,5,6-ペンタチエパン(b)]
 1,2,3,5,6-ペンタチエパン(b)は、下記式で表される化合物であり、得られる光学材料の屈折率を向上させる効果がある。
Figure JPOXMLDOC01-appb-C000007
 1,2,3,5,6-ペンタチエパン(b)の入手方法は特に制限されず、市販品を用いてもよいし、原油や動植物等の天然物から採取抽出してもよいし、公知の方法で合成してもよい。1,2,3,5,6-ペンタチエパン(b)を合成する場合の合成法の一例としては、N. Takeda等,Bull. Chem. Soc. Jpn., 68, 2757(1995)、F. Feherら, Angew. Chem. Int. Ed., 7, 301 (1968)、G. W. Kutneyら,Can. J. Chem, 58, 1233(1980)等に記載の方法が挙げられる。
 1,2,3,5,6-ペンタチエパン(b)の含有量は、組成物総質量に対して、5~70質量%であることが好ましく、5~40質量%であることがより好ましく、5~25重量%であることがさらに好ましい。1,2,3,5,6-ペンタチエパン(b)の含有量が上記範囲にあると、得られる光学材料が高い屈折率および高い透明性を両立できることから好ましい。
 化合物(a)と1,2,3,5,6-ペンタチエパン(b)との質量比(化合物(a):1,2,3,5,6-ペンタチエパン(b))は、25:75~95:5であることが好ましい。前記質量比が上記範囲にあると、得られる光学材料が高い屈折率と優れた色調とを両立しうることから好ましい。
 [化合物(c)]
 一実施形態において、組成物は化合物(c)をさらに含んでいてもよい。前記化合物(c)は下記式(2)で表される。化合物(c)は化合物(a)と共重合可能であり、化合物(a)とともに用いることで硬化反応性を高める効果がある。
Figure JPOXMLDOC01-appb-C000008
 pは0~4の整数を示し、好ましくは0~2であり、より好ましくは0または1である。
 qは0~2の整数を示し、好ましくは0~2であり、より好ましくは0または1である。
 化合物(c)の具体例としては、特に制限されないが、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィドが挙げられる。これらのうち、ビス(β-エピチオプロピル)スルフィドであることが好ましい。上述の化合物(c)は単独で用いても、2種以上を組み合わせて用いてもよい。なお、ビス(β-エピチオプロピル)スルフィドは上記式(2)においてp=q=0の化合物に相当し、ビス(β-エピチオプロピル)ジスルフィドは上記式(2)においてp=0かつq=1である化合物に相当する。
 化合物(c)の含有量は、組成物総質量に対して、0~50質量%であり、好ましくは1~40質量%、より好ましくは5~40質量%である。化合物(c)の含有量が上記範囲にあると、優れた色調を確保しつつ、硬化反応性を向上しうることから好ましい。
 化合物(a)と化合物(c)のと質量比(化合物(a):化合物(c))は、40:60~100:0であることが好ましく、50:50~100:0であることがより好ましい。前記質量比が上記範囲にあると、高い屈折率と優れた色調とを両立しうることから好ましい。
 [ポリチオール(d)]
 一実施形態において、組成物はポリチオ―ル(d)をさらに含んでいてもよい。組成物がポリチオール(d)を含有することで、得られる光学材料の加熱時の色調を改善させることができる。なお、ポリチオ―ル(d)は1分子あたりチオール基(-SH)を2つ以上有する化合物を意味する。この際、化合物(a)(芳香族骨格を有するエピスルフィド化合物)に該当するものはポリチオール(d)には含まれない。
 ポリチオ―ル(d)としては、特に限定されないが、色調改善効果が高い観点から、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、およびチイランメタンチオールであることが好ましく、ビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンであることがより好ましく、ビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンであることがさらに好ましい。なお、上述のポリチオ―ル(d)は単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリチオール(d)の含有量は、組成物総質量に対して、0~25質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~20質量%であることがさらに好ましく、1~15質量%であることが特に好ましく、1~10質量%であることが最も好ましい。ポリチオール(d)の含有量が上記範囲にあると、色調安定効果と耐熱性とのバランスがよくなることから好ましい。
 また、一実施形態において、1,2,3,5,6-ペンタチエパン(b)およびポリチオール(d)の合計含有量は、組成物総質量に対して、5~50質量%であることが好ましく、5~30質量%であることがより好ましく、5~25重量%であることがさらに好ましい。前記合計含有量が上記範囲にあると、得られる光学材料の耐熱性が高くなることから好ましい。
 [硫黄]
 一実施形態において、組成物は硫黄をさらに含んでいてもよい。硫黄を含むことにより、得られる光学材料の屈折率を向上させることができる。
 硫黄の形状は、特に制限されず、いかなる形状であってもよい。具体的な形状としては、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等が挙げられる。これらのうち、溶解速度の観点から微粉硫黄であることが好ましい。
 硫黄の粒径(直径)は、10メッシュ(目開き1.70mm)より小さいことが好ましく、30メッシュ(目開き500μm)より小さいことがより好ましく、60メッシュ(目開き250μm)より小さいことがさらに好ましい。硫黄の粒径が10メッシュより小さいと、硫黄が溶解しやすいことから好ましい。
 硫黄の純度は、特に制限されないが、98%以上であることが好ましく、99.0%以上であることがより好ましく、99.5%以上であることがさらに好ましく、99.9%以上であることが特に好ましい。硫黄の純度が98%以上であると、得られる光学材料の色調がより改善することから好ましい。
 硫黄の含有量は、組成物総質量に対して、0~30質量%であることが好ましく、0~25質量%であることがより好ましく、0.1~20質量%であることがさらに好ましく、1~15質量%であることが特に好ましい。硫黄の含有量が上記範囲にあると、屈折率向上効果と溶解性のバランスに優れることから好ましい。
 [重合性化合物]
 一実施形態において、組成物は重合性化合物をさらに含んでいてもよい。重合性化合物を含むことにより光学材料の物性を調整することができる。なお、「重合性化合物」とは、化合物(a)と共重合できる化合物を意味する。
 前記重合性化合物は、化合物(a)と共重合可能な化合物であれば特に制限されないが、化合物(a)および化合物(c)以外のエピスルフィド化合物、ビニル化合物、メタクリル化合物、アクリル化合物、アリル化合物等が挙げられる。これらの化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
 重合性化合物の添加量は、本発明の効果を阻害しない範囲であれば特に制限されず、例えば、組成物総質量に対して、0~30質量%であることが好ましく、1~30質量%であることがより好ましく、1~20質量%であることがさらに好ましい。
 [予備重合触媒]
 一実施形態において、組成物は予備重合触媒をさらに含んでいてもよい。予備重合触媒を含むことで、後述する予備硬化物を好適に製造することができる。
 予備重合触媒としては、特に制限されないが、イミダゾール類、ホスフィン類、チオ尿素類、第4級アンモニウム塩、第4級ホスホニウム塩、第3級スルホニウム塩、第2級ヨードニウム塩、ヒンダードアミン等が挙げられる。これらのうち、組成物との相溶性が良好である観点から、イミダゾール類、ヒンダードアミンであることが好ましい。
 前記イミダゾール類としては、特に制限されないが、N―ベンジルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、1-フェニルイミダゾール、2-メチル-N-メチルイミダゾール等が挙げられる。
 前記ヒンダードアミンとしては、特に制限されないが、1,2,2,6,6-ペンタメチルピペリジルメタクリレ-ト、1,2,2,6,6-ペンタメチルピペリジルアクリレ-ト、1,2,2,6,6-ペンタメチルピペリジル-4-ビニルベンゾエートなどのヒンダードアミンが挙げられる。
 これらのうち、予備重合触媒は、2-メルカプト-1-メチルイミダゾール、2-メチル-N-イミダゾール、1,2,2,6,6-ペンタメチルピペリジルメタクリレ-トからなる群から選択される少なくとも1つを含むことが好ましい。なお、上述の予備重合触媒は、単独で用いても、2種以上を組み合わせて用いてもよい。
 予備重合触媒の添加量は、組成物の成分、混合比および重合硬化方法によって変化するため一概には決められないが、通常、化合物(a)および1,2,3,5,6-ペンタチエパン(b)、化合物(c)、ポリチオール(d)、および硫黄の合計100質量%に対して、0.0001質量%~10質量%であることが好ましく、0.003質量%~3.0質量%であることがより好ましい。予備重合触媒の添加量が0.0001質量%以上であると、予備重合反応が好適に進行することから好ましい。一方、予備重合触媒の添加量が10質量%以下であると、耐酸化性が高くなることから好ましい。
 [重合触媒]
 一実施形態において、組成物は重合触媒をさらに含んでいてもよい。重合触媒を含むことで、組成物を好適に重合させて光学材料を製造することができる。
 重合触媒としては、特に制限されないが、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ化系合物、アルデヒドとアンモニア系化合物の縮合物、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩類、酸性リン酸エステル類等が挙げられる。これらのうち、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類であることが好ましい。なお、これらの重合触媒は単独で用いても、2種以上を組み合わせて用いてもよい。
 重合触媒の添加量は、組成物総質量に対して、0.0001~10質量%であることが好ましく、0.01~3質量%であることがより好ましい。
 [重合調整剤]
 一実施形態において、組成物は重合調整剤をさらに含んでいてもよい。
 重合調整剤としては、特に制限されないが、長期周期律表における第13~16族のハロゲン化物等が挙げられる。これらのうちケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物であることが好ましく、アルキル基を有するゲルマニウム、スズ、アンチモンの塩化物であることがさらに好ましい。これらの重合調整剤は単独で用いても、2種以上を組み合わせて用いてもよい。
 重合調整剤の添加量は、組成物総質量に対して、0.0001~5.0質量%であることが好ましく、0.01~2質量%であることがより好ましい。
 [添加剤]
 一実施形態において、組成物は添加剤をさらに含んでいてもよい。添加剤としては、特に制限されないが、酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、密着改善剤、離型性改善剤、ラジカル重合開始剤等が挙げられる。これらの添加剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 添加剤の含有量は、組成物総質量に対して、0~10質量%であることが好ましく、0.5~10質量%であることがさらに好ましい。
 [組成物の組成]
 一実施形態において、組成物は、以下の組成を有する。すなわち、組成物は、組成物総量に対して、
 化合物(a):20~90質量%、好ましくは20~80質量%;
 1,2,3,5,6-ペンタチエパン(b):5~70質量%、好ましくは5~40質量%;
 化合物(c):0~50質量%、好ましくは0~40質量%; 
 ポリチオ―ル(d):0~10質量%、好ましくは0~5質量%;
 硫黄:0~25質量%、好ましくは0~20質量%;
 予備重合触媒:0~5質量%、好ましくは0~3質量%
 重合触媒:0~5質量%、好ましくは0.0001~3質量%;および
 重合調整剤:0~5質量%、好ましくは0.0001~3質量%; 
を含む。
 <組成物の製造方法>
 上述の組成物は、特に制限されず、公知の方法で製造することができる。具体的には、化合物(a)および1,2,3,5,6-ペンタチエパン(b)、並びに必要に応じて、化合物(c)、ポリチオール(d)、硫黄等を混合することで製造することができる。
 <予備硬化物>
 本発明の一形態によれば、予備硬化物が提供される。前記予備硬化物は、上述の組成物を予備重合してなる。予備硬化物とすることで、粘度上昇の速度低下が可能になる、光学材料の透明性が向上する、ハンドリングが容易になる等の観点から好ましい。なお、本明細書において、「予備硬化物」とは、粘度5,000mps以下の液体を意味し、化合物(a)、1,2,3,5,6-ペンタチエパン(b)、化合物(c)、ポリチオール(d)、硫黄、および重合性化合物の少なくとも1つが重合反応により形成した重合体、部分重合体、オリゴマー等を含む。なお、本明細書において、「粘度」は、下記の方法により測定された値を採用するものとする。
 [粘度測定方法]
 コーンプレート型粘度計DV2THA CP(Brookfield AMETEK社製)を用い、30℃における予備硬化物の粘度を測定した。
 <予備硬化物の製造方法>
 本発明の一形態によれば、予備硬化物の製造方法が提供される。前記予備硬化物の製造方法は、組成物を予備重合する予備重合工程を含む。
 [予備重合工程]
 予備重合工程は、組成物を予備重合する工程である。
 組成物は、上述したものが用いられる。前記組成物は、好ましくは予備重合触媒を含む。
 予備重合工程は、好ましくは予備重合後に続いて後述する重合工程を実施する観点から、モールド等の型に注型して行うことが好ましい。この際、注型前に0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することが、光学材料の品質を高める観点から好ましい。
 前記予備重合の温度は、-10~160℃であることが好ましく、0~100℃であることがより好ましく、20~80℃であることがさらに好ましい。
 前記予備重合の時間は、0.1~480分であることが好ましく、0.1~420分であることがより好ましく、0.1~360分であるであることがさらに好ましい。
 一実施形態において、予備重合は、好ましくは-10~160℃で0.1~480分、より好ましくは0~100℃で0.1~420分、さらに好ましくは20~80℃で0.1~360分行われる。
 予備重合は、常圧で行ってもよいし、加圧下で行ってもよいし、減圧下で行ってもよい。予備重合を減圧下で行う場合には、反応を促進する硫化水素が除去されるため、常圧で行う場合に比べると通常反応が穏和に進行する。なお、常圧で行う場合には、大気中で行ってもよいし、不活性ガス中で行ってもよい。
 予備重合工程において、予備重合の反応の進行度を検知することが好ましい。前記検知方法としては、特に制限されないが、液体クロマトグラフィー、粘度測定、比重測定、屈折率測定が挙げられる。これらのうち、簡便であることから、屈折率測定を行うことが好ましい。なお、これらの検知方法は、単独で用いても、2種以上を組み合わせて用いてもよい。
 予備重合の反応の進行度の検知は、インラインで行うことが好ましい。特に、予備重合を加圧下または減圧下で行う場合には、インラインで検知を行うことにより、測定サンプル取得のために加圧または減圧を解除する必要がないことからより好ましい。インラインで検知を行う場合、例えば、屈折率測定を行う場合、屈折率計の検出部を予備重合前の組成物および予備重合の反応液に浸漬させることで、反応の進行に伴う屈折率の上昇を検知することができ、反応の進行度を制御することができる。なお、屈折率等の温度により測定値が変化する検知方法の場合には、測定温度、屈折率、基準温度での屈折率等を多重回帰分析し、検出部の温度と屈折率との関係を事前に決定することが好ましい。具体的には、基準温度の屈折率へ自動的に変換可能な温度補正機能が付与された屈折率計を用いるのが好ましい。インライン型屈折率計としては発光ダイオードを光源としてプリズム反射光の角度をCCDセルで識別する方式等が挙げられる。
 <光学材料>
 本発明の一形態によれば、光学材料が提供される。前記光学材料は、上述の組成物または上述の予備硬化物を硬化してなる。すなわち、光学材料は、前記組成物または予備硬化物の硬化物である。
 本形態に係る光学材料は、高屈折率かつ耐熱性に優れる。
 具体的には、光学材料の屈折率は、1.74以上であることが好ましく、1.75以上であることがより好ましく、1.76以上であることがさらに好ましい。すなわち、上述の組成物は、得られる光学材料の屈折率が好ましくは1.74以上、より好ましくは1.75以上、さらに好ましくは1.76以上である。なお、「屈折率」の値は、実施例に記載の方法により測定される。
 また、光学材料は、軟化点がない、または軟化点が高いことから耐熱性に優れる。具体的には、光学材料は、光学材料を昇温した際に軟化点が存在しないか、あるいは軟化点が好ましくは50℃以上、より好ましくは55℃以上、さらに好ましくは60℃以上、特に好ましくは70℃以上、最も好ましくは75℃以上である。すなわち、上述の組成物は、得られる光学材料の軟化点は存在しないか、あるいは好ましくは55℃以上、さらに好ましくは60℃以上、特に好ましくは70℃以上、最も好ましくは75℃以上である。なお、本明細書において、「軟化点」は実施例に記載の方法により測定される。
 また、光学材料は、軟化が起こりにくいことから耐熱性に優れる。具体的には、光学材料のDTMAピーク値(DTg)は、1.0μm/℃以下であることが好ましく、0.5μm/℃以下であることがより好ましく、0.3μm/℃以下であることがさらに好ましい。DTMAピーク値(DTg)が低いほど、熱による軟化が起こりにくくなる傾向がある。すなわち、上述の組成物は、得られる光学材料のDTMAピーク値(DTg)が好ましくは1.0μm/℃以下、より好ましくは0.4μm/℃以下であり、さらに好ましくは0.3μm/℃以下である。なお、本明細書において、「DTMAピーク値(DTg)」はTMA(熱機械分析)によって得られるTMA曲線の温度微分曲線であるDTMAのピーク値を意味し、実施例の方法により測定される。
 本形態に係る光学材料は、高屈折率かつ耐熱性に優れることから、組成物に種々のコモノマーを配合し、かつ、その配合量を増加させることが可能であり、これにより広範な物性を持つ光学材料の設計が可能となる。
 <光学材料の製造方法>
 本発明の一形態によれば、光学材料の製造方法が提供される。前記製造方法は、上述の組成物または上述の予備硬化物を重合する重合工程を含む。
 [重合工程]
 重合工程は、上述の組成物または上述の予備硬化物を重合する工程である。
 重合工程は、通常、モールド等の型に組成物または予備硬化物を注型し、重合させることにより行われる。組成物を用いる場合には、注型前に0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することが、光学材料の品質を高める観点から好ましい。
 一実施形態において、重合工程は、重合温度まで昇温を行う工程、重合温度で保持する工程、降温を行う工程を含む。
 前記重合は多段階で行われてもよい。すなわち、重合温度を保持する工程は2以上を有していてもよい。一実施形態において、重合工程は、第1の重合温度まで昇温を行う工程、第1の重合温度で保持する工程、第2の重合温度まで昇温を行う工程、第2の重合温度で保持する工程、降温を行う工程を含む。この場合、第1の重合温度は第2の重合温度よりも低い。また、別の一実施形態において、重合工程は、第1の重合温度まで昇温を行う工程、第1の重合温度で保持する工程、第2の重合温度まで降温を行う工程、第2の重合温度で保持する工程、降温を行う工程を含む。この場合、第1の重合温度は第2の重合温度よりも高い。
 昇温を行う工程の昇温速度は0.1℃~100℃/hであることが好ましい。また、降温を行う工程の降温速度は0.1℃~100℃/hであることが好ましい。
 重合温度は、通常、-10℃~140℃であり、好ましくは0~140℃である。
 重合時間は、通常、1~100時間であり、好ましくは1~72時間である。なお、本明細書において「重合時間」とは、昇温を行う工程、降温を行う工程の時間を含めた時間を意味する。
 なお、重合後、得られた光学材料をアニール処理することが好ましい。アニール処理をすることで、光学材料の歪みを防止または抑制することができる。なお、アニール処理の温度は、50~150℃であることが好ましい。また、アニール処理の時間は、10分~5時間であることが好ましい。
 得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
 <光学材料の用途>
 上述の光学材料は、光学部材、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料の他、塗料や接着剤の材料等の各種用途に有用である。これらのうち、光学材料は、眼鏡レンズ、(デジタル)カメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ、LED用封止材、光学用接着剤、光伝送用接合材料、光ファイバー、プリズム、フィルター、回折格子、ウォッチガラス、表示装置用のカバーガラス等の透明ガラスやカバーガラス等の光学用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、情報記録基板、ディスプレイバックライト、導光板、ディスプレイ保護膜、反射防止フィルム、防曇フィルム等のコーティング剤(コーティング膜)等の表示デバイス用途等に好適に使用される。前記光学材料は、特に、光学レンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の用途に使用されることが好ましく、光学レンズに使用されることがより好ましい。すなわち、一実施形態において、上述の光学材料を含む、光学レンズが提供される。
 本発明に係る組成物から得られる光学レンズは、安定性、色相、透明性などに優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明の効果を奏する限りにおいて適宜実施形態を変更することができる。
 光学材料の分析・評価は以下の方法で行った。
 [光学材料の屈折率]
 デジタル精密屈折率計KPR-3000(株式会社島津製作所製)を用い、25℃におけるe線(546.1nm)の光学材料の屈折率を測定した。
 [光学材料の耐熱性評価]
 光学材料を厚さ3mmに切り出した。TMA(熱機械分析)装置であるTMA/SS7100(セイコーインスツルメンツ製)にて、針入モードで測定を行った。なお、針状圧子として0.5mmφのピンを用い、圧子先端に加わる荷重を50gとした。また、昇温速度は5℃/分とした。得られたTMA曲線の温度微分曲線であるDTMAのピーク温度、およびピーク値から、軟化点(Tg)、DTMAのピーク値(DTg)を算出した。なお、DTMAのピーク値(DTg)が小さいほど熱による軟化が起こりにくく耐熱性が高いと評価される。ピーク値が負、またはピークが無い場合は軟化点無しとした。
 耐熱性評価は、以下の基準(X)(Y)に基づき、以下のように評価した。
・基準(X):Tg≧55℃
・基準(Y):DTg≦1.0
 A:基準(X)および基準(Y)の双方を満たす
 B:基準(X)および基準(Y)の一方を満たす
 C:基準(X)および基準(Y)の双方を満たさない
 [合成例1:1,3,5-トリメルカプトベンゼン(以下、TMBと称する)の合成]
Figure JPOXMLDOC01-appb-C000009
 Beilstein Journal of Organic Chemistry, 8, 461-471, No. 53; 2012を参考に合成した。具体的には、以下の通りである。
 すなわち、温度計、滴下ロートを装着した四つ口フラスコを窒素置換した。その後、N-メチルピロリドン400g、および水酸化ナトリウム82.7g(2067mmol)を投入し、5℃で攪拌した。続いて、t-ブチルチオール186.4g(2067mmol)を滴下し、5℃で3時間攪拌した。更に、1,3,5-トリクロロベンゼン50.0g(275.56mmol)を加え、120℃に昇温し、24時間攪拌した。次いで、反応液を25℃まで冷却し、トルエン400gを加えた後に水400gで水洗を3回行い、溶媒を留去することで45.3g(132.3mmol)の1,3,5─トリス(t-ブチルチオ)ベンゼン(TTBB)の粗生成物を得た。
 得られたTTBBの粗生成物45.3g(132.3mmol)を、温度計を装着した三つ口フラスコに入れ、反応容器を窒素置換した。その後、トルエン436gを入れ20℃で攪拌した。続いて、塩化アルミニウム19.4g(145.4mmol)を加え、3時間攪拌した。20%硫酸225gを加えてトルエン層を3回水洗し、溶媒を留去することで16.1g(92.4mmol)のTMBの粗生成物を得た。
 得られたTMBの粗生成物をシリカゲルカラム精製することで、TMB1(TMB純度100%)の留分(留分1)、およびTMB2、TMB3を含む2つの留分(留分2および3)を得た。得られた結果を下記表1に示す。
 [合成例2:TMBの合成]
Figure JPOXMLDOC01-appb-C000010
 Bulletin de la Societe Chimique de France, (2), 302-8; 1987を参考に合成した。具体的には、以下の通りである。
 すなわち、温度計を装着した三つ口フラスコに、フロログルシノール30.0g(238mmol)とN,N-ジメチルホルムアミド375gとを加えた。その後、反応液を5℃まで冷却し、1,4-ジアザビシクロ[2.2.2]オクタン133.4g(1189mmol)とジメチルチオカルバモイルクロリド147.0g(1189mmol)を加え、24時間攪拌した。次いで、クロロホルム300gを加えた後に10%NaOH水溶液300gで洗浄を3回行い、溶媒を留去することで73.8g(190mmol)の1,3,5─トリス(ジメチルチオカルバモイル)ベンゼンの粗生成物を得た。
 得られた1,3,5─トリス(ジメチルチオカルバモイル)ベンゼンの粗生成物73.8gを、温度計を装着した三つ口フラスコに入れ、240℃で7時間攪拌した。その後、25℃まで冷却することで、73.8g(190mmol)の1,3,5─トリス(ジメチルカルバモイルチオ)ベンゼンの粗生成物を得た。
 得られた1,3,5─トリス(ジメチルカルバモイルチオ)ベンゼンの粗生成物73.8gを、温度計を装着した三つ口フラスコに入れた。次いで、ジエチレングリコール826g、水89.1g、および水酸化カリウム53.4g(952mmol)を入れ、95℃で10時間攪拌した。その後、25℃まで冷却し、20%硫酸370g及び、クロロホルム740gを加えた。有機層を3回水洗し、溶媒を留去することで15.9g(91mmol)のTMBの粗生成物を得た。
 得られたTMBの粗生成物をシリカゲルカラム精製することで、TMB1(TMB純度100%)の留分(TMB留分4)、およびTMB4、TMB5、TMB6を含む3つの留分(TMB留分5~7)を得た。得られた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
 [合成例3:エピスルフィド化合物の合成]
 温度計、滴下ロートを装着した四つ口フラスコに、TMB留分1を15.0g(86.1mmol)入れて反応容器を窒素置換した。その後、24%水酸化ナトリウム水溶液0.72gをメタノール59.4gに溶かした溶液およびトルエン65.0gを先の反応容器に加え、5℃まで冷却しながら撹拌した。次いで、撹拌しながらエピクロロヒドリン24.7g(266.8mmol)を液温5~15℃に保ちつつ滴下した。滴下終了後、更に3時間5℃で撹拌を行い、1,3,5-トリス(3―クロロ─2―ヒドロキシプロピルチオ)ベンゼンを得た。
 次いで、24%水酸化ナトリウム水溶液64.6g(387.3mmol)を液温5~15℃に保ちつつ滴下した。滴下終了後、液温を15℃とし17h熟成させた。有機層を水150gで3回洗浄後、溶媒を留去して1,3,5-トリス(β-エポキシプロピルチオ)ベンゼン29.0g(総収率98%)を得た。
 得られた1,3,5-トリス(β-エポキシプロピルチオ)ベンゼン29.0g(84.7mol)にトルエン145mL、メタノール145mL、無水酢酸1.56g(15.2mmol)、およびチオ尿素38.7g(508.0mmol)を加えて、20℃で24時間撹拌を行った。20%硫酸145mLを加えてトルエン層を3回水洗し、溶媒を留去することで23.1gの1,3,5-トリス(β-エピチオプロピルチオ)ベンゼン(以下、化合物1と称する)の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物1の純度100%の留分(a-1)および化合物2(1-メルカプト-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)、化合物3(1-(β-エポキシプロピルチオ)-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む2つの留分(a-2およびa-3)を得た。得られた結果を下記表2に示す。
 [合成例4:エピスルフィド化合物の合成]
 TMB留分1に代えてTMB留分2を用いたことを除いては合成例3と同様の方法で化合物1の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物1の
純度100%の留分(a-1)および化合物4(1-クロロ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む留分(a-4)を得た。得られた結果を下記表2に示す。
 [合成例5:エピスルフィド化合物の合成]
 TMB留分1に代えてTMB留分3を用いたことを除いては合成例3と同様の方法で化合物1の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物1(化合物1純度100%)の留分(a-1)および化合物5(1-t-ブチルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む留分(a-5)を得た。得られた結果を下記表2に示す。
 [合成例6:エピスルフィド化合物の合成]
 TMB留分1に代えてTMB留分5を用いたことを除いては合成例3と同様の方法で化合物1の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物1(化合物1純度100%)の留分(a-1)および化合物(1-ヒドロキシ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む留分(a-6)を得た。得られた結果を下記表2に示す。
 [合成例7:エピスルフィド化合物の合成]
 TMB留分1に代えてTMB留分6を用いたことを除いては合成例3と同様の方法で化合物1の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物の純度100%の留分(a-1)および化合物7(1-ジメチルチオカルバモイル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む留分(a-7)を得た。得られた結果を下記表2に示す。
 [合成例8:エピスルフィド化合物の合成]
 TMB留分1に代えてTMB留分7を用いたことを除いては合成例3と同様の方法で化合物1の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物1の純度100%の留分(a-1)および化合物8(1-ジメチルカルバモイルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン)を含む留分(a-8)を得た。得られた結果を下記表2に示す。
 [合成例9:エピスルフィド化合物の合成]
 TMB留分1に代えて1,3-ジメルカプトベンゼン(東京化成工業株式会社製)を用いたことを除いては合成例3と同様の方法で化合物9(1,3-ビス(β-エピチオプロピルチオ)ベンゼン)の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物9の純度100%の留分(a-9)を得た。得られた結果を下記表2に示す。
 [合成例10:エピスルフィド化合物の合成]
 TMB留分1に代えてビスムチオール(東京化成工業株式会社製)を用いたことを除いては、合成例3と同様の方法で化合物10(2,5-ビス(β-エピチオプロピルチオ)-1,3,4-チアジアゾール)の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物10(純度100%)の留分(a-10)を得た。得られた結果を下記表2に示す。
 [合成例11:エピスルフィド化合物の合成]
 TMB留分1に代えてチオシアヌル酸(東京化成工業株式会社製)を用いたことを除いては、合成例3と同様の方法で化合物11(2,4,6-トリス(β-エピチオプロピルチオ)─1,3,5-トリアジン)の粗生成物を得た。粗生成物をシリカゲルカラム精製することで、化合物11(純度100%)の留分(a-11)を得た。得られた結果を下記表2に示す。
 化合物-1:1,3,5-トリス(β-エピチオプロピルチオ)ベンゼン
 化合物-2:1-メルカプト-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-3:1-(β-エポキシプロピルチオ)-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-4:1-クロロ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-5:1-t-ブチルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-6:1-ヒドロキシ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-7:1-ジメチルチオカルバモイル-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-8:1-ジメチルカルバモイルチオ-3,5-ビス(β-エポチオプロピルチオ)ベンゼン
 化合物-9:1,3-ビス(β-エピチオプロピルチオ)ベンゼン
 化合物10:2,5-ビス(β-エピチオプロピルチオ)-1,3,4-チアジアゾール
 化合物11:2,4,6-トリス(β-エピチオプロピルチオ)─1,3,5-トリアジン
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-T000014
 [原料]
 1,2,3,5,6-ペンタチエパン(b)を準備した。
Figure JPOXMLDOC01-appb-C000015
 また、化合物(c)として、以下の化合物c-1~化合物c-3を準備した。
 c-1:ビス(β-エピチオプロピル)スルフィド
 c-2:ビス(β-エピチオプロピル)ジスルフィド
 c-3:テトラキス(β-エピチオプロピルチオメチル)メタン
Figure JPOXMLDOC01-appb-C000016
 さらに、ポリチオール(d)として、以下の化合物d-1~化合物d-3を準備した。
 d-1:ビス(2-メルカプトエチル)スルフィド
 d-2:4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン
 d-3:1,2,6,7-テトラメルカプト-4-チアへプタン
Figure JPOXMLDOC01-appb-C000017
 [実施例1]
 留分a-1 65質量部、1,2,3,5,6-ペンタチエパン(b)(以下、単に「ペンタチエパン(b)」と称する) 35質量部、重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.02質量部、および重合調整剤としてジ-n-ブチルスズジクロライド0.05質量部を60℃で混合しながら真空脱気を行うことで、組成物を製造した。
 [実施例2~22、比較例1~4]
 表3に示す組成に変更したことを除いては、実施例1と同様の方法で組成物を製造した。
 [評価]
 実施例1~22、比較例1~4で製造した組成物を60℃で5時間加熱し、100℃まで2時間かけて昇温させ、最後に100℃で1時間加熱して重合硬化させた。放冷後、120℃で30分アニール処理を行い、光学材料を製造した。
 製造した光学材料の屈折率および耐熱性評価の結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000018
 表3の結果からも明らかなように、実施例1~22の組成物を硬化してなる硬化物(光学材料)は、高屈折率かつ耐熱性に優れることが分かる。
 他方、比較例1および2では、従来使用される化合物c-1(ビス(β-エピチオプロピル)スルフィド)や、化合物c-3に1,2,3,5,6-ペンタチエパン(b)を添加した場合、屈折率は高くなるものの、耐熱性が不十分であった。
 また、ポリチオール(d)を添加した比較例3、ポリチオール(d)および硫黄を添加した比較例4においても耐熱性が不十分であった。
 

Claims (15)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    [上記式中、
     Arは、芳香環を示し、
    mは2~8の整数を示し、
     nは0~6の整数を示し、
     ただし、m+nが芳香環を構成する炭素数以下であり、
     Rは、それぞれ独立して、アルキルチオ基、エポキシアルキルチオ基、チオール基、ハロゲン基、ヒドロキシ基、ジアルキルチオカルバモイル基、またはジアルキルカルバモイルチオ基を示す。]
    で表される化合物(a)および1,2,3,5,6-ペンタチエパン(b)を含む、組成物。
  2.  mが、2または3である、請求項1に記載の組成物。
  3.  m+nが、2~6である、請求項1または2に記載の組成物。
  4.  前記化合物(a)の含有量が、組成物総質量に対して、20~80質量%である、請求項1~3のいずれか1項に記載の組成物。
  5.  前記1,2,3,5,6-ペンタチエパン(b)の含有量が、組成物総質量に対して、5~40質量%である、請求項1~4のいずれか1項に記載の組成物。
  6.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    [上記式中、
     pは0~4の整数を示し、
     qは0~2の整数を示す]
    で表される化合物(c)をさらに含む、請求項1~5のいずれか1項に記載の組成物。
  7.  前記化合物(c)の含有量が、組成物総質量に対して、5~40質量%である、請求項6に記載の組成物。
  8.  ポリチオ―ル(d)をさらに含む、請求項1~7のいずれか1項に記載の組成物。
  9.  前記ポリチオール(d)が、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、およびチイランメタンチオールからなる群から選択される少なくとも1つを含む、請求項8に記載の組成物。
  10.  硫黄をさらに含む、請求項1~9のいずれか1項に記載の組成物。
  11.  予備重合触媒をさらに含む、請求項1~10のいずれか1項に記載の組成物。
  12.  前記予備重合触媒が、2-メルカプト-1-メチルイミダゾール、2-メチル-N-イミダゾール、および1,2,2,6,6-ペンタメチルピペリジルメタクリレ-トからなる群から選択される少なくとも1つを含む、請求項11に記載の組成物。
  13.  請求項1~12のいずれか1項に記載の組成物を予備重合してなる、予備硬化物。
  14.  請求項1~12のいずれか1項に記載の組成物または請求項13に記載の予備硬化物を硬化してなる、光学材料。
  15.  請求項14に記載の光学材料を含む、光学レンズ。
     
PCT/JP2021/033315 2020-10-19 2021-09-10 組成物並びにこれを用いた光学材料およびレンズ WO2022085330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/030,847 US20230374191A1 (en) 2020-10-19 2021-09-10 Composition, and optical material and lens using same
EP21882471.2A EP4206187A4 (en) 2020-10-19 2021-09-10 COMPOSITION, AND OPTICAL MATERIAL AS WELL AS LENS USING THIS COMPOSITION
KR1020237005046A KR20230088885A (ko) 2020-10-19 2021-09-10 조성물 그리고 이것을 이용한 광학재료 및 렌즈
CN202180053277.9A CN115989217A (zh) 2020-10-19 2021-09-10 组合物以及使用它的光学材料和透镜
JP2022557278A JPWO2022085330A1 (ja) 2020-10-19 2021-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-175427 2020-10-19
JP2020175427 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022085330A1 true WO2022085330A1 (ja) 2022-04-28

Family

ID=81289791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033315 WO2022085330A1 (ja) 2020-10-19 2021-09-10 組成物並びにこれを用いた光学材料およびレンズ

Country Status (6)

Country Link
US (1) US20230374191A1 (ja)
EP (1) EP4206187A4 (ja)
JP (1) JPWO2022085330A1 (ja)
KR (1) KR20230088885A (ja)
CN (1) CN115989217A (ja)
WO (1) WO2022085330A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048631A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 化合物及びその製造方法
WO2024048632A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 化合物及びその製造方法
WO2024048633A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 組成物、硬化物、表示装置、及び固体撮像素子
WO2024048634A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 組成物、硬化物、表示装置、及び固体撮像素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4230616A4 (en) * 2020-10-19 2024-04-24 Mitsubishi Gas Chemical Co COMPOSITION, AND OPTICAL MATERIAL AS WELL AS LENS USING THIS COMPOSITION

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255781A (ja) * 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2001151888A (ja) * 1999-11-22 2001-06-05 Nippon Steel Chem Co Ltd 光学材料用樹脂組成物
JP2002097223A (ja) * 2000-09-22 2002-04-02 Mitsui Chemicals Inc 含硫(メタ)アクリル酸チオエステル化合物およびその用途
JP2002194083A (ja) 1998-03-13 2002-07-10 Mitsui Chemicals Inc 重合性組成物
JP2006089598A (ja) * 2004-09-24 2006-04-06 Hoya Corp 光学製品
JP2012021080A (ja) * 2010-07-14 2012-02-02 Sumitomo Seika Chem Co Ltd 硬化性組成物及び光学材料
JP2015069087A (ja) * 2013-09-30 2015-04-13 三菱瓦斯化学株式会社 高屈折率樹脂製光学レンズの製造方法
WO2015098718A1 (ja) * 2013-12-26 2015-07-02 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法
WO2018150950A1 (ja) * 2017-02-17 2018-08-23 三菱瓦斯化学株式会社 光学材料用組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210358A (ja) * 2018-06-04 2019-12-12 三菱瓦斯化学株式会社 硬化性組成物及び光学材料
TWI799606B (zh) * 2018-07-24 2023-04-21 日商三菱瓦斯化學股份有限公司 環硫化合物及光學材料用組成物
EP4230616A4 (en) * 2020-10-19 2024-04-24 Mitsubishi Gas Chemical Co COMPOSITION, AND OPTICAL MATERIAL AS WELL AS LENS USING THIS COMPOSITION

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255781A (ja) * 1996-01-17 1997-09-30 Mitsubishi Gas Chem Co Inc 新規なエピスルフィド化合物
JP2002194083A (ja) 1998-03-13 2002-07-10 Mitsui Chemicals Inc 重合性組成物
JP2001151888A (ja) * 1999-11-22 2001-06-05 Nippon Steel Chem Co Ltd 光学材料用樹脂組成物
JP2002097223A (ja) * 2000-09-22 2002-04-02 Mitsui Chemicals Inc 含硫(メタ)アクリル酸チオエステル化合物およびその用途
JP2006089598A (ja) * 2004-09-24 2006-04-06 Hoya Corp 光学製品
JP2012021080A (ja) * 2010-07-14 2012-02-02 Sumitomo Seika Chem Co Ltd 硬化性組成物及び光学材料
JP2015069087A (ja) * 2013-09-30 2015-04-13 三菱瓦斯化学株式会社 高屈折率樹脂製光学レンズの製造方法
WO2015098718A1 (ja) * 2013-12-26 2015-07-02 三菱瓦斯化学株式会社 光学材料用組成物及びその製造方法
WO2018150950A1 (ja) * 2017-02-17 2018-08-23 三菱瓦斯化学株式会社 光学材料用組成物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BEILSTEIN, JOURNAL OF ORGANIC CHEMISTRY, vol. 8, no. 53, 2012, pages 461 - 471
BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, no. 2, 1987, pages 302 - 8
F. FEHER ET AL., ANGEW. CHEM. INT. ED., vol. 7, 1968, pages 301
G. W. KUTNEY ET AL., CAN. J. CHEM, vol. 58, 1980, pages 1233
N. TAKEDA ET AL., BULL. CHEM. SOC. JPN., vol. 68, 1995, pages 2757
See also references of EP4206187A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048631A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 化合物及びその製造方法
WO2024048632A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 化合物及びその製造方法
WO2024048633A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 組成物、硬化物、表示装置、及び固体撮像素子
WO2024048634A1 (ja) * 2022-09-02 2024-03-07 住友化学株式会社 組成物、硬化物、表示装置、及び固体撮像素子

Also Published As

Publication number Publication date
CN115989217A (zh) 2023-04-18
US20230374191A1 (en) 2023-11-23
JPWO2022085330A1 (ja) 2022-04-28
KR20230088885A (ko) 2023-06-20
EP4206187A4 (en) 2023-12-27
EP4206187A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2022085330A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
JP7077965B2 (ja) 光学材料用組成物
EP2161296B1 (en) Polymerisable compound und use thereof
US10508173B2 (en) Composition for optical material and optical material using the same
JP5150624B2 (ja) プラスチックレンズの製造方法
WO2022085329A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
JP5716878B1 (ja) 光学材料用組成物及びそれを用いた光学材料
WO2022137715A1 (ja) 組成物並びにこれを用いた光学材料およびレンズ
JPWO2020031815A1 (ja) 新規アリル化合物および光学材料用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557278

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021882471

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE