WO2019088256A1 - 光ファイバユニットおよび光ファイバケーブル - Google Patents

光ファイバユニットおよび光ファイバケーブル Download PDF

Info

Publication number
WO2019088256A1
WO2019088256A1 PCT/JP2018/040848 JP2018040848W WO2019088256A1 WO 2019088256 A1 WO2019088256 A1 WO 2019088256A1 JP 2018040848 W JP2018040848 W JP 2018040848W WO 2019088256 A1 WO2019088256 A1 WO 2019088256A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
resin
unit
ribbon
fiber unit
Prior art date
Application number
PCT/JP2018/040848
Other languages
English (en)
French (fr)
Inventor
佐藤 文昭
石川 弘樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019550498A priority Critical patent/JP7120248B2/ja
Priority to EP18872419.9A priority patent/EP3705923A4/en
Priority to US16/759,757 priority patent/US11209606B2/en
Publication of WO2019088256A1 publication Critical patent/WO2019088256A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/56Processes for repairing optical cables
    • G02B6/566Devices for opening or removing the mantle
    • G02B6/567Devices for opening or removing the mantle for ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4409Optical cables with internal fluted support member for ribbons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Definitions

  • the present disclosure relates to an optical fiber unit and an optical fiber cable.
  • This application claims priority based on Japanese Patent Application No. 2017-212767 filed on Nov. 2, 2017, and incorporates the entire contents of the Japanese Patent Application.
  • Patent Document 1 describes an optical fiber cable provided with an optical fiber tape core, in which an optical fiber tape resin is divided at a dividing portion intermittently provided along the longitudinal direction of the optical fiber tape core. There is disclosed an optical fiber cable in which an optical fiber tape resin remains in an undivided portion.
  • Patent Document 2 discloses an optical fiber ribbon using a multicore optical fiber having a plurality of cores, and an optical cable (optical fiber cable) containing the optical fiber ribbon.
  • Patent Document 3 discloses an intermittent connection type optical fiber ribbon having an outer diameter of an optical fiber (optical fiber core) of 220 ⁇ m or less and a distance between centers of adjacent optical fibers of 250 ⁇ 30 ⁇ m. It is done.
  • An optical fiber unit is An optical fiber tape core comprising: a plurality of optical fiber cores having an outer diameter of 0.2 mm or less; and a tape resin for integrating the plurality of optical fiber cores in a parallel state; A coating resin for covering the optical fiber ribbon;
  • the optical fiber ribbon is The plurality of optical fiber cores are in the form of an assembly in which the length in the arrangement direction is shorter than in the case where the plurality of optical fibers are arranged in a line, In the aggregate form, the optical fiber ribbon is covered with the coating resin.
  • optical fiber cable according to one aspect of the present disclosure is Having the above optical fiber unit, The optical fiber unit is covered with a tube.
  • the optical fiber cable according to one aspect of the present disclosure is The above optical fiber unit, And a slot rod having a slot groove, The optical fiber unit is housed in the slot groove.
  • FIG. 4 is a cross-sectional view taken along line AA of the optical fiber ribbon shown in FIG. It is sectional drawing of the tube type optical fiber cable in which the optical fiber unit was accommodated. It is a sectional view of a slot type optical fiber cable in which an optical fiber unit was stored. It is a figure which shows an example of the manufacturing apparatus of an optical fiber unit.
  • the optical fiber core for the optical fiber cable can be mounted in a state in which the optical fiber cores are collected. High density mounting of wires is facilitated. However, as the diameter of the optical fiber decreases, the lateral pressure characteristic of the optical fiber ribbon tends to deteriorate. Further, in the process of mounting the optical fiber ribbon on the optical fiber cable, the possibility of the optical fiber disconnection is increased.
  • the present disclosure provides an optical fiber unit and an optical fiber cable that can easily identify an optical fiber without deteriorating the side pressure resistance even if the optical fiber has a small diameter. To aim.
  • An optical fiber unit is (1) An optical fiber tape core wire comprising: a plurality of optical fiber cores having an outer diameter of 0.2 mm or less; and a tape resin for integrating the plurality of optical fiber cores in a parallel state; A coating resin for covering the optical fiber ribbon; Have The optical fiber ribbon is The plurality of optical fiber cores are in the form of an assembly in which the length in the arrangement direction is shorter than in the case where the plurality of optical fibers are arranged in a line, In the aggregate form, the optical fiber ribbon is covered with the coating resin.
  • the optical fiber tape core is covered with the covering resin, so the side pressure resistance of the optical fiber unit is deteriorated. It is possible to facilitate identification of the optical fiber without causing any problem.
  • the optical fiber ribbon is not exposed and is covered with the coating resin, it is possible to damage the optical fiber ribbon when performing the installation work of the optical fiber unit, the mounting work on the optical fiber cable, etc. It is possible to reduce the risk of disconnection.
  • the Young's modulus of the coating resin may be 100 MPa or less. According to the above configuration, since the Young's modulus of the coating resin is 100 MPa or less, the coating resin is soft and a cushioning function can be obtained. Thereby, the deterioration of the side pressure resistance of the optical fiber unit can be further reliably prevented.
  • the core density per unit cross-sectional area of the optical fiber unit may be 10 cores / mm 2 or more. According to the above configuration, by setting the core density per unit cross-sectional area of the optical fiber unit to 10 cores / mm 2 or more, a high density optical fiber unit can be obtained.
  • the coating resin may cover the optical fiber ribbon in a solid state. According to the above configuration, since the coating resin covers the optical fiber ribbon in a solid state, the optical fiber is hard to move, and the deterioration of the side pressure resistance can be further reliably prevented, and Fiber cords are less likely to be injured.
  • the coating resin may have a notch for tearing. According to the above configuration, since there is a notch for tearing, when taking out the internal optical fiber ribbon such as the connection work of the optical fiber unit, it becomes easy to take out.
  • the tape resin may be applied only to one side of the optical fiber tape core. According to the above configuration, since the optical fiber ribbon is easy to bend to the side where the tape resin is not applied, it is easy to form the optical fiber ribbon in a collective form. In addition, since the tape resin is applied only to one side, a high density optical fiber unit can be obtained.
  • the optical fiber cable according to one aspect of the present disclosure is (7) The optical fiber unit according to any one of (1) to (6) above, The optical fiber unit is covered with a tube. According to the above configuration, in the optical fiber cable in which the optical fiber unit is covered with the tube, the lateral pressure resistance does not deteriorate even if the optical fiber core diameter is small and identification of the optical fiber core wire is easy. Can be In addition, breakage of the optical fiber core wire hardly occurs.
  • the optical fiber cable according to one aspect of the present disclosure is (8) The optical fiber unit according to any one of (1) to (6) above, And a slot rod having a slot groove, The optical fiber unit is housed in the slot groove.
  • the side pressure resistance does not deteriorate even if the optical fiber core diameter is small, and identification of the optical fiber core wire is performed. It can be easy. In addition, breakage of the optical fiber core wire hardly occurs.
  • FIG. 1 is a cross-sectional view perpendicular to the longitudinal direction of the optical fiber unit 1A according to the first embodiment.
  • the optical fiber unit 1 ⁇ / b> A includes an optical fiber ribbon 10 and a coating resin 20 covering the periphery of the optical fiber ribbon 10.
  • a plurality (12 in this example) of optical fiber ribbons 11 are connected by resin in a parallel state in which at least a part is in contact with each other.
  • the optical fiber ribbons 10 constituting the optical fiber unit 1A have a length in the arrangement direction shorter than in the case where the twelve optical fibers 11A to 11L are arranged in a line, in cross section
  • a plurality of optical fiber cores 11A to 11L are in the form of a collection (for example, a collection of rounds).
  • Each of the optical fiber cores 11A to 11L has a glass fiber 12 and a covering layer 13 covering the glass fiber 12.
  • the coating resin 20 is provided so as to cover the periphery of the optical fiber ribbon 10 in a solid state.
  • the "solid state” means a state in which the coating resin 20 is filled so that there is no space around each of the optical fiber cores 11A to 11L in the optical fiber tape core 10 in the aggregate form as described above. .
  • the optical fiber ribbon cable 10 of the optical fiber unit 1A is housed in a state in which the periphery is protected by the covering resin 20 filled in a solid state, and the optical fiber ribbon 10 is held at a predetermined position to a certain extent.
  • the covering resin 20 is formed such that its outer shape is, for example, circular.
  • the covering resin 20 has, for example, a Young's modulus of 100 MPa or less. For this reason, the shape of the optical fiber unit 1A is configured to be deformable.
  • the covering resin 20 is formed of, for example, an ultraviolet curing resin, a thermosetting resin, or the like.
  • the optical fiber unit 1A is formed such that its outer diameter R1 is, for example, about 0.9 mm.
  • the coating resin 20 is colored or marked, for example. Further, a notch 21 which is a cut for tearing is formed on the outer peripheral portion of the covering resin 20. Note that a foamed resin or the like may be used as the covering resin 20.
  • one optical fiber tape core wire 10 is covered with the covering resin 20 to form one unit.
  • a plurality of optical fiber tape core wires are covered with resin To form a unit.
  • the number of optical fiber cores constituting the optical fiber ribbon is not limited to twelve.
  • the core density per unit cross-sectional area of the optical fiber unit 1A may be, for example, 10 cores / mm 2 or more. By setting the core density to 10 cores / mm 2 or more, a high density optical fiber unit can be obtained.
  • FIG. 2 is a cross-sectional view perpendicular to the longitudinal direction of the optical fiber unit 1B according to the second embodiment.
  • the optical fiber unit 1 ⁇ / b> B includes an optical fiber ribbon 10 and a coating resin 30 covering the periphery of the optical fiber ribbon 10.
  • the optical fiber ribbons 10 have the same configuration as the optical fiber ribbons 10 according to the first embodiment, and therefore the description thereof is omitted.
  • the coating resin 30 is provided to cover the periphery of the optical fiber ribbon 10 in a hollow state.
  • the "hollow state” means a state in which the outer periphery of the aggregate outer shape of the optical fiber tape core wire 10 in the aggregate form as described above is covered with a layered resin, and the inner side of the layered resin is hollow. For this reason, the optical fiber ribbon cable 10 of the optical fiber unit 1B is accommodated in a state where it can move inside the coating resin 30 in the hollow state.
  • the other configuration of the coating resin 30 is the same as that of the coating resin 20 of the first embodiment.
  • the core density, outer diameter and the like of the optical fiber unit 1B are the same as the optical fiber unit 1A, but since the hollow state is provided, the core density is made higher than that of the optical fiber unit 1A of the first embodiment. be able to.
  • FIGS. 3 and 4 show an example of the optical fiber ribbon 10 accommodated in the optical fiber units 1A and 1B.
  • the optical fiber ribbon 10 has a plurality of optical fiber cores arranged in parallel, and the connecting portion 14 in which adjacent optical fiber cores are connected and the adjacent optical fiber cores are connected.
  • the non-connected portion 15 is an intermittent connection type optical fiber tape core wire provided intermittently in the longitudinal direction.
  • the optical fiber ribbon 10 of this embodiment has twelve optical fiber ribbons 11A to 11L.
  • FIG. 3 shows an intermittent connection type optical fiber ribbon in a state in which the optical fibers 11A to 11L are opened in the arrangement direction.
  • the portion where the connecting portion 14 and the non-connecting portion 15 are intermittently provided may be between some of the optical fibers as shown in FIG. 3 or between all the optical fibers. It may be.
  • the non-connecting portion 15 is not provided between the optical fiber cores 11A and 11B, 11C and 11D, 11E and 11F, 11G and 11H, 11I and 11J, and 11K and 11L.
  • connection portion 14 in the optical fiber ribbon 10 is formed by applying a tape resin 16 made of, for example, an ultraviolet curable resin, a thermosetting resin, or the like between the optical fibers.
  • a tape resin 16 made of, for example, an ultraviolet curable resin, a thermosetting resin, or the like between the optical fibers.
  • the connecting portion 14 and the non-connecting portion 15 are intermittently provided, and the optical fiber cores 11A to 11L are integrated in parallel. Ru.
  • the tape resin 16 is applied only to one side of the optical fibers 11A to 11L.
  • the optical fiber ribbon 10 may be formed, for example, by applying the tape resin 16 to one side or all sides of the optical fiber ribbons 11A to 11L arranged in parallel and connecting all the optical fiber ribbons 11A to 11L.
  • the non-connection portion 15 may be formed by cutting a part with a rotary blade or the like.
  • an optical fiber ribbon may be used in which the tape resin 16 is applied to one side or both sides of the optical fibers 11A to 11L arranged in parallel and the non-connecting portion 15 is not formed.
  • the optical fibers 11A to 11L are composed of, for example, a glass fiber 12 composed of a core and a clad, and two coating layers (inner coating layer 13a and outer coating layer 13b) for coating the glass fiber 12 .
  • the outer diameter R2 of the optical fiber 11 may be 0.2 mm or less.
  • the outer diameter R2 of the optical fiber 11 may be 0.165 mm
  • the outer diameter R3 of the glass fiber 12 may be 0.100 mm.
  • the coating layers are colored or marked in different colors so that the optical fiber cores can be distinguished from each other.
  • the optical fiber cores 11A to 11L constituting the optical fiber tape core 10 are formed into a collective form as described above and covered with the covering resin 20.
  • the optical fiber tape 10 is covered with the covering resin 20.
  • the lateral pressure resistance of the optical fiber 11A to 11L can be easily identified without deteriorating the lateral pressure resistance of the optical fiber 11A to 11L.
  • the optical fiber tape core 10 is not exposed and is covered with the coating resin 20, when the optical fiber unit 1A is installed or mounted on an optical fiber cable, the optical fiber tape core 10 is used. The possibility of trauma is reduced and the risk of disconnection can be reduced.
  • FIG. 5 shows an example of a tube type optical fiber cable in which the optical fiber unit is housed in a tube.
  • the optical fiber cable 40 includes a cylindrical tube 41 and a plurality of optical fiber units 1 ⁇ / b> A according to the first embodiment housed in the tube 41. Further, the optical fiber cable 40 is provided with a jacket 42 which covers the circumference of the tube 41.
  • Each optical fiber unit 1A is provided with, for example, different markings.
  • the tube 41 is made of, for example, a resin such as polybutylene terephthalate (PBT) or high density polyethylene (HDPE).
  • a tension member 43 and a tear cord 44 are provided in the jacket 42.
  • the optical fiber unit 1A is accommodated in the tube 41 in the optical fiber cable 40 shown in FIG. 5, for example, the optical fiber unit 1B according to the second embodiment may be accommodated.
  • the optical fiber cable 40 having such a configuration, since the optical fiber unit 1A or 1B is used, even if the optical fiber cores 11A to 11L constituting the optical fiber tape core 10 have a small diameter, the optical fiber is used. There is no deterioration in the side pressure resistance of the fiber tape core wire 10. Further, the discriminability of the optical fiber units 1A and 1B and the optical fiber cores 11A to 11L can be enhanced. Further, since the covering resin 20 is formed of a soft resin, the outer diameter of the optical fiber unit 1A can be deformed, and the optical fiber unit 1A can be accommodated in the tube 41 at a high density. In addition, breakage of the optical fiber core wire hardly occurs.
  • FIG. 6 shows an example of a slot type optical fiber cable in which the optical fiber unit is housed in the slot groove.
  • the optical fiber cable 50 includes a slot rod 51 having a plurality of (four in this example) slot grooves 52 formed on the outer peripheral surface thereof, and a plurality of (slots 51) housed in the slot grooves 52.
  • five optical fiber units 1A according to the first embodiment are provided.
  • the optical fiber cable 50 further includes a press-winding tape 53 wound around the slot rod 51 and an outer covering 54 covering the press-winding tape 53.
  • Each optical fiber unit 1A is provided with, for example, different markings.
  • the slot groove 52 is formed, for example, in a spiral shape along the longitudinal direction of the optical fiber cable 50.
  • a tension member 55 is provided at the center of the slot rod 51.
  • the manufacturing apparatus 60 of the optical fiber unit 1A first, the plurality of optical fiber cores 11A to 11L drawn out from the reel 62 of the supply 61 are arranged in parallel by the concentration roller 63.
  • the ultraviolet curing type tape resin 16 supplied from the resin storage tank 65 is intermittently applied to, for example, one side of the parallel surface formed by the optical fiber cores 11A to 11L arranged in parallel by the coating device 64. Apply Subsequently, the tape resin 16 is irradiated with ultraviolet light to be cured by the ultraviolet irradiation device 66, and the integrated intermittent connection type optical fiber tape core wire 10 is manufactured.
  • the collecting device for example, a nipple in which the hole through which the intermittent connection type optical fiber ribbon 10 is passed round
  • the collecting device for example, a nipple in which the hole through which the intermittent connection type optical fiber ribbon 10 is passed round
  • a UV curable resin supplied from the resin storage tank 69 is applied by a coating device 68 (for example, a die in which the hole through which the intermittent connection type optical fiber ribbon 10 is assembled in the above-mentioned form is rounded).
  • the coating resin 20 is extrusion coated in a solid state around the optical fiber ribbon 10 in the form of a bundle.
  • the coating resin 20 is irradiated with ultraviolet light by the ultraviolet irradiation device 70 and cured to manufacture the optical fiber unit 1A.
  • the optical fiber unit 1A is taken up by the delivery capstan 71, passes through the take-up tension control dancer 72, and is taken up on the reel 74 by the take-up device 73.
  • the step of coating the coating resin 20 around the optical fiber ribbon 10 may be performed in a separate step from the step of applying the tape resin 16 to the optical fibers 11A to 11L.
  • the optical fiber tape core wire 10 may be made to pass through an extruder for thermoplastic resin to produce an optical fiber unit. Also, it may be manufactured using a horizontal manufacturing apparatus.
  • Optical fiber unit 10 Optical fiber tape core 11A-11L: Optical fiber core 12: Glass fiber 13: Coating layer 14: Coupling part 15: Non-connection part 16: Tape resin 20, 30: Coating resin 21 : Notch part 40, 50: Optical fiber cable 41: Tube 42, 54: Outer cover 52: Slot groove 60: Manufacturing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

外径0.2mm以下の複数本の光ファイバ心線と、複数本の光ファイバ心線を並列状態で一体化させるテープ樹脂と、を備える光ファイバテープ心線と、光ファイバテープ心線を覆う被覆樹脂と、を有し、光ファイバテープ心線は、複数本の光ファイバ心線が一列に配列された場合よりも配列方向の長さが短くなるように集合した集合形態にされており、前記集合形態で光ファイバテープ心線が被覆樹脂によって覆われている。

Description

光ファイバユニットおよび光ファイバケーブル
 本開示は、光ファイバユニットおよび光ファイバケーブルに関する。
 本出願は、2017年11月2日出願の日本出願2017-212767号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、光ファイバテープ心線を備えた光ファイバケーブルであって、光ファイバテープ樹脂が、光ファイバテープ心線の長手方向に沿って間欠的に設けられた分断部で分断されており、非分断部では、光ファイバテープ樹脂が残留している光ファイバケーブルが開示されている。
 特許文献2には、複数のコアを有するマルチコア光ファイバ心線を用いた光ファイバテープ心線、その光ファイバテープ心線を収納した光ケーブル(光ファイバケーブル)が開示されている。
 特許文献3には、光ファイバ(光ファイバ心線)の外径寸法を220μm以下とし、且つ隣り合う光ファイバの中心間距離を250±30μmとした、間欠連結型の光ファイバテープ心線が開示されている。
日本国特開2005-62427号公報 日本国特開2015-52704号公報 日本国特開2013-88617号公報
 本開示の一態様に係る光ファイバユニットは、
 外径0.2mm以下の複数本の光ファイバ心線と、前記複数本の光ファイバ心線を並列状態で一体化させるテープ樹脂と、を備える光ファイバテープ心線と、
 前記光ファイバテープ心線を覆う被覆樹脂と、
を有し、
 前記光ファイバテープ心線は、
 前記複数本の光ファイバ心線が一列に配列された場合よりも配列方向の長さが短くなるように集合した集合形態にされており、
 前記集合形態で前記光ファイバテープ心線が前記被覆樹脂によって覆われている。
 また、本開示の一態様に係る光ファイバケーブルは、
 上記光ファイバユニットを有し、
 前記光ファイバユニットがチューブで覆われている。
 また、本開示の一態様に係る光ファイバケーブルは、
 上記光ファイバユニットと、
 スロット溝を有するスロットロッドと、を有し、
 前記光ファイバユニットが前記スロット溝に収納されている。
第一実施形態に係る光ファイバユニットの構成を示す断面図である。 第二実施形態に係る光ファイバユニットの構成を示す断面図である。 光ファイバユニットに収容される光ファイバテープ心線の一例を示す平面図である。 図3に示す光ファイバテープ心線のA-A線における断面図である。 光ファイバユニットが収納されたチューブ型の光ファイバケーブルの断面図である。 光ファイバユニットが収納されたスロット型の光ファイバケーブルの断面図である。 光ファイバユニットの製造装置の一例を示す図である。
[本開示が解決しようとする課題]
 例えば特許文献1、3のような間欠連結型の光ファイバテープ心線を用いれば、光ファイバ心線を集合させた状態で光ファイバケーブルに実装することができるので、光ファイバケーブルに対する光ファイバ心線の高密度実装が容易になる。
 ところが、光ファイバ心線の細径化が進むと、光ファイバテープ心線の側圧特性が悪くなる傾向がある。また、光ファイバケーブルに光ファイバテープ心線を実装する工程において、光ファイバ心線が断線する可能性が大きくなる。
 一方、例えば特許文献3のように光ファイバ心線を細径化すると、高密度化はできるが、光ファイバ心線の識別が困難になり、接続時に間違った光ファイバ心線同士を接続してしまう懸念がある。また、例えば特許文献2のようにマルチコア光ファイバ心線を用いても高密度化はできるが、ケーブル端末を他のケーブルと接続する際に個々の光ファイバコアを識別するために分岐するファンアウトコード等、高価な特殊物品が必要となる。
 本開示は、光ファイバ心線が細径であっても耐側圧性を悪化させることが無く、光ファイバ心線の識別を容易にすることができる光ファイバユニットおよび光ファイバケーブルを提供することを目的とする。
[本開示の効果]
 本開示によれば、光ファイバ心線が細径であっても耐側圧性を悪化させることが無く、光ファイバ心線の識別を容易にすることができる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバユニットは、
(1)外径0.2mm以下の複数本の光ファイバ心線と、前記複数本の光ファイバ心線を並列状態で一体化させるテープ樹脂と、を備える光ファイバテープ心線と、
 前記光ファイバテープ心線を覆う被覆樹脂と、
を有し、
 前記光ファイバテープ心線は、
 前記複数本の光ファイバ心線が一列に配列された場合よりも配列方向の長さが短くなるように集合した集合形態にされており、
 前記集合形態で前記光ファイバテープ心線が前記被覆樹脂によって覆われている。
 上記構成によれば、光ファイバ心線の外径が0.2mm以下の細径であっても、光ファイバテープ心線が被覆樹脂に覆われているため、光ファイバユニットの耐側圧性を悪化させることが無く、光ファイバ心線の識別を容易にすることができる。また、光ファイバテープ心線が露出せず被覆樹脂で覆われているので、光ファイバユニットの敷設作業や光ファイバケーブルに実装する作業等を行う際に、光ファイバテープ心線に外傷を与える可能性が低くなり、断線のリスクを軽減することができる。
 (2)前記被覆樹脂のヤング率は、100MPa以下であってもよい。
 上記構成によれば、被覆樹脂のヤング率が100MPa以下であるので、被覆樹脂が柔らかくクッション機能が得られる。これにより、光ファイバユニットの耐側圧性の悪化をさらに確実に防止することができる。
 (3)前記光ファイバユニットの単位断面積あたりの心密度が10心/mm以上であってもよい。
 上記構成によれば、光ファイバユニットの単位断面積あたりの心密度を10心/mm以上とすることで、高密度の光ファイバユニットとすることができる。
 (4)前記被覆樹脂は、中実状態で前記光ファイバテープ心線を覆っていてもよい。
 上記構成によれば、被覆樹脂は、中実状態で光ファイバテープ心線を覆っているので、光ファイバ心線が動きにくく、耐側圧性の悪化をさらに確実に防止することができると共に、光ファイバ心線が外傷しにくい。
 (5)前記被覆樹脂に引き裂き用のノッチ部を有していてもよい。
 上記構成によれば、引き裂き用のノッチ部があるので、光ファイバユニットの接続作業など、内部の光ファイバテープ心線を取り出す際に取り出しが容易になる。
 (6)前記光ファイバテープ心線の片面のみに前記テープ樹脂が塗布されていてもよい。
 上記構成によれば、テープ樹脂が塗布されていない側に光ファイバテープ心線を曲げ易いので、光ファイバテープ心線を集合形態とすることが容易である。また、片側にしかテープ樹脂が塗布されていないので、高密度の光ファイバユニットとすることができる。
 また、本開示の一態様に係る光ファイバケーブルは、
 (7)上記(1)から(6)のいずれか一に記載の光ファイバユニットを有し、
 前記光ファイバユニットがチューブで覆われている。
 上記構成によれば、光ファイバユニットがチューブで覆われている光ファイバケーブルにおいて、光ファイバ心線が細径であっても耐側圧性を悪化させることが無く、光ファイバ心線の識別を容易にすることができる。また、光ファイバ心線の断線も生じにくい。
 また、本開示の一態様に係る光ファイバケーブルは、
 (8)上記(1)から(6)のいずれか一に記載の光ファイバユニットと、
 スロット溝を有するスロットロッドと、を有し、
 前記光ファイバユニットが前記スロット溝に収納されている。
 上記構成によれば、光ファイバユニットがスロット溝に収納されている光ファイバケーブルにおいて、光ファイバ心線が細径であっても耐側圧性を悪化させることが無く、光ファイバ心線の識別を容易にすることができる。また、光ファイバ心線の断線も生じにくい。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバユニットおよび光ファイバケーブルの具体例を、以下に図面を参照しつつ説明する。
 なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(第一実施形態)
 図1は、第一実施形態に係る光ファイバユニット1Aの長さ方向に垂直な断面図である。図1に示すように、光ファイバユニット1Aは、光ファイバテープ心線10と、光ファイバテープ心線10の周囲を覆う被覆樹脂20とを備えている。
 光ファイバテープ心線10は、複数本(本例では12本)の光ファイバ心線11(本例では11A~11L)が、少なくとも一部を接触させた並列状態で樹脂によって連結されている。光ファイバユニット1Aを構成している光ファイバテープ心線10は、12本の光ファイバ心線11A~11Lが一列に配列された場合よりも配列方向の長さが短くなるように、断面視で複数本の光ファイバ心線11A~11Lが集合した(例えば、丸めたように集合した)集合形態にされている。各光ファイバ心線11A~11Lは、ガラスファイバ12と、ガラスファイバ12を覆う被覆層13とを有している。
 被覆樹脂20は、光ファイバテープ心線10の周囲を中実状態で覆うように設けられている。「中実状態」とは、前述のような集合形態の光ファイバテープ心線10における各光ファイバ心線11A~11Lの周囲に空間がなくなるように被覆樹脂20が充填されている状態を意味する。このため、光ファイバユニット1Aの光ファイバテープ心線10は、中実状態に充填された被覆樹脂20によって周囲を保護されるとともに、所定の位置にある程度保持された状態で収容されている。
 被覆樹脂20は、その外形が、例えば円形状となるように形成されている。被覆樹脂20は、例えばヤング率が100MPa以下である。このため、光ファイバユニット1Aの形状は、変形可能に構成されている。被覆樹脂20は、例えば紫外線硬化型樹脂、熱硬化型樹脂等で形成されている。光ファイバユニット1Aは、その外径R1が、例えば0.9mm程度となるように形成されている。被覆樹脂20には例えば着色もしくはマーキングが施されている。また、被覆樹脂20の外周部には引き裂き用の切り込みであるノッチ部21が形成されている。なお、被覆樹脂20として発泡樹脂等を用いるようにしてもよい。
 なお、図1に示す光ファイバユニット1Aでは、一枚の光ファイバテープ心線10を被覆樹脂20で覆って一つのユニットを形成しているが、例えば複数枚の光ファイバテープ心線を被覆樹脂で覆ってユニットを形成するようにしてもよい。また、光ファイバテープ心線を構成する光ファイバ心線の本数は12本には限定されない。また、光ファイバユニット1Aの単位断面積あたりの心密度は例えば10心/mm以上であってもよい。心密度を10心/mm以上とすることで、高密度の光ファイバユニットとすることができる。
(第二実施形態)
 図2は、第二実施形態に係る光ファイバユニット1Bの長さ方向に垂直な断面図である。図2に示すように、光ファイバユニット1Bは、光ファイバテープ心線10と、光ファイバテープ心線10の周囲を覆う被覆樹脂30とを備えている。
 光ファイバテープ心線10は、上記第一実施形態の光ファイバテープ心線10と同様の構成であるため説明を省略する。
 被覆樹脂30は、光ファイバテープ心線10の周囲を中空状態で覆うように設けられている。「中空状態」とは、前述のような集合形態の光ファイバテープ心線10の集合外形の外周が層状の樹脂で覆われ、その層状の樹脂の内側が中空となっている状態を意味する。このため、光ファイバユニット1Bの光ファイバテープ心線10は、中空状態の被覆樹脂30の内側で移動することが可能な状態で収容されている。
 被覆樹脂30におけるその他の構成は、上記第一実施形態の被覆樹脂20と同様である。また、光ファイバユニット1Bの心密度、外径等については、上記光ファイバユニット1Aと同様であるが、中空状態としているため、心密度を、第一実施形態の光ファイバユニット1Aより、高くすることができる。
 図3および図4に、上記光ファイバユニット1A,1Bに収容される光ファイバテープ心線10の一例を示す。光ファイバテープ心線10は、複数の光ファイバ心線が並列に配置された状態で、隣接する光ファイバ心線間が連結された連結部14と、隣接する光ファイバ心線間が連結されていない非連結部15とが長手方向に間欠的に設けられている間欠連結型の光ファイバテープ心線である。
 本例の光ファイバテープ心線10は、12本の光ファイバ心線11A~11Lを有している。図3には、光ファイバ心線11A~11Lを配列方向に開いた状態の間欠連結型の光ファイバテープ心線が示されている。連結部14と非連結部15とが間欠的に設けられている箇所は、図3に示すように一部の光ファイバ心線間であってもよく、または、全ての光ファイバ心線間であってもよい。図3に示す例では、光ファイバ心線11Aと11B、11Cと11D、11Eと11F、11Gと11H、11Iと11J、11Kと11L、の各線間には非連結部15が設けられていない。
 光ファイバテープ心線10における連結部14は、例えば紫外線硬化型樹脂、熱硬化型樹脂等からなるテープ樹脂16を、光ファイバ心線間に塗布することによって形成されている。テープ樹脂16が所定の光ファイバ心線間に塗布されることにより、連結部14と非連結部15とが間欠的に設けられるとともに、各光ファイバ心線11A~11Lが並列状態で一体化される。なお、本例では図4に示すように、光ファイバ心線11A~11Lの片面のみにテープ樹脂16が塗布されている。
 なお、光ファイバテープ心線10は、例えば並列された光ファイバ心線11A~11Lの片面、若しくは両面全体にテープ樹脂16を塗布して、全ての光ファイバ心線11A~11Lを連結させてから、回転刃等で一部を切断して非連結部15を形成するように作製してもよい。また、並列された光ファイバ心線11A~11Lの片面、若しくは両面にテープ樹脂16を塗布し、非連結部15を形成しない構成の光ファイバテープ心線であってもよい。
 光ファイバ心線11A~11Lは、例えばコアとクラッドで構成されるガラスファイバ12と、ガラスファイバ12を被覆する二層の被覆層(内側被覆層13a,外側被覆層13b)とで構成されている。光ファイバ心線11の外径R2は0.2mm以下であり、例えば光ファイバ心線11の外径R2を0.165mm、ガラスファイバ12の外径R3を0.100mmに形成してもよい。光ファイバ心線11A~11Lは、光ファイバ心線同士を識別できるように、それぞれ異なる色に被覆層が着色またはマーキングされている。
 上記第一実施形態に係る光ファイバユニット1Aは、光ファイバテープ心線10を構成する光ファイバ心線11A~11Lが、前述のような集合形態にされて被覆樹脂20で覆われている。これにより、光ファイバ心線11A~11Lの外径が例えば0.2mm以下の細径であっても、光ファイバテープ心線10が被覆樹脂20に覆われているため、光ファイバテープ心線10の耐側圧性を悪化させることが無く、光ファイバ心線11A~11Lの識別を容易にすることができる。
 また、光ファイバテープ心線10が露出せず被覆樹脂20で覆われているので、光ファイバユニット1Aの敷設作業や光ファイバケーブルに実装する作業等を行う際に、光ファイバテープ心線10に外傷を与える可能性が低くなり、断線のリスクを軽減することができる。
 図5は、光ファイバユニットをチューブ内に収納するチューブ型の光ファイバケーブルの一例を示す。図5に示すように、光ファイバケーブル40は、円筒型のチューブ41と、チューブ41内に収納された複数の上記第一実施形態に係る光ファイバユニット1Aとを備えている。また、光ファイバケーブル40は、チューブ41の周囲を覆う外被42を備えている。
 各光ファイバユニット1Aには、それぞれ異なる例えばマーキングが施されている。チューブ41は、例えばポリブチレンテレフタレート(PBT)、高密度ポリエチレン(HDPE)等の樹脂で形成されている。外被42内にはテンションメンバ43と、引き裂き紐44とが設けられている。なお、図5に示す光ファイバケーブル40では、チューブ41内に光ファイバユニット1Aを収納しているが、例えば上記第二実施形態に係る光ファイバユニット1Bを収納するようにしてもよい。
 このような構成の光ファイバケーブル40によれば、光ファイバユニット1Aまたは1Bが用いられているので、光ファイバテープ心線10を構成する光ファイバ心線11A~11Lが細径であっても光ファイバテープ心線10の耐側圧性を悪化させることが無い。また、光ファイバユニット1A,1Bおよび光ファイバ心線11A~11Lの識別性を高めることができる。また、被覆樹脂20が軟質の樹脂で形成されているため光ファイバユニット1Aの外径が変形可能であり、チューブ41内に光ファイバユニット1Aを高密度に収納することができる。また、光ファイバ心線の断線も生じにくい。
 図6は、光ファイバユニットをスロット溝内に収納するスロット型の光ファイバケーブルの一例を示す。図6に示すように、光ファイバケーブル50は、複数条(本例では4条)のスロット溝52が外周面に形成されているスロットロッド51と、スロット溝52内に収納された複数(本例では5個)の上記第一実施形態に係る光ファイバユニット1Aとを備えている。また、光ファイバケーブル50は、スロットロッド51の周囲に巻かれた押え巻きテープ53と、押え巻きテープ53の周囲を覆う外被54とを備えている。
 各光ファイバユニット1Aには、それぞれ異なる例えばマーキングが施されている。スロット溝52は、光ファイバケーブル50の長手方向に沿って、例えば螺旋状に形成されている。スロットロッド51の中心部にはテンションメンバ55が設けられている。なお、図5に示す光ファイバケーブル40では、チューブ41内に光ファイバユニット1Aを収納しているが、例えば上記第二実施形態に係る光ファイバユニット1Bを収納するようにしてもよい。
 このような構成の光ファイバケーブル50の場合にも、上記光ファイバケーブル40と同様の効果を奏する。
 次に、図7を参照しつつ、光ファイバユニット1Aの製造方法について説明する。
 光ファイバユニット1Aの製造装置60において、先ず、サプライ61のリール62から繰り出された複数の光ファイバ心線11A~11Lを、集線ローラ63によって並列に配置させる。
 続いて、塗布装置64で、樹脂貯留タンク65から供給される紫外線硬化型のテープ樹脂16を、並列に配置された光ファイバ心線11A~11Lで形成される並列面の例えば片面に間欠的に塗布する。続いて、紫外線照射装置66で、テープ樹脂16に紫外線を照射して硬化させ、一体化された間欠連結型の光ファイバテープ心線10を作製する。
 続いて、集合装置(例えば、間欠連結型の光ファイバテープ心線10を通す孔を丸くしたニップル)67で、間欠連結型の光ファイバテープ心線10を一列に配列された場合よりも配列方向の長さが短くなるように集合した集合形態にする。続いて、塗布装置(例えば、上記のように集合形態にされた間欠連結型の光ファイバテープ心線10を通す孔を丸くしたダイス)68で、樹脂貯留タンク69から供給される紫外線硬化型の被覆樹脂20を、集合形態の光ファイバテープ心線10の周囲に中実状態で押出被覆する。続いて、紫外線照射装置70で、被覆樹脂20に紫外線を照射して硬化させ光ファイバユニット1Aを作製する。
 続いて、光ファイバユニット1Aを送出キャプスタン71によって引き取らせ、巻取張力制御ダンサ72を経て、巻取装置73によってリール74に巻き取る。
 なお、被覆樹脂20を光ファイバテープ心線10の周囲に被覆する工程は、テープ樹脂16を光ファイバ心線11A~11Lに塗布する工程と別の工程で行うようにしてもよい。また、被覆樹脂20として発泡樹脂等を用いる場合、集合させた光ファイバテープ心線10を熱可塑性樹脂用の押出機に通過させ、光ファイバユニットを作製するようにしてもよい。また、横型の製造装置を使用して製造するようにしてもよい。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
 1A,1B:光ファイバユニット
 10:光ファイバテープ心線
 11A~11L:光ファイバ心線
 12:ガラスファイバ
 13:被覆層
 14:連結部
 15:非連結部
 16:テープ樹脂
 20,30:被覆樹脂
 21:ノッチ部
 40,50:光ファイバケーブル
 41:チューブ
 42,54:外被
 52:スロット溝
 60:製造装置

Claims (8)

  1.  外径0.2mm以下の複数本の光ファイバ心線と、前記複数本の光ファイバ心線を並列状態で一体化させるテープ樹脂と、を備える光ファイバテープ心線と、
     前記光ファイバテープ心線を覆う被覆樹脂と、
    を有し、
     前記光ファイバテープ心線は、
     前記複数本の光ファイバ心線が一列に配列された場合よりも配列方向の長さが短くなるように集合した集合形態にされており、
     前記集合形態で前記光ファイバテープ心線が前記被覆樹脂によって覆われている、光ファイバユニット。
  2.  前記被覆樹脂のヤング率は、100MPa以下である、
     請求項1に記載の光ファイバユニット。
  3.  前記光ファイバユニットの単位断面積あたりの心密度が10心/mm以上である、
     請求項1または請求項2に記載の光ファイバユニット。
  4.  前記被覆樹脂は、中実状態で前記光ファイバテープ心線を覆っている、
     請求項1から請求項3のいずれか一項に記載の光ファイバユニット。
  5.  前記被覆樹脂に引き裂き用のノッチ部を有する、請求項4に記載の光ファイバユニット。
  6.  前記光ファイバテープ心線の片面のみに前記テープ樹脂が塗布されている、請求項1から請求項5のいずれか一項に記載の光ファイバユニット。
  7.  請求項1から請求項6のいずれか一項に記載の光ファイバユニットを有し、
     前記光ファイバユニットがチューブで覆われている、光ファイバケーブル。
  8.  請求項1から請求項6のいずれか一項に記載の光ファイバユニットと、
     スロット溝を有するスロットロッドと、を有し、
     前記光ファイバユニットが前記スロット溝に収納されている、光ファイバケーブル。
PCT/JP2018/040848 2017-11-02 2018-11-02 光ファイバユニットおよび光ファイバケーブル WO2019088256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019550498A JP7120248B2 (ja) 2017-11-02 2018-11-02 光ファイバユニットおよび光ファイバケーブル
EP18872419.9A EP3705923A4 (en) 2017-11-02 2018-11-02 FIBER OPTIC UNIT AND FIBER OPTIC CABLE
US16/759,757 US11209606B2 (en) 2017-11-02 2018-11-02 Optical fiber unit and optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-212767 2017-11-02
JP2017212767 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088256A1 true WO2019088256A1 (ja) 2019-05-09

Family

ID=66332024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040848 WO2019088256A1 (ja) 2017-11-02 2018-11-02 光ファイバユニットおよび光ファイバケーブル

Country Status (4)

Country Link
US (1) US11209606B2 (ja)
EP (1) EP3705923A4 (ja)
JP (1) JP7120248B2 (ja)
WO (1) WO2019088256A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157154A (ja) * 2020-03-30 2021-10-07 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
WO2022092019A1 (ja) * 2020-10-26 2022-05-05 住友電気工業株式会社 光ファイバケーブルおよびコネクタ付きケーブル
EP4191310A4 (en) * 2020-07-29 2024-01-17 Sumitomo Electric Industries, Ltd. METHOD FOR PRODUCING AN INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE AND INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519150A (ja) * 1991-07-11 1993-01-29 Fujikura Ltd 光フアイバテープ心線およびこれを用いた光ケーブル
JP2001350069A (ja) * 2000-06-07 2001-12-21 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2005062427A (ja) 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP2010170007A (ja) * 2009-01-26 2010-08-05 Furukawa Electric Co Ltd:The 集合ドロップケーブル
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2014202795A (ja) * 2013-04-01 2014-10-27 株式会社フジクラ 光ユニット及び光ファイバケーブル
JP2015052704A (ja) 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
WO2016042785A1 (ja) * 2014-09-17 2016-03-24 古河電気工業株式会社 光ファイバケーブル
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
JP2017212767A (ja) 2016-05-23 2017-11-30 三菱電機株式会社 突極型回転子の整列巻線治具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258557A (ja) * 1993-03-04 1994-09-16 Sumitomo Electric Ind Ltd 被覆光ファイバユニット
FR2727212B1 (fr) * 1994-11-21 1997-01-03 Alcatel Cable Procede de fabrication d'un module cylindrique de fibres optiques
KR20000047101A (ko) 1998-12-31 2000-07-25 강병호 탈피가 용이한 타이트 버퍼형 광섬유
US6934452B2 (en) * 2003-04-22 2005-08-23 Furukawa Electric North America Inc. Optical fiber cables
CN102057309B (zh) * 2008-06-30 2014-04-16 日本电信电话株式会社 光纤缆线以及光纤带
US9120693B2 (en) 2010-11-08 2015-09-01 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
JP2015129887A (ja) * 2014-01-08 2015-07-16 住友電気工業株式会社 空気圧送用光ファイバケーブル
CN104808303B (zh) 2015-04-20 2018-10-30 江苏通光信息有限公司 一种卷带式光单元光缆及其制造工艺
WO2017023516A1 (en) * 2015-07-31 2017-02-09 Corning Optical Communications LLC Rollable optical fiber ribbon
KR102534060B1 (ko) * 2016-07-27 2023-05-19 프리즈미안 에스피에이 가요성 광섬유 리본
PL3497498T3 (pl) * 2016-08-08 2020-11-16 Corning Optical Communications LLC Elastyczna taśma światłowodowa z nieciągłymi warstwami polimeru
DE112017007392B4 (de) 2017-04-04 2021-11-04 Mujin, Inc. Steuervorrichtung, Greifsystem, Verteilersystem, Programm, Steuerverfahren und Herstellungsverfahren

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519150A (ja) * 1991-07-11 1993-01-29 Fujikura Ltd 光フアイバテープ心線およびこれを用いた光ケーブル
JP2001350069A (ja) * 2000-06-07 2001-12-21 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2005062427A (ja) 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 光ファイバケーブル、光ファイバケーブルの製造方法及び光ファイバケーブルの製造装置
JP2010170007A (ja) * 2009-01-26 2010-08-05 Furukawa Electric Co Ltd:The 集合ドロップケーブル
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2014202795A (ja) * 2013-04-01 2014-10-27 株式会社フジクラ 光ユニット及び光ファイバケーブル
JP2015052704A (ja) 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
WO2016042785A1 (ja) * 2014-09-17 2016-03-24 古河電気工業株式会社 光ファイバケーブル
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
JP2017212767A (ja) 2016-05-23 2017-11-30 三菱電機株式会社 突極型回転子の整列巻線治具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705923A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157154A (ja) * 2020-03-30 2021-10-07 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
JP7567192B2 (ja) 2020-03-30 2024-10-16 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
EP4191310A4 (en) * 2020-07-29 2024-01-17 Sumitomo Electric Industries, Ltd. METHOD FOR PRODUCING AN INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE AND INTERMITTENT CONNECTION-TYPE FIBERGLASS RIBBON CORE WIRE
WO2022092019A1 (ja) * 2020-10-26 2022-05-05 住友電気工業株式会社 光ファイバケーブルおよびコネクタ付きケーブル

Also Published As

Publication number Publication date
EP3705923A4 (en) 2021-08-11
US11209606B2 (en) 2021-12-28
US20210181451A1 (en) 2021-06-17
EP3705923A1 (en) 2020-09-09
JPWO2019088256A1 (ja) 2020-11-12
JP7120248B2 (ja) 2022-08-17

Similar Documents

Publication Publication Date Title
JP7052727B2 (ja) 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
EP3282295B1 (en) Loose tube, loose tube type optical fiber cable, single fiber isolation method for loose tube optical fiber tape, loose tube manufacturing method, and method for gathering together a plurality of optical fibers
TWI725125B (zh) 間歇連結型光纖帶心線、間歇連結型光纖帶心線之製造方法、光纖纜線及光纖軟線
WO2019088256A1 (ja) 光ファイバユニットおよび光ファイバケーブル
WO2011043324A1 (ja) 光ファイバケーブル
JP7151727B2 (ja) 光ファイバケーブル
JP6362302B2 (ja) 光ファイバテープ心線及び光ケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP2011232733A (ja) 光ファイバテープ心線、光ファイバケーブル、及び光ファイバテープ心線の製造方法
JP2007233252A (ja) 光ファイバケーブルの製造方法
JP2022016133A (ja) 光ファイバテープ心線、光ファイバケーブル
JP2013061524A (ja) 光ユニット、光ファイバケーブルの製造方法及び光ユニットと光ファイバケーブル
WO2019088255A1 (ja) 光ファイバユニットおよび光ファイバケーブル
US11009668B2 (en) Optical fiber ribbon and optical fiber cable
JP2015018053A (ja) 光ケーブル
EP3686639A1 (en) Optical fiber cable
JP2023009600A (ja) スロット型光ファイバケーブル
WO2019139018A1 (ja) 光ファイバケーブルおよび光ファイバケーブルの製造方法
JP6592909B2 (ja) 光ケーブル及びその製造方法
JP2005234361A (ja) 光ファイバユニット、並びに光ファイバユニットを用いた光ファイバケーブル及びその製造方法
JP6323411B2 (ja) 光ファイバテープ心線および光ファイバケーブル
US10401583B2 (en) Optical cable for terrestrial networks
JP2005156712A (ja) 光ファイバケ−ブル及びその製造方法
JP2020071264A (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
JPH11271583A (ja) 光ユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872419

Country of ref document: EP

Effective date: 20200602