WO2022092019A1 - 光ファイバケーブルおよびコネクタ付きケーブル - Google Patents

光ファイバケーブルおよびコネクタ付きケーブル Download PDF

Info

Publication number
WO2022092019A1
WO2022092019A1 PCT/JP2021/039283 JP2021039283W WO2022092019A1 WO 2022092019 A1 WO2022092019 A1 WO 2022092019A1 JP 2021039283 W JP2021039283 W JP 2021039283W WO 2022092019 A1 WO2022092019 A1 WO 2022092019A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
ribbon
ribbons
fiber cable
Prior art date
Application number
PCT/JP2021/039283
Other languages
English (en)
French (fr)
Inventor
文昭 佐藤
雄紀 下田
洋平 鈴木
弘樹 石川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/003,562 priority Critical patent/US20230244050A1/en
Priority to JP2022559118A priority patent/JPWO2022092019A1/ja
Publication of WO2022092019A1 publication Critical patent/WO2022092019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials

Definitions

  • This disclosure relates to optical fiber cables and cables with connectors.
  • Patent Document 1 discloses an optical fiber cable having an optical fiber ribbon in which a plurality of optical fiber core wires are intermittently connected and a pipe accommodating the optical fiber ribbon.
  • Patent Document 2 covers an optical fiber cable core formed by twisting a plurality of ribbon units made of an optical fiber ribbon in which a plurality of optical fiber core wires are intermittently connected, and the outer periphery of the optical fiber cable core.
  • a fiber optic cable with a jacket is disclosed.
  • Patent Document 3 describes a cable core portion formed by twisting a plurality of units having a plurality of optical fiber ribbons in which a plurality of optical fiber core wires are intermittently connected, and an outer circumference covering the outer periphery of the cable core portion.
  • An optical fiber cable having a cover and a cover is disclosed.
  • the optical fiber cable of the present disclosure is with multiple fiber optic ribbons
  • An outer cover that covers the periphery of the plurality of optical fiber ribbons, Equipped with The optical fiber ribbon has a plurality of optical fiber core wires, and some or all of the optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction.
  • the connecting portion in which the adjacent optical fiber cores are connected and the non-connecting portion in which the adjacent optical fiber cores are not connected are intermittently connected in the longitudinal direction of the optical fiber core. It is provided as a target
  • the optical fiber core wire has a glass fiber and a covering portion that covers the periphery of the glass fiber.
  • the ratio of the inner diameter to the outer diameter of the outer cover is 0.75 or more.
  • the ratio of the area of glass in the cross section accommodated in the optical fiber ribbon accommodating portion to the area of the optical fiber ribbon accommodating portion inside the jacket in the cross section orthogonal to the longitudinal direction of the optical fiber cable is 15% or more and 25%. Is below
  • the number of the optical fiber cores mounted in the optical fiber cable is 3000 or more, and the outer diameter of the outer cover is 50 mm or less.
  • the cable with connector of this disclosure is With the optical fiber cable It comprises a multi-core connector provided at one end of the fiber optic ribbon at least one of the fiber optic cables.
  • FIG. 1A is a cross-sectional view orthogonal to the longitudinal direction of the optical fiber cable according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the optical fiber unit of FIG. 1A.
  • FIG. 2 is a cross-sectional view orthogonal to the longitudinal direction of the optical fiber ribbon.
  • FIG. 3 is a partially developed view showing the optical fiber ribbon shown in FIG. 2 in the longitudinal direction.
  • FIG. 4 is a cross-sectional view showing a modified example of the optical fiber unit.
  • FIG. 5A is a cross-sectional view orthogonal to the longitudinal direction of the optical fiber cable according to the second embodiment.
  • 5B is a cross-sectional view showing the optical fiber unit of FIG. 5A.
  • FIG. 6 is a perspective view schematically showing a state when the optical fiber unit shown in FIGS. 1B and 4 is terminated.
  • the present disclosure provides an optical fiber cable and a cable with a connector, which can mount an optical fiber core wire at a high density and have lateral pressure resistance.
  • an optical fiber core wire can be mounted at a high density, and an optical fiber cable having lateral pressure resistance and a cable with a connector can be provided.
  • the optical fiber cable of the present disclosure is with multiple fiber optic ribbons
  • An outer cover that covers the periphery of the plurality of optical fiber ribbons, Equipped with The optical fiber ribbon has a plurality of optical fiber core wires, and some or all of the optical fiber core wires are arranged in parallel in a direction orthogonal to the longitudinal direction.
  • the connecting portion in which the adjacent optical fiber cores are connected and the non-connecting portion in which the adjacent optical fiber cores are not connected are intermittently connected in the longitudinal direction of the optical fiber core. It is provided as a target
  • the optical fiber core wire has a glass fiber and a covering portion that covers the periphery of the glass fiber.
  • the ratio of the inner diameter to the outer diameter of the outer cover is 0.75 or more.
  • the ratio of the area of glass in the cross section accommodated in the optical fiber ribbon accommodating portion to the area of the optical fiber ribbon accommodating portion inside the jacket in the cross section orthogonal to the longitudinal direction of the optical fiber cable is 15% or more and 25%. Is below
  • the number of the optical fiber cores mounted in the optical fiber cable is 3000 or more, and the outer diameter of the outer cover is 50 mm or less.
  • the ratio of the inner diameter to the outer diameter of the outer cover is 0.75 or more, more optical fiber core wires can be arranged inside the outer cover. Further, the ratio of the area of the glass in the cross section accommodated in the optical fiber ribbon accommodating portion to the area of the optical fiber ribbon accommodating portion inside the outer cover in the cross section orthogonal to the longitudinal direction of the optical fiber cable is 15% or more and 25% or less. Therefore, it can withstand the tension applied to the optical fiber cable.
  • optical fiber ribbon accommodating portion refers to the space inside the outer cover of the optical fiber cable and excluding the presser winding tape
  • the "glass accommodated in the optical fiber ribbon accommodating portion” is, for example, It may include a glass fiber constituting an optical fiber core wire or a glass fiber reinforced plastic (GFRP: Glass Fiber Reinforced Practices) arranged as a tension member in an optical fiber cable. If the tension member arranged in the optical fiber ribbon accommodating portion is not glass but metal, it is excluded from the target. Further, since the number of optical fiber cores is 3000 or more, although the thickness of the outer cover is thin, the optical fiber cores mounted at high density in the optical fiber cable even when lateral pressure is applied to the optical fiber cable.
  • GFRP Glass Fiber Reinforced Practices
  • the wire can prevent the optical fiber cable from being crushed or kinked. Further, since the glass fiber of the optical fiber core wire itself functions as a tension member, even if the size of the tension member arranged in the optical fiber cable is reduced, it can withstand the tension applied to the optical fiber cable, and further. More optical fiber cores can be arranged. Therefore, it is possible to mount an optical fiber core wire at a high density, and it is possible to provide an optical fiber cable having lateral pressure resistance.
  • the optical fiber core wire constituting the optical fiber ribbon is housed at a high density, so that the optical fiber cable can be prevented from being crushed. can.
  • a first pressing member that covers the periphery of some of the optical fiber ribbons of the plurality of optical fiber ribbons, and A second pressing member that covers the periphery of the remaining optical fiber ribbons of the plurality of optical fiber ribbons arranged outside the first pressing member may be provided.
  • the optical fiber ribbon existing inside the first pressing member and the optical fiber ribbon arranged outside the first pressing member can be easily distinguished.
  • the coefficient of dynamic friction between the first pressing member and the optical fiber ribbon arranged outside the first pressing member is 0.3 or less, and the second pressing member and the second pressing member
  • the coefficient of dynamic friction with the optical fiber ribbon arranged inside may be 0.3 or less.
  • the optical fiber ribbon mounted in the optical fiber cable easily moves in the longitudinal direction due to temperature shrinkage in a low temperature environment. According to such a configuration, since the optical fiber ribbon is easy to move even if temperature shrinkage occurs, it is possible to suppress an increase in transmission loss in a low temperature environment.
  • a plurality of aggregates in which at least a part of the plurality of optical fiber ribbons is bundled may be provided.
  • a plurality of tubes having a thickness of 0.01 mm or more and 0.2 mm or less are provided.
  • the tube may be formed so as to wrap around the aggregate.
  • It has at least one tension member and has at least one tension member.
  • the plurality of optical fiber ribbons may be wound around the tension member in a multilayer structure around the tension member.
  • the tension members are located approximately in the center of the plurality of fiber optic ribbons, which does not mean that the fiber optic cable is easy to bend only in a particular direction, but in all directions. It can be bent with the same force.
  • the cable with connector of the present disclosure is With the optical fiber cable It comprises a multi-core connector provided at one end of the fiber optic ribbon at least one of the fiber optic cables.
  • FIG. 1A the optical fiber unit 2 is hatched to omit the internal configuration thereof, and the omitted internal structure of the optical fiber unit 2 is shown in FIG. 1B.
  • the circular frame shown by the broken line in FIGS. 1A and 1B indicates the region of the optical fiber unit 2 for convenience, and the frame does not actually exist.
  • the optical fiber cable 1 includes a plurality of optical fiber units 2 and an outer cover 3.
  • 32 optical fiber units 2 are mounted inside the outer cover 3.
  • the optical fiber unit 2 has a plurality of optical fiber ribbons 21.
  • the optical fiber unit 2 is formed by an aggregate of 18 optical fiber ribbons 21 bundled together.
  • the 18 optical fiber ribbons 21 forming the aggregate may be twisted together.
  • the optical fiber ribbon 21 has a plurality of optical fiber core wires 211 and a ribbon resin 212.
  • the optical fiber ribbon 21 is shown in a state where the non-connecting portion 214 is expanded in the parallel direction of the optical fiber core wire 211.
  • the plurality of optical fiber core wires 211 are arranged in parallel in a direction orthogonal to the longitudinal direction thereof.
  • the ribbon resin 212 is formed so as to integrate a plurality of optical fiber core wires 211.
  • twelve optical fiber core wires 211 are arranged in parallel in a state of being in contact with each other, and the ribbon resin 212 is formed so as to cover the outer periphery of the plurality of parallel optical fiber core wires 211.
  • the ribbon resin 212 may be applied to only one side of a plurality of parallel optical fiber core wires 211.
  • the ribbon resin 212 is made of a resin such as an ultraviolet curable resin or a thermosetting resin.
  • the optical fiber core wire 211 has, for example, a glass fiber 211a composed of a core and a clad, and a covering portion 211b that covers the periphery of the glass fiber 211a.
  • the coating portion 211b is formed of one layer or a plurality of coating layers made of a resin such as an ultraviolet curable resin.
  • As the optical fiber core wire 211 for example, an optical fiber core wire having a diameter R1 of the glass fiber 211a of 125 ⁇ m and a diameter R2 of the optical fiber core wire 211 of 200 ⁇ m is used.
  • the connecting portion 213 in a state where the adjacent optical fiber core wires 211 are connected and the said The non-connected portion 214 in a state where the adjacent optical fiber core wires 211 are not connected is intermittently provided in the longitudinal direction of the optical fiber core wire 211.
  • the connecting portion 213 and the non-connecting portion 214 are intermittently provided in the longitudinal direction of the optical fiber core wire 211 for every two cores.
  • the non-connecting portion 214 is formed, for example, by cutting a part of the ribbon resin 212 with a rotary blade or the like.
  • the ribbon resin 212 can also be formed by applying the ribbon resin 212 between the optical fiber core wires 211 instead of the outer periphery of the plurality of optical fiber core wires 211 arranged in parallel.
  • the connecting portion 213 and the non-connecting portion 214 are intermittently provided, and each optical fiber core wire 211 is integrated in a parallel state. ..
  • the outer cover 3 of FIG. 1A is formed so as to cover the periphery of the plurality of optical fiber units 2.
  • the jacket 3 is formed of, for example, a resin having a Young's modulus of 1500 MPa or more at room temperature (for example, 23 ° C.).
  • a tear string 4 or a plurality of tension members 5 and tension members 5 may be embedded in the outer cover 3.
  • the tension member 5 is formed of, for example, a fiber reinforced plastic (FRP) such as aramid FRP, glass FRP, or carbon FRP, or a metal wire.
  • FRP fiber reinforced plastic
  • the optical fiber cable 1 may further have a holding member that covers the periphery of the optical fiber unit 2, as illustrated in FIG. 1A.
  • the optical fiber cable 1 has a first pressing member 6 and a second pressing member 7.
  • the first pressing member 6 and the second pressing member 7 are formed of, for example, a non-woven fabric made of polyester or the like.
  • the first holding member 6 is, for example, vertically attached or spirally wound around a plurality of optical fiber units 2 arranged at the center of a cable.
  • the second pressing member 7 is, for example, vertically attached or spirally wound around a plurality of optical fiber units 2 arranged around the first pressing member 6.
  • the presser member when the presser member is wound vertically, the presser member is optical fiber so that the longitudinal direction of the presser member is parallel to the longitudinal direction of the optical fiber cable 1 and the width direction of the presser member is along the circumferential direction of the optical fiber cable 1. It means the state of being wound around the unit 2.
  • the outer cover 3 is formed so that the ratio (ID / OD) of the inner diameter ID to the outer diameter OD is 0.75 or more.
  • the ratio of the inner diameter ID to the outer diameter OD is about 0. It becomes 84.
  • an optical fiber core wire 211 having 3000 or more cores is mounted in the optical fiber cable 1.
  • 6912 core optical fiber core wires 211 are mounted in the optical fiber cable 1 of FIG. 1A.
  • the ratio of the cross-sectional area of the glass accommodated in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 inside the outer cover 3 is 15% or more and 25% or less. It is configured in.
  • the cross-sectional area is an area in a cross section orthogonal to the longitudinal direction of the optical fiber cable 1.
  • the glass accommodated in the optical fiber ribbon accommodating portion S1 of FIG. 1A is the glass fiber 211a of the optical fiber core wire 211
  • the optical fiber ribbon accommodating portion S1 is the first inside the outer cover 3. This is a space excluding the thickness of the pressing member 6 and the second pressing member 7.
  • the optical fiber cable 1 of FIG. 1A has an inner diameter ID of the outer cover 3 of 24.8 mm, a thickness t1 of the first holding member 6 of 0.3 mm, a thickness t2 of the second holding member 7 of 0.35 mm, and an optical fiber core.
  • the diameter R1 of the glass fiber 211a of the wire 211 is 0.125 mm
  • the cross-sectional area of the optical fiber ribbon accommodating portion S1 is the thickness t1 of the first pressing member 6 and the second pressing from the inner diameter ID of the outer cover 3.
  • the ratio of the inner diameter ID to the outer diameter OD of the outer cover 3 is 0.75 or more, so that more optical fiber cores are inside the outer cover 3.
  • the line 211 can be arranged.
  • the number of optical fiber core wires 211 mounted in the optical fiber cable 1 is 3000 or more, the optical fiber core wires mounted at high density in the optical fiber cable may cause the optical fiber cable 1 to be crushed. Kink can be suppressed.
  • the ratio of the cross-sectional area of the glass accommodated in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 is 15% or more and 25% or less, it can withstand the tension applied to the optical fiber cable. .. Therefore, it is possible to mount an optical fiber core wire at a high density, and it is possible to provide an optical fiber cable having lateral pressure resistance.
  • the optical fiber cable 1 includes a plurality of optical fiber units 2 formed by an aggregate in which a plurality of optical fiber ribbons 21 are bundled. This facilitates the identification and handling of the optical fiber ribbon 21 in the optical fiber cable 1.
  • the optical fiber cable 1 has a first pressing member 6 and a second pressing member 7.
  • the optical fiber unit 2 existing inside the first holding member 6 and the optical fiber unit 2 arranged outside the first holding member 6 can be easily distinguished. can do.
  • the first pressing member 6 can be formed of a material such that the surface facing the second pressing member 7 has low friction.
  • the first pressing member 6 is formed so that, for example, the dynamic friction coefficient between the first pressing member 6 and the optical fiber ribbon 21 constituting the optical fiber unit 2 arranged outside the first pressing member 6 is 0.3 or less.
  • the second pressing member 7 can be formed of a material such that the surface facing the first pressing member 6 has low friction.
  • the second pressing member 7 is formed so that, for example, the dynamic friction coefficient between the second pressing member 7 and the optical fiber ribbon 21 constituting the optical fiber unit 2 arranged inside the second pressing member 7 is 0.3 or less.
  • the optical fiber unit 2 mounted in the optical fiber cable 1 tends to move in the longitudinal direction due to temperature shrinkage in a low temperature environment. Therefore, it is possible to suppress an increase in transmission loss in a low temperature environment.
  • the coefficient of dynamic friction can be measured, for example, between each sheet-shaped pressing member and the optical fiber ribbon in accordance with ISO standard 8295.
  • the ratio of the cross-sectional area of the optical fiber ribbon 21 housed in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 inside the outer cover 3 is 50. It may be configured to be% or more and 65% or less.
  • the optical fiber ribbon 21 is manufactured with the diameter R2 of the optical fiber core wire 211 being 200 ⁇ m and the diameter T of the optical fiber core wire 211 including the ribbon resin 212 of the optical fiber ribbon 21 being 225 ⁇ m.
  • the ratio of the cross-sectional area of the optical fiber ribbon 21 housed in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 is 50% or more. Even when a lateral pressure is applied, the optical fiber core wire 211 constituting the optical fiber ribbon 21 is housed at a high density, so that the optical fiber cable 1 can be prevented from being crushed.
  • the ratio of the cross-sectional area of the optical fiber ribbon 21 housed in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 becomes high, the transmission loss increases. However, since the ratio of the cross-sectional area of the optical fiber ribbon 21 housed in the optical fiber ribbon accommodating portion S1 to the cross-sectional area of the optical fiber ribbon accommodating portion S1 is 65% or less, an increase in transmission loss can be suppressed.
  • the optical fiber unit 2 may have a tube 22 that covers the periphery of the aggregate of the optical fiber ribbon 21 as illustrated in FIG.
  • the tube 22 has a thickness of, for example, 0.01 mm or more and 0.2 mm or less. According to such a configuration, for example, by making the colors of the tubes 22 different, it becomes easy to distinguish the optical fiber unit 2 in the optical fiber cable 1. Further, when the optical fiber unit 2 of the optical fiber cable 1 is housed in an optical junction box, a closure, or the like, it is not necessary to cover the optical fiber ribbon 21 exposed after removing the outer cover 3 with a protective tube. , Workability is improved.
  • the thickness of the tube 22 is thin, it is possible to suppress the decrease in the mountable space of the optical fiber ribbon 21 due to the arrangement of the tube 22.
  • all the optical fiber units 2 are covered with the tube 22, but for example, only a part of the optical fiber units 2 may be covered with the tube 22.
  • more optical fiber core wires 211 can be mounted in the optical fiber cable 1.
  • FIG. 5A the optical fiber unit 12 is hatched to omit the internal configuration thereof, and the omitted internal structure of the optical fiber unit 12 is shown in FIG. 5B.
  • the circular frame shown by the broken line in FIGS. 5A and 5B indicates the region of the optical fiber unit 12 for convenience, and the frame does not actually exist.
  • the optical fiber cable 10 includes a tension member 11, a plurality of optical fiber units 12, and an outer cover 13.
  • 64 optical fiber units 12 are mounted inside the outer cover 3.
  • the tension member 11 is arranged at the center of the optical fiber cable 10 along the central axis direction of the optical fiber cable 10.
  • the tension member 11 has, for example, a glass fiber reinforced plastic (GFRP) 11A and a covering portion 11B that covers the periphery of the GFRP 11A.
  • GFRP glass fiber reinforced plastic
  • one tension member 11 is arranged in the optical fiber cable 10, but a plurality of tension members 11 may be arranged together.
  • the plurality of optical fiber units 12 are wound around the tension member 11 in a multilayer structure around the tension member 11.
  • the optical fiber unit 12 has a plurality of optical fiber ribbons 121 as illustrated in FIG. 5B.
  • the optical fiber unit 12 is formed by an aggregate of 18 optical fiber ribbons 121 bundled together.
  • the 18 optical fiber ribbons 121 forming the aggregate may be twisted together.
  • the plurality of optical fiber ribbons 121 have a connecting portion 213 in a state in which adjacent optical fiber core wires 211 are connected between some or all optical fiber core wires 211. And the non-connecting portion 214 in a state where the adjacent optical fiber core wires 211 are not connected are intermittently provided in the longitudinal direction of the optical fiber core wire 211. Since the configuration of the optical fiber ribbon 121 is the same as the configuration of the optical fiber ribbon 21 of the first embodiment, detailed description thereof will be omitted.
  • the outer cover 13 is formed so as to cover the periphery of the plurality of optical fiber units 12.
  • the jacket 13 is formed of, for example, a resin having a Young's modulus of 1500 MPa or more at room temperature (for example, 23 ° C.).
  • a tear string 14 may be embedded in the outer cover 13.
  • the optical fiber cable 10 may further have a holding member that covers the periphery of the optical fiber unit 12.
  • the optical fiber cable 10 has a first pressing member 15 and a second pressing member 16.
  • the first pressing member 15 and the second pressing member 16 are made of, for example, a polyester non-woven fabric.
  • the first holding member 15 is vertically attached or spirally wound around a plurality of optical fiber units 12 arranged at the center of the cable.
  • the second pressing member 16 is vertically attached or spirally wound around a plurality of optical fiber units 12 arranged around the first pressing member 15.
  • the outer cover 13 is formed so that the ratio (ID / OD) of the outer diameter OD and the inner diameter ID is 0.75 or more.
  • the ratio of the inner diameter ID to the outer diameter OD is about 0. It becomes 86.
  • an optical fiber core wire 211 having 3000 or more cores is mounted in the optical fiber cable 10 of FIG. 5A.
  • a 13824 core optical fiber core wire 211 is mounted in the optical fiber cable 10 of FIG. 5A.
  • the optical fiber cable 10 is configured such that the ratio of the cross-sectional area of the glass accommodated in the optical fiber ribbon accommodating portion S11 to the cross-sectional area of the optical fiber ribbon accommodating portion S11 is 15% or more and 25% or less.
  • the glass mounted in the optical fiber cable 10 of FIG. 5A includes GFRP11A constituting the tension member 11 in addition to the glass fiber 211a of the optical fiber core wire 211.
  • the optical fiber cable 10 of FIG. 5A has an inner diameter ID of the outer cover 13 of 34.8 mm, a thickness of the first holding member 15 of 0.3 mm, a thickness of the second holding member 16 of 0.35 mm, and an optical fiber core wire 211.
  • the cross-sectional area of the optical fiber ribbon accommodating portion S11 is the same as described above, from the inner diameter ID of the outer cover 3 to the first holding member 15.
  • ⁇ ⁇ (33.5 / 2) 2 881 mm 2 .
  • the optical fiber cable 10 is configured such that the ratio of the cross-sectional area of the optical fiber ribbon 121 housed in the optical fiber ribbon accommodating portion S11 to the cross-sectional area of the optical fiber ribbon accommodating portion S11 is 50% or more and 65% or less. sell.
  • the optical fiber ribbon 121 is manufactured with the diameter R2 of the optical fiber core wire 211 being 200 ⁇ m and the diameter T of the optical fiber core wire 211 including the ribbon resin 212 of the optical fiber ribbon 121 being 225 ⁇ m.
  • the optical fiber cable 10 according to the present embodiment can have the same effect as the optical fiber cable 1 of the first embodiment. Further, since the glass fiber 211a of the optical fiber core wire 211 itself functions as a tension member, even if the size of the tension member 11 arranged in the optical fiber cable 10 is reduced, it can withstand the tension applied to the optical fiber cable. can. As a result, more optical fiber core wires 211 can be mounted.
  • the plurality of optical fiber units 12 are wound around the tension member 11 in a multilayer structure around the tension member 11.
  • the tension member 11 is arranged at the center of the plurality of optical fiber cables, it does not mean that the optical fiber cable 10 is easily bent only in a specific direction, and the same force is applied in all directions. Can be bent.
  • the optical fiber unit 12 may have a tube 22 that covers the periphery of the aggregate of the optical fiber ribbon 121, as illustrated in FIG.
  • the optical fiber cable 1 of the first embodiment described above may be formed as a cable with a connector 30 as illustrated in FIG. That is, the cable 30 with a connector includes an optical fiber cable 1 and a multi-core connector 31 provided at one end of at least one optical fiber unit 2 of the optical fiber cable 1.
  • the multi-core connector 31 is connected to the optical fiber unit 2.
  • a plurality of multi-core connectors may be connected to each optical fiber unit 2.
  • the optical fiber cable 10 of the second embodiment may be formed as a cable with a connector 30 as illustrated in FIG.
  • the optical fiber unit 2 may have a bundle material wound around an aggregate of a plurality of optical fiber ribbons 21 instead of the tube 22. Even in this case, by making the color of each bundle material different, it becomes easy to distinguish the optical fiber unit 2 in the optical fiber cable 1.
  • the optical fiber unit 12 may have a bundle material wound around an aggregate of a plurality of optical fiber ribbons 121 instead of the tube 22.
  • the plurality of optical fiber ribbons 21 forming the aggregate are twisted together, but the plurality of optical fiber ribbons 21 may form an aggregate without being twisted.
  • the plurality of optical fiber ribbons 121 forming an aggregate are twisted together, but the plurality of optical fiber ribbons 121 may form an aggregate without being twisted.
  • the first pressing member 6 and the second pressing member 7 may have water absorption.
  • the first pressing member 15 and the second pressing member 16 may have water absorption.
  • the first pressing members 6, 15 and the second pressing members 7, 16 can be formed, for example, by adhering a water-absorbent powder to a base cloth made of polyester or the like. As a result, it is possible to prevent water from entering the inside of the first pressing members 6, 15 and the second pressing members 7, 16.
  • the optical fiber ribbon 21 and the optical fiber ribbon 121 are arranged in parallel with the twelve optical fiber core wires 211 in contact with each other, but the optical fiber core wire 211 of the optical fiber core wire 211 is arranged in parallel.
  • the number and the contact state between the adjacent optical fiber core wires 211 are not limited to the structures of FIGS. 2 and 3, and can be appropriately changed.
  • the plurality of optical fiber units 2 may be twisted along the longitudinal direction of the optical fiber cable 1.
  • the plurality of optical fiber units 12 may be twisted along the longitudinal direction of the optical fiber cable 10.
  • Optical fiber cable 2 Optical fiber unit 3: Outer cover 4: Tear string 5: Tension member 6: First holding member 7: Second holding member 10: Optical fiber cable 11: Tension member 11A: GFRP 11B: Cover 12: Optical fiber unit 13: Outer cover 14: Tear string 15: First holding member 16: Second holding member 21: Optical fiber ribbon 22: Tube 30: Cable 31: Multi-core connector 121: Optical fiber ribbon 211: Optical fiber core wire 211a: Glass fiber 211b: Coating portion 212: Ribbon resin 213: Connecting portion 214: Non-connecting portion ID: Inner diameter OD: Outer diameter R1: Glass fiber diameter R2: Optical fiber core wire diameter S1: Optical fiber ribbon accommodating portion S11: Optical fiber ribbon accommodating portion T: Diameter of optical fiber core wire including ribbon resin

Abstract

光ファイバケーブルは、複数の光ファイバリボンと、複数の光ファイバリボンの周囲を被覆する外被と、を備えている。光ファイバリボンは複数の光ファイバ心線を有しており、複数の光ファイバ心線が長手方向に直交する方向に並列に配列された状態で、一部または全ての光ファイバ心線間において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが、光ファイバ心線の長手方向に間欠的に設けられている。光ファイバ心線は、ガラスファイバとガラスファイバの周囲を覆う被覆部とを有している。外被の外径に対する内径の割合は0.75以上である。光ファイバケーブルの長手方向に直交する断面における外被より内側の光ファイバリボン収容部の面積に対する光ファイバリボン収容部に収容された断面におけるガラスの面積の割合は15%以上25%以下である。光ファイバケーブル内に実装された光ファイバ心線の数は3000心以上である。外被の外径は50mm以下である。

Description

光ファイバケーブルおよびコネクタ付きケーブル
 本開示は、光ファイバケーブルおよびコネクタ付きケーブルに関する。
 本出願は、2020年10月26日出願の日本出願第2020-178870号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1は、複数の光ファイバ心線が間欠的に連結された光ファイバリボンと、当該光ファイバリボンを収容するパイプと、を有する光ファイバケーブルを開示している。
 特許文献2は、複数の光ファイバ心線が間欠的に連結された光ファイバリボンからなるリボンユニットを複数本撚り合わせることにより形成された光ファイバケーブルコアと、当該光ファイバケーブルコアの外周を覆う外被と、を有する光ファイバケーブルを開示している。
 特許文献3は、複数の光ファイバ心線が間欠的に連結された光ファイバリボンを複数本有するユニットを複数本撚り合わせることにより形成されたケーブルコア部と、当該ケーブルコア部の外周を覆う外被と、を有する光ファイバケーブルを開示している。
日本国特表2015-517679号公報 日本国特開2014-016529号公報 日本国特開2010-008923号公報
 本開示の光ファイバケーブルは、
 複数の光ファイバリボンと、
 前記複数の光ファイバリボンの周囲を被覆する外被と、
を備えており、
 前記光ファイバリボンは複数の光ファイバ心線を有しており、前記複数の光ファイバ心線が長手方向に直交する方向に並列に配列された状態で、一部または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが、前記光ファイバ心線の長手方向に間欠的に設けられており、
 前記光ファイバ心線は、ガラスファイバと前記ガラスファイバの周囲を覆う被覆部とを有しており、
 前記外被の外径に対する内径の割合は0.75以上であり、
 前記光ファイバケーブルの長手方向に直交する断面における前記外被より内側の光ファイバリボン収容部の面積に対する前記光ファイバリボン収容部に収容された前記断面におけるガラスの面積の割合は15%以上25%以下であり、
 前記光ファイバケーブル内に実装された前記光ファイバ心線の数は3000心以上であり、前記外被の外径は50mm以下である。
 また、本開示のコネクタ付きケーブルは、
 前記光ファイバケーブルと、
 前記光ファイバケーブルの少なくとも一つの前記光ファイバリボンの一端に設けられた多心コネクタと、を備えている。
図1Aは、第一実施形態に係る光ファイバケーブルの長手方向に直交する断面図である。 図1Bは、図1Aの光ファイバユニットを示す断面図である。 図2は、光ファイバリボンの長手方向に直交する断面図である。 図3は、図2に示した光ファイバリボンを長手方向に示す部分展開図である。 図4は、光ファイバユニットの変形例を示す断面図である。 図5Aは、第二実施形態に係る光ファイバケーブルの長手方向に直交する断面図である。 図5Bは、図5Aの光ファイバユニットを示す断面図である。 図6は、図1Bおよび図4に示した光ファイバユニットを成端加工したときの状態を模式的に示す斜視図である。
[本開示が解決しようとする課題]
 本開示は、光ファイバ心線を高密度に実装可能であり、耐側圧性を有する光ファイバケーブルおよびコネクタ付きケーブルを提供する。
[本開示の効果]
 本開示によれば、光ファイバ心線を高密度に実装可能であり、耐側圧性を有する光ファイバケーブルおよびコネクタ付きケーブルを提供することができる。
[本開示の実施の形態の説明]
 まず本開示の実施態様を列記して説明する。
 (1)本開示の光ファイバケーブルは、
 複数の光ファイバリボンと、
 前記複数の光ファイバリボンの周囲を被覆する外被と、
を備えており、
 前記光ファイバリボンは複数の光ファイバ心線を有しており、前記複数の光ファイバ心線が長手方向に直交する方向に並列に配列された状態で、一部または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが、前記光ファイバ心線の長手方向に間欠的に設けられており、
 前記光ファイバ心線は、ガラスファイバと前記ガラスファイバの周囲を覆う被覆部とを有しており、
 前記外被の外径に対する内径の割合は0.75以上であり、
 前記光ファイバケーブルの長手方向に直交する断面における前記外被より内側の光ファイバリボン収容部の面積に対する前記光ファイバリボン収容部に収容された前記断面におけるガラスの面積の割合は15%以上25%以下であり、
 前記光ファイバケーブル内に実装された前記光ファイバ心線の数は3000心以上であり、前記外被の外径は50mm以下である。
 このような構成によれば、外被の外径に対する内径の割合が0.75以上であるので、外被の内側により多くの光ファイバ心線を配置させることができる。また、光ファイバケーブルの長手方向に直交する断面における外被より内側の光ファイバリボン収容部の面積に対する光ファイバリボン収容部に収容された断面におけるガラスの面積の割合が15%以上25%以下であるので、光ファイバケーブルに加わる張力に耐えることができる。なお、「光ファイバリボン収容部」とは、光ファイバケーブルの外被の内側であって、押さえ巻きテープを除く空間を指し、「光ファイバリボン収容部に収容されたガラス」とは、例えば、光ファイバ心線を構成するガラスファイバや、光ファイバケーブル内にテンションメンバとして配置されるガラスの繊維強化プラスチック(GFRP:Glass Fiber Reinforced Practices)を含みうる。なお、光ファイバリボン収容部に配置されるテンションメンバが、ガラスではなく、金属の場合は、対象外とする。
 また、光ファイバ心線の数は3000心以上であるので、外被の厚さは薄いものの、光ファイバケーブルに側圧が加わった場合でも、光ファイバケーブル内に高密度で実装された光ファイバ心線により、光ファイバケーブルが潰れたり、キンクができたりするのを抑制することができる。また、光ファイバ心線のガラスファイバ自体がテンションメンバとして機能するので、光ファイバケーブル内に配置されるテンションメンバのサイズを小さくしても、光ファイバケーブルに加わる張力に耐えることができ、さらに、より多くの光ファイバ心線を配置させることができる。したがって、光ファイバ心線を高密度に実装可能であり、耐側圧性を有する光ファイバケーブルを提供することができる。
 (2)前記断面における前記外被より内側の前記光ファイバリボン収容部の面積に対する前記光ファイバリボン収容部に収容された前記断面における前記光ファイバリボンの面積の割合は50%以上65%以下でもよい。
 このような構成によれば、光ファイバケーブルに側圧が加わった場合でも、光ファイバリボンを構成する光ファイバ心線が高密度に収容されていることにより、光ファイバケーブルが潰れるのを防ぐことができる。
 (3)前記複数の光ファイバリボンの一部の光ファイバリボンの周囲を覆う第一押さえ部材と、
 前記第一押さえ部材の外側に配置された前記複数の光ファイバリボンの残りの光ファイバリボンの周囲を覆う第二押さえ部材と、を備えてもよい。
 このような構成によれば、第一押さえ部材の内側に存在する光ファイバリボンと、第一押さえ部材の外側に配置された光ファイバリボンとを容易に判別することができる。
 (4)前記第一押さえ部材と当該第一押さえ部材の外側に配置された前記光ファイバリボンとの間の動摩擦係数は0.3以下であり、前記第二押さえ部材と当該第二押さえ部材の内側に配置された前記光ファイバリボンとの間の動摩擦係数は0.3以下でもよい。
 光ファイバケーブル内に実装された光ファイバリボンは、低温度の環境下において、温度収縮により長手方向に移動しやすい。このような構成によれば、温度収縮が起きても、光ファイバリボンが動きやすいため、低温の環境下における伝送損失の増加を抑制することができる。
 (5)前記複数の光ファイバリボンの少なくとも一部が束ねられた集合体を複数備えてもよい。
 このような構成によれば、光ファイバケーブル内における光ファイバリボンの判別や取り扱いが容易となる。
 (6)0.01mm以上0.2mm以下の厚さを有する複数のチューブを備えており、
 前記チューブは、前記集合体の周囲を覆うように形成されてもよい。
 このような構成によれば、例えば各チューブの色を異ならせることにより光ファイバケーブル内における光ファイバユニットの判別が容易となる。また、光ファイバケーブルの光ファイバリボンを光接続箱やクロージャ等に収納する際、外被を除去した後に露出された光ファイバリボンを保護するために保護チューブを被せる必要がないので、作業性が向上する。また、チューブの厚さは薄いので、チューブを配置したことにより光ファイバリボンの実装可能な空間が減少することを抑制することができる。
 (7)少なくとも一つのテンションメンバを備えており、
 前記複数の光ファイバリボンは、前記テンションメンバを中心として前記テンションメンバの周囲に多層構造で巻き付けられてもよい。
 このような構成によれば、テンションメンバは複数の光ファイバリボンの略中心に配置されているので、光ファイバケーブルを特定の方向にだけ曲げやすい、と言うことにはならず、全ての方向に同様の力で曲げることができる。
 (8)本開示のコネクタ付きケーブルは、
 前記光ファイバケーブルと、
 前記光ファイバケーブルの少なくとも一つの前記光ファイバリボンの一端に設けられた多心コネクタと、を備えている。
 このような構成によれば、光ファイバケーブルを他の通信部材に接続する作業が容易となる。
[本開示の実施形態の詳細]
 本開示の光ファイバケーブルおよびコネクタ付きケーブルの具体例を、図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
(第一実施形態)
 図1Aから図3を参照して、第一実施形態に係る光ファイバケーブル1の構成について説明する。図1Aにおいて光ファイバユニット2はハッチングを施してその内部構成を省略し、省略した光ファイバユニット2の内部構造は図1Bに図示した。図1Aおよび図1Bにおいて破線で示す円形の枠は、便宜上、光ファイバユニット2の領域を表示したものであって、実際には枠は存在しない。
 光ファイバケーブル1は、図1Aに例示されるように、複数の光ファイバユニット2と外被3を備えている。本例においては、32本の光ファイバユニット2が外被3の内側に実装されている。
 光ファイバユニット2は、図1Bに例示されるように、複数の光ファイバリボン21を有している。本例においては、光ファイバユニット2は、18枚の光ファイバリボン21が束ねられた集合体により形成されている。集合体を形成する18枚の光ファイバリボン21は互いに撚り合わされてもよい。
 光ファイバリボン21は、図2および図3に例示されるように、複数の光ファイバ心線211とリボン樹脂212とを有している。図2および図3において、光ファイバリボン21は非連結部214を光ファイバ心線211の並列方向に広げた状態で示されている。
 複数の光ファイバ心線211は、その長手方向に直交する方向に並列に配列されている。リボン樹脂212は、複数の光ファイバ心線211を一体化するように形成されている。本例においては、12本の光ファイバ心線211が互いに接した状態で並列されており、リボン樹脂212は、並列された複数の光ファイバ心線211の外周を覆うように形成されている。リボン樹脂212は、並列された複数の光ファイバ心線211の片面にのみ塗布されてもよい。リボン樹脂212は、紫外線硬化型樹脂や熱硬化型樹脂などの樹脂からなる。
 光ファイバ心線211は、例えば、コアとクラッドとからなるガラスファイバ211aと、ガラスファイバ211aの周囲を覆う被覆部211bとを有している。被覆部211bは、紫外線硬化型樹脂などの樹脂からなる1層または複数の被覆層により形成される。光ファイバ心線211としては、例えば、ガラスファイバ211aの直径R1が125μmであり、光ファイバ心線211の直径R2が200μmである光ファイバ心線が使用される。
 光ファイバリボン21の少なくとも一部の隣接する光ファイバ心線211間には、図3に例示されるように、当該隣接する光ファイバ心線211間が連結された状態の連結部213と、当該隣接する光ファイバ心線211間が連結されていない状態の非連結部214とが、光ファイバ心線211の長手方向に間欠的に設けられている。本例においては、2心毎に連結部213と非連結部214とが光ファイバ心線211の長手方向に間欠的に設けられている。非連結部214は、例えば、リボン樹脂212の一部を回転刃等で切断することにより形成される。
 なお、リボン樹脂212は、並列された複数の光ファイバ心線211の外周ではなく、光ファイバ心線211間に塗布することによっても形成されうる。リボン樹脂212が所定の光ファイバ心線211間に塗布されることにより、連結部213と非連結部214とが間欠的に設けられるとともに、各光ファイバ心線211が並列状態で一体化される。
 図1Aの外被3は、複数の光ファイバユニット2の周囲を被覆するように形成されている。外被3は、例えば、常温(例えば23℃)におけるヤング率が1500MPa以上である樹脂により形成される。外被3には、引き裂き紐4や複数のテンションメンバ5テンションメンバ5が埋め込まれてもよい。テンションメンバ5は、例えば、アラミドFRP、ガラスFRP、カーボンFRPなどの繊維強化プラスチック(FRP)や金属線などにより形成される。
 光ファイバケーブル1はさらに、図1Aに例示されるように、光ファイバユニット2の周囲を覆う押さえ部材を有しうる。本例においては、光ファイバケーブル1は、第一押さえ部材6と第二押さえ部材7を有している。第一押さえ部材6と第二押さえ部材7は、例えば、ポリエステルなどからなる不織布により形成される。第一押さえ部材6は、例えば、ケーブル中心に配置された複数の光ファイバユニット2の周囲に縦添えまたは螺旋状に巻回される。第二押さえ部材7は、例えば、第一押さえ部材6の周囲に配置された複数の光ファイバユニット2の周囲に縦添えまたは螺旋状に巻回される。なお、縦添え巻回されるとは、押さえ部材の長手方向が光ファイバケーブル1の長手方向に平行となり、押さえ部材の幅方向が光ファイバケーブル1の周方向に沿うように押さえ部材が光ファイバユニット2の周囲に巻かれる状態を意味する。
 このように構成される光ファイバケーブル1において、外被3は、外径ODに対する内径IDの割合(ID/OD)が0.75以上になるように形成されている。例えば、図1Aの光ファイバケーブル1が外被3の外径ODを29.6mmおよび外被3の内径IDを24.8mmとして作製された場合、外径ODに対する内径IDの割合は約0.84となる。
 また、光ファイバケーブル1内には3000心以上の光ファイバ心線211が実装される。例えば、図1Aの光ファイバケーブル1内には6912心の光ファイバ心線211が実装されている。
 また、光ファイバケーブル1は、外被3より内側の光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容されたガラスの断面積の割合が15%以上25%以下となるように構成されている。断面積とは光ファイバケーブル1の長手方向に直交する断面における面積である。本例においては、図1Aの光ファイバリボン収容部S1に収容されたガラスは、光ファイバ心線211のガラスファイバ211aであり、光ファイバリボン収容部S1は、外被3より内側の、第一押さえ部材6および第二押さえ部材7の厚み分を除く空間である。
 図1Aの光ファイバケーブル1が外被3の内径IDを24.8mm、第一押さえ部材6の厚さt1を0.3mm、第二押さえ部材7の厚さt2を0.35mm、光ファイバ心線211のガラスファイバ211aの直径R1を0.125mmとして作製された場合、光ファイバリボン収容部S1の断面積は、外被3の内径IDから第一押さえ部材6の厚さt1および第二押さえ部材7の厚さt2を差し引き、実質的な内径を23.5mmとして計算すると、π×(23.5/2)=434 mmとなる。光ファイバリボン収容部S1に収容されたガラスの断面積は、π×(0.125/2)×6912=84.8mmとなる。したがって、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容されたガラスの断面積の割合は約20%となる。
 以上説明したように、本実施形態に係る光ファイバケーブル1においては、外被3の外径ODに対する内径IDの割合が0.75以上であるので、外被3の内側により多くの光ファイバ心線211を配置させることができる。一方、外被3の外径ODに対する内径IDの割合が大きいほど、光ファイバケーブル1に側圧が加わった場合に、光ファイバケーブル1が変形しやすくなる。しかしながら、光ファイバケーブル1内に実装される光ファイバ心線211の数は3000心以上であるので、光ファイバケーブル内に高密度で実装された光ファイバ心線により、光ファイバケーブル1の潰れやキンクを抑制することができる。また、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容されたガラスの断面積の割合が15%以上25%以下であるので、光ファイバケーブルに加わる張力に耐えることができる。したがって、光ファイバ心線を高密度に実装可能であり、耐側圧性を有する光ファイバケーブルを提供することができる。
 また、本実施形態においては、光ファイバケーブル1は、複数の光ファイバリボン21が束ねられた集合体により形成された光ファイバユニット2を複数備えている。これにより、光ファイバケーブル1における光ファイバリボン21の判別や取り扱いが容易となる。
 また、本実施形態においては、光ファイバケーブル1は、第一押さえ部材6と第二押さえ部材7を有している。これにより、3000心以上の多心ケーブルの場合でも、第一押さえ部材6の内側に存在する光ファイバユニット2と、第一押さえ部材6の外側に配置された光ファイバユニット2とを容易に判別することができる。
 なお、第一押さえ部材6は、第二押さえ部材7に対向する面が低摩擦となるような材料により形成されうる。第一押さえ部材6は、例えば、その外側に配置された光ファイバユニット2を構成する光ファイバリボン21との間の動摩擦係数が0.3以下となるように形成される。第二押さえ部材7は、第一押さえ部材6に対向する面が低摩擦となるような材料により形成されうる。第二押さえ部材7は、例えば、その内側に配置された光ファイバユニット2を構成する光ファイバリボン21との間の動摩擦係数が0.3以下となるように形成される。光ファイバケーブル1内に実装された光ファイバユニット2は、低温度の環境下において、温度収縮により長手方向に移動しやすい。したがって、低温の環境下における伝送損失の増加を抑制することができる。
 なお、動摩擦係数は、ISO規格8295に従い、例えば、シート状にした各押さえ部材と光ファイバリボンとの間で測定することができる。
 また、本実施形態において、光ファイバケーブル1は、外被3より内側の光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容された光ファイバリボン21の断面積の割合が50%以上65%以下となるように構成されてもよい。
 図1Aの光ファイバケーブル1において、光ファイバリボン21が光ファイバ心線211の直径R2を200μm、光ファイバリボン21のリボン樹脂212を含めた光ファイバ心線211の直径Tを225μmとして作製された場合、光ファイバリボン21の断面積は、π×(0.225/2)×6912=275mmとなる。したがって、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容された光ファイバリボン21の断面積の割合は約63%となる。
 このような構成によれば、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容された光ファイバリボン21の断面積の割合が50%以上であるので、光ファイバケーブル1に側圧が加わった場合でも、光ファイバリボン21を構成する光ファイバ心線211が高密度に収容されていることにより、光ファイバケーブル1が潰れるのを防ぐことができる。一方、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容された光ファイバリボン21の断面積の割合が高くなると伝送損失が増加する。しかしながら、光ファイバリボン収容部S1の断面積に対する光ファイバリボン収容部S1に収容された光ファイバリボン21の断面積の割合が65%以下であるので、伝送損失の増加を抑制することができる。
 また、本実施形態において、光ファイバユニット2は、図4に例示されるように、光ファイバリボン21の集合体の周囲を覆うチューブ22を有してもよい。チューブ22は、例えば、0.01mm以上0.2mm以下の厚さを有する。このような構成によれば、例えば各チューブ22の色を異ならせることにより光ファイバケーブル1内における光ファイバユニット2の判別が容易となる。また、光ファイバケーブル1の光ファイバユニット2を光接続箱やクロージャ等に収納する際、外被3を除去した後に露出された光ファイバリボン21を保護するために保護チューブを被せる必要がないので、作業性が向上する。また、チューブ22の厚さは薄いので、チューブ22を配置したことにより光ファイバリボン21の実装可能な空間が減少することを抑制することができる。なお、本例においては、全ての光ファイバユニット2がチューブ22に覆われているが、例えば、一部の光ファイバユニット2のみがチューブ22に覆われてもよい。チューブ22の数を少なくすることにより、光ファイバケーブル1内により多くの光ファイバ心線211を実装することができる。
(第二実施形態)
 図5Aおよび図5Bを参照して、第二実施形態に係る光ファイバケーブル10の構成について説明する。図5Aにおいて光ファイバユニット12はハッチングを施してその内部構成を省略し、省略した光ファイバユニット12の内部構造は図5Bに図示した。図5Aおよび図5Bにおいて破線で示す円形の枠は、便宜上、光ファイバユニット12の領域を表示したものであって、実際には枠は存在しない。
 光ファイバケーブル10は、図5Aに例示されるように、テンションメンバ11と、複数の光ファイバユニット12と、外被13と、を備えている。本例においては、64本の光ファイバユニット12が外被3の内側に実装されている。
 テンションメンバ11は、光ファイバケーブル10の中央の位置に光ファイバケーブル10の中心軸方向に沿って配置されている。テンションメンバ11は、例えば、ガラスの繊維強化プラスチック(GFRP)11Aと、GFRP11Aの周囲を覆う被覆部11Bを有している。なお、本例においては、光ファイバケーブル10内には一本のテンションメンバ11が配置されているが、複数のテンションメンバ11がまとまって配置されていてもよい。
 複数の光ファイバユニット12は、テンションメンバ11を中心としてテンションメンバ11の周囲に多層構造で巻き付けられている。光ファイバユニット12は、図5Bに例示されるように、複数の光ファイバリボン121を有している。本例においては、光ファイバユニット12は、18枚の光ファイバリボン121が束ねられた集合体により形成されている。集合体を形成する18枚の光ファイバリボン121は互いに撚り合わされてもよい。
 複数の光ファイバリボン121は、図2および図3に例示されるように、一部または全ての光ファイバ心線211間において、隣接する光ファイバ心線211間が連結された状態の連結部213と、隣接する光ファイバ心線211間が連結されていない状態の非連結部214とが、光ファイバ心線211の長手方向に間欠的に設けられている。光ファイバリボン121の構成は第一実施形態の光ファイバリボン21の構成と同じであるため、詳細な説明は省略する。
 外被13は、複数の光ファイバユニット12の周囲を被覆するように形成されている。外被13は、例えば、常温(例えば23℃)におけるヤング率が1500MPa以上である樹脂により形成される。外被13には、引き裂き紐14が埋め込まれてもよい。
 光ファイバケーブル10はさらに、光ファイバユニット12の周囲を覆う押さえ部材を有しうる。本例においては、光ファイバケーブル10は、第一押さえ部材15と第二押さえ部材16を有している。第一押さえ部材15と第二押さえ部材16は、例えば、ポリエステルの不織布からなる。第一押さえ部材15は、ケーブル中心に配置された複数の光ファイバユニット12の周囲に縦添えまたは螺旋状に巻回されている。第二押さえ部材16は、第一押さえ部材15の周囲に配置された複数の光ファイバユニット12の周囲に縦添えまたは螺旋状に巻回されている。
 このように構成される光ファイバケーブル10において、外被13は、外径ODと内径IDとの比率(ID/OD)が0.75以上になるように形成されている。例えば、図5Aの光ファイバケーブル10が外被13の外径ODを40.4mmおよび外被13の内径IDを34.8mmとして作製された場合、外径ODに対する内径IDの割合は約0.86となる。
 また、光ファイバケーブル10内には、3000心以上の光ファイバ心線211が実装される。例えば、図5Aの光ファイバケーブル10内には13824心の光ファイバ心線211が実装されている。
 また、光ファイバケーブル10は、光ファイバリボン収容部S11の断面積に対する光ファイバリボン収容部S11に収容されたガラスの断面積の割合が15%以上25%以下となるように構成されている。本例においては、図5Aの光ファイバケーブル10内に実装されるガラスには、光ファイバ心線211のガラスファイバ211aに加えてテンションメンバ11を構成するGFRP11Aが含まれる。図5Aの光ファイバケーブル10が外被13の内径IDを34.8mm、第一押さえ部材15の厚さを0.3mm、第二押さえ部材16の厚さを0.35mm、光ファイバ心線211のガラスファイバ211aの直径R1を0.125mm、GFRP11Aの直径を4mmとして作製された場合、光ファイバリボン収容部S11の断面積は、上記同様、外被3の内径IDから第一押さえ部材15の厚さおよび第二押さえ部材16の厚さを差し引き、実質的な内径を33.5mmとして計算すると、π×(33.5/2)=881mmとなる。光ファイバリボン収容部S11に収容されたガラスの断面積は、π×(0.125/2)×13824+π×(4/2)=182mmとなる。したがって、光ファイバリボン収容部S11の断面積に対する光ファイバリボン収容部S11に収容されたガラスの断面積の割合は約21%となる。
 また、光ファイバケーブル10は、光ファイバリボン収容部S11の断面積に対する光ファイバリボン収容部S11に収容された光ファイバリボン121の断面積の割合が50%以上65%以下となるように構成されうる。図5Aの光ファイバケーブル10において、光ファイバリボン121が光ファイバ心線211の直径R2を200μm、光ファイバリボン121のリボン樹脂212を含めた光ファイバ心線211の直径Tを225μmとして作製された場合、光ファイバリボン121の断面積は、π×(0.225/2)×13824=549.6550mmとなる。したがって、光ファイバリボン収容部S11の断面積に対する光ファイバリボン収容部S11に収容された光ファイバリボン121の断面積の割合は約62%となる。
 以上説明したように、本実施形態に係る光ファイバケーブル10においては、第一実施形態の光ファイバケーブル1と同様の効果を有することができる。また、光ファイバ心線211のガラスファイバ211a自体がテンションメンバとして機能するので、光ファイバケーブル10内に配置されるテンションメンバ11のサイズを小さくしても、光ファイバケーブルに加わる張力に耐えることができる。これにより、より多くの光ファイバ心線211を実装させることができる。
 また、本実施形態においては、複数の光ファイバユニット12は、テンションメンバ11を中心としてテンションメンバ11の周囲に多層構造で巻き付けられている。これにより、テンションメンバ11は複数の光ファイバケーブルの中心に配置されているので、光ファイバケーブル10を特定の方向にだけ曲げやすい、と言うことにはならず、全ての方向に同様の力で曲げることができる。
 なお、本実施形態において、光ファイバユニット12は、図4に例示されるように、光ファイバリボン121の集合体の周囲を覆うチューブ22を有してもよい。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
 上記の第一実施形態の光ファイバケーブル1は、図6に例示されるように、コネクタ付きケーブル30として形成されてもよい。すなわち、コネクタ付きケーブル30は、光ファイバケーブル1と、光ファイバケーブル1の少なくとも一つの光ファイバユニット2の一端に設けられた多心コネクタ31とを備えている。図6では、光ファイバユニット2に多心コネクタ31が連結されている。光ファイバユニット2をあらかじめ多心コネクタ31に連結させることにより、光ファイバケーブル1を光接続する際の施工性を容易なものとすることができる。各光ファイバユニット2に対して複数の多心コネクタが連結されていてもよい。同様に、第二実施形態の光ファイバケーブル10は、図6に例示されるように、コネクタ付きケーブル30として形成されてもよい。
 上記の第一実施形態において、光ファイバユニット2は、チューブ22の代わりに、複数の光ファイバリボン21の集合体の周囲に巻き付けられたバンドル材を有してもよい。この場合でも、各バンドル材の色を異ならせることにより光ファイバケーブル1内における光ファイバユニット2の判別が容易となる。同様に第二実施形態において、光ファイバユニット12は、チューブ22の代わりに、複数の光ファイバリボン121の集合体の周囲に巻き付けられたバンドル材を有してもよい。
 上記の第一実施形態において、集合体を形成する複数の光ファイバリボン21は撚り合わされているが、複数の光ファイバリボン21は撚り合わされずに集合体を形成してもよい。同様に第二実施形態において、集合体を形成する複数の光ファイバリボン121は撚り合わされているが、複数の光ファイバリボン121は撚り合わされずに集合体を形成してもよい。
 上記の第一実施形態において、第一押さえ部材6と第二押さえ部材7は、吸水性を有してもよい。同様に第二実施形態において、第一押さえ部材15と第二押さえ部材16は、吸水性を有してもよい。第一押さえ部材6,15と第二押さえ部材7,16は、例えば、ポリエステル等からなる基布に吸水性のパウダーを付着させることにより形成されうる。これにより、第一押さえ部材6,15と第二押さえ部材7,16の内部に水が浸入することを抑制することができる。
 上記の第一実施形態および第二実施形態において、光ファイバリボン21および光ファイバリボン121は、12本の光ファイバ心線211が互いに接した状態で並列されているが、光ファイバ心線211の数および隣接する光ファイバ心線211同士の接触状態は、図2および図3の構造に限定されず、適宜変更することができる。
 上記の第一実施形態において、複数の光ファイバユニット2は、光ファイバケーブル1の長手方向に沿って撚り合わされてもよい。同様に第二実施形態において、複数の光ファイバユニット12は、光ファイバケーブル10の長手方向に沿って撚り合わされてもよい。
1:光ファイバケーブル
2:光ファイバユニット
3:外被
4:引き裂き紐
5:テンションメンバ
6:第一押さえ部材
7:第二押さえ部材
10:光ファイバケーブル
11:テンションメンバ
11A:GFRP
11B:被覆部
12:光ファイバユニット
13:外被
14:引き裂き紐
15:第一押さえ部材
16:第二押さえ部材
21:光ファイバリボン
22:チューブ
30:ケーブル
31:多心コネクタ
121:光ファイバリボン
211:光ファイバ心線
211a:ガラスファイバ
211b:被覆部
212:リボン樹脂
213:連結部
214:非連結部
ID:内径
OD:外径
R1:ガラスファイバの直径
R2:光ファイバ心線の直径
S1:光ファイバリボン収容部
S11:光ファイバリボン収容部
T:リボン樹脂を含めた光ファイバ心線の直径
 

Claims (8)

  1.  複数の光ファイバリボンと、
     前記複数の光ファイバリボンの周囲を被覆する外被と、
    を備えており、
     前記光ファイバリボンは複数の光ファイバ心線を有しており、前記複数の光ファイバ心線が長手方向に直交する方向に並列に配列された状態で、一部または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された状態の連結部と、隣接する光ファイバ心線間が連結されていない状態の非連結部とが、前記光ファイバ心線の長手方向に間欠的に設けられており、
     前記光ファイバ心線は、ガラスファイバと前記ガラスファイバの周囲を覆う被覆部とを有しており、
     前記外被の外径に対する内径の割合は0.75以上であり、
     光ファイバケーブルの長手方向に直交する断面における前記外被より内側の光ファイバリボン収容部の面積に対する前記光ファイバリボン収容部に収容された前記断面におけるガラスの面積の割合は15%以上25%以下であり、
     前記光ファイバケーブル内に実装された前記光ファイバ心線の数は3000心以上であり、前記外被の外径は50mm以下である、光ファイバケーブル。
  2.  前記断面における前記外被より内側の前記光ファイバリボン収容部の面積に対する前記光ファイバリボン収容部に収容された前記断面における前記光ファイバリボンの面積の割合は50%以上65%以下である、請求項1に記載の光ファイバケーブル。
  3.  前記複数の光ファイバリボンの一部の光ファイバリボンの周囲を覆う第一押さえ部材と、
     前記第一押さえ部材の外側に配置された前記複数の光ファイバリボンの残りの光ファイバリボンの周囲を覆う第二押さえ部材と、を備えている、請求項1または請求項2に記載の光ファイバケーブル。
  4.  前記第一押さえ部材と当該第一押さえ部材の外側に配置された前記光ファイバリボンとの間の動摩擦係数は0.3以下であり、前記第二押さえ部材と当該第二押さえ部材の内側に配置された前記光ファイバリボンとの間の動摩擦係数は0.3以下である、請求項3に記載の光ファイバケーブル。
  5.  前記複数の光ファイバリボンの少なくとも一部が束ねられた集合体を複数備えている、請求項1から請求項4のいずれか一項に記載の光ファイバケーブル。
  6.  0.01mm以上0.2mm以下の厚さを有する複数のチューブを備えており、
     前記チューブは、前記集合体の周囲を覆うように形成されている、請求項5に記載の光ファイバケーブル。
  7.  少なくとも一つのテンションメンバを備えており、
     前記複数の光ファイバリボンは、前記テンションメンバを中心として前記テンションメンバの周囲に多層構造で巻き付けられている、請求項1から請求項6のいずれか一項に記載の光ファイバケーブル。
  8.  請求項1から請求項7のいずれか一項に記載の光ファイバケーブルと、
     前記光ファイバケーブルの少なくとも一つの前記光ファイバリボンの一端に設けられた多心コネクタと、を備えている、コネクタ付きケーブル。
     
PCT/JP2021/039283 2020-10-26 2021-10-25 光ファイバケーブルおよびコネクタ付きケーブル WO2022092019A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/003,562 US20230244050A1 (en) 2020-10-26 2021-10-25 Optical fiber cable and cable with connector
JP2022559118A JPWO2022092019A1 (ja) 2020-10-26 2021-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178870 2020-10-26
JP2020178870 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022092019A1 true WO2022092019A1 (ja) 2022-05-05

Family

ID=81381468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039283 WO2022092019A1 (ja) 2020-10-26 2021-10-25 光ファイバケーブルおよびコネクタ付きケーブル

Country Status (3)

Country Link
US (1) US20230244050A1 (ja)
JP (1) JPWO2022092019A1 (ja)
WO (1) WO2022092019A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303769A (ja) * 2001-04-09 2002-10-18 Fujikura Ltd 多心光ケーブル
US20120301092A1 (en) * 2009-12-23 2012-11-29 Arnaud Le Dissez Microbundle optical cable
JP2015102576A (ja) * 2013-11-21 2015-06-04 株式会社フジクラ 光ファイバケーブル
CN204405908U (zh) * 2015-01-15 2015-06-17 江苏中天科技股份有限公司 全介质大芯数高密度微型管道布线光缆
JP2016177138A (ja) * 2015-03-20 2016-10-06 株式会社フジクラ 光ケーブル
WO2019088256A1 (ja) * 2017-11-02 2019-05-09 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
US20200142144A1 (en) * 2017-07-05 2020-05-07 Corning Research & Development Corporation High fiber density ribbon cable
WO2020095958A1 (ja) * 2018-11-06 2020-05-14 住友電気工業株式会社 光ファイバケーブル
JP2020076915A (ja) * 2018-11-09 2020-05-21 株式会社フジクラ 光ファイバケーブル

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303769A (ja) * 2001-04-09 2002-10-18 Fujikura Ltd 多心光ケーブル
US20120301092A1 (en) * 2009-12-23 2012-11-29 Arnaud Le Dissez Microbundle optical cable
JP2015102576A (ja) * 2013-11-21 2015-06-04 株式会社フジクラ 光ファイバケーブル
CN204405908U (zh) * 2015-01-15 2015-06-17 江苏中天科技股份有限公司 全介质大芯数高密度微型管道布线光缆
JP2016177138A (ja) * 2015-03-20 2016-10-06 株式会社フジクラ 光ケーブル
US20200142144A1 (en) * 2017-07-05 2020-05-07 Corning Research & Development Corporation High fiber density ribbon cable
WO2019088256A1 (ja) * 2017-11-02 2019-05-09 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル
WO2020095958A1 (ja) * 2018-11-06 2020-05-14 住友電気工業株式会社 光ファイバケーブル
JP2020076915A (ja) * 2018-11-09 2020-05-21 株式会社フジクラ 光ファイバケーブル

Also Published As

Publication number Publication date
US20230244050A1 (en) 2023-08-03
JPWO2022092019A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
TWI537624B (zh) Fiber optic cable
JP7074124B2 (ja) 光ファイバケーブル
KR20080027328A (ko) 광섬유 케이블 및 그 제조방법
WO2017131117A1 (ja) 光ファイバケーブル
WO2011043324A1 (ja) 光ファイバケーブル
JP7151727B2 (ja) 光ファイバケーブル
WO2020095958A1 (ja) 光ファイバケーブル
JP6442161B2 (ja) 光ケーブル及び光ケーブルの製造方法
JP7120248B2 (ja) 光ファイバユニットおよび光ファイバケーブル
WO2018101041A1 (ja) 光ケーブル及び外被除去方法
JP2008249824A (ja) 光ケーブル
US20220390701A1 (en) Optical fiber cable and method for manufacturing optical fiber cable
JP2006162703A (ja) 光ファイバケーブル
WO2022092019A1 (ja) 光ファイバケーブルおよびコネクタ付きケーブル
JP2017097089A (ja) 光ファイバケーブル
JP2019056837A (ja) 光ファイバケーブル
JP5546412B2 (ja) 光ケーブル
CN116299923A (zh) 光纤电缆
JP7192782B2 (ja) 光ファイバユニットおよび光ファイバケーブル
WO2022065485A1 (ja) 光ファイバケーブルおよびコネクタ付きケーブル
JP7310517B2 (ja) 光ファイバケーブル
WO2023127421A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
EP4130827A1 (en) Optical fiber cable
WO2022249756A1 (ja) 光ファイバケーブル
WO2022244584A1 (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886137

Country of ref document: EP

Kind code of ref document: A1