WO2019088272A1 - 臨床的指標と関連性のある細菌群の情報を利用した口腔内検査方法 - Google Patents
臨床的指標と関連性のある細菌群の情報を利用した口腔内検査方法 Download PDFInfo
- Publication number
- WO2019088272A1 WO2019088272A1 PCT/JP2018/040917 JP2018040917W WO2019088272A1 WO 2019088272 A1 WO2019088272 A1 WO 2019088272A1 JP 2018040917 W JP2018040917 W JP 2018040917W WO 2019088272 A1 WO2019088272 A1 WO 2019088272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bacteria
- value
- periodontal
- bacterial
- periodontal pocket
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to an intraoral examination method and the like for determining the state of periodontal disease by using information of bacteria groups associated with clinical indexes.
- Periodontal disease has the aspect of bacterial infection that involves multiple bacteria, and the aspect of multifactorial disease that progresses due to the causative bacteria (bacterial factor), immunity (host factor) and lifestyle, and its onset Periodontal pathogenic bacteria are involved.
- T-RFLP method recognizes bacterial flora from information of fragmented DNA by recovering genomic DNA of bacterial flora, treating with restriction enzyme, and using pattern similarity as an index (Patent Document 5) ). According to this report, patterns derived from bacterial flora that are correlated with dental clinical indexes have been identified. However, information on the specific bacterial count was not included, and no further interpretation was reached.
- the T-RFLP method can express the composition of the bacterial community as a peak pattern and can easily perform comparative analysis of multiple samples, but on the other hand, the bacterial community composition because each peak is not necessarily derived from one bacterial species. Understanding of is difficult (Non-Patent Document 4).
- Patent Document 9 provides a method for testing salivary flora by randomly determining the nucleotide sequence of the 16S ribosomal RNA gene of the bacterial flora in a saliva sample collected from a human subject.
- a method for detecting inflammatory bowel disease by saliva is proposed, and as a result of UniFrac analysis, a healthy subject group and a CD patient group can be distinguished, while t test is repeated for each individual bacteria. Test of significance, and the process of analysis remains questionable.
- Non-patent Documents 6 to 8 there is a report using a universal primer in which a highly conserved region is selected among each microorganism.
- Patent Documents 5 to 8 there is a report that 20 kinds of bacteria in the oral cavity were detected by setting one set of universal primers in the PCR step of sample preparation.
- periodontal disease is a disease caused by a plurality of bacteria
- measurement of limited types of malignant bacteria can provide information equivalent to that obtained by periodontal pocket measurement.
- judgment index of the treatment effect of periodontal disease it is basically based on the clinical information acquired based on the experience of the dentist, and in most cases, the information on the bacterial flora has not been confirmed.
- Non-patent Document 10 A method of combined measurement of serum antibody titer against P. gingivalis and P. gingivalis has been studied (Non-patent Document 10). Furthermore, oral bacteriological examination is also expected as an indicator of prophecy (Non-patent document 11), for example, Haffajee et al. About the number of bacteria of A. actinomycetemcomitans and P. gingivalis and the risk of causing attachment loss of 2 mm or more. Although the relevance has been reported (Non-patent Document 12), as described above, the test bacterial species is limited, and has not been put into practical use as a prediction index.
- Patent No. 4252812 JP 2008-206516 A Unexamined-Japanese-Patent No. 2004-229537 International Publication No. 2002/010444 JP, 2011-193810, A WO 03/106676 Japanese Patent Publication No. 2004-504069 JP, 2007-068431, A Patent No. 5863035
- the object of the present invention is to provide a method and the like for judging the condition of periodontal disease and the treatment effect of periodontal disease by detecting and quantifying bacteria in the oral cavity in detail by a simple method. Do.
- the present inventor determines the state of periodontal disease by determining the proportion of bacteria (groups) among bacteria present in an oral cavity sample. It can be found that the present invention has been completed. In addition, the present inventors collectively measure the main oral bacteria group (including periodontitis-related bacteria group and resident bacteria group) in the plaque, and the periodontal disease-associated bacteria group and the resident bacteria group By making a judgment model of the disease condition deterioration based on the existence ratio, it was found that the disease condition of the same periodontal pocket value can be further subdivided and classified. Furthermore, it has been found that the therapeutic effect of periodontal disease, the progress of periodontal disease, and the like can be determined by determining the proportion of specific bacteria (groups) present in an oral cavity sample. It came to complete.
- the present invention is as follows. [1] Measure the signal intensity of the nucleic acid derived from the intraoral bacteria group present in the intraoral sample, calculate the existence ratio of the bacterial group from the measured value of the signal intensity, and use the calculated value as an index for the tooth An intraoral examination method for determining the condition of The proportion of bacterial groups present is a correlation between the amount of bacteria of bacterial species increasing with the increase of the periodontal pocket value and the amount of bacterial species decreasing with the increase of the periodontal pocket value. . [2] The method according to [1], wherein the state of periodontal disease is determined by comparing the obtained calculated value with a cutoff value of the proportion of presence of bacteria.
- the proportion of the bacteria group is the ratio of the amount of bacteria of the bacterial species increasing with the increase of the value of the periodontal pocket to the amount of bacterial of the bacterial species decreasing with the increase of the value of the periodontal pocket , [1] or [2].
- the cut-off value is calculated from the calculated value of the presence ratio of the bacteria group from the measurement value of the signal intensity of the nucleic acid derived from the intraoral bacteria group present in the intraoral sample for reference development. The method according to [2] or [3], which is determined based on an ROC curve.
- the abundance ratio of the above-mentioned bacteria group is a correlation between the amount of bacteria of Fusobacterium nucleatum species and the amount of bacteria of bacteria species which decreases with the increase of the value of periodontal pocket, of [1] to [4]
- the following bacterial species are increasing in the number of bacterial species, which are increasing in the number of bacterial species; , Prevotella intermedia, Streptococcus constellatus, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Filifactor alocis, Porphyromonas endodontalis
- Bacterial species that decrease with the increase in the number of periodontal pockets are Prevotella nigrescens, Campylobacter concisus, Capnocytophaga concingus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophus sproda, Streptococcus intermedius cit Veillonella parvula, Actinomyces naeslundii II, Selenomonas noxia, Prevotella denticola, Prevotella melaninogenica, Gemella sanguinis, Eubacterium sulci, Corynebacterium matruchotii, Rothia mucilaginosa, Porphyromonas catoniae, Solobacterium moorei, Neisseria flavescens, Prevotella loescheii, Megasphaera micronuciformis, Actinomyces graevenitzii, Veillonella atypica, Prevotella
- the Fusobacterium nucleatum species is composed of Fusobacterium nucleatum subsp. Vincentii, Fusobacterium nucleatum subsp. Polymorphum, Fusobacterium nucleatum subsp.
- the relationship between the proportion of bacterial groups and the progress of periodontal disease is the bacterial species belonging to the genus Fusobacterium, which increases as the value of periodontal pockets increases, and the number of bacteria that decreases as the values of periodontal pockets increase.
- the method according to [10] or [11] which is carried out by calculating the ratio to a bacterial species that increases as the species and / or periodontal pocket value decreases.
- Bacterial species belonging to the genus Fusobacterium which increase with the increase of the values of periodontal pockets, and bacteria species, which decrease with the increase of values of periodontal pockets, and / or bacteria increase with the decrease of values of periodontal pockets Ratio to the species [14]
- the bacterial species belonging to the genus Fusobacterium is Fusobacterium nucleatum subsp. Vincentii, Fusobacterium nucleatum subsp. Polymorphum, Fusobacterium nucleatum subsp. Animalis, Fusobacterium nucleatum subiuchilium and The method according to [12] or [13].
- Bacterial species that increase with increasing numbers of periodontal pockets are Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Fusobacteri subc. subsp. animalis, Fusobacterium nucleatum subsp.
- nucleatum nucleatum
- Fusobacterium periodonticum Prevotella intermedia
- Streptococcus constellatus Aggregatibacter actinomycetemcomitans
- bacterial species that increase with decreasing periodontal value are: Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sputtera, Streptococcus gorodoni, Streptococcus intermedius, Streptococcus, The method according to any one of [11] to [14], which is at least one member selected from the group consisting of ces odontolyticus, Veillonella parvula, Actinomyces naeslundii II and Selenomonas noxia.
- Fusobacterium nucleatum subsp. Vincentii Fusobacterium nucleatum subsp. Polymorphum, Fusobacterium nucleatum subsp. Animalis, Fusobacterium nucleatum subsp.
- Bacterial species that increase with increasing numbers of pockets and / or bacterial species that decreases with decreasing numbers of periodontal pockets include Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sproda, Streptococcus gordonii, Streptococcus, The method according to any one of [12] to [15], which is at least one member selected from the group consisting of Streptococcus mitis, Streptococcus mitis bv 2, Actinomyces odontolyticus, Veillonella parvula, Actinomyces naeslundii II and Selenomonas noxia.
- a large number of oral bacteria can be detected and quantified at once, and the state of periodontitis can be subdivided as compared with the conventional method. It can be determined. Further, according to the present invention, the condition of periodontal disease, the therapeutic effect of periodontal disease, and the progress of periodontal disease can be determined, and the condition of the same periodontal pocket size can be further subdivided and classified. Moreover, even if there is no numerical value of the periodontal pocket, the therapeutic effect and the medical condition stability can be determined. Furthermore, it is also possible to improve the performance of the judgment model by replacing the bacterial species used for the judgment in the future.
- DNA chip measurement data (SN ratio) of subgingival plaque collected from subjects of 20's to 70's men and women before periodontal disease treatment: longitudinal axis and depth of periodontal pocket (Pd): lateral It is a scatter diagram of an axis. Graphs were individually described for 28 types of bacteria loaded on the DNA chip. Bacterial group balance index (15 positive correlation bacteria group, 13 negative correlation bacteria group: vertical axis) and periodontal pocket depth (Pd): horizontal axis scatter plot. The figure shows data for 220 people.
- Balance index of bacteria group with periodontal pocket 1 to 3 mm (defined as non-disease group) and periodontal pocket 5 mm or more (defined as disease group) (log 10 conversion): a histogram of the vertical axis (frequency: horizontal axis) ). It is a figure which shows the result of ROC analysis of a balance parameter
- Bacterial group balance index two “progress indicator bacteria” 2 types, “negative correlation bacteria” group 13): vertical axis and periodontal pocket depth (Pd): horizontal scatter plot.
- the figure shows data for 220 people.
- Balance index of bacteria group with periodontal pocket 1 to 3 mm (defined as non-disease group) and periodontal pocket 5 mm or more (defined as disease group) (log 10 conversion): a histogram of the vertical axis (frequency: horizontal axis) ).
- index index
- index index
- the axis from the center to the outside is the balance index.
- the present invention measures the signal intensity of the nucleic acid derived from the intraoral bacteria group present in the intraoral sample, calculates the existence ratio of the bacterial group from the measured value of the signal intensity, and uses the calculated value as an index. It is an intraoral examination method which determines the state of periodontal disease.
- the presence ratio of the bacteria group is a correlation between the amount of bacteria of the bacterial species increasing with the increase of the value of the periodontal pocket and the amount of bacterial species of the bacterial species decreasing with the increase of the periodontal pocket value. It is a relationship.
- a method of measuring the number of bacteria in the intraoral sample will be mainly described about a method using a DNA chip. .
- the detection, measurement and quantification of bacteria in the sample in the oral cavity may be carried out by methods other than the method using a DNA chip, for example, invader method, real time PCR method, invader PCR method, next generation sequencing method and the like.
- a DNA chip when detecting bacteria in the oral cavity from an oral sample collected from a subject, a DNA chip can be used.
- the following probes (a) and at least one of the probes (b) and (c) can be mounted.
- a DNA chip is a generic term for a substrate on which a probe is disposed.
- the names of the DNA chip, the DNA microarray, and the like are not distinguished from one another, but are synonymous.
- the oral bacteria to be measured include, but not limited to, Porphyromonas, Tannerella, Treponema, Prevotella, Campylobacter, Fusobacterium, Streptococcus spp., Aggregatibacter spp., Capnocytophaga spp., Eikenella spp., Ekinellaces spp., Actinomyces spp., Veillonella spp., Selenomonas spp., Pseudomonas spp., Haemophilus spp., Klebsiella spp.
- Bacteria belonging to the genus Sorobacterium, Rothia, Peptostreptococcus, Gemella, Corynebacterium, Neisseria, Granulicatella, Megasphaera and SR1 can be used as the target bacterial species to be detected.
- Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Fusobacterium nucleatum subsp. polymorphum, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp.
- Prevotella loescheii Prevotella histicola, Solobacterium moorei, Prevotella melaninogenica, Selenomonas sproda, Rothia dentocariosa, Rothia mucilaginosa, Veillonella rogosae, Peptostreptococcus stomatis, Prevotella denticola, Porphyromonas endodontalis, Streptococcus salivarius, Actinomyces graevenitzii, Treponema medium, Treponema socranskii, Gemella sanguinis, Porphyromonas Fine materials such as catoniae, Corynebacterium matruchotii, Eubacterium saphenum, Neisseria flavescens, Granulicatella adiacens, Eubacterium sulci, Megasphaera micronuciformis, Prevotella shahii, SR1 sp. OT 345
- the numerical value of the periodontal pocket means the numerical value of the depth (Pd) of the periodontal pocket.
- the periodontal pocket depth (Pd) indicates the distance from the gingival edge to the tip of the probe when the periodontal probe is inserted into the pocket. Digitize in 1 mm units.
- the term "periodontal probe” as used herein means a pocket measurement tool (helio probe).
- the pattern of increase or decrease such as bacterial groups in which As simpler examples, there are a "bacterial species increasing with the increase of the periodontal pocket” and a "bacterial species decreasing with the increase of the periodontal pocket”.
- Bacterial species that increase with increasing periodontal value and bacterial species that decreases with increasing periodontal pocket value are tools that can measure the amount of bacteria (or a measured amount that is proportional to the amount of bacteria such as the SN ratio) It can confirm by.
- the tool is not particularly limited, and for example, a DNA chip can be used.
- the intraoral sample is measured with a DNA chip, and then the correlation coefficient between the numerical value of the periodontal pocket and the measured amount such as the amount of bacteria or SN ratio of each bacterium is calculated. It can be classified and specified as a bacteria group whose number is a positive value and a bacteria group whose number is a negative value.
- the absolute value of the correlation coefficient is preferably 0.02 or more when the number of measurements is 40 or more, more preferably 0.1 or more, and 0.2 or more. More preferably, it is particularly preferably 0.4 or more, and most preferably 0.6 or more.
- the data after experimental error correction is also used for classification of bacterial groups.
- Bacterial species that increase with the increase of the periodontal pocket are bacteria that increase with the aggravation of periodontal disease.
- Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, etc. are known and used in the existing periodontitis bacteria test.
- the bacterial species which increase with the increase of the periodontal pocket value are Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Fusobacterium subsp. Vincentii.
- the "progress indicator bacteria” includes Fusobacterium nucleatum species.
- the Fusobacterium nucleatum species for example, the group consisting of Fusobacterium nucleatum subsp. Vincentii, Fusobacterium nucleatum subsp. Polymorphum, Fusobacterium nucleatum subsp. Animalis and Fusobacterium nucleatum subsp. Nucleatum is selected.
- bacteria groups that increase when the value of the periodontal pocket increases may be described as "bad bacteria” below.
- “bad bacteria” include bacterial species other than Fusobacterium nucleatum species among bacterial species that increase with the increase in the value of periodontal pocket.
- Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Fusobacterium periodonticum, Prevotella intermedia, Streptococcus constellatus, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Filifactor alocis, Porphyromonas endodontalis, Eubacterium nodatum, Eubacterium saphenum, Treponema medium, And at least one selected from the group consisting of Selenomonas spumblea.
- Some types of bacteria that belong to Streptococcus, Actinomyces, Veillonella, etc., as bacterial species that decrease with increasing periodontal pocket values (hereinafter sometimes referred to as "negatively correlated bacteria").
- negatively correlated bacteria There is a seed. These are: (i) bacteria that decrease with increasing periodontal value (ie, deterioration of periodontal disease), and (ii) bacterial species that increase with decreasing periodontal pocket value (amelioration of periodontal disease) Or both of the above (i) and (ii).
- a bacterial species group that decreases as the value of the periodontal pocket increases may be described as "good bacteria”.
- Bacterial species which decrease with the increase of the periodontal pocket number and / or bacterial species which increase with the decrease of the periodontal pocket number include Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sproda, Streptococcus gordonii, The serget of the activity of the body of the arm, the arm of the arm, the arm, the arm, the arm, the arm, the arm, the arm, the leg of the arm.
- Prevotella loescheii Megasphaera micronuciformis, Actinomyces graevenitzii, Veillonella atypica, Prevotella pallens, Prevotella shahii, Porphyromonas pasteri, Veillonella gogosae, Allopevotella spp. and at least one member selected from the group consisting of C. ulicatella adiacens, Streptococcus salivarius, Haemophilus parainfluenzae, and Streptococcus parasanguinis.
- the oligo DNA that can be used as the probe (a) has a bacteria-specific region (a base sequence depending on the type of bacteria) of the base sequences of nucleic acids derived from oral bacteria It can be hybridized with the base sequence of the changing region).
- the nucleic acid may be any of DNA and RNA including chromosomal DNA, plasmid DNA and the like, and is not limited, but is preferably chromosomal DNA.
- the oligonucleotide used as a probe in the present invention is capable of hybridizing to the nucleotide sequence of the 16S rRNA gene in the chromosomal DNA of the bacteria in the oral cavity.
- the probe that can be used in the present invention it is preferable to select a region that is a specific nucleotide sequence specific to various kinds of oral bacteria to be detected and design the nucleotide sequence of that region.
- Tm melting temperatures
- Specific base sequences corresponding to each species of oral cavity bacteria can be found, for example, by means of multiple alignment, designing probes in different regions between species, and the like.
- an algorithm for alignment There is no particular limitation on an algorithm for alignment, but as a more specific analysis program, for example, a program such as Clustal X 1.8 can be used. Parameters for alignment may be executed in the default state of each program, but can be appropriately adjusted according to the type of program and the like.
- the specificity of the probe may be a batch detection of bacteria of the same genus based on the specificity of the genus level, or a specificity detectable at the individual species level. Appropriate judgment can be made according to the purpose of bacteria detection. Depending on the level of specificity of detection, the bacterial species that can be detected can be limited to one particular type, or can be taken as a sum (total) of genus levels.
- the total mass index probe is a probe for capturing all bacteria in the sample, which has been amplified by a specific primer pair.
- the non-detection target bacteria can be understood as the sum (sum) of bacteria whose existence and type are known but may not be detected, and bacteria whose existence and type are unknown.
- the total amount index probe is preferably a probe that hybridizes to a nucleic acid derived from bacteria contained in the sample, specifically, a plurality of bacteria to be detected among base sequences amplified by the specific primer pair. It is a probe that hybridizes to a common base sequence.
- the total amount index represents the total amount of amplification products specific to individual species
- the amount of signal generally increases, so the target signal intensity may exceed the range of detectable signal intensities. .
- the Tm value of the probe is lowered. Specifically, methods for reducing the GC content and shortening the probe sequence length itself are conceivable.
- nucleic acid that acts competitively to the hybridization between the amplified nucleic acid and the total amount index probe at the time of hybridization.
- a nucleic acid for example, a nucleic acid having the same sequence as that of the total amount index probe, or a nucleic acid having all or partially the complementary sequence of the total amount index probe, etc. can be mentioned.
- the absolute amount index probe is a probe that hybridizes only to the absolute amount index nucleic acid.
- the absolute amount index is an index indicating the amount of nucleic acid to be added to a sample in a predetermined amount before amplification reaction or hybridization reaction.
- the absolute amount index is a nucleic acid for which an amplification reaction is surely performed if a normal amplification reaction is performed, and serves as a so-called positive control. Therefore, if a probe specific to the absolute amount index is mounted on the DNA chip, it can be confirmed from the detection result whether the amplification reaction, hybridization, etc. were properly carried out.
- the correction coefficient can be calculated by comparing the signal intensities of the absolute amount index when amplification efficiency and hybridization efficiency slightly increase and decrease. When comparing data of a plurality of DNA chips, the signal intensities after correction by the correction coefficient may be compared.
- probes (a), (b) and (c) can be exemplified in Table 1.
- Examples of probes specific to each of the bacteria are shown in Table 1. (SEQ ID NOS: 1-33).
- An example of a total mass index probe is shown in SEQ ID NO: 34.
- An example of an absolute amount index probe is shown in SEQ ID NO: 35.
- An example of an absolute quantity index is shown in SEQ ID NO: 36.
- variable region of interest include, but are not limited to, 16S rRNA genes possessed by all bacteria among genome sequences. Of the 16S rRNA genes, it is desirable to target one or more of the full-length or variable regions V1-V9. More preferably, it is desirable to target variable regions V1-V6. More preferably, it is desirable to target variable region V3-V6. It is known that the variable region of the 16S rRNA gene consists of the V1-V9 region, and that region is also specified.
- the designed universal primer sequence is input to Probe Match in the RDP database.
- the number of perfect matches in the Total search is obtained. The closer the number of perfect matches is to Total Search, the more comprehensive it is.
- the strain may select “type”. Also, Sourse may select "Isolates”.
- X integers of 1 to 4 are randomly selected X (X) Is an arbitrary number, and it is randomly generated by connecting them into X-digit numbers consisting only of 1 to 4 numbers, and substituting any of A, G, C, and T with 1 to 4 numbers.
- An array can be obtained. For example, by replacing 1 with A, 2 with T, 3 with C and 4 with G, it is possible to obtain a large number of ATGC X bases.
- sequences in which the sum of G and T is equal to the sum of A and T are extracted, and the extracted sequences are blasted against a database such as NCBI GenBank to obtain nucleic acids derived from organisms. On the other hand, those with few similar sequences are selected.
- the length of the base amplified by the bacteria to be detected and the length of the amplified base of the absolute amount index do not have a large difference.
- the amplification product of the bacteria to be detected is about 500 bp
- the amplification product of the absolute amount index is preferably about 300 to 1000 bp.
- the amplification product derived from the absolute amount index is designed after being designed to be an amplification product of a length different from that of the detection target bacteria. It is also possible to detect at a position different from the band of and confirm the success or failure of the amplification reaction before hybridization.
- a multiplex method using two or more primer pairs can be applied as needed.
- a technique in which a pair of primers competes with a common pair can also be applied as necessary.
- primer sequences are shown in Table 2. It is possible to use a primer pair for bacterial amplification (SEQ ID NO: 37, 38) and a primer pair for absolute amount index (SEQ ID NO: 39, 40). Other primers shown in Table 3 can also be used.
- the length of the probe is not limited, and is preferably 10 bases or more, more preferably 16 to 50 bases, and still more preferably 18 to 35 bases. If the length of the probe is appropriate (if it is within the above range), nonspecific hybridization (mismatch) can be suppressed and used for specific detection. Further, when designing a probe used in the present invention, it is preferable to confirm Tm.
- Tm means the temperature at which 50% of any nucleic acid strand hybridizes to its complementary strand, and the temperature of hybridization is sufficient for the template DNA or RNA and the probe to form a double strand for hybridization. Need to be optimized. On the other hand, it is desirable that the temperature be as high as possible, since nonspecific reactions are likely to occur if the temperature is lowered too much.
- the Tm of the nucleic acid fragment to be designed is an important factor in carrying out the hybridization.
- Known probe design software can be used to confirm Tm, and examples of software that can be used in the present invention include Probe Quest (registered trademark; Dynacom). Tm confirmation can also be performed by self-calculation without using software. In that case, it is possible to use a calculation formula based on the nearest neighbor method, the wallance method, the GC% method or the like.
- the probe of the present invention is preferably, but not limited to, an average Tm of about 35-70 ° C. or 45-60 ° C.
- there are GC content etc. and the conditions are well known to those skilled in the art.
- the probe of the present invention may contain, for example, an additional sequence such as a tag sequence.
- a tag sequence for example, a spacer sequence such as "AAAAAA” can be mentioned as an example.
- the base sequence of the nucleic acid possessed by the oral bacterium to be detected does not have to be the base sequence itself in all cases, and a part of the base sequence is deleted, substituted, inserted, etc. It may be a mutation. Therefore, the nucleotide sequence of the nucleic acid to be detected is hybridized with a sequence complementary to the nucleotide sequence under stringent conditions, and a mutant gene having a function or activity derived from each nucleotide sequence is also targeted.
- the probe can also be designed based on the nucleotide sequence of such mutant gene.
- the probe to be designed includes the sequence of the aforementioned probe (a).
- it hybridizes with DNA consisting of complementary base sequences to these DNAs under stringent conditions, and can detect the base sequence of at least a part of the base sequences of nucleic acids derived from oral cavity bacteria
- Preferred are those containing DNA having a function.
- the nucleotide sequence of such DNA is preferably a nucleotide sequence having at least 60% or more homology to the probe (a), more preferably 80% or more, still more preferably 90% or more, more preferably Is 95% or more, particularly preferably 97% or more.
- stringency conditions are, for example, hybridization under conditions of 50 to 60 ° C. in the case of tight conditions, and hybridization under conditions of 30 to 40 ° C. in the case of mild conditions.
- stringent conditions include, for example, “0.24 M Tris ⁇ HCl / 0.24 M NaCl / 0.05% Tween-20, 40 ° C.”, “0.24 M Tris ⁇ HCl / 0.
- the probe is added and kept at 50 ° C. for 1 hour or more to allow hybridization, and then, in 0.24 M Tris ⁇ HCl / 0.24 M NaCl / 0.05% Tween-20, at 50 ° C. for 20 minutes There is also a method of performing four washes of and finally one wash of 10 minutes at 50.degree. C. with 0.24 M Tris.HCl / 0.24 M NaCl. More stringent conditions can be set by raising the temperature during hybridization or washing. Those skilled in the art can set conditions in consideration of other conditions such as probe concentration, probe length and reaction time in addition to the conditions such as salt concentration and temperature of such buffer.
- the nucleotides constituting the probe used in the present invention may be either DNA and RNA or PNA, and may be a hybrid of two or more of DNA, RNA and PNA.
- they can be prepared by chemical synthesis using conventional oligonucleotide synthesis methods (purification is performed by HPLC etc.). It is also possible to use chemically modified ends of the above-mentioned nucleotides and intermediates.
- DNA chip for Oral Bacterial Gene Detection Used for Measurement of Amount of Bacteria in Oral Cavity
- a DNA chip can be used, and the DNA chip is any of the various oligos described in Section 1. above.
- a plurality of nucleotide probes are arranged on a support base.
- the base used as a support body the thing of any form, such as a flat plate (a glass plate, a resin board, a silicon plate etc.), a rod shape, a bead, can be used.
- predetermined probes can be fixed for each type at predetermined intervals on the flat plate (see, for example, Spotting method; Science 270, 467-470 (1995)).
- predetermined probes can be sequentially synthesized for each type at specific positions on a flat plate (see, for example, photolithography method; Science 251, 767-773 (1991)).
- Fiber type DNA chip can be preferably exemplified.
- This microarray can also be described as a type in which nucleic acids are immobilized on a through-hole substrate, and is also referred to as a so-called "through-hole type DNA chip" (see, for example, Japanese Patent No. 3510882).
- the method of fixing the probe to the support is not limited, and any binding mode may be used.
- the present invention is not limited to direct fixation to a support, and for example, the support may be previously coated with a polymer such as polylysine and the probe may be fixed to the treated support.
- the support may be previously coated with a polymer such as polylysine and the probe may be fixed to the treated support.
- a tubular body such as a hollow fiber as a support
- the fiber type DNA chip which is one form of a DNA chip is demonstrated in detail. This DNA chip can be produced, for example, through the following steps (i) to (iv).
- the material used for the hollow fiber is not limited, but, for example, described in JP-A 2004-163211, etc. Materials are preferably mentioned.
- the hollow fibers are three-dimensionally arranged so that the lengths in the longitudinal direction are the same (step (i)).
- an arrangement method for example, a method of arranging a plurality of hollow fibers in parallel at a predetermined interval on a sheet-like article such as an adhesive sheet and forming a sheet, and then winding the sheet in a spiral (Japanese Patent Laid-Open No. 11- No.
- a method of embedding in addition to a method of pouring a polyurethane resin, an epoxy resin or the like into a gap between fibers, a method of bonding fibers by heat fusion is preferably mentioned.
- the hollow portion of each hollow fiber is filled with a gel precursor polymerizable solution (gel forming solution) containing an oligonucleotide probe, and the polymerization reaction is carried out in the hollow portion (step (iii)) .
- the gel precursor polymerizable solution is a solution containing a reactive substance such as a gel-forming polymerizable monomer, and the solution is capable of becoming a gel-like product by polymerizing and crosslinking the monomer and the like.
- a monomer include acrylamide, dimethyl acrylamide, vinyl pyrrolidone, methylene bis acrylamide and the like.
- the solution may contain a polymerization initiator and the like.
- the block is cut and exfoliated in a direction (preferably, a direction perpendicular to) the longitudinal direction of the hollow fiber (step (iv)).
- the slice obtained in this manner can be used as a DNA chip.
- the thickness of the DNA chip is preferably about 0.01 mm to 1 mm.
- the cutting of the block body can be performed by, for example, a microtome and a laser.
- Preferred examples of the fiber-type DNA chip include a DNA chip (GenopalTM) manufactured by Mitsubishi Chemical Corporation.
- the probes are three-dimensionally arrayed in the gel, and it becomes possible to maintain the three-dimensional structure. Therefore, compared to a flat DNA chip in which a probe is bound to a slide glass coated on the surface, detection efficiency is increased, and it is possible to inspect with high sensitivity and high reproducibility.
- the number of types of probes arranged in the DNA chip is preferably 500 or less, preferably 250 or less, more preferably 100 or less per DNA chip. By limiting the number (types) of probes thus arranged to some extent, it is possible to detect the target intraoral bacteria with higher sensitivity.
- the types of probes are distinguished by the base sequence. Therefore, usually, even if the base sequence is different even if the probe is derived from the same gene, it is specified as another type.
- a method of detecting a gene of the bacterium for detecting bacteria in the oral cavity is, for example, a method comprising the following steps. (I) using the intraoral sample collected from the subject as a sample and extracting the nucleic acid in the sample (ii) contacting the extracted nucleic acid with the oligonucleotide probe of the present invention described above or the DNA chip of the present invention (iii ) Step of calculating SN ratio from signal intensity obtained from DNA chip, or step of calculating amount of bacteria
- Step (i) an intraoral sample collected from a subject or an organism is used as a sample, and nucleic acid of bacteria contained in the sample is extracted.
- the type of intraoral sample to be collected is not particularly limited.
- saliva, plaque (subgingival plaque, supragingival plaque), tongue plate, mouthwash, etc. can be used, and among these, plaque is preferable, and among them, periodontal disease bacteria are most abundant. Subgingival plaques taken from the site are more preferred.
- the method for collecting the intraoral sample is not particularly limited, and can be appropriately selected according to the type of sample.
- a method of using a commercially available saliva collection kit a method of collecting a saliva by containing a cotton swab in the mouth, a method of collecting saliva directly in a container, and the like can be mentioned.
- a plaque As an intraoral sample, brushing of tooth surfaces or teeth with a toothbrush, rubbing of a tooth surface with a cotton swab, rubbing of teeth with an interdental brush, paper point method, etc. may be mentioned. Dissolve or suspend the plaque by immersing the toothbrush, swab, interdental brush or paper point used for collection of the plaque in sterile water and stirring as required, and subjecting the obtained solution or suspension to a sample It can also be done.
- the amount of plaque to be collected is not particularly limited, and for example, one paper point may be sufficient.
- a tongue coating as an intraoral sample
- a method of rubbing the tongue surface with a cotton swab and the like can be mentioned.
- the swab used to collect plaques can be dissolved or suspended, and the resulting solution or suspension can be used as a sample.
- the amount of tongue bale collected is not particularly limited, and for example, one cotton swab may be sufficient.
- nucleic acid extraction of bacteria present in the obtained intraoral sample is performed.
- the method of extraction is not limited, and known methods can be used. For example, an automatic extraction method using a device, a method using a commercially available nucleic acid extraction kit, a method of crushing with beads, a method of phenol extraction after proteinase K treatment, a method of heating using chloroform as a method of using chloroform or a simple extraction method Methods etc. These may be processed in combination.
- nucleic acid may not be extracted from the sample in particular, and the process may proceed to the next step.
- the nucleic acid obtained from the sample may be directly contacted with a DNA chip or the like, or the desired base sequence region may be amplified by PCR or the like, and the amplified fragment may be contacted with a DNA chip or the like, without limitation.
- the region for amplification using the obtained nucleic acid as a template is a region encoding a nucleic acid region including the base sequence of the probe used in the present invention or the oligonucleotide disposed on the DNA chip.
- the desired region to be amplified is not limited, and can be obtained by amplifying a large number of mixtures at one time, using the base sequence of the highly conserved region regardless of the species of oral cavity bacteria.
- the sequence for such amplification may be experimentally isolated and purified, and the base sequence of the isolated polynucleotide may be analyzed and determined based on the sequence, or the base sequence etc. It may be determined in In Silico by searching known bases in various databases and taking alignments. Databases such as nucleic acids or amino acids are not particularly limited. For example, DDBJ (DNA Data Bank of Japan), EMBL (European Molecular Biology Laboratory, EMBL nucleic acid sequence data library), GenBank (Genetic sequence data bank), NCBI The Taxonomy database of (National Center for Biotechnology Information) can be used.
- the desired site to be amplified is preferably a ribosomal RNA (16S rRNA) gene in the chromosomal DNA of the bacteria in the oral cavity.
- a PCR primer which can be used for amplification of the region concerned, for example, Table 2 (SEQ ID NOS: 37, 38) and Table 3 (SEQ ID NOS: 41 to 53) are preferably mentioned.
- amplification of the nucleic acid by PCR method can be performed according to a usual method.
- the nucleic acid and its amplified fragment extracted in this step can be appropriately labeled and used in the detection process after hybridization.
- a method in which the end of the PCR primer is labeled with various reporter dyes a method in which a reactive nucleotide analog is incorporated during reverse transcription reaction, a method in which a biotin-labeled nucleotide is incorporated, and the like can be considered.
- a fluorescent labeling reagent for labeling.
- various reporter dyes eg, Cy5, Cy3, VIC, FAM, HEX, TET, fluorescein, FITC, TAMRA, Texas red, Yakima Yellow, etc.
- Step (ii) the nucleic acid obtained in step (i) or the amplified fragment thereof is brought into contact with the probe or DNA chip used in the present invention.
- a hybridization solution is prepared, and nucleic acids and the like in the solution are bound (hybridized) to an oligonucleotide probe mounted on a DNA chip.
- the hybridization solution can be appropriately prepared according to a conventional method using a buffer such as SDS or SSC.
- the hybridization reaction is carried out under the reaction conditions (type of buffer, pH, temperature, etc.) so that the nucleic acid etc. in the hybridization solution can hybridize under stringent conditions with the oligonucleotide probe loaded on the DNA chip. It can be set appropriately.
- stringent conditions refers to conditions under which cross hybridization with similar sequences is unlikely to occur or nucleic acids cross-hybridized with similar sequences are dissociated. Specifically, hybridization reaction It refers to the washing conditions of the DNA chip at times or after hybridization.
- the reaction temperature is preferably 35 to 70 ° C., more preferably 40 to 65 ° C., and the hybridization time is preferably about 1 minute to 16 hours.
- the washing solution composition is preferably 0.24 M Tris ⁇ HCl / 0.24 M NaCl / 0.05% Tween-20, and the temperature at the washing is 35
- the temperature is ⁇ 80 ° C or 40-65 ° C, more preferably 45-60 ° C.
- conditions under which the salt (sodium) concentration is 48 to 780 mM and the temperature is 37 to 80 ° C. are preferable, more preferably the salt concentration is 97.5 to 390 mM, and the temperature is 45 to 60 ° C.
- the condition is
- the detection intensity is measured for each spot by a device capable of detecting a label such as nucleic acid bound to the probe.
- a device capable of detecting a label such as nucleic acid bound to the probe.
- various fluorescence detection devices such as CRBIO (manufactured by Hitachi Software Engineering), arrayWoRx (manufactured by GE Healthcare), Affymetrix 428 Array Scanner (manufactured by Affymetrix, manufactured by GenePix)
- the fluorescence intensity can be measured using (Axon Instruments), ScanArray (PerkinElmer), Genopal Reader (Mitsubishi Chemical), or the like.
- a fluorescence scanner for example, scanning can be performed by appropriately adjusting the laser output and the sensitivity of the detection unit, and in the case of a CCD camera type scanner, the exposure time is appropriately adjusted. You can do a scan.
- the quantification method based on the scan result is performed by quantification software. There is no particular limitation on the quantification software, and quantification can be performed using the average value, median value, etc. of the fluorescence intensities of the spots. Further, in quantitative determination, it is preferable to perform adjustment such as using the fluorescence intensity of a spot not equipped with a probe as a background, in consideration of the dimensional accuracy of the spot range of the DNA fragment and the like.
- Step (iii) the amount of bacteria of bacteria to be detected is calculated from the signal intensity obtained in the above procedure.
- the signal intensity is proportional to the amount of bacteria present, the SN ratio can be used as it is for analysis when it is not necessary to calculate the copy number.
- the conversion factor (calibration curve) for calculating the chromosomal DNA concentration for each bacterium based on the signal intensity obtained by changing the concentration of the chromosomal DNA of the bacterium in advance and changing the concentration of the bacterial chromosomal DNA under each condition is calculated. It is also possible to use a method of calculating the concentration of chromosomal DNA from the signal intensities obtained under each condition. In this case, the result can also be calculated as the bacterial copy number.
- the signal intensity and the copy number may be corrected by considering the correction coefficient in the signal intensity of the detection target bacteria of each DNA chip.
- the order of correction and signal intensity / copy number conversion is not particularly limited.
- the signal intensity of the nucleic acid derived from the intraoral bacterial group present in the intraoral sample is measured, and the existing ratio of the bacterial group is calculated from the measured value of the signal intensity, The state of periodontal disease is determined using the obtained calculated value as an index.
- Any tool may be used to measure the signal intensity of the nucleic acid from the intraoral bacterial group present in the intraoral sample, as described in 3. above.
- methods using a DNA chip, and also methods using real-time PCR and methods using FISH can be mentioned.
- As a measurement value of signal intensity SN ratio obtained from a DNA chip, Ct value obtained by real-time PCR, fluorescence intensity obtained by FISH method, etc. may be mentioned.
- the proportion of bacterial groups is the bacterial species that increases with the increase in periodontal pocket values (positive correlation bacteria) and the bacterial species that decreases with the increase in periodontal pocket values (negative correlation bacteria) Correlation with the amount of bacteria.
- Examples of correlations are the ratio of the sum of bacterial amounts of positive correlation bacteria to the total of bacterial amounts of negative correlation bacteria ( ⁇ positive correlation bacteria volume / ⁇ negative correlation bacteria volume), negative Value of the correlation of the amount of bacteria of the correlation bacteria minus the sum of the amount of bacteria of the correlation bacteria of positive amount ( ⁇ amount of correlation bacteria of the negative correlation bacteria amount of ⁇ positive correlation of the correlation bacteria)
- the ratio of the value obtained by multiplying the sum by a predetermined coefficient and the value obtained by multiplying the sum of bacterial amounts of negative correlative bacteria by a predetermined coefficient ( ⁇ coefficient ⁇ bacterial amount of positive correlation bacteria / ⁇ coefficient ⁇ bacterial amount of negative correlation bacteria )
- the average SN ratio of the "positive correlating bacteria” group is calculated by dividing by the number of types of the "positive correlating bacteria” group .
- the average SN ratio of the "negative correlation bacteria” group is calculated by dividing by the number of types of the "negative correlation bacteria” group.
- the ratio of the average SN ratio of the "positive correlation bacteria” group and the average SN ratio of the "negative correlation bacteria” group it can be made a balance index.
- the proportion of bacterial groups use the “ratio” of the amount of bacteria in bacterial species that increases with the increase in the periodontal pocket value and the amount of bacterial species that decreases with the increase in the periodontal pocket value. Is preferred.
- the calculated value of the presence ratio obtained in this manner is called a balance index.
- the numerator and denominator for calculating the balance index are arbitrary, and either may be the denominator or numerator.
- the denominator may be the SN ratio of the bacterial species group decreasing with the increase of the periodontal pocket value
- the numerator may be the SN ratio of the bacterial species group increasing with the increase of the periodontal pocket value.
- the SN ratio of the bacterial species group may be increased as the numerical value increases, and the SN ratio of the bacterial species group may be decreased as the numerical value of the periodontal pocket increases.
- periodontal disease was determined by detecting bacteria corresponding to "bad bacteria". Since these are bacterial species that increase after the periodontal pocket becomes large to some extent, only information after deterioration can be obtained. In the present invention, since the balance index is calculated using the bacteria group corresponding to "good bacteria" and the periodontal disease state is determined, the healthy state can also be determined.
- the amount of bacteria of "bad bacteria” is a monotonically increasing function with respect to the value of the periodontal pocket, while the amount of bacteria of "good bacteria” is a monotonically decreasing function with respect to the value of the periodontal pocket.
- the amount of bacteria of “bad bacteria” is taken on the vertical axis and the value for the periodontal pocket is taken on the horizontal axis, it may occur that there is no value that can be determined between 0 and 3 mm for the periodontal pocket.
- the cut-off value is a value having a function as a threshold or reference value of the proportion of bacterial groups (balance index).
- the signal intensity of the nucleic acid derived from the intraoral bacteria group present in the intraoral sample for reference development is measured in advance, and the existing ratio of the bacteria group is calculated from the measured value of the signal intensity, and the obtained calculated value
- An ROC curve can be generated from (balance index) and determined from this ROC curve.
- the cutoff value is preferably chosen such that the distance from the top left of the ROC curve diagram is small. However, it is possible to change as appropriate depending on the purpose (the required sensitivity and the degree of specificity).
- the cutoff value can also be determined by cluster analysis. More specifically, when performing cluster analysis by the k-means method, the optimum number of clusters is examined and determined by the elbow method, or the number of clusters is automatically output by the x-means method, etc. It is conceivable to set an index corresponding to the boundary between clusters as a cutoff value.
- the first mode of making a judgment model is the proportion of “bacterial species that increase with the increase in periodontal pocket values” and “bacteria species that decrease with the increase in periodontal pocket values” (balance index)
- a decision model based on can be considered. For examples of various bacteria, see item 1. As described in
- the bacterial species that increases as the value of the periodontal pocket increases is not particularly limited, but it is preferable to include one or more bacterial species other than Fusobacterium nucleatum species ("progress indicator bacteria").
- Gl ose are listed under the umbrellas of the following, Tori, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nervosa, Nectar, One or more species selected from the group consisting of Porphyromonas endodontalis, Filifactor alocis, Peptostreptococci stomatis, and Treponema socranskii are preferred; Aggregatibacter acti
- the number of bacterial species used is preferably 4 or more, more preferably 8 or more, further preferably 12 or more, and particularly preferably 14 or more.
- the number of bacterial species to be used is preferably 100 or less, more preferably 75 or less, still more preferably 50 or less, and particularly preferably 25 or less.
- the bacterial species which decreases with the increase of the periodontal pocket number is not particularly limited. Specifically, Streptococcus parasanguinis, Haemophilus parainfluenzae, Streptococcus salivarius, Granulicatella adiacens, Rothia dentocariosa, Alloprevotella spp. (A.
- OT 345 Parvimonas micra, Streptococcus sobrinus, Actinomyces israelii, and Prevotella histicola are preferred, and Streptococcus parasanguinis, Haemophilus parainfluenzae, Streptococcus salivaririus, Granulicatella face rava, OT 308), Vibrio culinus, Vibrio caffei, C., Vecellula rogosae, Porphyromonas pasteri, C., Prevotella shahii, Prevotella c. p.
- the number of bacterial species used is preferably 2 or more, more preferably 10 or more, and still more preferably 20 or more.
- the number of bacterial species to be used is preferably 100 or less, more preferably 75 or less, still more preferably 50 or less, and particularly preferably 25 or less.
- a model for determining non-disease state and disease state is described.
- a non-disease state and a disease state can be appropriately defined, in the present application, a non-disease state is defined as a periodontal pocket depth of 1 to 3 mm, and a disease state is defined as a periodontal pocket depth of 5 mm or more.
- the periodontal pocket depth of 4 mm is in an unknown state of disease state or non-disease state.
- the signal intensity of nucleic acids derived from various bacterial groups is measured for samples with a periodontal pocket depth of 1 to 3 mm and samples with a periodontal pocket depth of 5 mm or more, and the proportions of various bacterial groups are calculated from the measured values.
- the cutoff value is determined from the calculated value (balance index). After that, a balance index is similarly calculated for a sample with a periodontal pocket depth of 4 mm, and the periodontal pocket depth 4 mm group whose disease state was unknown by comparing this with the previous cutoff value is not A disease state (about the same level as the periodontal pocket depth 1 to 3 mm group) and a disease state (about the same as the periodontal pocket depth 5 mm group) can be determined.
- the method of the present invention is very useful in that it enables the determination of the periodontal pocket depth 4 mm group, which has conventionally been difficult to determine.
- a determination model based on the proportion of "progress indicator bacteria (Fusobacterium nucleatum species)" and "a bacterial species which decreases with an increase in the periodontal pocket value” can be considered.
- the “bacterial species increasing with the increase of the periodontal pocket value” group is replaced with Fusobacterium nucleatum species which is a “progress indicator bacteria”.
- Fusobacterium nucleatum species is not particularly limited, and specifically, Fusobacterium nucleatum subsp. Animalis, Fusobacterium nucleatum subsp. Nucleatum, Fusobacterium nucleatum subsp. Vincentii, and Fusobacterium nucle timates Preferably, one or two selected from the group consisting of Fusobacterium nucleatum subsp. Animalis and Fusobacterium nucleatum subsp. Nucleatum are more preferred.
- cutoff values can be calculated to determine two groups. According to the determination model of the second aspect, the state when the numerical value of the periodontal pocket is small can be captured better than the first aspect.
- an example is based on the ratio of the total of the amount of bacteria of "Physicum bacteria” Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and the amount of bacteria of Fusobacterium nucleatum as "progress indicator bacteria” is there.
- the present invention is different in that the ratio to the "good bacteria” group is used as an index. According to the indicator of the present invention, the progress of deterioration can be determined more clearly.
- the amount of bacteria of "bad bacteria” is a monotonically increasing function with respect to the value of the periodontal pocket, while the amount of bacteria of "good bacteria” is a monotonically decreasing function with respect to the value of the periodontal pocket.
- the indicator of the bacterial amount of "bad bacteria” / the bacterial amount of "progress indicator bacteria” is taken on the vertical axis and the numerical value of the periodontal pocket is taken on the horizontal axis, the amount of "bad bacteria” bacteria is small in healthy samples. There may also be results that are not detected at all. That is, it may occur that there is no numerical value that can be determined between 0 and 3 mm in the value of the periodontal pocket.
- this function has a clear inflection point It is excellent in that it can be determined in the vicinity.
- the following (a) and (b) can be used in combination as the existing proportion of the above-mentioned bacteria group.
- the state determination of periodontal disease obtained by the present invention is the determination of a state estimated from the number of bacteria or the SN ratio proportional to the amount of bacteria, and does not represent an accurate pathological condition. That is, accurate diagnosis of a pathological condition requires diagnosis by a dentist.
- it since it can be determined independently of the values of the periodontal pocket, it is possible to detect and treat early on periodontal disease from a new viewpoint and to prevent them. Can also contribute.
- Determination of the treatment effect of periodontal disease Treatment refers to the treatment generally performed by dentists and dental hygienists at the dental site, and for example, as basic periodontal treatment, plaque control (teaching instruction) and Removal of scaling (scaling and root planing) and adjustment of meshing may be mentioned. Furthermore, as a result of the reevaluation test after the basic periodontal treatment, there is a surgical treatment to be performed when the calculus has penetrated deep in the pocket and can not be removed and has not been cured. Specific surgical treatments are, for example, flap surgery and periodontal tissue regeneration therapy and plastic surgery (periodontal surgery).
- SPT Stupportive Periodontal Therapy
- the most basic idea is to use clinical information of the sample and clarify the bacteria that increased or decreased before and after treatment, so that the treatment effect can be objectively determined. Also, post-treatment bacterial data can reveal bacteria that were less likely to be reduced by treatment, making it possible to treat specifically.
- the therapeutic effect of periodontal disease is determined from the balance index of a plurality of bacteria by performing the determination described in the above-mentioned "4. determination of the state of periodontal disease" before and after treatment. be able to.
- the condition of periodontal disease showing the same value of the periodontal pocket can be further divided into four categories.
- the determination of the medical condition stability can also be performed. For example, even if the numerical value of the periodontal pocket is 4 mm or more, the medical condition can be considered stable if it is judged as "mild" by the balance index described in "4. Determination of the state of periodontal disease" above. . Conversely, even if the value of the periodontal pocket is 3 mm or less, if it is determined as "heavy" by the balance index, it can be determined that the treatment may be considered.
- the SN ratio of the DNA chip has been described as the measurement value indicating the amount of bacteria in the above description, any value that is synonymous with the SN ratio of the DNA chip can be used within the scope of the present invention. included.
- copy number of bacteria converted from SN ratio of DNA chip, copy number of bacteria quantified by real-time PCR, Ct value indicating degree of amount, read number obtained as a result of next-generation sequencer, relative amount converted from read number A percentage etc. can be considered.
- Oligonucleotide Probe Set provides an oligonucleotide probe set for oral bacteria detection, which comprises the following DNA (a) or (b): (a) DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1-33 (b) It has an identity of 90% or more to the nucleotide sequence shown in SEQ ID NO: 1-33 and hybridizes to the nucleotide sequence of a part of the 16S rRNA gene or its complementary strand in chromosomal DNA of oral bacteria DNA to be
- the probes used in the present invention may be any combination of DNAs consisting of 33 kinds of base sequences shown in SEQ ID NOs: 1-33.
- any one type of DNA may be used, a combination of two types of DNA may be used, or a combination of 32 types of DNA may be used. It may be a combination.
- the stringency conditions and the like for "hybridization" are the same as those described above.
- the present invention provides a microarray for oral bacteria detection, wherein the above-mentioned oligonucleotide probe set is disposed.
- the microarray those described in the section "2.
- DNA chip for detecting oral bacterial gene used for measuring the amount of bacterial in the oral cavity" can be used.
- Example 1-1 Method of judging periodontal disease state
- subgingival plaques were collected from 220 males and 20 females in their 20s to 70s before treatment for periodontal disease.
- Two Absorbent paper points (ISO Color-Coded) # 40 (manufactured by DENTSPLY MAILLEFER) were inserted into the periodontal pocket and placed for 30 seconds. Then, the paper point was put into a microtube containing 0.15 mL of sterile distilled water and vortexed for 20 seconds. Paper points were removed with sterile forceps and stored frozen at -20 ° C until detection.
- Periodontal pocket depth Indicates the distance from the gingival edge to the tip of the probe when the periodontal probe is inserted into the pocket. It quantified in 1 mm unit.
- the term "periodontal probe” as used herein means a pocket measurement tool (helio probe).
- Bleeding at probing BOP: indicates the presence or absence of bleeding when the periodontal probe is inserted into the pocket. The case where there was no bleeding was 0, and the case where there was bleeding was 1.
- Gingival Index Indicates the degree of inflammation of the gums.
- Plaque Index indicates the amount of plaque deposited on the tooth surface adjacent to the gum. The case where no plaque was observed was 0, the case where plaque was not recognized visually but was observed by rubbing with a probe was made 1; the case where plaque was visible 2 was made, and the case where a large amount of plaque was recognized was made 3.
- PCR PCR was performed under the following reaction solution composition and reaction conditions.
- the PCR kit was performed using GeneAmp 9700 (manufactured by Applied Biosystems) using Premix Ex TaqTM Hot Start Version (manufactured by Takara).
- the primer used was a primer having the following sequence.
- the forward primer used was one whose 5 'end was labeled with Cy5.
- ⁇ Reaction liquid composition > 2 x Premix Ex Taq (R) Hot Start Version 10 ⁇ L 4 ⁇ M forward primer (for bacterial amplification) 1 ⁇ L 4 ⁇ M reverse primer (for bacterial amplification) 1 ⁇ L 4 ⁇ M forward primer (for absolute index amplification) 1 ⁇ L 4 ⁇ M reverse primer (for absolute index amplification) 1 ⁇ L Template DNA 5 ⁇ L Absolute quantity indicator 1 ⁇ L 20 ⁇ L in total
- ⁇ DNA chip manufacture of DNA chip for detection of bacteria in oral cavity>
- the through-hole type DNA chip was manufactured by the same method as that described in Example 2-1 of JP-A-2007-74950 (Method for detecting methylated DNA and / or non-methylated DNA).
- the oligonucleotide probe loaded is described in Non-Patent Document 1: Socransky, S. et al. S. et al. Based on the information of the strain of J Clin Microbiol, 37, 1426-30, 1999, a probe having the sequence information shown in Table 4 was used.
- FIG. 1 ⁇ Correlation between clinical information and bacterial amount (SN ratio)> Scatter plots of the values of periodontal pocket (Pd) and the SN ratio data showing the amount of each bacteria were prepared for 28 types of bacteria, and these are shown in FIG. 1 (FIGS. 1-1 to 1-7).
- the vertical axis in FIG. 1 indicates the SN ratio of each bacterium, and the horizontal axis indicates the pocket value (Pd).
- correlation coefficients were calculated for all 28 types (Table 5).
- the bacterial species that increase with the increase in the periodontal pocket value” group include Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Fusobacterium subsp. subsp. animalis, Fusobacterium nucleatum subsp. nucleatum, Fusobacterium periodonticum, Prevotella intermedia, Streptococcus constellatus, Aggregatibacter actinomycetemcomitans, Eikenella corrodens 15 species.
- the group "Bacteriological species which decreases with the increase of the periodontal pocket value” group includes Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sproda, Streptococcus intermedius, Streptococcus and 13 species of Veillonella parvula, Actinomyces naeslundii II, and Selenomonas noxia.
- the sum of the SN ratios of the “bacterial species that increase with the increase in the periodontal pocket value” group is calculated, and then the “periodontal pocket By dividing by the number of species of the bacterial species group increasing with the increase of the numerical value, the average SN ratio of the "bacteria species increasing with the increase of the numerical value of the periodontal pocket” group was calculated.
- the number of types of “Bacter species decreasing with the increase of the periodontal pocket value” group is calculated By dividing, the average signal-to-noise ratio of "the bacterial species which decreases as the value of periodontal pocket increases" was calculated.
- a non-disease state is defined as a periodontal pocket depth of 1 to 3 mm
- a disease state is defined as a periodontal pocket depth of 5 mm or more.
- a discriminant model is created with data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more
- a data with a periodontal pocket depth of 4 mm is used as test data. It was decided to determine the disease state.
- a histogram was created for data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more (FIG. 3). The vertical axis of FIG.
- FIG. 3 is a numerical value obtained by converting the balance index of FIG. 2 by LOG10.
- the horizontal axis is frequency.
- Example 1 Using the same data as the data of Example 1, a judgment model of the progress of periodontal disease was created.
- the “bacterial species increasing with the increase of the periodontal pocket value” group and the “bacterial species decreasing with the increase of the periodontal pocket value” group were the same as in Example 1.
- progress indicator bacteria Fusobacterium nucleatum subsp. Animalis and Fusobacterium nucleatum subsp. Nucleatum were selected from the "bacteria species increasing with increase in periodontal pocket value” group.
- the sum of the SN ratios of “progress indicator bacteria” (Fusobacterium nucleatum subsp. Animalis and Fusobacterium nucleatum subsp. Nucleatum) is calculated, and then The average SN ratio of the “progression indicator bacteria” group was calculated by dividing the number of types by “2”. Similarly, the average signal-to-noise ratio of the "bacterial species decreasing with increase in periodontal pocket value” group was calculated.
- the balance index of the bacteria group was calculated by taking the ratio of the average SN ratio of the "progress indicator bacteria” group and the average SN ratio of the "bacteria species decreasing with the increase of the periodontal pocket value” group.
- FIG. 6 shows a scatter plot of the balance index (“progress indicator bacteria” 2/13 “good bacteria” group) on the vertical axis and the periodontal pocket numerical value (Pd) on the horizontal axis.
- a discriminant model is created using data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more, and data of a periodontal pocket depth of 4 mm is used as test data for non-disease state / It was decided to determine the disease state.
- a histogram was created for data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more (FIG. 7).
- the vertical axis of FIG. 7 is a numerical value obtained by converting the balance index of FIG. 6 by LOG10.
- the horizontal axis is frequency.
- ROC analysis was performed based on the data of FIG. 7 (FIG.
- Example 1-1 Using the data of Example 1-1 and Example 1-2, the balance index (LOG10) of Example 1-1 is taken as a vertical axis, and the balance index (LOG10) of Example 1-2 is taken as a horizontal axis, A judgment model was created in the same manner as in Examples 1-1 and 1-2. The site data that had been grouped together in the "pocket 4 mm" until now was judged, and it could be classified into four groups.
- Example 1-1 using the same data as in Example 1-1, 28 types of bacteria are increased as the value of the periodontal pocket increases, based on the positive and negative values of the correlation coefficient. It is roughly divided into bacterial species which decrease with the increase of the value of periodontal pocket.
- the bacterial species group that increases with the increase in the value of the periodontal pocket is one of five species known as periodontal disease associated bacteria and one species of Fusobacterium nucleatum species. That is, six species of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter rectus, Fusobacterium nucleatum subsp. Nucleatum, and Prevotella intermedia were used.
- the bacterial species group which decreases with the increase of the periodontal pocket number was 4 species of Capnocytophaga gingivalis, Streptococcus gordonii, Streptococcus intermedius, and Veillonella parvula whose SN ratio is relatively large. That is, data of a total of 10 bacterial species were used to create a judgment model.
- Example 2-1 Bacterial detection of plaque samples before and after treatment and determination of treatment effect of periodontal disease
- ⁇ DNA chip manufacture of DNA chip for detection of bacteria in oral cavity>
- the through-hole type DNA chip was manufactured by the same method as that described in Example 1-1 of JP-A-2007-74950 (Method for detecting methylated DNA and / or non-methylated DNA).
- As the loaded oligonucleotide probe a probe having the sequence information shown in Table 8 was used. Up to PCR, hybridization to a DNA chip, and detection were carried out in the same manner as in Example 1-1.
- ⁇ Calculation of SN ratio data> The fluorescence intensity of the spot carrying the probe for bacteria to be detected was divided by the background value (the fluorescence intensity of the spot not carrying the probe) to calculate the SN ratio derived from the hybridization.
- the same 10 types as in Example 1-4, that is, "the bacterial species which increases with the increase in the value of periodontal pocket" group are Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter rectus, Fusobacterium nucleatum subsp.
- Nucleatum Six species of Prevotella intermedia, “The species of bacteria that decrease with the increase of the periodontal pocket”, are four species of Capnocytophaga gingivalis, Streptococcus gordonii, Streptococcus intermedius, and Veillonella parvula, as in Example 1-3. Judgment was made on two axes. The results are shown in the two graphs in the upper half of FIG.
- the left side is the result before treatment and the right side is the result after treatment. Looking at the position of the plot before and after the treatment, it moved generally from the upper right ((a) retreatment level) to the lower left ((d) mild), and the effect of the treatment could be judged. Further, two graphs in the lower half of FIG. 14 are graphs of periodontal pocket (vertical axis) and balance index (horizontal axis). The left side is before treatment and the right side is after treatment. From these results, it can be determined that the medical condition is stable if the balance index does not exceed the determination value even if the periodontal pocket is about 4 mm after treatment. Conversely, it was determined that it is better to consider treatment if the balance index exceeds the judgment value even if the periodontal pocket is 3 mm.
- Each bacterial mass calculation coefficient measures signal intensity when detecting genomic DNA derived from each bacterium to prepare a standard curve, and a coefficient to back-calculate each bacterial mass was obtained from the signal intensity of each bacterium. Finally, the dilution rate of 80 detection samples used for the PCR template was multiplied to calculate the number of bacteria per paper point. According to the above calculation, data on the number of bacteria for each detection target bacteria was obtained for all 122 samples. In addition, the thing of the detection lower limit to which signal intensity became 0 or less at the beginning was made into uniform copy number 1000. The results are shown before treatment (Table 9 (Table 9-1 to Table 9-2)) and after treatment (Table 10 (Table 10-1 to Table 10-2)).
- Example 2-1 the same analysis as in Example 2-1 was performed.
- the results are shown in FIG. However, since the cut-off value is proportional to the data of the SN ratio and the copy number, the same value as the analysis value of the SN ratio was used.
- Example 2-1 The determination on two axes was performed in the same manner as in Example 2-1.
- the results are shown in the two graphs in the upper half of FIG.
- the left side is the result before treatment and the right side is the result after treatment. Looking at the position of the plot before and after the treatment, it moved generally from the upper right ((a) retreatment level) to the lower left ((d) mild), and the effect of the treatment could be judged.
- two graphs in the lower half of FIG. 15 are graphs of a periodontal pocket (vertical axis) and a balance index (horizontal axis). The left side is before treatment and the right side is after treatment.
- Example 1-1 One of the samples of Example 1-1 is sent to the J-Bio 21 Center (Nichitetsu Sumikin Environment Co., Ltd .: 2-1-13, Tsukuba Kouken Building 2F, Tsukuba, Ibaraki Prefecture, Tsukuba) and the 16S rRNA next-generation sequencer analysis is performed. went. The relative ratio of each bacterium to the total number of bacteria was calculated from the obtained results. The results are shown in FIG.
- Example 4 In order to examine bacterial species newly discussed in recent years, a DNA chip having a bacterial probe described in Table 12 was newly prepared as in Example 1-1.
- Fluorescence intensity data was newly collected on the DNA chip described in Table 12 for 321 samples collected in the same manner as in Example 1-1.
- the experimental conditions were the same as in Example 1-1, but only the following two points were changed.
- the primers used for PCR were changed as follows. R and Y indicate mixed bases, R indicates A and G, Y indicates C and T.
- Forward primer for bacterial amplification: 5'-Cy5-TACGGGAGGCAGCAG-3 '(SEQ ID NO: 90)
- Reverse primer for bacterial amplification: 5'-CRGGGTATCTAATCCYGTT-3 '(SEQ ID NO: 91)
- Forward primer for absolute index amplification: 5'-Cy5-GAGAAGCCCTACACAAACGTAACGTC-3 '(SEQ ID NO: 39
- Reverse primer for absolute index amplification: 5'- CTCTAAAAGACCGCTCTATCTCGG-3 '(SEQ ID NO: 40)
- the hybridization temperature was set to 50 ° C. for 16 hours.
- the resulting fluorescence intensities were processed as follows. The fluorescence intensity of the spot carrying the probe for bacteria to be detected was subtracted by the background value (the median value of the fluorescence intensities of the spots not carrying the probe) to calculate the signal intensity derived from the hybridization. At this time, a signal intensity below a certain threshold is judged as noise and set to “0”.
- the threshold value a value three times the standard deviation of 20 values excluding the upper and lower five out of the tendency intensities of the 30 spots with no probe mounted was used.
- the correlation coefficient is cor function
- p value is cor.test function
- the group "Bacteriological species which decreases with the increase of the periodontal pocket value” group includes: Prevotella denticola, Prevotella melaninogenica, Gemella sanguinis, Eubacterium sulci, Corynebacterium matruchotii, Rothia mucilaginosa, Porphyromonas catelia, Solobacteriosis moouneticelicithecicephalus, and Actinomyces graevenitzii, Veillonella atypica, Prevotella pallens, Prevotella shahii, Porphyromonas pasteri, Veillonella rososae, Alloprevotilla spp. did.
- FIG. 17 A scatter plot of the balance index on the vertical axis and the periodontal pocket depth (Pd) on the horizontal axis is shown in FIG.
- a discrimination model is created using data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more, and a data with a periodontal pocket depth of 4 mm is used as test data. It was decided to determine the disease state.
- a histogram was created for data with a periodontal pocket depth of 1 to 3 mm and a periodontal pocket depth of 5 mm or more (FIG. 18).
- the vertical axis of FIG. 18 is a numerical value obtained by converting the balance index of FIG.
- the data of 4 mm is the data of depth 4 mm of the pocket of FIG. 17 and data for 60 persons existed. When these were determined with the cutoff value of 0.3182, 31 persons were balance index values larger than the cutoff value. It was determined that these patients progressed the periodontal disease state to the same extent as the disease state with a periodontal pocket of 5 mm or more.
- SEQ ID NOS: 1 to 91 synthetic DNA
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
歯周治療終了後の継続的なプロフェッショナルケアである「サポーティブペリオドンタルセラピー(SPT)」は、“病状安定”を維持し歯周治療の予後を良好に保つための不可欠な治療である。現在、臨床の現場でSPTへ移行する際の判断基準は,プロービングポケットデプスやBOP 等である。一方、今後SPT移行後の進行を予知する指標があれば、治療計画の判断に大変有用となるが、現在明確な判断基準が確立していない(非特許文献9)。
さらには、口腔内試料中に存在する特定の細菌(群)間との存在割合を求めることにより歯周病の治療効果、歯周病の経過などを判定することができることを見出し、本発明を完成するに至った。
[1] 口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度を測定し、当該シグナル強度の測定値から前記細菌群の存在割合を算出し、得られた算出値を指標として歯周病の状態を判定する口腔内検査方法であって、
細菌群の存在割合は、歯周ポケットの数値の増大に伴い増加する細菌種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係である、前記方法。
[2] 得られた算出値を、細菌群の存在割合のカットオフ値と比較することにより歯周病の状態を判定する、[1]に記載の方法。
[3] 前記細菌群の存在割合は、歯周ポケットの数値の増大に伴い増加する細菌種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との比である、[1]又は[2]に記載の方法。
[4] 前記カットオフ値は、基準策定用口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度の測定値から前記細菌群の存在割合を算出し、当該算出値から作成されたROC曲線に基づいて定めたものである、[2]又は[3]に記載の方法。
[5] 前記細菌群の存在割合は、Fusobacterium nucleatum種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係である、[1]~[4]のいずれか1項に記載の方法。
[6] 前記細菌群の存在割合として以下の(a)及び(b)を用いる、[1]~[5]のいずれか1項に記載の方法。
(a)歯周ポケットの数値の増大に伴い増加する細菌種(ただしFusobacterium nucleatum種以外の細菌種を1種以上含む。)の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係
(b) Fusobacterium nucleatum種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係
[7] 歯周ポケットの数値の増大に伴い増加する細菌種が、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter gracilis、Campylobacter rectus、Campylobacter showae、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum、Fusobacterium periodonticum、Prevotella intermedia、Streptococcus constellatus、Aggregatibacter actinomycetemcomitans、Eikenella corrodens、Filifactor alocis、Porphyromonas endodontalis、Eubacterium nodatum 、Eubacterium saphenum、Treponema medium及びSelenomonas sputigenaからなる群から選ばれる少なくとも一種である[1]~[6]のいずれか1項に記載の方法。
[8] 歯周ポケットの数値の増大に伴い減少する細菌種が、Prevotella nigrescens、Campylobacter concisus、Capnocytophaga gingivalis、Capnocytophaga ochracea、Capnocytophaga sputigena、Streptococcus gordonii、Streptococcus intermedius、Streptococcus mitis、Streptococcus mitis bv 2、Actinomyces odontolyticus、Veillonella parvula、Actinomyces naeslundii II、Selenomonas noxia、Prevotella denticola、Prevotella melaninogenica、Gemella sanguinis、Eubacterium sulci、Corynebacterium matruchotii、Rothia mucilaginosa、Porphyromonas catoniae、Solobacterium moorei、Neisseria flavescens、Prevotella loescheii、Megasphaera micronuciformis、Actinomyces graevenitzii、Veillonella atypica、Prevotella pallens、Prevotella shahii、Porphyromonas pasteri、Veillonella rogosae、Alloprevotella spp. (A. rava,OT 308)、Rothia dentocariosa、Granulicatella adiacens、Streptococcus salivarius、Haemophilus parainfluenzae及びStreptococcus parasanguinisから なる群から選ばれる少なくとも一種である、[1]~[7]のいずれか1項に記載の方法。
[9] Fusobacterium nucleatum種が、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、及びFusobacterium nucleatum subsp. nucleatumからなる群から選ばれる少なくとも一種である[5]~[8]のいずれか1項に記載の方法。
[10] 口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度を測定し、当該シグナル強度の測定値から前記細菌群の存在割合を算出し、得られた算出値と、歯周病の状態、経過又は治療効果とを関連づけることを特徴とする、口腔内検査方法。
[11] 細菌群の存在割合と歯周病の状態との関連づけは、歯周ポケットの数値の増大に伴い増加する細菌種と、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種との比を算出することにより行う、[10]に記載の方法。
[12] 細菌群の存在割合と歯周病の経過との関連づけは、歯周ポケットの数値の増大に伴い増加するFusobacterium属に属する細菌種と、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種との比を算出することにより行う、[10]又は[11]に記載の方法。
[13] 細菌群の存在割合と歯周病の治療効果との関連づけは、歯周病治療の前後における、以下の(a)及び/又は(b)の値を比較することにより行う、[10]~[12]のいずれか1項に記載の方法。
(a) 歯周ポケットの数値の増大に伴い増加する細菌種と、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種との比
(b) 歯周ポケットの数値の増大に伴い増加するFusobacterium属に属する細菌種と、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種との比
[14] Fusobacterium属に属する細菌種が、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum及びFusobacterium periodonticumからなる群から選ばれる少なくとも一種である[12]又は[13]に記載の方法。
[15] 歯周ポケットの数値の増大に伴い増加する細菌種が、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter gracilis、Campylobacter rectus、Campylobacter showae、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum、Fusobacterium periodonticum、Prevotella intermedia、Streptococcus constellatus、Aggregatibacter actinomycetemcomitans及びEikenella corrodensからなる群から選ばれる少なくとも一種であり、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種が、Prevotella nigrescens、Campylobacter concisus、Capnocytophaga gingivalis、Capnocytophaga ochracea、Capnocytophaga sputigena、Streptococcus gordonii、Streptococcus intermedius、Streptococcus mitis、Streptococcus mitis bv 2、Actinomyces odontolyticus、Veillonella parvula、Actinomyces naeslundii II及びSelenomonas noxiaからなる群から選ばれる少なくとも一種である、[11]~[14]のいずれか1項に記載の方法。
[16] Fusobacterium属に属する細菌種が、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum及びFusobacterium periodonticumからなる群から選ばれる少なくとも一種であり、歯周ポケットの数値の増大に伴い減少する細菌種及び/又は歯周ポケットの数値の減少に伴い増加する細菌種が、Prevotella nigrescens、Campylobacter concisus、Capnocytophaga gingivalis、Capnocytophaga ochracea、Capnocytophaga sputigena、Streptococcus gordonii、Streptococcus intermedius、Streptococcus mitis、Streptococcus mitis bv 2、Actinomyces odontolyticus、Veillonella parvula、Actinomyces naeslundii II及びSelenomonas noxiaからなる群から選ばれる少なくとも一種である、[12]~[15]のいずれか1項に記載の方法。
当該口腔内検査方法の具体的な態様としては、限定はされないが、本明細書においては、口腔内試料中の細菌の菌数を測定する方法については、DNAチップを用いた方法を中心に述べる。
DNAチップを用いる方法以外の方法、例えば、インベーダー法、リアルタイムPCR法、インベーダーPCR法、次世代シークエンス法等によって口腔内試料中の細菌の検出、測定、定量化を実施してもよい。
本発明の方法においては、被験者から採取された口腔内試料から口腔内細菌を検出する際に、DNAチップを使用することができ、当該DNAチップには、例えば、以下のプローブ(a)と、プローブ(b)及び(c)の少なくとも一方のプローブとを搭載することができる。
(b)すべての細菌の遺伝子(または遺伝子由来の増幅産物)にハイブリダイズする核酸からなる総量指標プローブ
(c)1種類又は複数種類の絶対量指標それぞれに特異的にハイブリダイズする核酸からなるプローブ
本発明の検査方法において、測定対象となる口腔内細菌としては、限定はされないが、Porphyromonas属、Tannerella属、Treponema属、Prevotella属、Campylobacter属、Fusobacterium属、Streptococcus属、Aggregatibacter属、Capnocytophaga属、Eikenella属、Actinomyces属、Veillonella属、Selenomonas属、さらには、Pseudomonas属、Haemophilus属、Klebsiella属、Serratia属、Moraxella属、Eubacterium属、Parvimonas属、Filifactor属、Alloprevotella属、Solobacterium属、Rothia属、Peptostreptococcus属、Gemella属、Corynebacterium属、Neisseria属、Granulicatella属、Megasphaera属及びSR1門に属する細菌などを、検出対象菌種とすることができる。
なお、本発明において「歯周ポケットの数値」とは、歯周ポケットの深さ(Pd)の数値を言う。歯周ポケットの深さ(Pd)とは、歯周プローブをポケットに挿入した際の,歯肉辺縁からプローブ先端までの距離を示す。1mm単位で数値化する。なお、ここでいう「歯周プローブ」とは、ポケット測定器具(ヘリオプローブ)を意味する。
歯周ポケットの数値の増大に伴い増加する細菌種及び歯周ポケットの数値の増大に伴い減少する細菌種は、細菌量(またはSN比のような細菌量と比例する測定量)を測定できるツールにより確認することができる。ツールは特に限定はされず、例えばDNAチップを用いることができる。
歯周病の状態の判定に実験誤差補正後のデータを用いる際は、細菌群の分類にも実験誤差補正後のデータを用いる。
歯周ポケットの数値の増大に伴い増加する細菌種としては、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter gracilis、Campylobacter rectus、Campylobacter showae、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum、Fusobacterium periodonticum、Prevotella intermedia、Streptococcus constellatus、Aggregatibacter actinomycetemcomitans、Eikenella corrodens、Filifactor alocis、Porphyromonas endodontalis、Eubacterium nodatum 、Eubacterium saphenum、Treponema medium、及びSelenomonas sputigenaからなる群から選ばれる少なくとも一種が挙げられる。
Fusobacterium nucleatum種としては、例えば、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis及びFusobacterium nucleatum subsp. nucleatumからなる群から選ばれる少なくとも1種が挙げられる。
これらは、(i)歯周ポケットの数値の増加(すなわち歯周病の悪化)に伴い減少する細菌、(ii)歯周ポケットの数値の減少(歯周病の改善)に伴い増加する細菌種、又は上記(i)及び(ii)の両者を含む。歯周ポケットの数値の増大に伴い減少する細菌種群を、以下「善玉菌」と記載することがある。
本発明において、プローブ(a)として使用され得るオリゴDNAは、口腔内細菌に由来する核酸の塩基配列のうちの菌特異的な領域(菌の種類によって塩基配列が変わる領域)の塩基配列とハイブリダイズすることができるものである。ここで、当該核酸は、染色体DNAやプラスミドDNA等を含むDNA及びRNAのいずれでもよく限定はされないが、染色体DNAであることが好ましい。具体的には、本発明においてプローブとして使用されるオリゴヌクレオチドは、前記口腔内細菌の染色体DNA中の16S rRNA遺伝子の塩基配列とハイブリダイズすることができるものである。
総量指標プローブは、特定のプライマー対で増幅できた、検体の中のすべての細菌を捕捉する目的のプローブである。細菌を検出する上では、検出対象細菌が、非検出対象細菌を含む全体の細菌の中でどの程度の割合であるのか、また、そもそも検体中にどれくらいの量の細菌が存在しているのかといった観点から細菌の総量を検出することはきわめて重要となる。非検出対象細菌は、存在や種類は分かっているが検出対象としなくてもよい細菌、及び存在や種類が不明である細菌の和(合計)として理解できる。
絶対量指標プローブは、絶対量指標の核酸にのみハイブリダイズするプローブである。本明細書において、絶対量指標とは、増幅反応やハイブリダイゼーション反応の前に、検体中に一定量添加する核酸の量を示す指標である。絶対量指標は、通常の増幅反応を行えば増幅反応が確実に行われる核酸であり、いわゆる陽性コントロールとしての役割を果たす。従って、絶対量指標に特異的なプローブを、DNAチップに搭載しておけば、その検出結果から、増幅反応やハイブリダイゼーション等が適切に実施されたかを確認することができる。
絶対量指標を1種類設定した場合、多少増幅効率やハイブリダイゼーション効率が増減した場合に、絶対量指標のシグナル強度を比較することにより補正係数を算出することができる。複数のDNAチップのデータを比較する際には、補正係数で補正した後のシグナル強度で比較してもよい。
細菌それぞれに特異的なプローブの例を表1に示す。(配列番号1~33)。
総量指標プローブの例を、配列番号34に示す。
絶対量指標用プローブの例を配列番号35に示す。
絶対量指標の例を配列番号36に示す。
本発明のプライマー設計方法は、まず、解析対象細菌の多様性を示す可変領域を少なくともひとつ選択し、選択した可変領域の前後に、保存性の高いユニバーサルプライマー設計領域を選択し、プライマー配列を設計する。対象となる可変領域は、限定はされないが、ゲノム配列のうち、すべての細菌が有する16S rRNA遺伝子などが挙げられる。16S rRNA遺伝子のうち、全長又は、可変領域V1-V9の一つ以上の領域を対象とすることが望ましい。より好ましくは、可変領域V1-V6を対象とすることが望ましい。さらに好ましくは、可変領域V3-V6を対象とすることが望ましい。なお、16S rRNA遺伝子の可変領域がV1-V9領域からなり、その領域も特定されていることは公知である。
本発明に用いるプローブを設計する際、プローブの長さは限定されるものではなく、例えば、10塩基以上が好ましく、より好ましくは16~50塩基であり、さらに好ましくは18~35塩基である。プローブの長さが適切であれば(前記範囲内であれば)、非特異的なハイブリダイゼーション(ミスマッチ)を抑制し、特異的な検出に使用することができる。また本発明に用いるプローブの設計の際には、Tmも確認しておくことが好ましい。Tmとは、任意の核酸鎖の50%がその相補鎖とハイブリッド形成する温度を意味し、鋳型DNA又はRNAとプローブとが二本鎖を形成してハイブリダイズするためには、ハイブリダイゼーションの温度を最適化する必要がある。一方、この温度を下げすぎると非特異的な反応が起こりやすくなるため、温度は可能な限り高いことが望ましい。
前記したように、本発明の方法においては、DNAチップを用いることができ、当該DNAチップは、前記1.項で説明した各種オリゴヌクレオチドプローブが支持体となる基盤に複数配置されたものである。支持体となる基盤の形態としては、平板(ガラス板、樹脂板、シリコン板等)、棒状、ビーズ等のいずれの形態のものも使用できる。支持体として、平板を使用する場合は、その平板上に、所定の間隔もって、所定のプローブを種類毎に固定することができる(スポッティング法等;Science270, 467-470 (1995)等参照)。また、平板上の特定の位置で、所定のプローブを種類毎に逐次合成していくこともできる(フォトリソグラフィー法等;Science 251, 767-773 (1991)等参照)。
(ii) 前記配列体を包埋し、ブロック体を製造する工程
(iii) オリゴヌクレオチドプローブを含むゲル前駆体重合性溶液を前記ブロック体の各中空繊維の中空部に導入して重合反応を行い、プローブを含むゲル状物を中空部に保持させる工程
(iv) 中空繊維の長手方向と交差する方向で切断して、ブロック体を薄片化する工程
中空繊維に使用される材料としては、限定はされないが、例えば、特開2004-163211号公報等に記載の材料が好ましく挙げられる。
配列方法としては、例えば、粘着シート等のシート状物に複数本の中空繊維を所定の間隔をもって平行に配置し、シート状とした後、このシートを螺旋状に巻き取る方法(特開平11-108928号公報参照)や、複数の孔が所定の間隔をもって設けられた多孔板2枚を孔部が一致するように重ね合わせ、それらの孔部に中空繊維を通過させ、その後2枚の多孔板の間隔を開いて仮固定し、2枚の多孔板間における中空繊維の周辺に硬化性樹脂原料を充満させて硬化させる方法(特開2001-133453号公報参照)などが挙げられる。製造された配列体はその配列が乱れないように包埋される(工程(ii))。
本発明の方法において、口腔内細菌を検出するために当該細菌の遺伝子を検出する方法は、例えば、下記の工程を含む方法である。
(i)被験者から採取した口腔内試料を検体とし、検体中の核酸を抽出する工程
(ii)抽出した核酸を、前記した本発明のオリゴヌクレオチドプローブ又は本発明のDNAチップに接触させる工程
(iii)DNAチップから得られたシグナル強度からSN比を算出する工程、または細菌量を算出する工程
(1)工程(i)について
本工程では、被験者又は被生物から採取した口腔内試料を検体とし、検体中に含まれる細菌の核酸を抽出する。採取する口腔内試料の種類は、特には限定されない。例えば、唾液、プラーク(歯肉縁下プラーク、歯肉縁上プラーク)、舌苔、口腔洗浄液等を使用することができ、これらの中でもプラークが好ましく、その中でも、歯周病細菌が最も多く棲息している場所から採取する歯肉縁下プラークがより好ましい。
本工程では、工程(i)で得た核酸又はその増幅断片を、本発明に用いるプローブ又はDNAチップに接触させるが、具体的には、当該核酸等を含むハイブリダイゼーション溶液を調製し、当該溶液中の核酸等を、DNAチップに搭載されたオリゴヌクレオチドプローブに結合(ハイブリダイズ)させる。ハイブリダイゼーション溶液は、SDSやSSC等の緩衝液を用いて、定法に従い、適宜調製することができる。ハイブリダイゼーション反応は、ハイブリダイゼーション溶液中の核酸等が、DNAチップに搭載されたオリゴヌクレオチドプローブとストリンジェントな条件下でハイブリダイズし得るよう、反応条件(緩衝液の種類、pH、温度等)を適宜設定して行うことができる。なお、ここで言う「ストリンジェントな条件」とは、類似配列によるクロスハイブリダイゼーションを生じにくい、又は類似配列によってクロスハイブリダイゼーションした核酸を解離させる条件のことをいい、具体的には、ハイブリダイゼーション反応時又はハイブリダイゼーション後のDNAチップの洗浄条件を意味する。
本工程では、前記の手順で得られたシグナル強度より、検出対象菌種の細菌の細菌量を算出する。たとえば、検出対象細菌を検出するためのプローブのシグナル強度とバックグラウンドのシグナル強度の比からSN比として示す方法がある。シグナル強度は細菌の存在量と比例するため、コピー数を算出する必要がない場合においては、SN比を解析にそのまま用いることもできる。
本発明においては、口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度を測定し、当該シグナル強度の測定値から前記細菌群の存在割合を算出し、得られた算出値を指標として歯周病の状態を判定する。
口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度の測定には、いかなるツールを用いてもよく、前記3.項で説明したようにDNAチップを用いる方法や、その他、リアルタイムPCRを用いる方法やFISH法を用いる方法が挙げられる。
シグナル強度の測定値としては、DNAチップから得られるSN比やリアルタイムPCRで得られるCt値、FISH法から得られる蛍光強度等が挙げられる。
相関関係の例としては、正の相関菌の細菌量の総和と負の相関菌の細菌量の総和との比(Σ正の相関菌の細菌量/Σ負の相関菌の細菌量)、負の相関菌の細菌量の総和から正の相関菌の細菌量の総和を引いた値(Σ負の相関菌の細菌量-Σ正の相関菌の細菌量)、正の相関菌の細菌量の総和に所定係数を乗じた値と負の相関菌の細菌量の総和に所定係数を乗じた値との比(Σ係数×正の相関菌の細菌量/Σ係数×負の相関菌の細菌量)、正の相関菌の細菌量の総和に所定の正の係数を乗じた値と負の相関菌の細菌量の総和に所定の負の係数を乗じた値との和(Σ正の係数×正の相関菌の細菌量+Σ負の係数×負の相関菌の細菌量)の値などが挙げられる。
例えば、「正の相関菌」群のSN比の総和を算出した後、その「正の相関菌」群の種類数で除算することにより、「正の相関菌」群の平均SN比を算出する。同様に、「負の相関菌」群のSN比の総和を算出した後、その「負の相関菌」群の種類数で除算することにより、「負の相関菌」群の平均SN比を算出する。
最後に「正の相関菌」群の平均SN比と「負の相関菌」群の平均SN比の比率を取ることにより、バランス指標とすることができる。
細菌群の存在割合としては、歯周ポケットの数値の増大に伴い増加する細菌種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との「比」を用いることが好ましい。
バランス指標を算出するための分子及び分母は任意であり、どちらを分母又は分子にしてもよい。例えば、分母を歯周ポケットの数値の増大に伴い減少する細菌種群のSN比、分子を歯周ポケットの数値の増大に伴い増加する細菌種群のSN比とすることも、分母を歯周ポケットの数値の増大に伴い増加する細菌種群のSN比、分子を歯周ポケットの数値の増大に伴い減少する細菌種群のSN比とすることもできる。
「悪玉菌」の細菌量は歯周ポケットの数値に対して単調増加関数となり、一方、「善玉菌」の細菌量は歯周ポケットの数値に対して単調減少関数となる。
「悪玉菌」の細菌量を縦軸にとり、歯周ポケットの数値を横軸にとる場合は、歯周ポケットの数値が0-3mmの間で判定できる数値が無い、ということが生じうる。
一方、「悪玉菌」の細菌量/「善玉菌」の細菌量の指標を縦軸にとり、歯周ポケットの数値を横軸にとると、この関数は変曲点が明確に現れ、その付近で判定できるという点で優れている。また、歯周ポケットの数値が0-3mmの間で判定できる数値が存在し、この数値をもって健康な状態も判定することができる。
カットオフ値は、細菌群の存在割合(バランス指標)の閾値又は基準値としての機能を有する値である。
あらかじめ基準策定用口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度を測定しておいて、そのシグナル強度の測定値から前記細菌群の存在割合を算出し、得られた算出値(バランス指標)からROC曲線を作成し、そしてこのROC曲線から定めることができる。カットオフ値は、ROC曲線の図の左上からの距離が小さくなるように選択することが好ましい。しかし目的(必要な感度や特異度の大きさ)によって適宜変更することが可能である。
各種細菌の例は、項目1.で記載した通りである。
歯周ポケットの数値の増加に伴い減少する細菌種としては、特に限定されないが、具体的には、Streptococcus parasanguinis, Haemophilus parainfluenzae, Streptococcus salivarius, Granulicatella adiacens, Rothia dentocariosa, Alloprevotella spp. (A. rava,OT 308), Veillonella rogosae, Porphyromonas pasteri, Prevotella shahii, Prevotella pallens, Veillonella atypica, Actinomyces graevenitzii, Megasphaera micronuciformis, Prevotella loescheii, Neisseria flavescens, Solobacterium moorei, Porphyromonas catoniae, Rothia mucilaginosa, Corynebacterium matruchotii, Eubacterium sulci, Gemella sanguinis, Prevotella melaninogenica, Prevotella denticola, Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sputigena, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, Streptococcus mitis bv 2, Actinomyces odontolyticus, Veillonella parvula, Actinomyces naeslundii II, Selenomonas noxia, SR1 sp. OT 345, Parvimonas micra, Streptococcus sobrinus, Actinomyces israelii,及びPrevotella histicolaからなる群から選ばれる1種以上が好ましく、Streptococcus parasanguinis, Haemophilus parainfluenzae, Streptococcus salivarius, Granulicatella adiacens, Rothia dentocariosa, Alloprevotella spp. (A. rava,OT 308), Veillonella rogosae, Porphyromonas pasteri, Prevotella shahii, Prevotella pallens, Veillonella atypica, Actinomyces graevenitzii, Megasphaera micronuciformis, Prevotella loescheii, Neisseria flavescens, Solobacterium moorei, Porphyromonas catoniae, Rothia mucilaginosa, Corynebacterium matruchotii, Eubacterium sulci, Gemella sanguinis, Prevotella melaninogenica, Prevotella denticola, Prevotella nigrescens, Campylobacter concisus, Capnocytophaga gingivalis, Capnocytophaga ochracea, Capnocytophaga sputigena, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, Streptococcus mitis bv 2, Actinomyces odontolyticus, Veillonella parvula, Actinomyces naeslundii II,及びSelenomonas noxiaからなる群から選ばれる1種以上がより好ましい。
その後、歯周病の状態が不明の試料の判定において、上記の細菌群を一括して検出した後、同様にバランス指標を算出し、上記のカットオフ値と比較することにより、状態を判定する。
第一の態様の判定モデルによれば、歯周病の状態が未知のサンプルを、カットオフ値により、2つのグループに判定することができる。
非疾患状態と疾患状態は適宜定義できるが、本願では、非疾患状態を歯周ポケット深さ1~3mm、疾患状態を歯周ポケット深さ5mm以上と定義する。つまり、歯周ポケット深さ4mmは、疾患状態か非疾患状態か不明の状態である。
歯周ポケット深さ1~3mmの試料と、歯周ポケット深さ5mm以上の試料について、各種細菌群由来の核酸のシグナル強度を測定し、測定値から各種細菌群の存在割合を算出し、当該算出値(バランス指標)からカットオフ値を求める。その後、歯周ポケット深さ4mmの試料について、同様にバランス指標を算出し、これを先ほどのカットオフ値と比較することで、疾患状態が不明であった歯周ポケット深さ4mm群を、非疾患状態(歯周ポケット深さ1~3mm群と同程度)と疾患状態(歯周ポケット深さ5mm群と同程度)とに判定することができる。従来判定が困難とされてきた歯周ポケット深さ4mm群の判定が可能になるという点で、本発明の方法は非常に有益である。
Fusobacterium nucleatum種としては、特に限定されないが、具体的には、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum、Fusobacterium nucleatum subsp. vincentii、及びFusobacterium nucleatum subsp. Polymorphumからなる群から選ばれる1種以上が好ましく、Fusobacterium nucleatum subsp. animalis、及びFusobacterium nucleatum subsp. Nucleatumからなる群から選ばれる1種、または2種がより好ましい。
第一の態様の判定モデルと同様に、カットオフ値を算出し、これにより2つのグループに判定することができる。
第二の態様の判定モデルによれば、歯周ポケットの数値が小さい時の状態を第一の態様より良好に捉えることができる。
「悪玉菌」の細菌量は歯周ポケットの数値に対して単調増加関数となり、一方、「善玉菌」の細菌量は歯周ポケットの数値に対して単調減少関数となる。
「悪玉菌」の細菌量/「経過指標細菌」の細菌量の指標を縦軸にとり、歯周ポケットの数値を横軸にとる場合では、健康な状態のサンプルでは「悪玉菌」細菌量が少なく、全く検出されない結果も生じうる。すなわち、歯周ポケットの数値が0-3mmの間で判定できる数値が無い、ということが生じうる。
(a)歯周ポケットの数値の増大に伴い増加する細菌種(ただしFusobacterium nucleatum種以外の細菌種を1種以上含む。)の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係
(b) Fusobacterium nucleatum種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種との相関関係 DNAチップを用いる場合においては一括して複数の細菌群を検出できるため、複数のバランス指標を同時に算出することができる。よって、2つのバランス指標に軸として同時に判定することもでき、2×2=4グループに分類できる。
治療とは、歯科の現場で歯科医師や歯科衛生士が一般的に実施している治療を示し、例えば、歯周基本治療としては、プラークコントロール(歯みがき指導)及び歯石の除去(スケーリング・ルートプレーニング)及びかみ合わせの調整等が挙げられる。さらに、歯周基本治療の後の再評価検査の結果、歯石がポケットの深いところに入り込んでいて除去できず、治っていない場合に実施する外科的治療があげられる。具体的な外科的治療は、例えばフラップ手術及び歯周組織再生療法及びプラスチックサージェリー(歯周形成外科手術)等である。また、歯周治療終了後の継続的なプロフェッショナルケアである「サポーティブペリオドンタルセラピー(SPT)」も、“病状安定”を維持し歯周治療の予後を良好に保つための不可欠な治療として重要である。
歯周病の治療効果の判定は、歯周病治療前及び治療後に検体を採取し、データを比較検討することにより行う。
本発明は、以下の(a)又は(b)のDNAを含む、口腔細菌検出用オリゴヌクレオチドプローブセットを提供する。
(a) 配列番号1~33に示される塩基配列からなるDNA
(b) 配列番号1~33に示される塩基配列に対して90%以上の同一性を有し、かつ、口腔細菌の染色体DNA中の16SrRNA遺伝子またはその相補鎖の一部の塩基配列にハイブリダイズするDNA
「ハイブリダイズ」のストリンジェンシー条件などは、前記した内容と同様である。
さらに、本発明は、上記オリゴヌクレオチドプローブセットが配置された、口腔細菌検出用マイクロアレイを提供する。本発明においては、マイクロアレイとして、「2.口腔内細菌量の測定に用いる口腔内細菌遺伝子検出用DNAチップ」の項に記載したものを使用することができる。
以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
歯周病の状態の判定方法
<歯肉縁下プラーク検体の調製>
大阪大学歯学部附属病院にて、歯周病治療前の状態の20歳代から70歳代の男女220名の被験者から、歯肉縁下プラークを採取した。Absorbent paper points(ISO Color-Coded)#40(DENTSPLY MAILLEFER社製)を2本、歯周ポケットに挿入して30秒間置いた。その後、0.15mLの滅菌蒸留水を入れたマイクロチューブにペーパーポイントを投入し、20秒間ボルテックスした。ペーパーポイントを滅菌したピンセットで取り出して、検出まで-20℃で凍結して保管した。
すべての検体について臨床情報を下記の基準に従って数値化した。下記4項目は歯科において広く活用されている指標である。
(i)歯周ポケットの深さ(Pd):歯周プローブをポケットに挿入した際の,歯肉辺縁からプローブ先端までの距離を示す。1mm単位で数値化した。なお、ここでいう「歯周プローブ」とは、ポケット測定器具(ヘリオプローブ)を意味する。
(ii)プロービング時の出血(BOP):歯周プローブをポケットに挿入した際に出血の有無を示す。出血がない場合を0、出血がある場合を1とした。
(iii)Gingival Index(GI):歯肉の炎症の程度を示す。炎症が認められない場合を0、軽度の炎症の場合を1、中等度の炎症の場合を2、高度の炎症の場合を3とした。
(iv)Plaque Index(PlI):歯肉に隣接した歯面のプラーク沈着量を示す。プラークは認められない場合を0、プラークが肉眼的には認められないがプローブで擦過して認められる場合を1、プラークが視認できる場合を2、プラークが多量に認められる場合を3とした。
前記の凍結保管していたすべての検体を融解し、PCRテンプレートとした。検体中の口腔内細菌の16SrRNAの検出対象領域の配列を増幅するために、以下の反応液組成及び反応条件でPCRを実施した。PCR用キットは、Premix Ex TaqTM Hot Start Version(Takara社製)を用い、GeneAmp9700(AppliedBiosystems社製)により行った。プライマーは下記の配列を有するプライマーを用いた。なお、フォワードプライマーは5’末端がCy5で標識化されているものを用いた。
5’-Cy5-TCCTACGGGAGGCAGCAGT-3’(配列番号37)
リバースプライマー(細菌増幅用):
5’-CAGGGTATCTAATCCTGTTTGCTACC-3’(配列番号38)
5’-Cy5-GAGAAGCCTACACAAACGTAACGTC-3’(配列番号39)
リバースプライマー(絶対量指標増幅用):
5’-CTCTAAAGACCGCTCTATCTCGG-3’(配列番号40)
2×Premix Ex Taq(登録商標)
Hot Start Version 10μL
4μMフォワードプライマー(細菌増幅用) 1μL
4μMリバースプライマー(細菌増幅用) 1μL
4μMフォワードプライマー(絶対量指標増幅用) 1μL
4μMリバースプライマー(絶対量指標増幅用) 1μL
テンプレートDNA 5μL
絶対量指標1μL
合計20μL
95℃で1分間加熱後、「解離:98℃(10sec)→アニーリング:60℃(30sec)→合成:72℃(20sec)」を1サイクルとして計40サイクル行い、4℃で冷却し、増幅産物を得た。
貫通孔型のDNAチップを、特開2007-74950号公報(メチル化DNA及び/又は非メチル化DNAの検出方法)の実施例2-1に記載の方法と同様の方法で製造を行った。
ただし、搭載させたオリゴヌクレオチドプローブは、非特許文献1:Socransky,S.S. et al. J Clin Microbiol,37,1426-30,1999の菌種の情報を参考にし、表4に示す配列情報をもつプローブを用いた。
以下のように各溶液を混合し、ハイブリダイゼーション溶液を調製した。
1M Tris-HCl 48μL
1M NaCl 48μL
0.5% Tween20 20μL
水64μL
合計200μL
0.24M Tris・HCl/0.24M NaCl/0.05% Tween-20溶液1000μLで220秒の洗浄を12回繰り返し、続いて、0.24M Tris・HCl/0.24M NaCl1000μLで220秒の洗浄を4回繰り返した。洗浄終了後に、各チップを室温の0.24M Tris・HCl/0.24M NaCl混合溶液に移した。
前記洗浄後、ジェノパールリーダー(三菱ケミカル社製)を用い、下記条件でDNAチップの各スポットの蛍光強度を測定した。
<検出条件>
中心励起波長:633nm
露光時間:0.1、1、4、40秒
検出対象細菌用プローブを搭載したスポットの蛍光強度を、バックグラウンド値(プローブを搭載していないスポットの蛍光強度の中央値)で除算し、ハイブリダイゼーションに由来するSN比を算出した。220検体すべてについて検出対象細菌ごとにSN比のデータを得た。
細菌28種類について歯周ポケットの数値(Pd)と各細菌量を示すSN比のデータの散布図を作成し、これを図1に示す(図1-1~図1-7)。図1の縦軸は各細菌のSN比、横軸はポケットの数値(Pd)を示す。また28種類すべてについて相関係数を算出した(表5)。
図3のデータを元にROC解析を行い(図4右)、左上に近い点(バランス指標(LOG10)=0.566)をカットオフ値とした。この場合、同解析より、感度0.890、特異度0.913で判定する検査となることが分かった(図4左)。
これらをカットオフ値0.566で判定すると、18名はカットオフ値より大きなバランス指標(LOG10)値であった(表6:下から18名)。これらの方は、歯周ポケット5mm以上の疾患状態と同程度歯周病の状態が進行していると判断できた。
[実施例1-2]
歯周病の経過状態の判定方法
「歯周ポケットの数値の増大に伴い増加する細菌種」群、「歯周ポケットの数値の増大に伴い減少する細菌種」群は、は、実施例1と同様とした。
「経過指標細菌」として、「歯周ポケットの数値の増大に伴い増加する細菌種」群のうち、Fusobacterium nucleatum subsp. animalisとFusobacterium nucleatum subsp. nucleatumを選択した。
図6に示したデータのうち、歯周ポケット深さ1~3mmと歯周ポケット深さ5mm以上のデータについてヒストグラムを作成した(図7)。図7の縦軸は図6のバランス指標をLOG10で変換した数値である。横軸は頻度である。
図7のデータを元にROC解析を行い(図8右)、左上に近い点(バランス指標(LOG10)=0.826)をカットオフ値とした。この場合、同解析より、感度0.932、特異度0.777で判定する検査となることが分かった。
これらをカットオフ値0.826で判定すると、27名はカットオフ値より大きなバランス指標(LOG10)値であった(表7:黄色の27名(表7の下から1~27名分))。これらの方は、歯周病の経過として歯周ポケット5mm以上の疾患状態と同程度の状態であると判断できた。
[実施例1-3]
歯周病の状態の細分化
(a)、(b)、(d)の状態のサンプルについて、各細菌のSN比を図11に示した。上から状態(a)(要再治療レベル:n=18)、状態(b)(今軽度だが経過注意:n=19)、状態(d)(軽度:n=17)
[実施例1-4]
選択する細菌による判定能の違い
このうち歯周ポケットの数値の増大に伴い増加する細菌種群は、歯周病関連細菌として知られている5菌種とFusobacterium nucleatum種の1菌種とした。すなわち、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter rectus、Fusobacterium nucleatum subsp. nucleatum、Prevotella intermediaの6菌種とした。
その結果、細菌種を10種類用いて得たカットオフ値(0.566)では、感度0.877、特異度0.932で判定する検査となることがわかった。(細菌種28種類の場合は、前述の通り、感度0.890、特異度0.913。)
また実施例1-2と同様にバランス指標(LOG10)を算出、ROC解析を行い実施例1-2の場合と比較した。この結果を図13に示した。
[実施例2-1]
治療前及び治療後のプラーク検体の細菌検出と歯周病の治療効果の判定
治療前及び治療後のプラーク検体の細菌量を比較する為に、大阪大学歯学部附属病院にて、歯周病治療前及び治療後の歯肉縁下プラークを20歳代から70歳代の男女61症例から採取した。治療は、歯周基本治療である、歯石の除去(スケーリング・ルートプレーニング)を実施した。
貫通孔型のDNAチップを、特開2007-74950号公報(メチル化DNA及び/又は非メチル化DNAの検出方法)の実施例1-1に記載の方法と同様の方法で製造を行った。搭載させたオリゴヌクレオチドプローブは、表8に示す配列情報をもつプローブを用いた。PCR,DNAチップへのハイブリダイゼーション、検出までは実施例1-1と同様に実施した。
<SN比データの算出>
検出対象細菌用プローブを搭載したスポットの蛍光強度をバックグラウンド値(プローブを搭載していないスポットの蛍光強度)で除算し、ハイブリダイゼーションに由来するSN比を算出した。その後、実施例1-4と同一の10種類、つまり、「歯周ポケットの数値の増大に伴い増加する細菌種」群は、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter rectus、Fusobacterium nucleatum subsp. nucleatum、Prevotella intermediaの6菌種、「歯周ポケットの数値の増大に伴い減少する細菌種」群はCapnocytophaga gingivalis、Streptococcus gordonii、Streptococcus intermedius、Veillonella parvulaの4菌種とし、実施例1-3と同様に2軸での判定を行った。その結果を図14の上半分の2つのグラフに示した。
[実施例2-2]
検出対象細菌用プローブを搭載したスポットの蛍光強度から、バックグラウンド値(プローブを搭載していないスポットの蛍光強度の中央値及び標準偏差の3倍)を減算し、ハイブリダイゼーションに由来するシグナル強度を算出した。続いて、複数枚のDNAチップに対し、絶対量指標プローブのシグナル強度を比較し、各DNAチップの補正係数を求め、検出対象細菌のシグナル強度を補正し比較できるようにした。その後、事前に決定していた各細菌量算出係数を乗算し、各検出対象の細菌量をゲノムコピー数で算出した。各細菌量算出係数は、各細菌由来ゲノムDNAを検出したときのシグナル強度を測定し検量線を作成しておき、各細菌のシグナル強度から各細菌量を逆算する係数を求めておいた。最後に、PCRテンプレートに利用した検出80検体の希釈率を乗算し、ペーパーポイント1本あたりの細菌数を算出した。前記の計算により、のべ122検体すべてについて、検出対象細菌ごとに細菌数のデータを得た。なお初期にシグナル強度が0以下となった検出下限のものは一律コピー数1000とした。この結果を治療前(表9(表9-1~表9-2))と治療後(表10(表10-1~表10-2))に示した。
[実施例3]
次世代シークエンサーデータでの判定
近年新たに議論されている細菌種について検討するため実施例1-1と同様に新たに表12に記載の細菌プローブを搭載したDNAチップを作成した。
PCRに使用したプライマーを以下のように変更して実施した。
R、Yは混合塩基を示しており、RはAとG、YはCとTを示す。
5’-Cy5-TACGGGAGGCAGCAG-3’(配列番号90)
リバースプライマー(細菌増幅用):
5’-CRGGGTATCTAATCCYGTT-3’(配列番号91)
フォワードプライマー(絶対量指標増幅用):
5’-Cy5-GAGAAGCCTACACAAACGTAACGTC-3’(配列番号
39)
リバースプライマー(絶対量指標増幅用):
5’-CTCTAAAGACCGCTCTATCTCGG-3’(配列番号40)
ひきつづき得られた蛍光強度を以下のように処理した。
検出対象細菌用プローブを搭載したスポットの蛍光強度を、バックグラウンド値(プローブを搭載していないスポットの蛍光強度の中央値)で減算し、ハイブリダイゼーションに由来するシグナル強度を算出した。このとき、シグナル強度がある閾値を下回るものについては、ノイズと判断し「0」とする。ここでは閾値として、プローブを搭載していないスポット30個の傾向強度のうち上下位5つを除いた20個の値の標準偏差の3倍の値を用いた。
表14に示す相関係数の有意性について、有意水準をq値<0.05としたとき、有意な相関を示す細菌とした。続いてこれら有意な相関をもつ細菌について、相関係数の正負に基づいて「歯周ポケットの数値の増大に伴い増加する細菌種」と「歯周ポケットの数値の増大に伴い減少する細菌種」に大別した。「歯周ポケットの数値の増大に伴い増加する細菌種」群は、Filifactor alocis、Porphyromonas endodontalis、Eubacterium nodatum 、Eubacterium saphenum、Treponema medium、Selenomonas sputigenaの6菌種とした。
図17に示したデータのうち、歯周ポケット深さ1~3mmと歯周ポケット深さ5mm以上のデータについてヒストグラムを作成した(図18)。図18の縦軸は図17のバランス指標をLOG10で変換した数値である。横軸は頻度である。
図18のデータを元にROC解析を行い(図19)、左上に近い点(バランス指標(LOG10)=0.3182)をカットオフ値とした。この場合、同解析より、感度0.877、特異度0.884で判定する検査となることが分かった。
Claims (9)
- 口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度を測定し、当該シグナル強度の測定値から前記細菌群の存在割合を算出し、得られた算出値を指標として歯周病の状態を判定する口腔内検査方法であって、
細菌群の存在割合は、歯周ポケットの数値の増大に伴い増加する細菌種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係である、前記方法。 - 得られた算出値を、細菌群の存在割合のカットオフ値と比較することにより歯周病の状態を判定する、請求項1に記載の方法。
- 前記細菌群の存在割合は、歯周ポケットの数値の増大に伴い増加する細菌種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との比である、請求項1に記載の方法。
- 前記カットオフ値は、基準策定用口腔内試料中に存在する口腔内細菌群由来の核酸のシグナル強度の測定値から前記細菌群の存在割合を算出し、当該算出値から作成されたROC曲線に基づいて定めたものである、請求項2に記載の方法。
- 前記細菌群の存在割合は、Fusobacterium nucleatum種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係である、請求項1に記載の方法。
- 前記細菌群の存在割合として以下の(a)及び(b)を用いる、請求項1に記載の方法。
(a)歯周ポケットの数値の増大に伴い増加する細菌種(ただしFusobacterium nucleatum種以外の細菌種を1種以上含む。)の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係
(b) Fusobacterium nucleatum種の細菌量と、歯周ポケットの数値の増大に伴い減少する細菌種の細菌量との相関関係 - 歯周ポケットの数値の増大に伴い増加する細菌種が、Porphyromonas gingivalis、Tannerella forsythia、Treponema denticola、Campylobacter gracilis、Campylobacter rectus、Campylobacter showae、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、Fusobacterium nucleatum subsp. nucleatum、Fusobacterium periodonticum、Prevotella intermedia、Streptococcus constellatus、Aggregatibacter actinomycetemcomitans、Eikenella corrodens、Filifactor alocis、Porphyromonas endodontalis、Eubacterium nodatum 、Eubacterium saphenum、Treponema medium及びSelenomonas sputigenaからなる 群から選ばれる少なくとも一種である請求項1に記載の方法。
- 歯周ポケットの数値の増大に伴い減少する細菌種が、Prevotella nigrescens、Campylobacter concisus、Capnocytophaga gingivalis、Capnocytophaga ochracea、Capnocytophaga sputigena、Streptococcus gordonii、Streptococcus intermedius、Streptococcus mitis、Streptococcus mitis bv 2、Actinomyces odontolyticus、Veillonella parvula、Actinomyces naeslundii II、Selenomonas noxia、Prevotella denticola、Prevotella melaninogenica、Gemella sanguinis、Eubacterium sulci、Corynebacterium matruchotii、Rothia mucilaginosa、Porphyromonas catoniae、Solobacterium moorei、Neisseria flavescens、Prevotella loescheii、Megasphaera micronuciformis、Actinomyces graevenitzii、Veillonella atypica、Prevotella pallens、Prevotella shahii、Porphyromonas pasteri、Veillonella rogosae、Alloprevotella spp. (A. rava,OT 308)、Rothia dentocariosa、Granulicatella adiacens、Streptococcus salivarius、Haemophilus parainfluenzae及びStreptococcus parasanguinisから なる群から選ばれる少なくとも一種である、請求項1に記載の方法。
- Fusobacterium nucleatum種が、Fusobacterium nucleatum subsp. vincentii、Fusobacterium nucleatum subsp. polymorphum、Fusobacterium nucleatum subsp. animalis、及びFusobacterium nucleatum subsp. nucleatumからなる群から選ばれる少なくとも一種である請求項5に記載の方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3084012A CA3084012A1 (en) | 2017-11-02 | 2018-11-02 | Intraoral examination method using information on bacterial group related to clinical indexes |
JP2019550509A JP7307683B2 (ja) | 2017-11-02 | 2018-11-02 | 臨床的指標と関連性のある細菌群の情報を利用した口腔内検査方法 |
AU2018361591A AU2018361591B2 (en) | 2017-11-02 | 2018-11-02 | Intraoral examination method using information on bacterial group related to clinical indexes |
EP18874137.5A EP3705580A4 (en) | 2017-11-02 | 2018-11-02 | PROCEDURE FOR INTRAORAL INSPECTION USING INFORMATION FOR GROUPS OF BACTERIA ASSOCIATED WITH CLINICAL INDICES |
BR112020008570-7A BR112020008570A2 (pt) | 2017-11-02 | 2018-11-02 | método de inspeção intraoral com o uso de informações para grupos de bactérias associados a índices clínicos |
CN201880084926.XA CN111757942B (zh) | 2017-11-02 | 2018-11-02 | 利用与临床指标具有相关性的细菌群的信息的口腔内检查方法 |
US16/760,185 US20210238659A1 (en) | 2017-11-02 | 2018-11-02 | Intraoral examination method using information on bacterial group related to clinical indexes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017212488 | 2017-11-02 | ||
JP2017-212488 | 2017-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019088272A1 true WO2019088272A1 (ja) | 2019-05-09 |
Family
ID=66333272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040917 WO2019088272A1 (ja) | 2017-11-02 | 2018-11-02 | 臨床的指標と関連性のある細菌群の情報を利用した口腔内検査方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20210238659A1 (ja) |
EP (1) | EP3705580A4 (ja) |
JP (1) | JP7307683B2 (ja) |
CN (1) | CN111757942B (ja) |
AU (1) | AU2018361591B2 (ja) |
BR (1) | BR112020008570A2 (ja) |
CA (1) | CA3084012A1 (ja) |
WO (1) | WO2019088272A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021129531A (ja) * | 2020-02-20 | 2021-09-09 | 三井化学株式会社 | 歯周病検査方法、歯周病検査システム、歯周病検査キット、機械学習装置、及びデータ構造 |
WO2022079184A1 (en) * | 2020-10-14 | 2022-04-21 | Genolytic Gmbh | Development of a personalised periodontitis score for patient risk stratification and trageted therapy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118497088B (zh) * | 2024-07-18 | 2024-10-01 | 北京大学人民医院 | 变异链球菌及其应用 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51882B1 (ja) | 1970-12-30 | 1976-01-12 | ||
JPH11108928A (ja) | 1997-10-01 | 1999-04-23 | Dainakomu:Kk | 生体高分子配列シートの製造方法 |
JP2001133453A (ja) | 1999-08-26 | 2001-05-18 | Mitsubishi Rayon Co Ltd | 生体高分子配列薄片の製造方法 |
WO2002010444A1 (en) | 2000-07-28 | 2002-02-07 | University Of Sydney | A method of detecting microorganisms |
WO2003106676A1 (ja) | 2002-06-14 | 2003-12-24 | 日立ソフトウエアエンジニアリング株式会社 | 微生物同定用プローブ及びそれを用いた同定方法 |
JP2004163211A (ja) | 2002-11-12 | 2004-06-10 | Mitsubishi Rayon Co Ltd | 中空繊維へのゲル充填方法、ゲル充填中空繊維及びそれを用いた生体関連物質マイクロアレイ |
JP2004229537A (ja) | 2003-01-29 | 2004-08-19 | Bml Inc | 歯周疾患の検出方法 |
JP2007068431A (ja) | 2005-09-05 | 2007-03-22 | Oji Paper Co Ltd | 細菌叢の解析方法およびキット |
JP2007074950A (ja) | 2005-09-13 | 2007-03-29 | Mitsubishi Rayon Co Ltd | メチル化dna及び/又は非メチル化dnaの検出方法 |
JP2008206516A (ja) | 2007-01-31 | 2008-09-11 | Gc Corp | 口腔内連鎖球菌数を測定する方法及びそれに用いるpcrプライマー及びプローブセット |
US20100196941A1 (en) * | 2007-07-30 | 2010-08-05 | The Regents Of The University Of Michigan | Multi-Analyte Analysis of Saliva Biomarkers as Predictors of Periodontal and Pre-Implant Disease |
JP2011193810A (ja) | 2010-03-19 | 2011-10-06 | Kao Corp | 歯周病リスクの評価方法 |
JP2013505428A (ja) * | 2009-09-18 | 2013-02-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ヒト口腔癌検出のための唾液の代謝バイオマーカー |
JP5863035B2 (ja) | 2012-03-07 | 2016-02-16 | 国立大学法人 東京大学 | 炎症性腸疾患の検出方法及びヒト唾液細菌叢の検査方法 |
JP2016104720A (ja) * | 2010-12-15 | 2016-06-09 | サンスター株式会社 | 歯周病原菌血漿または血清抗体価検査キット |
JP2017085944A (ja) * | 2015-11-06 | 2017-05-25 | ライオン商事株式会社 | イヌの歯周病の評価方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070269813A1 (en) * | 2005-11-03 | 2007-11-22 | Dewhirst Floyd E | Methods and arrays for identifying human microflora |
JP2009232690A (ja) * | 2008-03-26 | 2009-10-15 | Morinaga Milk Ind Co Ltd | アレルギー性疾患検査方法 |
MX2011011571A (es) * | 2009-05-01 | 2012-02-13 | Genomic Health Inc | Algoritmo de perfil de expresion genica y prueba para probabilidad de recidiva de cancer colorrectal y respuesta a la quimioterapia. |
WO2013014069A1 (en) * | 2011-07-22 | 2013-01-31 | Universite Pierre Et Marie Curie (Paris 6) | Method for predicting the risk of early stent thrombosis in a subject with a clopidogrel treatment |
FI126711B (fi) * | 2011-10-12 | 2017-04-13 | Gut Guide Oy | Serotoniinivajeeseen liittyvän terveysriskin arvioiminen |
FI20116008A0 (fi) * | 2011-10-12 | 2011-10-12 | Maeyrae Maekinen Annika | Viskeraalisen rasvan estäminen ja diagnostisointi |
WO2014075676A1 (en) * | 2012-11-15 | 2014-05-22 | V-Biotek Holding Aps | Amines from trigonella foemum - graecum |
BR112015027830A2 (pt) * | 2013-05-09 | 2017-07-25 | Procter & Gamble | método e sistema de identificação de biomarcador |
US10392667B2 (en) * | 2013-06-07 | 2019-08-27 | Medical Prognosis Institute A/S | Methods and devices for predicting treatment efficacy of fulvestrant in cancer patients |
EP3130680A1 (en) * | 2015-08-11 | 2017-02-15 | Universitat de Girona | Method for the detection, follow up and/or classification of intestinal diseases |
TWM542208U (zh) * | 2015-11-02 | 2017-05-21 | General Biologicals Corp | 口腔健康檢測及評估系統 |
JPWO2018012011A1 (ja) * | 2016-07-11 | 2018-07-19 | 三菱ケミカル株式会社 | 口腔内検査方法 |
-
2018
- 2018-11-02 CA CA3084012A patent/CA3084012A1/en active Pending
- 2018-11-02 JP JP2019550509A patent/JP7307683B2/ja active Active
- 2018-11-02 US US16/760,185 patent/US20210238659A1/en active Pending
- 2018-11-02 WO PCT/JP2018/040917 patent/WO2019088272A1/ja unknown
- 2018-11-02 AU AU2018361591A patent/AU2018361591B2/en active Active
- 2018-11-02 EP EP18874137.5A patent/EP3705580A4/en active Pending
- 2018-11-02 BR BR112020008570-7A patent/BR112020008570A2/pt unknown
- 2018-11-02 CN CN201880084926.XA patent/CN111757942B/zh active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51882B1 (ja) | 1970-12-30 | 1976-01-12 | ||
JPH11108928A (ja) | 1997-10-01 | 1999-04-23 | Dainakomu:Kk | 生体高分子配列シートの製造方法 |
JP2001133453A (ja) | 1999-08-26 | 2001-05-18 | Mitsubishi Rayon Co Ltd | 生体高分子配列薄片の製造方法 |
WO2002010444A1 (en) | 2000-07-28 | 2002-02-07 | University Of Sydney | A method of detecting microorganisms |
JP2004504069A (ja) | 2000-07-28 | 2004-02-12 | ユニバーシティ オブ シドニー | 微生物を検出する方法 |
WO2003106676A1 (ja) | 2002-06-14 | 2003-12-24 | 日立ソフトウエアエンジニアリング株式会社 | 微生物同定用プローブ及びそれを用いた同定方法 |
JP2004163211A (ja) | 2002-11-12 | 2004-06-10 | Mitsubishi Rayon Co Ltd | 中空繊維へのゲル充填方法、ゲル充填中空繊維及びそれを用いた生体関連物質マイクロアレイ |
JP4252812B2 (ja) | 2003-01-29 | 2009-04-08 | 株式会社ビー・エム・エル | 歯周病菌の定量方法 |
JP2004229537A (ja) | 2003-01-29 | 2004-08-19 | Bml Inc | 歯周疾患の検出方法 |
JP2007068431A (ja) | 2005-09-05 | 2007-03-22 | Oji Paper Co Ltd | 細菌叢の解析方法およびキット |
JP2007074950A (ja) | 2005-09-13 | 2007-03-29 | Mitsubishi Rayon Co Ltd | メチル化dna及び/又は非メチル化dnaの検出方法 |
JP2008206516A (ja) | 2007-01-31 | 2008-09-11 | Gc Corp | 口腔内連鎖球菌数を測定する方法及びそれに用いるpcrプライマー及びプローブセット |
US20100196941A1 (en) * | 2007-07-30 | 2010-08-05 | The Regents Of The University Of Michigan | Multi-Analyte Analysis of Saliva Biomarkers as Predictors of Periodontal and Pre-Implant Disease |
JP2013505428A (ja) * | 2009-09-18 | 2013-02-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ヒト口腔癌検出のための唾液の代謝バイオマーカー |
JP2011193810A (ja) | 2010-03-19 | 2011-10-06 | Kao Corp | 歯周病リスクの評価方法 |
JP2016104720A (ja) * | 2010-12-15 | 2016-06-09 | サンスター株式会社 | 歯周病原菌血漿または血清抗体価検査キット |
JP5863035B2 (ja) | 2012-03-07 | 2016-02-16 | 国立大学法人 東京大学 | 炎症性腸疾患の検出方法及びヒト唾液細菌叢の検査方法 |
JP2017085944A (ja) * | 2015-11-06 | 2017-05-25 | ライオン商事株式会社 | イヌの歯周病の評価方法 |
Non-Patent Citations (20)
Title |
---|
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
"Japanese Society of Periodontology", article "Clinical Guidelines for Antibacterial Therapy in Patients with Periodontal Disease" |
"Molecular Cloning, A Laboratory Manual", 2012, COLD SPRING HARBOR PRESS |
"Possibility of Bacterial Test in Periodontal Disease", JOURNAL OF THE JAPANESE SOCIETY OF PERIODONTOLOGY, vol. 55, no. 4, 2013, pages 294 - 299 |
"Predicting Periodontitis Progression from Salivary Bacterial Test and Serum Antibody Titer Test", JOURNAL OF THE JAPANESE SOCIETY OF PERIODONTOLOGY, vol. 58, no. 4, 2016, pages 254 - 258 |
EBERHARD, J. ET AL., ORAL MICROBIOL IMMUNOL, vol. 23, 2008, pages 21 - 8 |
GUIDELINES BY THE JAPANESE SOCIETY OF PERIODONTOLOGY, ''JSP CLINICAL PRACTICE GUIDELINE FOR THE PERIODONTAL TREATMENT, 2015 |
HAFFAJEE ADSOCRANSKY SS.: "Microbial etiological agents of destructive periodontal diseases", PERIODONTOL 2000, vol. 5, June 1994 (1994-06-01), pages 78 - 111 |
HENNE, K. ET AL., J ORAL MICROBIOL, vol. 6, 2014, pages 25874 |
HIROSHI OHNOSYOHEI HATTORI: "Human Health and Diseases Controlled by Indigenous Bacterial Flora", March 2014, YODOSHA CO., LTD., pages: 97 |
MASATO MINABETOSHIAKI YOSHINO: "Concept of Periodontal Treatment Using Bacterial Test", June 2005, IGAKU JOHO-SHA, LTD., pages: 3 |
SCIENCE, vol. 251, 1991, pages 767 - 773 |
SCIENCE, vol. 270, 1995, pages 467 - 470 |
See also references of EP3705580A4 |
SHANG, S ET AL., PEDIATRIC RESEARCH, vol. 58, 2005, pages 143 - 148 |
SOCRANSKY, S. S. ET AL., J CLIN MICROBIOL, vol. 37, 1999, pages 1426 - 30 |
SOCRANSKY, S. S. ET AL., J CLINMICROBIOL, vol. 37, 1999, pages 1426 - 30 |
SOCRANSKY, S. S. ET AL.: "Dental biofilms: difficult therapeutic targets", PERIODONTOLOGY, vol. 28, 2000, pages 12 - 55, XP55612980 * |
TOPCUOGLU, N. ET AL., ANAEROBE, vol. 35, 2015, pages 35 - 40 |
TOPCUOGLU, N. ET AL., J CLIN PEDIATR DENT, vol. 38, 2013, pages 155 - 60 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021129531A (ja) * | 2020-02-20 | 2021-09-09 | 三井化学株式会社 | 歯周病検査方法、歯周病検査システム、歯周病検査キット、機械学習装置、及びデータ構造 |
JP7527807B2 (ja) | 2020-02-20 | 2024-08-05 | 三井化学株式会社 | 歯周病検査方法、歯周病検査システム、歯周病検査キット、機械学習装置、及びデータ構造 |
WO2022079184A1 (en) * | 2020-10-14 | 2022-04-21 | Genolytic Gmbh | Development of a personalised periodontitis score for patient risk stratification and trageted therapy |
WO2022078589A1 (en) * | 2020-10-14 | 2022-04-21 | Genolytic Gmbh | Amplicon-panel and method for the assessment of dysbiosis in periodontitis |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019088272A1 (ja) | 2020-12-03 |
CN111757942A (zh) | 2020-10-09 |
JP7307683B2 (ja) | 2023-07-12 |
AU2018361591A1 (en) | 2020-06-18 |
EP3705580A1 (en) | 2020-09-09 |
AU2018361591B2 (en) | 2024-10-10 |
CA3084012A1 (en) | 2019-05-09 |
CN111757942B (zh) | 2024-05-24 |
US20210238659A1 (en) | 2021-08-05 |
EP3705580A4 (en) | 2021-01-13 |
BR112020008570A2 (pt) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7122337B2 (ja) | 口腔内検査方法 | |
JP7224297B2 (ja) | 歯周ポケット炎症面積の推定方法 | |
KR101706070B1 (ko) | 멀티플렉스 실시간 pcr을 이용한 다수의 구강질환 원인 세균의 동시 검출용 조성물 및 이를 이용한 검출 방법 | |
WO2019088272A1 (ja) | 臨床的指標と関連性のある細菌群の情報を利用した口腔内検査方法 | |
JP2017023093A (ja) | 歯周病及び齲蝕のリスクの判定方法 | |
JP2023055678A (ja) | ヒトマイクロバイオームに対する製品の影響を定量化する方法 | |
JP4917815B2 (ja) | 歯周病菌の検出方法 | |
JP6579874B2 (ja) | 歯周病菌検出用オリゴヌクレオチドセット及び歯周病菌の検出方法 | |
JP4878186B2 (ja) | 歯周病菌の検出方法 | |
KR20100074455A (ko) | 치주 질환 원인균 탐지용 프로브 및 이를 이용한 분석 장치 | |
US11732310B2 (en) | DNA chip for detecting dental caries bacteria | |
WO2008137541A2 (en) | Dog plaque health | |
RU2607046C2 (ru) | Способ оценки обсемененности пародонта патогенными бактериями с применением полимеразной цепной реакции в реальном времени | |
WO2008137506A2 (en) | Methods and kits for dog plaque disease | |
Tariq et al. | Bacterial Community in Dental Biofilms Linked to Periodontal Disease: An Intra-subject Metagenomics Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874137 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019550509 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 3084012 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018874137 Country of ref document: EP Effective date: 20200602 |
|
ENP | Entry into the national phase |
Ref document number: 2018361591 Country of ref document: AU Date of ref document: 20181102 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020008570 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020008570 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200429 |