WO2019083337A1 - 랜덤 공중합체 및 이를 포함하는 피닝 조성물 - Google Patents

랜덤 공중합체 및 이를 포함하는 피닝 조성물

Info

Publication number
WO2019083337A1
WO2019083337A1 PCT/KR2018/012891 KR2018012891W WO2019083337A1 WO 2019083337 A1 WO2019083337 A1 WO 2019083337A1 KR 2018012891 W KR2018012891 W KR 2018012891W WO 2019083337 A1 WO2019083337 A1 WO 2019083337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
block
random copolymer
formula
group
Prior art date
Application number
PCT/KR2018/012891
Other languages
English (en)
French (fr)
Inventor
구세진
이미숙
강나나
이응창
윤성수
박노진
이제권
최은영
유형주
허윤형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880064036.2A priority Critical patent/CN111164146B/zh
Priority to EP18870910.9A priority patent/EP3677644A4/en
Priority to US16/652,565 priority patent/US12006384B2/en
Priority to JP2020517386A priority patent/JP7120517B2/ja
Publication of WO2019083337A1 publication Critical patent/WO2019083337A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/20Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/02Homopolymers or copolymers of monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the present application relates to random copolymers and peening compositions comprising them.
  • Block copolymers In a block copolymer, two or more chemically distinct polymer chains are linked by covalent bonds. Block copolymers can be separated into regular microphases due to their self-assembly properties. The fine phase separation phenomenon of such a block copolymer is generally explained by the volume fraction, the molecular weight, or the mutual attraction coefficient (Flory-Huggins interaction parameter) among constituents.
  • the block copolymers can also form a variety of nanostructures such as spheres, cylinders, gyroids, or lamella of nanostructures.
  • the orientation of the nanostructures in the film formed by the block copolymer is determined depending on whether any of the blocks constituting the block copolymer are exposed to the surface of the substrate layer or air. That is, the orientation of the nanostructure can be determined by selective wetting of the blocks making up the block copolymer. Generally, the majority substrate layers are polar and air is nonpolar. Thus, a block having a larger polarity in a block copolymer is wetted to a substrate layer, and a block having a smaller polarity in a block copolymer is wetted at an interface with air to form a horizontal orientation.
  • a vertical orientation is formed.
  • the vertical orientation may mean that the interface between any one block of the block copolymer and any other block is perpendicular to the substrate.
  • orientation and positioning properties of the pattern formed by a vertically oriented self-assembled structure is particularly important.
  • a method of applying a pre-pattern on a substrate using a process such as grapoe-epitaxy or chemo-epitaxy is used.
  • the chemo-epitaxy process is a method of inducing the orientation of the self-assembled structure of the block copolymer by forming a pattern having a different chemical composition on the polar base layer, for example, a pinning layer.
  • a typical pinning layer reacts not only with the substrate layer but also with the neutral layer during its formation.
  • the pinning layer and the neutral layer react, it is possible to cause defects in the vertical orientation of the block copolymer.
  • attempts have been made to form a pinning layer at a low temperature, for example, less than 130 ⁇ , in order to suppress the reaction with the neutral layer.
  • a conventional pinning layer can not sufficiently bond to a substrate layer at a low temperature, for example, at a temperature lower than 130 ⁇ ⁇ .
  • the present application aims to provide a random copolymer and a peening composition containing the same.
  • the term "monovalent or divalent hydrocarbon group" in the present application may mean a monovalent or divalent moiety derived from a compound or derivative of carbon and hydrogen, unless otherwise specified.
  • Examples of the compound composed of carbon and hydrogen in the above include alkane, alkene, alkyne or aromatic hydrocarbon.
  • alkyl group in the present application may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be a straight chain, branched or cyclic alkyl group and may be optionally substituted by one or more substituents.
  • alkoxy group in the present application means an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, 1 to 4 carbon atoms or 1 to 2 carbon atoms, unless otherwise specified can do.
  • the alkoxy groups may be straight, branched or cyclic alkoxy groups and may optionally be substituted by one or more substituents.
  • alkenyl group or “alkynyl group” in the present application means an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, May mean an alkynyl group.
  • the alkenyl or alkynyl group may be linear, branched or cyclic and may optionally be substituted by one or more substituents.
  • alkylene group in the present application may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms unless otherwise specified.
  • the alkylene group may be a straight, branched or cyclic alkylene group and may optionally be substituted by one or more substituents.
  • alkenylene group or "alkynylene group” as used in the present application means an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 4 carbon atoms A phenylene group or a phenylene group.
  • the alkenylene or alkynylene group may be linear, branched or cyclic and may optionally be substituted by one or more substituents.
  • " aryl group " or " arylene group " in the present application means, unless otherwise specified, a benzene ring structure, two or more benzene rings linked together sharing one or two carbon atoms, May mean a monovalent or divalent moiety derived from a compound or a derivative thereof including a structure linked by a linker.
  • the aryl group or the arylene group may be, for example, an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms unless otherwise specified.
  • &quot aromatic structure " in the present application may mean the aryl group or the arylene group.
  • " alicyclic ring structure " in the present application means, unless otherwise specified, a cyclic hydrocarbon structure which is not an aromatic ring structure.
  • the alicyclic ring structure may be, for example, an alicyclic ring structure having 3 to 30 carbon atoms, 3 to 25 carbon atoms, 3 to 21 carbon atoms, 3 to 18 carbon atoms, or 3 to 13 carbon atoms unless otherwise specified .
  • " single bond " in the present application may mean the case where there is no separate atom at the site.
  • B when B is a single bond, it may mean that no atom exists at a site represented by B and A and C are directly connected to form a structure represented by A-C.
  • Examples of the substituent which may optionally be substituted in the present application include an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, an alkenylene group, an alkynylene group, an alkoxy group, an aryl group, an arylene group, a linear chain or an aromatic structure, An alkylene group, an alkenylene group, an alkenylene group, an alkenyl group, an alkenyl group, an alkenyl group, an alkenyl group, an alkenyl group, an alkenyl group, an alkenyl group, An alkoxy group, an aryl group, and the like, but are not limited thereto.
  • a certain polymer a polymer such as a block copolymer or a random copolymer
  • a polymer such as a block copolymer or a random copolymer
  • the present application relates to random copolymers.
  • the term " random copolymer " can refer to a polymer in which one or more units constituting it are irregularly bonded.
  • the random copolymer may mean a copolymer having a probability of finding a certain monomer unit independent of the kind of the adjacent unit.
  • the random copolymer of the present application may comprise at least units represented by the following formula (1)
  • L is a single bond or an oxygen atom.
  • L may be bonded to B of formula (1).
  • P in formula (2) can be directly linked to B in formula (1).
  • P means a phosphorus atom.
  • the random copolymer containing the unit represented by the above formula (1) may be incorporated in the pinning layer so that the pinning layer is sufficiently bonded to the substrate layer in a substrate to be described later.
  • the random copolymer includes a functional group-bonded unit represented by the formula (2), as shown in Formula 1, so that the pinning layer described later can be sufficiently bonded to the substrate layer.
  • the random copolymer containing the unit represented by the formula (1) may have high reactivity with the substrate layer.
  • the peening composition comprising the random copolymer may be cured at a low temperature, for example, less than 130 ⁇ ⁇ , less than 125 ⁇ ⁇ , less than 120 ⁇ ⁇ , less than 115 ⁇ ⁇ , less than 110 ⁇ ⁇ , less than 105 ⁇ ⁇ , less than 100 ⁇ ⁇
  • a pinning layer is formed by reacting with the substrate layer at a temperature of 90 ° C or lower, 85 ° C or lower, 80 ° C or lower, 75 ° C or lower, 70 ° C or lower, 65 ° C or lower, 60 ° C or lower, can do.
  • the lower limit of the temperature is not particularly limited, but may be, for example, 20 ⁇ ⁇ or higher, 23 ⁇ ⁇ or higher, or 25 ⁇ ⁇ or higher.
  • the pinning composition comprising the random copolymer may not react with the neutral layer described later.
  • the block copolymer described below can form a vertical lamellar structure having a high degree of alignment.
  • R may be hydrogen or an alkyl group having 1 to 4 carbon atoms, and specifically may be an alkyl group having 1 to 4 carbon atoms.
  • B may be an alkylene group having 1 to 4 carbon atoms, an alkenylene group, and specifically an alkylene group having 1 to 4 carbon atoms.
  • the random copolymer may further include a unit represented by the following formula (3) or (4). That is, the random copolymer may include a unit represented by formula (1) and a unit represented by formula (3), or may include a unit represented by formula (1) and a unit represented by formula (4)
  • R may be hydrogen or an alkyl group.
  • R may be hydrogen or an alkyl group having 1 to 4 carbon atoms, and specifically may be an alkyl group having 1 to 4 carbon atoms.
  • W may be an aryl group containing at least one halogen atom.
  • W may be, for example, an aryl group having 6 to 12 carbon atoms substituted with at least 2, at least 3, at least 4, or at least 5 halogen atoms.
  • halogen atom for example, a fluorine atom may be applied.
  • the unit of Formula 3 may be represented by the following Formula 3-1:
  • R and X may be the same as R and X in Formula (3).
  • R 1 to R 5 are each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the number of halogen atoms contained in R 1 to R 5 is one or more.
  • R 1 to R 5 each independently represent a hydrogen, an alkyl group, a haloalkyl group or a halogen are wonjayi
  • R 1 to R 5 is at least one, two or more, three or more, four or more, or And may contain 5 or more halogen atoms.
  • each of the halogen atoms contained in each of R 1 to R 5 for example, a fluorine atom, may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • Y may be a monovalent substituent group including a cyclic structure in which a straight chain having eight or more chain-forming atoms is linked.
  • the monovalent substituent of Y may include a chain structure formed by at least eight chain-forming atoms.
  • the term " chain forming atom " in the present application may mean an atom forming a linear chain structure of a predetermined chain.
  • the chain may be linear or branched.
  • the number of chain forming atoms is calculated by the number of atoms forming the longest straight chain.
  • Other atoms bonded to the chain-forming atoms (for example, when a chain-forming atom is a carbon atom, a hydrogen atom bonded to the carbon atom, etc.) are not calculated as the number of chain-forming atoms.
  • the number of chain forming atoms may mean the number of atoms forming the longest chain. For example, when the chain is an n-pentyl group, all of the chain-forming atoms are carbon atoms, and the number of the chain-forming atoms is 5 even when the chain is a 2-methylpentyl group.
  • chain forming reactors carbon, oxygen, sulfur, nitrogen and the like can be exemplified.
  • Suitable chain forming atoms can be carbon, oxygen or nitrogen, and specifically carbon or oxygen.
  • the number of chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more, or 12 or more.
  • the number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less, or 16 or less.
  • the chain may be a straight chain hydrocarbon chain such as a straight chain alkyl group.
  • the alkyl group may be an alkyl group having at least 8 carbon atoms, at least 10 carbon atoms, or at least 12 carbon atoms.
  • the alkyl group may be an alkyl group having not more than 30 carbon atoms, not more than 25 carbon atoms, not more than 20 carbon atoms, or not more than 16 carbon atoms. At least one of the carbon atoms of the alkyl group may optionally be substituted with an oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted by another substituent.
  • Y includes a ring structure, and the chain may be connected to a ring structure.
  • a ring structure can further improve the self-assembling property and the like of the block copolymer described later.
  • the ring structure may be an aromatic ring structure or an alicyclic ring structure.
  • the chain may be directly connected to the ring structure or may be connected via a linker.
  • R 1 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group.
  • X 1 may be a single bond, an oxygen atom, a sulfur atom, -NR 2 -, an alkylene group, an alkenylene group or an alkynylene group.
  • R 2 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group.
  • An appropriate linker may be an oxygen atom or a nitrogen atom.
  • the chain may be connected to the aromatic structure via, for example, an oxygen atom or a nitrogen atom.
  • the linker is an oxygen atom, or -NR 1 - (wherein R 1 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • the unit of Formula 4 may be represented by the following Formula 4-1:
  • R and X may be the same as R and X in formula (4).
  • P is an arylene group
  • Q is a single bond
  • Z is 8 Or more of the chain forming atoms.
  • P may be an arylene group having 6 to 12 carbon atoms, for example, a phenylene group, but is not limited thereto.
  • Q in formula (4-1) is an oxygen atom or -NR 1 - (wherein R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • the random copolymer of the present application contains the unit of the above formula (3) or (4) in addition to the unit of the above formula (1), so that the block copolymer having various structures can exhibit excellent self-assembling properties. Further, it is possible to impart appropriate orientation to the pattern formed by the self-assembled structure of the block copolymer.
  • the unit of the formula (3) or (4) may be contained in the random copolymer in an amount of 80% by weight to 99.9% by weight. This ratio is not particularly limited, but may be adjusted depending on the kind of the block copolymer to which the pinning layer including the random copolymer of the present application is applied, for example.
  • the unit having the cyclic structure may contain at least 81 wt%, at least 82 wt%, at least 83 wt%, at least 84 wt%, at least 85 wt%, at least 86 wt%, at least 87 wt% , At least 88 wt%, at least 89 wt%, at least 90 wt%, at least 91 wt%, at least 92 wt%, at least 93 wt%, at least 94 wt%, or at least 95 wt% .
  • the ratio is 99.8 wt% or less, 99.7 wt% or less, 99.6 wt% or less, 99.5 wt% or less, 99.4 wt% or less, 99.3 wt% or less, 99.2 wt% or less, 99.1 wt% But is not limited thereto.
  • the random copolymer may include 1 to 30 parts by weight of the unit represented by the formula (1) relative to 100 parts by weight of the unit represented by the formula (3) or (4).
  • the proportion of the unit represented by the formula (1) is not particularly limited, but the pinning layer containing the random copolymer may be adjusted depending on the type of the substrate to be used.
  • the random copolymer may contain at least 1.1 parts by weight, at least 1.2 parts by weight, at least 1.3 parts by weight, at least 1.4 parts by weight, at least 1.5 parts by weight of the unit represented by the general formula (1) At least 1.6 parts by weight, at least 1.7 parts by weight, at least 1.8 parts by weight, at least 1.9 parts by weight or at least 2.0 parts by weight may be contained, at most 26 parts by weight, at most 22 parts by weight, at most 18 parts by weight, 12 parts by weight or less, 10 parts by weight or less, 9 parts by weight or less, 8 parts by weight or less, 7 parts by weight or less, or 6 parts by weight or less.
  • the random copolymer may further include an additional unit (third unit), if necessary, in addition to the unit (first unit) of formula (1) and the unit (second unit) represented by formula (3) or (4).
  • a third unit there may be mentioned methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (Meth) acrylate such as n-hexyl (meth) acrylate, t-butyl (meth) acrylate, Pyridine, and the like; a polymerization unit derived from vinylpyridine such as styrene, 4-trimethylsilylstyrene, 2,3,4,5,6-pentafluorostyrene, 3,4,5-trifluorostyrene, 2,4,6-tri But are not limited to, styrene-based monomer units derived from styrene such as fluorostyrene or 4-
  • the content thereof is not particularly limited. And is not particularly limited.
  • the content of the third unit can be adjusted, for example, according to the kind of the block copolymer to be applied to the pinning layer containing the random copolymer.
  • the third unit may be included in the random copolymer in an amount of about 5 mol% to about 95 mol%, but is not limited thereto.
  • the random copolymer may comprise at least about 5 mole percent, at least 6 mole percent, at least 7 mole percent, at least 8 mole percent, at least 9 mole percent, or at least 10 mole percent of the third unit, Not more than 95 mol%, not more than 93 mol%, not more than 92 mol%, not more than 91 mol%, or not more than 90 mol%.
  • the mole% in the present application can be calculated using the number of moles calculated from the molecular weight and weight of the block copolymer or random copolymer.
  • the random copolymer may be prepared by a free radical polymerization method or an LRP (Living Radical Polymerization) method.
  • LRP Living Radical Polymerization
  • examples of the LRP method include anion polymerization, atom transfer radical polymerization, polymerization by reversible-addition ring-opening chain transfer, or a method using an organic tellurium compound as an initiator.
  • the anionic polymerization method may mean that polymerization is carried out in the presence of an inorganic acid salt such as an alkali metal or an alkaline earth metal salt or an organic aluminum compound using an organic rare earth metal complex or an organic alkali metal compound as an initiator.
  • an inorganic acid salt such as an alkali metal or an alkaline earth metal salt or an organic aluminum compound using an organic rare earth metal complex or an organic alkali metal compound as an initiator.
  • the atom transfer radical polymerization can be carried out by, for example, an atom transfer radical polymerization method (ATRP) using an atom transfer radical polymerization agent as the polymerization agent and an atom transfer radical polymerization agent as a polymerization agent, (ARGET) atom transfer radical polymerization (ATRP), initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization, and the like.
  • ATRP atom transfer radical polymerization method
  • ARGET atom transfer radical polymerization
  • IIR continuous activator regeneration
  • the kind of the radical initiator that can be used in the polymerization process is not particularly limited.
  • the radical initiator include azobisisobutyronitrile (ABN), cyclohexanecarbonitrile (ABCN) and 2,2'-azobis- (2,4-dimethylvaleronitrile), or a peroxide initiator such as BPO (benzoyl peroxide) or di-tert-butyl peroxide (DTBP).
  • a method for polymerizing the monomer for example, a method using thermal self-initiation of a styrenic monomer, Method can also be applied.
  • the polymerization process can be carried out, for example, in the presence of a suitable solvent.
  • a suitable solvent methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, anisole, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethyl
  • solvents such as formamide, dimethylsulfoxide or dimethylacetamide.
  • non-solvents examples include alcohols such as methanol, ethanol, n-propanol or isopropanol, glycols such as ethylene glycol, alkanes such as n-hexane, cyclohexane, and n-heptane, and ethers such as petroleum ether, and the like, but the present invention is not limited thereto.
  • the present application also relates to a pinning composition.
  • the term " pinning composition " in this application may refer to a composition used to form a pinning layer.
  • the term " pinning layer " refers to a block copolymer having high chemical affinity with any one of the blocks constituting the block copolymer, so that the orientation and the locatability of the pattern formed by the block copolymer can be imparted It can mean all kinds of layers.
  • the pattern of the block copolymer may mean a pattern in which one or more blocks constituting the block copolymer are regularly or irregularly repeatedly formed.
  • the peening composition of the present application may contain only the above-mentioned random copolymer.
  • the peening composition of the present application may further contain, if necessary, other components in addition to the above random copolymer.
  • Other components that may be included in combination with the random copolymer include, for example, a suitable thermal initiator or photoinitiator depending on the component included in the random copolymer, and may be exemplified by solvents or nonsolvents have.
  • the peening composition may comprise from 0.1% to 20% by weight of the random copolymer relative to the total composition.
  • the ratio is, for example, not less than about 0.2% by weight, not less than about 0.3% by weight, not less than about 0.4% by weight, not less than about 0.5% by weight, not less than about 0.6% by weight, About 14 wt.% Or less, about 15 wt.% Or less, about 13 wt.% Or less, about 11 wt.% Or less, about 10 wt.% Or less, about 0.8 wt.% Or more, about 0.9 wt. About 9% or less, about 8% or less, about 7% or less, about 6% or less, about 5% or less, about 4% or less, about 3% or less, have.
  • the present application also relates to a substrate.
  • the substrate of the present application may comprise a pinning layer formed on the surface of the base layer.
  • the substrate of the present application comprises: a substrate layer; And a pinning layer present on the surface of the substrate layer.
  • the pinning layer may be formed by the above-described pinning composition.
  • the description of the term pinning and pinning layer is the same as described above and therefore will be omitted.
  • the pinning layer may comprise the above-mentioned random copolymer. That is, the pinning layer may be the same as the random copolymer contained in the pinning composition described above. Specifically, the pinning layer may include a random copolymer including units of the above-described formula (1) and units represented by the formula (3) or (4). Since the random copolymer is the same as the random copolymer contained in the pinning composition, a description thereof will be omitted.
  • a pinning layer may be formed on a suitable substrate layer.
  • the base layer on which the pinning layer is formed is exemplified by, but not limited to, a silicon wafer, a silicon oxide substrate, a silicon nitride substrate, or a crosslinked PET (poly (ethylene terephthalate)) film.
  • the pinning layer may include at least a random copolymer as a main component.
  • the reason why the pinning layer contains the random copolymer as a main component is that the pinning layer contains only the random copolymer or contains at least about 50% by weight, at least 55% by weight, at least 60% by weight, at least 65% by weight, Or more, 70 wt% or more, 75 wt% or more, 80 wt% or more, 85 wt% or more, or 90 wt% or more.
  • the ratio may be from about 100% by weight or less to about 99% by weight or less in another example.
  • the pinning layer may have a thickness of, for example, from about 1 nm to 100 nm, and in another example, from about 2 nm to 50 nm. Within this thickness range, the surface uniformity of the pinning layer can be maintained. Further, within the above-mentioned thickness range, the orientation of the vertically oriented structure of the block copolymer can be appropriately derived, and thereafter, there is an advantage that the etching selectivity is not impaired in the etching process.
  • " vertical alignment " in the present application indicates the orientation property of the block copolymer and may mean a case where the orientation direction of the self-assembled structure formed by the block copolymer is perpendicular to the substrate direction.
  • vertical orientation can refer to the case where each block domain of the self-assembled block copolymer lies side by side on the substrate surface and the interface region of the block domain is formed substantially perpendicular to the substrate surface.
  • the vertical orientation may mean that all of the block domains of the self-assembled block copolymer are wetted to the substrate surface.
  • &quot is a representation that takes into account the error, and includes, for example, errors including within ⁇ 10 degrees, within ⁇ 8 degrees, within ⁇ 6 degrees, within ⁇ 4 degrees, Lt; / RTI >
  • the pinning layer of the present application may form a pattern at the surface of the substrate layer.
  • the pattern may be, for example, a stripe pattern.
  • the stripe pattern means a pattern in which two or more stripe-shaped pinning layers are formed on the surface of a substrate.
  • the pattern formed by the self-assembled structure of the block copolymer described later may exhibit the directionality by a pattern formed by the pinning layer. Further, the self-assembling structure of the block copolymer described below may be formed on the base layer or may be formed on the pinning layer.
  • the method for forming the pinning layer is not particularly limited, and for example, the pinning layer can be formed by coating the pinning composition on the base layer and annealing it, as described below.
  • the substrate may further comprise a neutral layer present on the surface of the substrate layer.
  • the block copolymer having a vertically aligned self-assembled structure can be formed more efficiently by inducing the self-assembly of the block copolymer to be described later on the base layer on which the pinning layer and the neutral layer are formed together.
  • the term " neutral layer " can refer to any kind of layer capable of inducing the vertical orientation of the block copolymer.
  • the neutral layer and the pinning layer may form a stripe pattern alternating on the base layer.
  • the repeating pattern of the neutral layer and the pinning layer may be regular or irregular.
  • the stripe pattern is a pattern in which two or more pinning layers 20 and a neutral layer 30 are alternately formed on the surface of the base layer 10, for example, as schematically shown in Fig. 8 It can mean.
  • the method for forming the stripe pattern in which the pinning layer and the neutral layer are alternately repeated is not particularly limited.
  • the method may include (1) coating a composition for forming a neutral layer on a base layer on which a pinning layer is formed, and then annealing the composition; or (2) coating a pinning layer composition on a base layer having a neutral layer,
  • the present invention is not limited thereto.
  • the neutral layer may comprise a random copolymer.
  • the random copolymer contained in the neutral layer may be different from the random copolymer contained in the pinning layer.
  • the random copolymer contained in the neutral layer may contain the same unit as the unit contained in the random copolymer of the pinning layer.
  • the random copolymer contained in the neutral layer may include a unit represented by the above-described formula (3) and a unit represented by the following formula (4).
  • the ratio (B / B) of the number of moles (A) of the unit represented by the formula (4) to the number of moles (B) A) may be in the range of 2 to 10.
  • the ratio (B / A) of the number of moles may be, for example, 2.00 or more, 2.04 or more, 2.08 or more, 2.12 or more, 2,16 or more, 2.20 or more, 2.24 or more, 2.28 or more or 2.32 or more .
  • the ratio B / A may be 10 or less, 9.8 or less, 9.6 or less, 9.4 or less, 9.2 or less, or 9.0 or less.
  • the unit of the above formula (4) may be contained in the random copolymer in a proportion within a range of 9 mol% to 32 mol% of the total molar amount of the random copolymer of the neutral layer.
  • the ratio may be at least 10 mol%, at least 11 mol%, at least 12 mol%, at least 13 mol%, at least 14 mol%, or at least 15 mol%, and at most 31 mol% 29 mol% or less, 28 mol% or less, 27 mol% or less, 26 mol% or less, 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% 19 mole% or less, 18 mole% or less, 17 mole% or less, 16 mole% or 15 mole% or less.
  • the random copolymer contained in the neutral layer may further include units of other functional monomer for improving the reactivity with the base layer.
  • the functional monomer include glycidyl (meth) acrylate, 4-vinylbenzocyclobutene, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl (meth) acrylate, 4- isocyanatobutyl (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (Meth) acrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl acrylate, 6-hydroxyhexyl (Meth) acrylate, N-vinylpyrrolidone, N-vin
  • the unit of the functional monomer When the unit of the functional monomer is included in the random copolymer of the neutral layer, the unit of the functional monomer may be contained in an amount of 40 mol% or less based on the total random copolymer, and the lower limit is not particularly limited, May be contained in a content of more than 0 mol%.
  • the ratio (C / A) of the molar number (A) of the unit of the formula (4) to the molar number (C) of the functional monomer unit may be in the range of 0.1 to 2.0.
  • the ratio C / A may be 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or 0.9 or more, and 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less , 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, or 1.1 or less, but is not limited thereto.
  • the number average molecular weight (Mn) of the random copolymer of the neutral layer may be, for example, in the range of 3,000 to 300,000. In other examples, the molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 10,000 or more, or 11000 or more. In yet another example, the molecular weight (Mn) may be less than or equal to 250,000, less than or equal to 200,000, less than or equal to 180,000, less than or equal to 160,000, less than or equal to 140000, less than or equal to 120000, less than or equal to 100000, less than or equal to 90000, The unit of the number average molecular weight may be g / mol.
  • the random copolymer of the neutral layer may have a polydispersity (Mw / Mn) in the range of 1.01 to 2.60.
  • the degree of dispersion may be about 1.05 or more or about 1.1 or more in other examples. In another example, the degree of dispersion may be about 2.6 or less, about 2.4 or less, about 2.2 or less, or about 2.0 or less.
  • the neutral layer formed by such a random copolymer is advantageous for forming a highly aligned block copolymer film.
  • the number average molecular weight and the degree of dispersion of a certain polymer may be a value converted to standard polystyrene measured through gel permeation chromatography (GPC).
  • the substrate of the present application may further include a polymer film.
  • the polymer membrane may include a block copolymer including a first block and a second block different from the first block.
  • the first block may have a chemically different structure from the second block.
  • the substrate can be applied for various purposes.
  • the substrate can be applied to, for example, various electronic or electronic devices, a process of forming the pattern, a recording medium such as a magnetic storage medium, a flash memory, a biosensor, or the like.
  • the polymer film is formed on the pinning layer, or may be formed directly on the base layer. Specifically, the polymer film may be formed directly on the stripe pattern of the pinning layer, or may be formed directly on the base layer on which the stripe pattern of the pinning layer is not formed. In another example, the polymer film may be present on the pinning layer and the neutral layer.
  • the block copolymer may have a periodic structure such as a sphere, a cylinder, a gyroid, or a lamellar through self-assembly. Specifically, when the block copolymer is a sphere or a lamellar structure, the block copolymer may exist in a vertically oriented state.
  • the kind of the block copolymer that can be included in the polymer film is not particularly limited.
  • the same unit as the unit having the cyclic structure included in the random copolymer of the pinning layer may be referred to as a first block or a second block May be used as the block copolymer.
  • the block copolymer may include a unit of formula (3) as a first block, and a unit of formula (4) as a second unit.
  • the polymer membrane including the block copolymer may exhibit excellent phase separation characteristics on the neutral layer, and may be vertically aligned while forming a regular structure such as a lamellar shape or a cylinder shape.
  • the block copolymer of the present application may be a diblock copolymer including the first block and the second block described above.
  • the block copolymer may be a multiblock copolymer having at least two of the first and second blocks described above, or a triblock or more block including another type of third block.
  • the number average molecular weight (Mn) of the block copolymer may be in the range of, for example, 2,000 to 500,000.
  • the number average molecular weight of the block copolymer may be 3000 or more, 4000 or more, 5000 or more, 6000 or more, 7000 or more, 8000 or more, 9000 or more, 10000 or more, 15000 or more, 20000 or more, 25000 or more, 35000 or more, or 40000 or more and 400000 or less, 300000 or less, 200000 or less, 100000 or less, 95000 or less, 90000 or less, 85000 or less, 80000 or less, 75000 or less, 70000 or less, 65000 or less, 60000 or less, 55000 or less, But is not limited thereto.
  • the unit of the number average molecular weight of the block copolymer may be g / mol.
  • the block copolymer may have a polydispersity (Mw / Mn) in the range of 1.01 to 1.50.
  • the ratio may be 1.02 or more, 1.05 or more, 1.08 or more, 1.11 or more, 1.14 or 1.17 or more, 1.45 or less, 1.40 or less, 1.35 or less, 1.30 or less, 1.25 or less, 1.20 or less But is not limited to.
  • the block copolymer can exhibit proper self-assembling properties.
  • the number average molecular weight of the block copolymer and the like can be adjusted in consideration of the desired self-assembling structure and the like.
  • the volume fraction of the first block is 0.3 to 0.7 It can be in range.
  • the ratio may be 0.4 or more, 0.5 or more, or 0.55 or more, and 0.65 or less, 0.63 or less, or 0.61 or less.
  • the sum of the volume fraction of the first block and the volume fraction of the second block may be 1.
  • the volume fraction of each block constituting the block copolymer in the present application can be obtained based on the density of each block and the molecular weight measured by GPC (Gel Permeation Chromatography).
  • the specific method for producing the block copolymer in the present application is not particularly limited as long as it includes the step of forming at least one block of the block copolymer using the monomer having the above-mentioned structure.
  • the same method as that for polymerizing the random copolymer as a method for producing a block copolymer can be applied.
  • the block copolymer can be prepared in a manner that includes polymerizing a reactant comprising monomers capable of forming the block in the presence of a radical initiator and a living radical polymerization reagent by living radical polymerization .
  • the preparation of the block copolymer may further include, for example, a step of precipitating the polymerization product produced through the above process in the non-solvent.
  • the kind of the radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency.
  • the radical initiator for example, AIBN (azobisisobutyronitrile), ABCN (1,1'-Azobis (cyclohexanecarbonitrile)) or 2,2'-azobis-2,4-dimethylvaleronitrile - (2,4-dimethylvaleronitrile), peroxides such as BPO (benzoyl peroxide) or DTBP (di-t-butyl peroxide)
  • the living radical polymerization process can be carried out in the presence of a base such as, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, Amide, dimethylsulfoxide or dimethylacetamide, and the like.
  • a base such as, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, Amide, dimethylsulfoxide or dimethylacetamide, and the like.
  • non-solvent examples include ethers such as alcohols such as methanol, ethanol, n-propanol or isopropanol, glycols such as ethylene glycol, n-hexane, cyclohexane, n-heptane or petroleum ether, But is not limited thereto.
  • the present application also relates to a method of manufacturing a patterned substrate.
  • the manufacturing method of the present application can include coating the above-described peening composition on a base layer, and annealing the base layer coated with the peening composition.
  • the annealing may be thermal annealing or solvent annealing. Specifically, the annealing may be thermal annealing.
  • the base layer may be the same as the base layer applied in the above-mentioned substrate, and a description thereof will be omitted.
  • the thermal annealing can be performed based on, for example, the phase transition temperature or the glass transition temperature of the random copolymer contained in the pinning composition.
  • the thermal annealing can be performed specifically at a temperature above the glass transition temperature or the phase transition temperature.
  • the random copolymer contained in the pinning composition may have a glass transition temperature or a phase transition temperature lower than that of the polymer contained in the conventional pinning composition.
  • the annealing of the present application can be performed at a temperature lower than the temperature in annealing to form a conventional pinning layer.
  • the process of the present application can perform thermal annealing at a temperature less than about 130 < 0 > C.
  • the temperature may be lower than or equal to 125 ° C, lower than 120 ° C, lower than or equal to 115 ° C, lower than or equal to 110 ° C, lower than or equal to 105 ° C, lower than or equal to 100 ° C, lower than or equal to 95 ° C, lower than or equal to 90 ° C, lower than or equal to 85 ° C, lower than or equal to 80 ° C, , 65 ⁇ ⁇ or lower, 60 ⁇ ⁇ or lower, 55 ⁇ ⁇ or lower, or lower than 50 ⁇ ⁇ .
  • the lower limit of the temperature is not particularly limited, but may be, for example, 10 ° C or more, 15 ° C or more, or 20 ° C or more.
  • the above-described peening composition can sufficiently react with the base layer to form a pinning layer.
  • the temperature and time in the thermal annealing can be adjusted to an appropriate level in consideration of the composition of the random copolymer of the pinning layer composition.
  • the time required for the thermal annealing can be changed as needed.
  • the manufacturing method of the present application can be performed for a time in the range of about 1 minute to 72 hours or about 1 minute to 24 hours for thermal annealing.
  • a neutral layer may be formed on the base layer on which the annealing is performed. Further, after the annealing, the pinning layer and the neutral layer may form a stripe pattern. Specifically, a pattern of neutral layers may be present on the substrate layer on which the annealing of the pinning composition is performed, and after the coating and annealing of the pinning composition, the pinning layer and the neutral layer may alternately be present.
  • a pinning composition when thermally annealed on a substrate layer having a neutral layer formed thereon and at a temperature within the aforementioned range, the pinning layer does not react with the neutral layer, and the neutral layer and the stripe A pattern can be formed. Accordingly, defects that may occur when the self-assembled structure of the block copolymer is formed can be minimized.
  • the random copolymer contained in the neutral layer is the same as described above. Therefore, a detailed description thereof will be omitted.
  • a method of forming and annealing a layer of a pinning composition on a substrate layer on which the neutral layer is formed comprising forming the neutral layer in a patterned form on a substrate layer, coating the pinning composition, Method may be applied.
  • a pinning layer having a fine pattern of nano unit size can be formed.
  • the method of forming the neutral layer in the patterned form in the above method is not particularly limited.
  • only a part of the neutral layer formed on the substrate may be removed by partially irradiating the polymer film with an appropriate electromagnetic wave, for example, ultraviolet light, or by irradiating ultraviolet rays or the like after covering the neutral layer with a mask.
  • the ultraviolet irradiation condition may be determined depending on the type of the neutral layer. For example, ultraviolet light at a wavelength of about 254 nm can be irradiated for 1 minute to 60 minutes to remove a portion of the neutral layer.
  • it is also possible to further remove the neutral layer decomposed by ultraviolet rays by treating with ultraviolet light, followed by treatment with an acid solution or the like.
  • the method of manufacturing a patterned substrate of the present application is characterized in that after the annealing, a first block and a second block different from the first block are included on a substrate layer on which a pinning layer is formed, or on a substrate layer on which a neutral layer and a pinning layer are formed To form a polymer film including the block copolymer in a self-assembled state.
  • a block having similar surface energy to the pinning layer is peened may be located on a pinning layer.
  • the pattern formed by the self-assembling structure of the block copolymer can be vertically oriented on the substrate.
  • the method can induce self-assembly of the block copolymer in the polymeric film by coating and annealing the polymeric composition comprising the block copolymer on the neutral and / or pinning layer .
  • the method can form the polymer film on which the self-assembled structure of the block copolymer is formed by coating the polymer composition on the neutral layer and / or the pinning layer by a method such as application and annealing .
  • the annealing may be thermal annealing or solvent annealing. Specifically, the annealing may be thermal annealing.
  • the method may further include a step of coating the polymer composition and then aging, if necessary.
  • the thermal annealing can be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer.
  • the thermal annealing may be performed at a temperature above the glass transition temperature or the phase transition temperature.
  • the time at which this heat treatment is performed is not particularly limited, and can be performed for a time in the range of, for example, about 1 minute to 72 hours, but this can be changed if necessary.
  • the temperature in the thermal annealing may be, for example, about 100 ⁇ to 250 ⁇ , but this can be adjusted in consideration of the block copolymer to be used.
  • the aging may also be carried out in a nonpolar solvent and / or a polar solvent at room temperature for about 1 minute to 72 hours.
  • the method for producing a patterned substrate of the present application may further include the step of selectively removing the first or second block of the block copolymer in the polymer film.
  • a pattern of the block copolymer can be formed on the substrate.
  • the method may include a step of forming a polymer film including the block copolymer on a substrate, selectively removing one or more blocks of the block copolymer existing in the film, and then etching the substrate And may be further included. That is, the substrate can be etched using the polymer film from which one or more blocks of the block copolymer have been removed as a mask.
  • the pattern of the substrate can be changed according to the shape of the block copolymer in the polymer film, and examples thereof include nano-rods and nano-holes. If necessary, the block copolymer and other copolymer, homopolymer or the like may be mixed into the polymer composition for pattern formation.
  • the kind of the substrate to be applied to this method is not particularly limited and can be selected as required.
  • the substrate for example, silicon oxide or the like can be applied.
  • the above method can form a pattern having a size of nano unit in silicon oxide showing a high aspect ratio.
  • the method comprises forming a polymer film having a predetermined structure of a block copolymer on a substrate of silicon oxide, then selectively removing one block of the block copolymer, and then etching the substrate of silicon oxide ≪ / RTI >
  • a reactive ion etching method can be applied, so that the substrate of silicon oxide can have various forms such as a pattern of nano-rods or nano holes.
  • a nanopattern having a large aspect ratio can also be formed.
  • the pattern can be implemented in a size of several tens of nanometers, and the substrate having such a pattern can be applied to various applications including, for example, a next generation information electronic magnetic recording medium.
  • the method of selectively removing one block of the block copolymer is not particularly limited.
  • the removal method may be, for example, a method of removing a relatively soft block by irradiating the polymer film with an appropriate electromagnetic wave, ultraviolet light, or the like.
  • the ultraviolet irradiation condition can be determined according to the composition of the block constituting the block copolymer.
  • ultraviolet irradiation may be, for example, irradiation with ultraviolet light having a wavelength of about 254 nm for 1 minute to 60 minutes.
  • the polymer film may be treated with an acid or the like, followed by ultraviolet irradiation, and any one block of the block copolymer decomposed by ultraviolet rays may be further removed.
  • the manner of etching is not particularly limited.
  • the etching may be reactive ion etching using, for example, a reactive gas such as CF 4 / Ar.
  • the polymer film may be removed from the substrate by reactive ion etching followed by oxygen plasma treatment or the like.
  • the peening composition of the present application can bond with a base layer even at a low temperature to form a pinning layer.
  • the peening composition of the present application can impart orientation and position selectivity of the self-assembled structure of the block copolymer formed on the substrate.
  • the peening composition of the present application can cause the block copolymer formed on the substrate to exhibit excellent reaction selectivity.
  • the peening composition of the present application can make the block copolymer formed on the substrate free from defects and have a vertical lamellar structure with high degree of alignment.
  • 1 to 3 are SEM images for Examples 1 to 3, respectively.
  • 5 to 7 are SEM images for Examples 4 to 6, respectively.
  • FIG. 8 is a schematic diagram of a stripe pattern in which a pinning layer and a neutral layer are formed on a substrate.
  • NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with a triple resonance 5 mm probe.
  • the analytes were diluted to a concentration of about 10 mg / ml in a solvent for NMR measurement (CDCl 3 ), and chemical shifts were expressed in ppm.
  • br broad signal
  • s singlet
  • d doublet
  • dd doublet
  • t triplet
  • dt double triplet
  • q quartet
  • p octet
  • m polyline.
  • the number average molecular weight (Mn) and molecular weight distribution were measured using GPC (Gel Permeation Chromatography).
  • GPC Gel Permeation Chromatography
  • THF tetrahydrofuran
  • the calibration standard sample and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 ⁇ m) and then measured.
  • the analytical program used was a ChemStation from Agilent Technologies.
  • the elution time of the sample was compared with a calibration curve to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the molecular weight distribution (PDI ) Were calculated.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • the volume fraction of each block of the block copolymer was calculated based on the density at room temperature of each block and the molecular weight measured by GPC.
  • the density was measured using the buoyancy method. Specifically, the density was calculated by adding a sample to be analyzed into a solvent (ethanol) having a known mass and density in the air.
  • the compound (DPM-C12) shown below was synthesized in the following manner. Hydroquinone (10.0 g, 94.2 mmol) and 1-bromododecane (23.5 g, 94.2 mmol) were placed in a 250-mL flask and dissolved in 100 mL of acetonitrile. Potassium carbonate was added and reacted at 75 DEG C for about 48 hours under a nitrogen atmosphere. After the reaction, the remaining potassium carbonate was filtered off and acetonitrile used in the reaction was removed. A mixed solvent of DCM (dichloromethane) and water was added thereto to work up, and the separated organic layers were collected and dehydrated by passing through MgSO 4 . Subsequently, the title compound (4-dodecyloxyphenol) (9.8 g, 35.2 mmol) as white solid was obtained in a yield of about 37% using dichloromethane in column chromatography.
  • R is a straight chain alkyl group having 12 carbon atoms.
  • the reaction solution was precipitated in 200 mL of methanol as an extraction solvent, filtered under reduced pressure and dried to obtain a random copolymer
  • the content of the monomer (A) derived unit of Production Example 1 was about 96.8% by weight.
  • the random copolymer had a number average molecular weight (Mn) and a molecular weight distribution (Mw / Mn) of 39,400 g / mol and 1.96, respectively.
  • the content ratio of each component in the random copolymer was 15 mol% 75 mol% of pentafluorostyrene and 10 mol% of glycidyl methacrylate.
  • the yield of the macromonomer was about 82.6% by weight, the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were 13,200 g / mol and 1.16, respectively.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • 0.3 g of macroinitiator, 2.7174 g of pentafluorostyrene monomer, and 1.306 mL of benzene were placed in a 10 mL Schlenk flask and stirred at room temperature for 30 minutes under a nitrogen atmosphere.
  • Reversible Addition Fragmentation Chain Transfer (RAFT) Respectively.
  • the block copolymer is derived from the monomer (A) of Production Example 1 and comprises a first block having 12 chain-forming atoms (the number of carbon atoms of R in Formula A) and a second block derived from the pentafluorostyrene monomer .
  • the volume fraction of the first block was about 0.40 and the volume fraction of the second block was about 0.60.
  • the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) of the block copolymer (E) 44,700 g / mol and 1.19, respectively.
  • the random copolymer (B) (containing about 2.65% by weight of hMAPC1) or the random copolymer (C) containing about 4.77% by weight of hMAPC1 of Production Example 3 was dissolved in fluorobenzene to a concentration of about 1.0% To prepare a pinning composition.
  • the peening composition was then coated on a silicon wafer (untreated substrate layer) to a thickness of about 30 nm and then subjected to thermal annealing for 5 minutes at controlled temperatures (Examples 1 to 3) , And immersed in fluorobenzene for 10 minutes to remove unreacted random copolymer (B) or unreacted random copolymer (C) to form a pinning layer.
  • the block copolymer (E) of Production Example 4 was dissolved in fluorobenzene to a concentration of about 0.8% by weight to prepare a polymer composition, which was spin-coated on the pinning layer to a thickness of about 30 nm, followeded by thermal annealing for about 5 minutes to form a polymer film.
  • the pattern of the block copolymer (E) in the polymer membrane was confirmed by SEM (Scanning Electron Microscope).
  • the block copolymer (E) is vertically oriented on a silicon wafer, and has horizontal and vertical orientations on a pinning layer. Therefore, whether or not the pinning composition of the silicon wafer (substrate layer) was reacted was determined based on whether the pattern of the block copolymer was a mixed pattern of the horizontal orientation and the vertical orientation with respect to the substrate. Specifically, whether or not the peening composition was reacted with the substrate layer was determined by photographing the prepared polymer membrane at a magnification of 50,000 under the condition of an acceleration voltage of 2.0 kV using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • O indicates the case where the block copolymer (E) in the polymer film formed on the base layer is observed in a state where the vertically and horizontally oriented structures are mixed, and the block copolymer (E) Is observed in the vertically aligned state is indicated by X.
  • Examples 1 to 3 are SEM images for Examples 1 to 3, respectively. As a result, it can be seen that in Examples 1 to 3, a lamellar pattern in which both vertical and horizontal orientations are mixed is formed. Through this, it can be seen that the peening composition of the present application is sufficiently bonded to the substrate layer.
  • FIG. 4 is an SEM image of Comparative Example 1. Fig. It can be seen from FIG. 4 that the pinning composition to which the polymer of a different kind from the peening composition of the present application is applied can not sufficiently bond with the base layer in the case of thermal annealing at a temperature lower than 130 ⁇ .
  • a neutral layer composition dissolved in fluorobenzene was spin-coated on a silicon wafer (substrate layer) so that the concentration of the random copolymer (D) in Production Example 4 was about 0.5% by weight, and the resultant was spin coated at a temperature of 200 ⁇ for about 5 minutes Heat treated. Subsequently, the residual random copolymer (D) was removed by immersion in fluorobenzene for about one minute to prepare a substrate (neutral layer substrate) on which a pattern of a neutral layer having a thickness of about 10 nm was formed.
  • a pinning composition dissolved in fluorobenzene was prepared so that the concentration of the random copolymer (B) or the random copolymer (C) was about 1.0% by weight.
  • the peening composition was spin-coated on a neutral layer substrate to a thickness of about 30 nm and then subjected to thermal annealing for about 5 minutes under the temperature conditions shown in Table 2 (Examples 4 to 6). Subsequently, the unreacted random copolymer (B) or the random copolymer (C) was removed by immersing in fluorobenzene for 10 minutes to form a pinning layer on the neutral layer substrate.
  • a polymer composition dissolved in fluorobenzene was prepared so that the concentration of the block copolymer (E) in Production Example 4 was about 0.8% by weight.
  • the polymer composition was spin-coated on the pinning layer to a thickness of about 30 nm, followeded by thermal annealing for 5 minutes to form a polymer film.
  • the resulting polymer membrane was photographed at a magnification of 50,000 under the condition of an acceleration voltage of 2.0 kV using a scanning electron microscope (SEM), and the pinning composition was applied on the substrate through a pattern of the lamellar structure of the block copolymer (E) It was confirmed whether it reacted with the neutral layer. Specifically, in Table 2 below, when the peening composition reacted with the neutral layer on the substrate, defects were observed on the surface of the vertical lamellar pattern formed by the self-assembly of the block copolymer. In Table 2 below, X indicates that the pinning composition did not react with the neutral layer on the substrate and defects in the vertical lamellar pattern formed by the self-assembly of the block copolymer were not observed.
  • 5 to 7 are SEM images of Examples 4 to 6, respectively. As a result, it can be seen that defects were not observed in the pattern of the lamellar structure of the block copolymer (E) in the polymer film of Examples 4 to 6.
  • the pinned layer composition according to the present application can react with the base layer even in a low-temperature process and can not react with the neutral layer, so that the vertically aligned self-assembling Lt; / RTI > structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

본 출원은, 피닝(pinning) 조성물, 이를 포함하는 적층체 및 이의 제조 방법에 관한 이다. 본 출원의 피닝(pinning) 조성물은 블록 공중합체의 자기 조립 구조를 포함하는 고분자 막에 방향성 및 위치 선정성을 부여할 수 있다. 본 출원의 피닝 조성물은 우수한 반응 선택성을 나타내므로, 정렬도가 높은 수직 라멜라 구조를 형성할 수 있다. 또한, 본 출원의 피닝 조성물은 저온 공정에의 적용에 적합할 수 있다.

Description

랜덤 공중합체 및 이를 포함하는 피닝 조성물
본 출원은 2017년 10월 27일에 대한민국 특허청에 제출된 특허출원 제10-2017-0141006호의 출원일의 이익을 주장하고, 그 내용 전부는 본 출원에 포함된다.
본 출원은, 랜덤 공중합체 및 이를 포함하는 피닝 조성물에 관한 것이다.
블록 공중합체에는 2개 이상의 화학적으로 구별되는 고분자 사슬들이 공유 결합에 의해 연결되어 있다. 블록 공중합체는 이의 자기 조립(self-assembly) 특성 때문에 규칙적인 미세상(microphase)으로 분리될 수 있다. 이러한 블록 공중합체의 미세 상분리 현상은 일반적으로 구성 성분간의 부피 분율, 분자량, 또는 상호 인력 계수(Flory-Huggins interaction parameter) 등에 의해 설명되고 있다. 또한, 블록 공중합체는 나노 구조의 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid), 또는 라멜라(lamella) 등의 다양한 나노 구조체를 형성할 수 있다.
통상적으로, 블록 공중합체가 형성하는 막에서 나노 구조체의 배향은 블록 공중합체를 구성하는 블록 중 어떤 블록이 기재층의 표면 또는 공기 중에 노출되는지 여부에 따라 결정된다. 즉, 나노 구조체의 배향은 블록 공중합체를 구성하는 블록의 선택적인 웨팅(wetting)에 의하여 결정될 수 있다. 일반적으로, 다수의 기재층은 극성이고, 공기는 비극성이다. 따라서, 블록 공중합체에서 더 큰 극성을 가지는 블록은 기재층에 웨팅하고, 블록 공중합체에서 더 작은 극성을 가지는 블록은 공기와의 계면에서 웨팅하여 수평 배향이 형성된다. 또한, 블록 공중합체의 어느 하나의 블록과 이와는 다른 어느 하나의 블록이 모두 기재층 상에 웨팅하는 경우에는 수직 배향이 형성된다. 수직 배향은 블록 공중합체의 어느 하나의 블록과 이와는 다른 어느 하나의 블록의 계면이 기판에 대해서 수직인 경우를 의미할 수 있다.
이와 같은 블록 공중합체의 수직 또는 수평 배향된 자기 조립 구조를 실제 공정 상에 적용함에 있어서, 특히 수직 배향된 자기 조립 구조로 형성된 패턴의 방향성 및 위치 선정성이 매우 중요하다. 이를 위해 그라포-에피택시 또는 케모-에피택시 등의 공정을 이용하여 기판 상에 프리 패턴(pre-pattern)을 부여하는 방법이 사용된다.
여기서, 케모-에피택시 공정은 극성인 기재층 상에 화학적 조성이 상이한 패턴, 예를 들면 피닝층을 형성하여, 블록 공중합체의 자기 조립 구조의 배향을 유도하는 방식이다. 그렇지만, 통상적인 피닝층은 이의 형성 과정에서 기재층 뿐만 아니라, 중성층과도 동시에 반응한다. 피닝층과 중성층이 반응하는 경우, 블록 공중합체의 수직 배향의 결함을 일으킬 수 있다. 이에, 중성층과의 반응을 억제하기 위해서 저온, 예를 들면, 130 ℃ 미만의 온도에서 피닝층을 형성하는 공정이 시도된 바 있다. 그렇지만, 하지만, 통상적인 피닝층은, 저온에서, 예를 들어 130 ℃ 미만의 온도에서는 기재층에 충분히 결합할 수 없는 문제점이 존재한다.
본 출원은 랜덤 공중합체 및 이를 포함하는 피닝 조성물을 제공하는 것을 하나의 목적으로 한다.
본 출원에서 용어 「1가 또는 2가 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소 및 수소로 이루어진 화합물 또는 그 유도체로부터 유래된 1가 또는 2가 잔기를 의미할 수 있다. 상기에서 탄소 및 수소로 이루어진 화합물로는, 알칸, 알켄, 알킨 또는 방향족 탄화수소가 예시될 수 있다.
본 출원에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8, 탄소수 1 내지 4 또는 탄소수 1 내지 2의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 「알케닐기」 또는 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 「알킬렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 「알케닐렌기」 또는 「알키닐렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 「아릴기」 또는 「아릴렌기」는, 특별히 달리 규정하지 않는 한, 하나의 벤젠 고리 구조, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 또는 2가 잔기를 의미할 수 있다.
상기 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다.
본 출원에서 용어 「방향족 구조」는 상기 아릴기 또는 아릴렌기를 의미할 수 있다.
본 출원에서 용어 「지환족 고리 구조」는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.
본 출원에서 용어 「단일 결합」은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.
본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 직쇄 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시기, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원에서, 어떤 고분자(블록 공중합체, 랜덤 공중합체 등의 중합체)가 어떤 화합물의 단위를 포함하는 것은, 그 화합물이 중합 반응을 거쳐서 고분자 내의 골격을 형성하고 있는 것을 의미할 수 있다.
본 출원은 랜덤 공중합체에 관한 것이다. 본 출원에서, 용어 「랜덤 공중합체」는 이를 구성하는 하나 이상의 단위가 불규칙적으로 결합된 중합체를 의미할 수 있다. 구체적으로, 랜덤 공중합체는 어떤 단량체 단위를 발견할 확률이 인접 단위의 종류와는 무관한 공중합체를 의미할 수 있다.
본 출원의 랜덤 공중합체는 적어도 하기 화학식 1로 표시되는 단위를 포함할 수 있다:
[화학식 1]
Figure PCTKR2018012891-appb-I000001
화학식 1에서, R은 수소 또는 알킬기이고, A는 산소 원자, 황 원자, -S(=O)2-, 카보닐기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자 또는 황 원자이고, B는 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, C는 하기 화학식 2로 표시된다:
[화학식 2]
Figure PCTKR2018012891-appb-I000002
화학식 2에서, L은 단일 결합 또는 산소 원자이다. 화학식 2에서, L은 화학식 1의 B와 결합할 수 있다. 또한, 화학식 2에서 L이 단일 결합인 경우, 화학식 2의 P는 화학식 1의 B에 직접 연결될 수 있다. 또한, 화학식 2에서 P는 인(phosphorus) 원자를 의미한다.
상기 화학식 1로 표시되는 단위를 포함하는 랜덤 공중합체는, 이후 피닝층에 포함됨으로써, 상기 피닝층이 후술하는 기판 내의 기재층에 충분히 결합되도록 할 수 있다. 구체적으로, 상기 랜덤 공중합체는 화학식 1과 같이, 상기 화학식 2로 표시되는 작용기가 결합된 단위를 포함함으로써, 후술하는 피닝층이 기재층 상에 충분히 결합되도록 할 수 있다.
화학식 1로 표시되는 단위를 포함하는 랜덤 공중합체는, 기재층과의 높은 반응성을 가질 수 있다. 이로써, 상기 랜덤 공중합체를 포함하는 피닝 조성물은 저온, 예를 들면, 130 ℃ 미만, 125 ℃ 이하, 120 ℃ 이하, 115 ℃ 이하, 110 ℃ 이하, 105 ℃ 이하, 100 ℃ 이하, 95 ℃ 이하, 90 ℃ 이하, 85 ℃ 이하, 80 ℃ 이하, 75 ℃ 이하, 70 ℃ 이하, 65 ℃ 이하, 60 ℃ 이하, 55 ℃ 이하 또는 50 ℃ 미만의 온도에서도 기재층과 반응하여 피닝(pinning)층을 형성할 수 있다. 상기 온도의 하한은 특별히 제한되지 않지만, 예를 들어, 20 ℃ㅇ 이상, 23 ℃ 이상, 또는 25 ℃ 이상일 수 있다.
그리고, 상기 랜덤 공중합체를 포함하는 피닝 조성물은 후술하는 중성층과 반응하지 않을 수 있다. 이에 따라, 후술하는 블록 공중합체가 정렬도가 높은 수직 라멜라 구조를 형성하도록 할 수 있다.
하나의 예시에서, 화학식 1에서, R은 수소 또는 탄소수 1 내지 4의 알킬기일 수 있고, 구체적으로 탄소수 1 내지 4의 알킬기일 수 있다. 다른 예시에서, 화학식 1에서, B는 탄소수 1 내지 4의 알킬렌기, 알케닐렌기 일 수 있고, 구체적으로 탄소수 1 내지 4의 알킬렌기일 수 있다.
하나의 예시에서, 상기 랜덤 공중합체는 하기 화학식 3 또는 화학식 4로 표시되는 단위를 추가로 포함할 수 있다. 즉, 상기 랜덤 공중합체는 화학식 1로 표시되는 단위 및 화학식 3으로 표시되는 단위를 포함할 수도 있고, 또는 화학식 1로 표시되는 단위 및 화학식 4로 표시되는 단위를 포함할 수도 있다:
[화학식 3]
Figure PCTKR2018012891-appb-I000003
[화학식 4]
Figure PCTKR2018012891-appb-I000004
화학식 3 또는 화학식 4에서, R은 수소 또는 알킬기일 수 있다. 하나의 예시에서, 상기 R은 수소 또는 탄소수 1 내지 4의 알킬기일 수 있고, 구체적으로 탄소수 1 내지 4의 알킬기일 수 있다.
화학식 3 또는 화학식 4에서, X는 단일 결합, 산소 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1-, 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있다. 하나의 예시에서, 상기 X는 단일 결합, 산소 원자, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1-, 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 또는 알킬렌기일 수 있다.
화학식 3에서, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기일 수 있다. 하나의 예시에서, 상기 W는, 예를 들면, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자로 치환된 탄소수 6 내지 12의 아릴기일 수 있다. 일 예시에서는 할로겐 원자로서, 예를 들면, 불소 원자가 적용될 수 있다.
하나의 예시에서, 상기 화학식 3의 단위는 하기 화학식 3-1로 표시될 수도 있다:
[화학식 3-1]
Figure PCTKR2018012891-appb-I000005
화학식 3-1에서, R 및 X는 상기 화학식 3에서의 R 및 X와 동일할 수 있다. 화학식 3-1에서, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, R1 내지 R5가 포함하는 할로겐 원자의 수는 1개 이상이다. 구체적으로, 화학식 3-1에서 R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이되, R1 내지 R5는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자를 포함할 수 있다. 화학식 3-1에서, R1 내지 R5각각에 포함되는 할로겐 원자, 예를 들면, 불소 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
화학식 4에서, Y는 8개 이상의 사슬 형성 원자를 가지는 직쇄 사슬이 연결된 고리 구조를 포함하는 1가 치환기일 수 있다. 화학식 4에서, Y의 1가 치환기는 적어도 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함할 수 있다.
본 출원에서 용어 「사슬 형성 원자」는, 소정 사슬의 직쇄 구조를 형성하는 원자를 의미할 수 있다. 상기 사슬은 직쇄형이거나, 분지형일 수 있다. 다만, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산된다. 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 사슬 형성 원자의 수로서 계산되지 않는다. 또한, 사슬이 분지형인 경우, 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 원자의 수를 의미할 수 있다. 예를 들어, 사슬이 n-펜틸기인 경우, 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다.
사슬 형성 원자로는, 탄소, 산소, 황, 질소 등이 예시될 수 있다. 적절한 사슬 형성 원자는 탄소, 산소 또는 질소일 수 있고, 구체적으로 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.
사슬은, 직쇄 알킬기 등의 직쇄 탄화수소 사슬일 수 있다. 이 경우, 알킬기는 탄소수 8 이상, 탄소수 10 이상 또는 탄소수 12 이상의 알킬기 일 수 있다. 또한, 알킬기는 탄소수 30 이하, 탄소수 25 이하, 탄소수 20 이하 또는 탄소수 16 이하의 알킬기일 수 있다. 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다.
화학식 4에서 Y는 고리 구조를 포함하고, 사슬은 고리 구조에 연결되어 있을 수 있다. 이러한 고리 구조에 의해 후술하는 블록 공중합체의 자기 조립 특성 등이 보다 향상될 수 있다. 또한, 고리 구조는 방향족 고리 구조 또는 지환족 고리 구조일 수 있다.
사슬은 고리 구조에 직접 연결되어 있을 수 있고 또는 링커를 매개로 연결되어 있을 수 있다. 링커로는, 산소 원자, 황 원자, -NR1-, S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)- 등이 예시될 수 있다. 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 상기에서, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있다. 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다.
적절한 링커로는 산소 원자 또는 질소 원자가 예시될 수 있다. 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다. 이러한 경우에 링커는 산소 원자이거나, -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기)일 수 있다.
하나의 예시에서, 상기 화학식 4의 단위는 하기 화학식 4-1로 표시될 수도 있다:
[화학식 4-1]
Figure PCTKR2018012891-appb-I000006
화학식 4-1에서, R 및 X는 상기 화학식 4에서의 R 및 X와 동일할 수 있다. 상기에서, P는 아릴렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다.
하나의 예시에서, 화학식 4-1에서 P는, 탄소수 6 내지 12의 아릴렌기, 예를 들면, 페닐렌기일 수 있지만, 이에 제한되는 것은 아니다. 다른 예시에서, 화학식 4-1의 Q는, 산소 원자 또는 -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기) 등을 들 수 있다.
일 예시에서, 화학식 4-1의 단위는, R이 수소 또는 탄소수 1 내지 4의 알킬기이고, X가 -C(=O)-O-이며, P가 탄소수 6 내지 12의 아릴렌기 또는 페닐렌이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상의 사슬인 단위를 들 수 있다.
본 출원의 랜덤 공중합체가 상기 화학식 1의 단위에 더하여 상기 화학식 3 또는 4의 단위를 포함함으로써, 다양한 구조를 가지는 블록 공중합체가 우수한 자기 조립 특성을 나타내도록 할 수 있다. 또한, 이에 따라 블록 공중합체의 자기 조립 구조가 형성하는 패턴에 적절한 방향성을 부여할 수 있다.
상기 랜덤 공중합체에서, 상기 화학식 3 또는 화학식 4의 단위는 랜덤 공중합체에 80 중량% 내지 99.9 중량%로 포함될 수 있다. 이 비율은 특별히 제한되는 것은 아니나, 예를 들면, 본 출원의 랜덤 공중합체를 포함하는 피닝(pinning)층이 적용되는 블록 공중합체의 종류에 따라서 조절될 수도 있다. 하나의 예시에서, 상기 고리 구조를 가지는 단위는 상기 랜덤 공중합체에 81 중량% 이상, 82 중량% 이상, 83 중량% 이상, 84 중량% 이상, 85 중량% 이상, 86 중량% 이상, 87 중량% 이상, 88 중량% 이상, 89 중량% 이상, 90 중량% 이상, 91 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상 또는 95 중량% 이상으로 포함될 수 있으나 이에 제한되는 것은 아니다. 상기 비율은 다른 예시에서, 99.8 중량% 이하, 99.7 중량% 이하, 99.6 중량% 이하, 99.5 중량% 이하, 99.4 중량% 이하, 99.3 중량% 이하, 99.2 중량% 이하, 99.1 중량% 이하 또는 99.0 중량% 이하일 수 있으나, 이에 제한되는 것은 아니다.
다른 예시에서, 상기 랜덤 공중합체는 상기 화학식 3 또는 화학식 4로 표시되는 단위 100 중량부 대비 화학식 1로 표시되는 단위 1 중량부 내지 30 중량부를 포함할 수 있다. 화학식 1로 표시되는 단위의 비율은 특별히 제한되는 것은 아니지만, 상기 랜덤 공중합체를 포함하는 피닝(pinning)층이 젹용되는 기판의 종류에 따라서 조절될 수도 있다. 예를 들면, 랜덤 공중합체는 화학식 3 또는 화학식 4로 표시되는 단위 100 중량부에 대하여 화학식 1로 표시되는 단위를 1.1 중량부 이상, 1.2 중량부 이상, 1.3 중량부 이상, 1.4 중량부 이상, 1.5 중량부 이상, 1.6 중량부 이상, 1.7 중량부 이상, 1.8 중량부 이상, 1.9 중량부 이상 또는 2.0 중량부 이상, 포함할 수 있으며, 26 중량부 이하, 22 중량부 이하, 18 중량부 이하, 14 중량부 이하, 12 중량부 이하, 10 중량부 이하, 9 중량부 이하, 8 중량부 이하, 7 중량부 이하 또는 6 중량부 이하로 포함할 수 있으나 이에 제한되는 것은 아니다.
상기 랜덤 공중합체는 화학식 1의 단위(제1 단위)와 상기 화학식 3 또는 화학식 4로 표시되는 단위 (제2 단위) 외에도, 필요에 따라 추가적인 단위(제3 단위)를 더 포함할 수도 있다. 이와 같은 제3 단위로는, 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, 이소부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, n-헥실 (메타)아크릴레이트 또는 옥틸 (메타)아크릴레이트 등과 같은 (메타)아크릴산 에스테르 화합물 유래 중합 단위, 2-비닐 피리딘 또는 4-비닐 피리딘 등과 같은 비닐 피리딘 유래 중합 단위, 스티렌, 4-트리메틸실릴스티렌, 2,3,4,5,6-펜타플루오로스티렌, 3,4,5-트리플루오로스티렌, 2,4,6-트리플루오로스티렌 또는 4-플루오로스티렌 등과 같은 스티렌계 단랑체 유래 중합 단위가 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 랜덤 공중합체에 상기 제3 단위가 포함되는 경우, 그 함량은. 특별히 제한되지 않는다. 제3 단위의 함량은 예를 들면, 상기 랜덤 공중합체를 포함하는 피닝층에 적용되는 블록 공중합체의 종류에 따라서 조절될 수 있다. 예를 들면, 랜덤 공중합체에서 제3 단위는 랜덤 공중합체 전체에 대해서 약 5몰% 내지 약 95몰% 정도로 포함될 수 있으나, 이에 제한되는 것은 아니다. 다른 예시에서, 랜덤 공중합체는 제3 단위를 약 5 몰% 이상, 6 몰% 이상, 7 몰% 이상, 8 몰% 이상, 9 몰% 이상 또는 10 몰% 이상으로 포함할 수 있고, 또한 95 몰% 이하, 94 몰% 이하, 93 몰% 이하, 92 몰% 이하, 91 몰% 이하 또는 90 몰% 이하로 포함할 수 있다. 본 출원에서 몰%는, 블록 공중합체 또는 랜덤 공중합체의 분자량 및 중량으로부터 계산되는 몰수를 이용하여 계산될 수 있다.
랜덤 공중합체를 제조하는 방식은 특별히 제한되지 않는다. 예를 들면, 랜덤 공중합체를 자유 라디칼 중합 방식(free radical polymerization method) 또는 LRP(Living Radical Polymerization) 방식 등을 적용하여 제조할 수 있다. LRP 방식의 예로는, 음이온 중합, 원자 이동 라디칼 중합법, 가역-부가-개환 연쇄 이동에 의한 중합법 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 예시될 수 있다.
음이온 중합법은, 유기 희토류 금속 복합체 또는 유기 알칼리 금속 화합물 등을 개시제로 사용하여 알칼리 금속 또는 알칼리 토금속의 염 등의 무기산염이나 유기 알루미늄 화합물의 존재 하에서 중합을 진행하는 것을 의미할 수 있다.
원자 이동 라디칼 중합법은, 예를 들면 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자 이동 라디칼 중합법(ATRP), 중합 제어제로서 원자 이동 라디칼 중합제를 이용하되, 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 진행하는 ARGET(Activators Regenerated by Electron Transfer) 원자 이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자 이동 라디칼 중합법 등을 예로 들 수 있다.
본 출원의 랜덤 공중합체를 중합하기 위한 방식으로 전술한 방식 중에서 적절한 방식이 채용될 수 있다.
중합 과정에서 사용될 수 있는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 라디칼 개시제로서는, 예를 들면, AIBN(azobisisobutyronitrile), ABCN(1,1'-Azobis(cyclohexanecarbonitrile)) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조계 개시제 또는 BPO(benzoyl peroxide) 또는 DTBP(di-tert-butyl peroxide) 등의 과산화물계 개시제 등이 적용될 수 있다.
또한, 랜덤 공중합체에 포함되는 단량체의 종류에 따라서는 이를 중합하기 위한 방식으로서, 예를 들면, 스티렌계 단량체의 열적 자기 개시(thermal self-initiation)를 이용하는 방식과 같이, 개시제를 사용하지 않는 중합 방식도 적용될 수 있다.
상기 중합 과정은, 예를 들면, 적절한 용매의 존재 하에 수행될 수 있다. 이 경우 적용 가능한 용매로는, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠, 톨루엔, 아니솔, 아세톤, 클로로포름, 테트라히드로푸란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매가 예시될 수 있으나, 이에 제한되지는 않는다. 중합 반응 후에 비용매를 사용함으로써, 침전에 의해 랜덤 공중합체를 수득할 수 있으며, 이 때 사용될 수 있는 비용매로는, 메탄올, 에탄올, n-프로판올 또는 이소프로판올 등의 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 등의 알칸 또는 페트롤리움 에테르 등의 에테르 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
중합체의 합성 분야에서 그 중합체를 형성하는 단량체의 종류에 따라서 중합체를 제조하는 방식은 공지이며, 본 출원의 랜덤 공중합체의 제조 시에는 공지된 방식 중에서 임의의 방식이 모두 적용될 수 있다.
본 출원은, 또한 피닝 조성물에 관한 것이다. 본 출원에서 용어 「피닝(pinning) 조성물」은, 피닝(pinning)층을 형성하는 것에 사용되는 조성물을 의미할 수 있다. 또한, 용어 「피닝(pinning)층」은 블록 공중합체를 구성하는 블록 중 어느 하나의 블록과 화학적 친화도(affinity)가 높아서 상기 블록 공중합체로 형성되는 패턴의 방향성 및 위치 선정성을 부여할 수 있는 모든 종류의 층을 의미할 수 있다. 또한, 블록 공중합체의 패턴은, 블록 공중합체를 구성하는 하나 이상의 블록이 규칙적으로 또는 불규칙적으로 반복되어 형성된 모양을 의미할 수 있다.
본 출원의 피닝 조성물은, 상기의 랜덤 공중합체만을 포함할 수 있다. 또한, 본 출원의 피닝 조성물은 필요하다면, 상기의 랜덤 공중합체 외에도 다른 성분을 추가로 포함할 수 있다. 또한, 상기 램덤 공중합체와 함께 포함될 수 있는 다른 성분으로는, 예를 들어, 랜덤 공중합체가 포함하는 성분에 따라 적절한 열개시제 또는 광개시제 등을 예시할 수도 있고, 용매 또는 비용매 등을 예시할 수도 있다.
피닝 조성물은 랜덤 공중합체를 조성물 전체에 대하여, 0.1 중량% 내지 20 중량%으로 포함할 수도 있다. 상기 비율은, 특별히 제한되는 것은 아니지만, 예를 들면, 약 0.2 중량% 이상, 약 0.3 중량% 이상, 약 0.4 중량% 이상, 약 0.5 중량% 이상, 약 0.6 중량% 이상, 약 0.7 중량% 이상, 약 0.8 중량% 이상, 약 0.9 중량% 이상, 또는 약 1.0 중량% 이상일 수 있고, 약 19 중량% 이하, 약 17 중량% 이하, 약 15 중량% 이하, 약 13 중량% 이하, 약 11 중량% 이하, 약 9 중량% 이하, 약 8 중량% 이하, 약 7 중량% 이하, 약 6 중량% 이하, 약 5 중량% 이하, 약 4 중량% 이하, 약 3 중량% 이하, 또는 약 2 중량% 이하일 수 있다.
본 출원은 또한, 기판에 관한 것이다. 본 출원의 기판은 기재층의 표면에 형성된 피닝층을 포함할 수 있다. 구체적으로, 본 출원의 기판은, 기재층; 및 기재층의 표면에 존재하는 피닝층을 포함할 수 있다. 피닝층은 전술한 피닝 조성물에 의해 형성될 수 있다. 또한, 용어 피닝 및 피닝층에 대한 설명은 전술한 바와 동일하므로, 생략한다.
상기 피닝층은 전술한 랜덤 공중합체를 포함할 수 있다. 즉, 상기 피닝층은 전술한 피닝 조성물에 포함되는 랜덤 공중합체와 동일할 수 있다. 구체적으로, 상기 피닝층은 전술한 화학식 1의 단위 및 화학식 3 또는 4로 표시되는 단위를 포함하는 랜덤 공중합체를 포함할 수 있다. 상기 랜덤 공중합체는 상기 피닝 조성물에 포함되는 랜덤 공중합체와 동일하므로, 이에 대한 설명은 생략하기로 한다.
또한, 피닝(pinning)층은, 적절한 기재층 상에 형성되어 있을 수 있다. 피닝(pinning)층이 형성되는 기재층으로는, 실리콘 웨이퍼, 실리콘 옥사이드 기판, 실리콘 니트라이드 기판 또는 가교된 PET(poly(ethylene terephthalate)) 필름 등이 예시될 수 있으나, 이에 제한되지는 않는다.
상기 피닝층은 랜덤 공중합체를 적어도 주성분으로 포함할 수 있다. 상기에서 피닝층이 랜덤 공중합체를 주성분으로 포함한다는 것은, 해당 피닝층이 상기 랜덤 공중합체만을 포함하거나, 혹은 고형분 기준으로 약 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상 포함하는 경우를 의미할 수 있다. 상기 비율은 다른 예시에서 약 100 중량% 이하 또는 약 99 중량% 이하 정도일 수도 있다.
일 예시에서, 피닝(pinning)층은, 예를 들면, 약 1 nm 내지 100 nm 의 두께를 가질 수 있으며, 다른 예시에서 약 2 nm 내지 50 nm의 두께를 가질 수 있다. 상기 두께 범위 내에서, 피닝(pinning)층의 표면 균일성이 유지될 수 있다. 또한, 상기 두께 범위 내에서, 블록 공중합체의 수직 배향 구조의 방향성을 적절히 유도될 수 있고, 이후 식각 과정에서 식각 선택성을 손상되지 않는 이점이 있을 수 있다.
본 출원에서 용어 「수직 배향」은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 자기 조립 구조체의 배향 방향이 기판 방향과 수직한 경우를 의미할 수 있다. 예를 들면, 수직 배향은 자기 조립된 블록 공중합체의 각 블록 도메인이 기판 표면에 나란히 놓이고 블록 도메인의 계면 영역이 기판 표면에 실질적으로 수직으로 형성되는 경우를 의미할 수 있다. 다른 예시에서, 수직 배향은 자기 조립된 블록 공중합체의 블록 도메인 모두가 기판 표면에 웨팅한 상태를 의미할 수도 있다.
본 출원에서, 용어 「수직」은, 오차를 감안한 표현이고, 예를 들면, ±10도 이내, ±8도 이내, ±6도 이내, ±4도 이내 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.
본 출원의 피닝(pinning)층은 기재층의 표면에서 패턴을 형성하고 있을 수 있다. 상기 패턴은, 예를 들어 스트라이프 패턴일 수 있다. 스트라이프 패턴은 기판의 표면에 스트라이프 형상의 피닝(pinning)층이 2개 이상 형성되어 패턴을 이루고 있는 형태를 의미한다. 후술하는 블록 공중합체의 자기 조립 구조가 형성하는 패턴은 상기 피닝(pinning)층이 형성하고 있는 패턴에 의하여 방향성을 나타낼 수 있다. 또한, 후술하는 블록 공중합체의 자기 조립 구조는 기재층 상에서 형성될 수도 있고, 또는 피닝층 상에서 형성될 수도 있다.
피닝층을 형성하는 방법은 특별히 제한되지 않으며, 예를 들어, 후술하는 바와 같이 피닝층은 기재층 상에 상기 피닝(pinning) 조성물 코팅하고, 이를 어닐링 함으로써 형성될 수 있다.
일 예시에서, 상기 기판은 기재층의 표면에 존재하는 중성층을 추가로 포함할 수 있다. 상기 피닝층 및 상기 중성층이 함께 형성되어 있는 기재층 상에서, 후술하는 블록 공중합체의 자기 조립을 유도함으로써, 수직 배향된 자기 조립 구조를 가지는 블록 공중합체를 보다 효율적으로 형성할 수 있다. 본 출원에서, 용어 「중성층」은 블록 공중합체의 수직 배향을 유도할 수 있는 모든 종류의 층을 의미할 수 있다.
상기 중성층과 피닝층은 기재층 상에서 교대로 반복되는 스트라이프 패턴을 형성하고 있을 수 있다. 또한, 상기 중성층과 피닝층이 반복되는 패턴은 규칙적일 수도 있고, 불규칙적일 수도 있다. 상기에서, 스트라이프 패턴은, 예를 들면, 도 8에 모식적으로 나타낸 바와 같이, 기재층(10)의 표면에 2 이상의 피닝층(20)과 중성층(30)이 교대로 형성되어 있는 형태를 의미할 수 있다. 이와 같은 피닝층과 중성층이 교대로 반복되는 스트라이프 패턴을 형성하기 위한 방법은 특별히 제한되지 않는다. 예를 들어, 상기 방법으로는 (1) 피닝층이 형성된 기재층 상에 중성층 형성용 조성물을 코팅한 후 어닐링하거나, (2) 중성층이 형성된 기재층 상에 피닝층 조성물을 코팅한 후 어닐링하는 방식이 적용될 수 있으나, 이에 제한되는 것은 아니다.
상기 중성층은 랜덤 공중합체를 포함할 수 있다. 또한, 상기 중성층이 포함하는 랜덤 공중합체는, 상기한 피닝층이 포함하는 랜덤 공중합체와는 다를 수도 있다. 또한, 중성층에 포함되는 랜덤 공중합체는 피닝층의 랜덤 공중합체에 포함되는 단위와 동일한 단위를 포함할 수도 있다. 하나의 예시에서, 상기 중성층에 포함되는 랜덤 공중합체는 전술한 화학식 3으로 표시되는 단위 및 화학식 4로 표시되는 단위를 포함할 수 있다.
하나의 예시에서, 상기 중성층에 포함되는 랜덤 공중합체에서, 상기 화학식 4로 표시되는 단위의 몰 수(A)와 상기 화학식 3으로 표시되는 단위의 단위의 몰 수(B)의 비율(B/A)은 2 내지 10의 범위 내일 수 있다. 상기 몰수의 비율(B/A)은, 예를 들어, 2.00 이상, 2.04 이상, 2.08 이상, 2.12 이상, 2,16 이상, 2.20 이상, 2.24 이상, 2.28 이상 또는 2.32 이상일 수 있으나 이에 제한되는 것은 아니다. 또한 상기 비율(B/A)은, 다른 예시에서, 10 이하, 9.8 이하, 9.6 이하, 9.4 이하, 9.2 이하 또는 9.0 이하일 수 있으나, 이에 제한되는 것은 아니다.
또한, 중성층에 포함되는 랜덤 공중합체에서, 상기 화학식 4의 단위는 중성층의 랜덤 공중합체 전체 몰수의 9 몰% 내지 32 몰%의 범위 내의 비율로 상기 랜덤 공중합체에 포함될 수 있다. 상기 비율은, 다른 예시에서, 10 몰% 이상, 11 몰% 이상, 12 몰% 이상, 13 몰% 이상, 14 몰% 이상 또는 15 몰% 이상일 수 있고, 31 몰% 이하, 30 몰% 이하, 29 몰% 이하, 28 몰% 이하, 27 몰% 이하, 26 몰% 이하, 25 몰% 이하, 24 몰% 이하, 23 몰% 이하, 22 몰% 이하, 21 몰% 이하, 20 몰% 이하, 19 몰% 이하, 18 몰% 이하, 17 몰% 이하, 16 몰% 이하 또는 15 몰% 이하일 수 있다.
상기 중성층에 포함되는 랜덤 공중합체는, 기재층과의 반응성 개선을 위해, 기타 기능성 단량체의 단위 등을 추가로 포함할 수 있다. 상기 기능성 단량체의 예시로는 글리시딜 (메타)아크릴레이트, 4-비닐 벤조시클로부텐, 2-이소시아나토에틸 아크릴레이트, 2-이소시아나토에틸 (메타)아크릴레이트, 4-이소시아나토부틸 아크릴레이트, 4-이소시아나토부틸 (메타)아크릴레이트, 하이드록시메틸 아크릴레이트, 하이드록시메틸 (메타)아크릴레이트, 2-하이드록시에틸 아크릴레이트, 2-하이드록시에틸 (메타)아크릴레이트, 2-하이드록시프로필 아크릴레이트, 2-하이드록시프로필 (메타)아크릴레이트, 3-하이드록시프로필 아크릴레이트, 3-하이드록시프로필 (메타)아크릴레이트 2-하이드록시부틸 아크릴레이트, 2-하이드록시부틸 (메타)아크릴레이트, 4-하이드록시부틸 아크릴레이트, 4-하이드록시부틸 (메타)아크릴레이트, 6-하이드록시헥실 아크릴레이트, 6-하이드록시헥실 (메타)아크릴레이트, 말레산 무수물, 감마-부티로락톤 (메트)아크릴레이트, N-비닐 피롤리돈, N-비닐 프탈이미드, N-숙신이미딜 아크릴레이트, 노르보넨락톤 (메트)아크릴레이트, (메트)아크릴산, 아크릴아미드, N-메티롤 아크릴아미드, 또는 N-페닐 아크릴아미드 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 상기 기능성 단량체의 단위가 중성층의 랜덤 공중합체에 포함되는 경우, 상기 기능성 단량체의 단위는 전체 랜덤 공중합체를 기준으로 40 몰% 이하로 포함될 수 있으며, 하한은 특별히 제한되는 것은 아니나, 예를들어 0 몰% 초과의 함량으로 포함될 수 있다. 다른 예시에서, 화학식 4의 단위의 몰 수(A)와 상기 기능성 단량체 단위의 몰 수(C)의 비율(C/A)은 0.1 내지 2.0의 범위 내일 수 있다. 상기 비율( C/A)는, 다른 예시에서, 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상 또는 0.9 이상일 수 있고, 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 또는 1.1 이하일 수 있으나, 이에 제한되는 것은 아니다.
상기 중성층의 랜덤 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 10,000 이상 또는 11000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000 이하, 140000 이하, 120000 이하, 100000 이하, 90000 이하, 80000 이하, 70000 이하, 60000 이하 또는 50000 이하 정도일 수 있다. 상기 수평균분자량의 단위는 g/mol일 수 있다.
중성층의 랜덤 공중합체는, 1.01 내지 2.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.05 이상 또는 약 1.1 이상일 수 있다. 분산도는 다른 예시에서 약 2.6 이하, 약 2.4 이하, 약 2.2 이하 또는 약 2.0 이하일 수 있다. 이와 같은 랜덤 공중합체에 의해 형성된 중성층은 고도로 정렬된 블록 공중합체 막의 형성에 유리하다.
본 출원에서, 어떤 고분자의 수평균 분자량과 분산도는, GPC(gel permeation chromatography)를 통하여 측정된 표준 폴리스티렌에 대한 환산 치일 수 있다.
본 출원의 기판은, 고분자 막을 추가로 포함할 수 있다. 또한, 상기 고분자막은 제1 블록 및 상기 제1 블록과는 다른 제2 블록을 포함하는 블록 공중합체를 포함할 수 있다. 상기 제1 블록은 상기 제2 블록과 화학적으로 다른 구조를 가질 수 있다. 상기 기판은 다양한 용도로 적용될 수 있다. 상기 기판은, 예를 들면, 다양한 전자 또는 전자 소자, 상기 패턴의 형성 공정 또는 자기 저장 기록 매체, 플래쉬 메모리 등의 기록 매체 또는 바이오 센서 등이나 분리막의 제조 공정 등에 적용될될 수 있다.
일 예시에서, 상기 고분자 막은 피닝층 상에 형성되어 있거나, 기재층 상에 직접 형성되어 있을 수도 있다. 구체적으로, 상기 고분자 막은 피닝층의 스트라이프 패턴 상에 직접 형성되어 있을 수도 있고, 또는 피닝층의 스트라이프 패턴이 형성되지 않은 기재층 상에 직접 형성되어 있을 수도 있다. 다른 예시에서, 상기 고분자 막은 피닝층과 중성층 상에 존재할 수도 있다.
상기 블록 공중합체는, 자기 조립을 통하여 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등의 주기적 구조를 구현하고 있을 수 있다. 구체적으로, 상기 블록 공중합체가 스피어 또는 라멜라의 구조를 구현하는 경우, 상기 블록 공중합체는 수직 배향된 상태로 존재할 수 있다.
상기의 고분자 막에 포함될 수 있는 블록 공중합체의 종류는 특별히 제한되지 않으나, 예를 들어, 전술한 피닝층의 랜덤 공중합체에 포함된 고리 구조를 가지는 단위와 동일한 단위를 제1 블록 또는 제2 블록으로 포함하는 블록 공중합체가 적용될 수 있다.
예를 들어, 상기 블록 공중합체는 화학식 3의 단위를 제1 블록으로 포함할 수 있고, 화학식 4의 단위를 제2 단위로 포함할 수 있다. 이에 따라, 상기 블록 공중합체를 포함하는 고분자 막은 중성층 상에서 우수한 상분리 특성을 나타낼 수 있고, 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하면서 수직 배향되어 있을 수도 있다.
본 출원의 블록 공중합체는 전술한 제1 블록 및 제2 블록을 포함하는 디블록 공중합체일 수 있다. 또한, 상기 블록 공중합체는 전술한 제1 블록 및 제2 블록 중 하나 이상을 2개 이상 포함하거나, 혹은 다른 종류의 제3 블록을 포함하는 트리블록 이상의 멀티블록 공중합체일 수 있다.
상기 블록 공중합체의 수평균분자량(Mn, Number Average Molecular Weight)은, 예를 들면, 2,000 내지 500,000 의 범위 내에 있을 수 있다. 상기 블록 공중합체의 수평균분자량은, 다른 예시에서, 3000 이상, 4000 이상, 5000 이상, 6000 이상, 7000 이상, 8000 이상, 9000 이상, 10000 이상, 15000 이상, 20000 이상,25000 이상, 30000 이상, 35000 이상 또는 40000 이상일 수 있고, 400000 이하, 300000 이하, 200000 이하, 100000 이하, 95000 이하, 90000 이하, 85000 이하, 80000 이하, 75000 이하, 70000 이하, 65000 이하, 60000 이하, 55000 이하, 또는 50000 이하일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 블록 공중합체의 수평균분자량의 단위는 g/mol일 수 있다.
상기 블록 공중합체는, 1.01 내지 1.50의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 상기 비율은, 다른 예시에서, 1.02 이상, 1.05 이상, 1.08 이상, 1.11 이상, 1.14 이상, 또는 1.17 이상일 수 있고, 1.45 이하, 1.40 이하, 1.35 이하, 1.30 이하, 1.25 이하, 1.20 이하일 수 있으나, 이에 제한되는 것은 아니다.
이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다.
블록 공중합체가 상기 제1 블록 및 제2 블록을 적어도 포함하는 경우, 상기 블록 공중합체 내에서 상기 제1 블록, 구체적으로, 전술한 화학식 3의 단위를 포함하는 블록의 부피 분율은 0.3 내지 0.7의 범위 내일 수 있다. 상기 비율은, 다른 예시에서, 0.4 이상, 0.5 이상 또는 0.55 이상일 수 있고, 0.65 이하, 0.63 이하, 0.61 이하일 수 있다. 또한, 상기 제1 블록의 부피 분율과 상기 제2 블록(예를 들면, 전술한 화학식 4의 단위를 포함하는 블록)의 부피 분율의 합은 1일 수 있다.
본 출원에서 블록 공중합체를 구성하는 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다.
본 출원에서 블록 공중합체를 제조하는 구체적인 방법은, 전술한 구조를 가지는 단량체를 사용하여 블록 공중합체의 적어도 하나의 블록을 형성하는 단계를 포함하는 한 특별히 제한되지 않는다.
예를 들면, 블록 공중합체를 제조하기 위한 방법으로 상기 랜덤 공중합체를 중합하는 방법과 동일한 방법이 적용될 수 있다. 예를 들어, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.
블록 공중합체의 제조 시 어떤 블록과 함께 상기 공중합체에 포함되는 다른 블록을 형성하는 방식은 특별히 제한되지 않는다. 블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.
라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있다. 라디칼 개시제로는, 예를 들면, AIBN(azobisisobutyronitrile), ABCN(1,1'-Azobis(cyclohexanecarbonitrile)) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.
리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠, 톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.
비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 패턴화 기판의 제조 방법에 관한다. 본 출원의 제조 방법은, 전술한 피닝 조성물을 기재층 상에 코팅하고, 상기 피닝 조성물이 코팅된 기재층을 어닐링하는 단계를 포함할 수 있다. 상기에서 어닐링은 열적 어닐링(thermal annealing) 또는 용매 어닐링(solvent annealing)일 수 있다. 구체적으로, 상기 어닐링은 열적 어닐링(thermal annealing)일 수 있다. 또한, 기재층은 전술한 기판에서 적용된 기재층과 동일한 것이 적용될 수 있으므로, 이에 대한 설명은 생략한다.
열적 어닐링은, 예를 들면, 피닝 조성물이 포함하는 랜덤 공중합체의 상 전이 온도 또는 유리 전이 온도를 기준으로 수행될 수 있다. 열적 어닐링은 구체적으로는, 상기 유리 전이 온도 또는 상 전이 온도 이상의 온도에서 수행될 수 있다.
상기 피닝 조성물에 포함되는 랜덤 공중합체는 유리 전이 온도 또는 상 전이 온도가 통상의 피닝 조성물에 포함되는 고분자 보다 낮을 수 있다. 따라서, 본 출원의 어닐링은 통상의 피닝층을 형성하기 위한 어닐링에서의 온도보다 낮은 온도에서 수행될 수 있다.
예를 들어, 본 출원의 제조 방법은 열적 어닐링을 약 130℃ 미만의 온도에서 수행할 수 있다. 상기 온도는 125 ℃ 이하, 120 ℃ 이하, 115 ℃ 이하, 110 ℃ 이하, 105 ℃ 이하, 100 ℃ 이하, 95 ℃ 이하, 90 ℃ 이하, 85 ℃ 이하, 80 ℃ 이하, 75 ℃ 이하, 70 ℃ 이하, 65 ℃ 이하, 60 ℃ 이하, 55 ℃ 이하 또는 50 ℃ 미만일 수 있다. 또한, 상기 온도의 하한은 특별히 제한되지 않으나, 예를 들어, 10 ℃ 이상, 15 ℃ 이상 또는 20 ℃ 이상 일 수 있다. 상기 범위의 온도에서 피닝 조성물을 열적 어닐링하는 경우, 전술한 피닝 조성물이 기재층과 충분히 반응하여 피닝층을 형성할 수 있다.
열적 어닐링에서의 온도 및 시간은, 피닝(pinning)층 조성물의 랜덤 공중합체의 조성을 고려하여 적정 수준으로 조절될 수 있다. 상기 열적 어닐링에 요구되는 시간은 필요에 따라 변경될 수 있다. 예를 들면, 본 출원의 제조 방법은 열적 어닐링을 약 1분 내지 72시간 또는 약 1분 내지 24 시간의 범위 내의 시간 동안 수행될 수 있다.
본 출원의 제조 방법이 어닐링을 수행하는 기재층 상에는 중성층이 형성되어 있을 수 있다. 또한, 어닐링 후 상기 피닝층과 상기 중성층은 스트라이프 패턴을 형성하고 있을 수 있다. 구체적으로, 피닝 조성물의 어닐링이 수행되는 기재층 상에는 중성층의 패턴이 존재할 수 있고, 피닝 조성물의 코팅 및 어닐링 후에는 상기 피닝층과 중성층이 교대로 존재할 수도 있다.
다른 예시에서, 중성층이 형성되어 있는 기재층 상에서, 그리고 전술한 범위의 온도에서 피닝 조성물을 열적 어닐링하는 경우, 상기 피닝층은 중성층과의 반응하지 않고, 상기 기재층 상에서 상기 중성층과 스트라이프 패턴을 형성할 수 있다. 이에 따라, 블록 공중합체의 자기 조립 구조 형성 시 발생할 수 있는 결함(defect)을 최소화할 수 있다. 중성층에 포함되는 랜덤 공중합체는 전술한 바와 동일하다. 따라서, 이에 대한 구체적인 설명은, 생략하기로 한다.
상기 중성층이 형성되어 있는 기재층 상에 피닝 조성물의 층을 형성하고, 열적 어닐링하는 방법으로서, 상기 중성층을 기재층 상에서 패턴화된 형태로 형성한 후 피닝(pinning) 조성물 코팅한 다음 어닐링하는 방식이 적용될 수도 있다. 이러한 방식으로, 예를 들면, 나노 단위 크기의 미세 패턴을 가지는 피닝(pinning)층을 형성할 수 있다.
상기 방법에서 중성층을 패턴화된 형태로 형성하는 방식은 특별히 제한되지 않는다. 예를 들면, 고분자 막에 적정한 전자기파, 예를 들면, 자외선 등을 일부만 조사하거나, 또는 중성층 상에 마스크를 씌운 후 자외선 등을 조사함으로써, 기판 상에 형성된 중성층의 일부만을 제거할 수도 있다. 이 경우 자외선 조사 조건은 중성층의 종류에 따라서 결정될 수 있다. 예를 들어, 중성층의 일부를 제거하기 위해서, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사할 수 있다. 또한, 자외선 조사에 이어서 산성 용액 등으로 처리하며 자외선에 의해 분해된 중성층을 추가로 제거할 수도 있다.
본 출원의 패턴화 기판의 제조 방법은, 상기 어닐링 후, 피닝층이 형성된 기재층, 또는 중성층 및 피닝층이 형성된 기재층 상에 제1 블록 및 상기 제1 블록과는 다른 제2 블록을 포함하는 블록 공중합체를 포함하는 고분자 막을 자기 조립된 상태로 형성하는 단계를 추가로 포함할 수 있다.
상기 피닝(pinning)층이 형성된 기재층 또는 중성층 및 피닝층이 형성된 기재층 상에 형성된 고분자 막 내의 블록 공중합체의 자기 조립을 유도하는 경우, 피닝(pinning)층과 표면 에너지가 유사한 블록이 피닝(pinning)층 상에 위치할 수 있다. 이에 따라, 블록 공중합체의 자기 조립 구조가 형성하는 패턴이 기판 상에서 수직 배향될 수 있다.
블록 공중합체를 사용하여 상기와 같은 고분자 막을 형성하는 방법은 특별히 제한되지 않는다. 예를 들면, 상기 방법은 상기 중성층 및/또는 피닝(pinning)층 상에 상기 블록 공중합체를 포함하는 고분자 조성물을 코팅하고, 어닐링함으로써, 고분자 막 내의 블록 공중합체의 자기 조립을 유도할 수 있다. 예를 들면, 상기 방법은 상기 고분자 조성물을 도포 등의 방법에 의해 중성층 및/또는 피닝(pinning)층 상에 코팅하고, 어닐링함으로써, 블록 공중합체의 자기 조립 구조가 형성된 고분자 막을 형성할 수 있다. 상기에서 어닐링은 열적 어닐링(thermal annealing) 또는 용매 어닐링(solvent annealing)일 수 있다. 구체적으로, 상기 어닐링은 열적 어닐링(thermal annealing)일 수 있다. 상기 방법은, 필요에 따라, 상기 고분자 조성물을 코팅한 후 숙성하는 과정을 추가로 포함할 수 있다.
상기 열적 어닐링은, 예를 들면, 블록 공중합체의 상 전이 온도 또는 유리 전이 온도를 기준으로 수행될 수 있다. 예를 들면, 열적 어닐링은 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내의 시간 동안 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 열적 어닐링에서의 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 조절될 수 있다.
또한, 숙성은 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 수행될 수도 있다.
본 출원의 패턴화 기판의 제조 방법은 또한, 상기 고분자 막에서 상기 블록 공중합체의 제1 또는 제2 블록을 선택적으로 제거하는 단계를 추가로 포함할 수 있다. 상기 블록 공중합체의 제1 또는 제2 블록이 선택적으로 제거됨으로써, 상기한 기판 상에 블록 공중합체의 패턴이 형성될 수 있다. 예를 들면 상기 방법은, 상기 블록 공중합체를 포함하는 고분자 막을 기판 상에 형성하고, 상기 막 내에 존재하는 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에, 상기 기판을 에칭하는 단계를 추가로 포함할 수도 있다. 즉, 블록 공중합체의 어느 하나 또는 그 이상의 블록이 제거된 고분자 막을 마스크로 하여 상기 기판을 에칭할 수 있다. 이러한 방식으로, 예를 들면, 나노 단위 크기의 미세 패턴을 형성할 수 있다. 또한, 고분자 막 내의 블록 공중합체의 형태에 따라서 기판의 패턴이 달라질 수 있고, 그 예로서 나노 로드 또는 나노 홀 등을 들 수 있다. 필요하다면, 패턴 형성을 위해서 상기 블록 공중합체와 다른 공중합체, 또는 단독 중합체 등이 상기 고분자 조성물에 혼합될 수 있다.
이러한 방법에 적용되는 상기 기판의 종류는 특별히 제한되지 않고, 필요에 따라서 선택될 수 있다. 상기 기판으로서는, 예를 들면, 산화 규소 등이 적용될 수 있다.
상기 방법은 높은 종횡비를 나타내는 산화 규소에 나노 단위의 크기를 가지는 패턴을 형성할 수 있다. 구체적으로, 상기 방법은 산화 규소의 기판 상에 블록 공중합체가 소정 구조를 형성하고 있는 고분자 막을 형성한 다음, 블록 공중합체의 어느 한 블록을 선택적으로 제거하고, 이어서, 산화 규소의 기판을 에칭하는 것을 포함할 수 있다. 에칭으로는 예를 들면, 반응성 이온 식각 방식이 적용될 수 있고, 이에 따라 산화 규소의 기판은 나노로드 또는 나노 홀의 패턴 등의 다양한 형태를 가질 수 있다. 이러한 방법을 통하여 종횡비가 큰 나노 패턴또한 형성될 수 있다.
예를 들면, 상기 패턴은, 수십 나노미터 단위의 크기에서 구현될 수 있고, 이러한 패턴을 가지는 기판은, 예를 들면, 차세대 정보전자용 자기 기록 매체 등을 포함한 다양한 용도로 적용될 수 있다.
상기 방법에서, 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않는다. 제거 방식은, 예를 들어, 고분자 막에 적정한 전자기파, 자외선 등을 조사하여 상대적으로 연질(soft)의 블록을 제거하는 방식일 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체를 구성하는 블록의 조성에 따라서 결정될 수 있다. 또한, 자외선 조사는 예를 들어, 약 254 ㎚ 파장의 자외선을 1분 내지 60 분 동안 조사하는 것일 수 있다.
또한, 상기 방법은 자외선 조사에 이어서, 고분자 막을 산 등으로 처리하며, 자외선에 의해 분해된 블록 공중합체의 어느 한 블록을 추가로 제거할 수도 있다.
또한, 선택적으로 블록이 제거된 블록 공중합체를 포함하는 고분자 막을 마스크로 하여 기판을 에칭할 때, 에칭의 방식은 특별히 제한되지 않는다. 에칭은 예를 들어, CF4/Ar 등의 반응 가스를 사용한 반응성 이온 에칭일 수 있다. 또한, 반응성 이온 에칭에 이어서 산소 플라즈마 처리 등으로 고분자 막이 기판으로부터 제거될 수도 있다.
본 출원의 피닝 조성물은, 저온에서도 기재층과 결합하여 피닝층을 형성할 수 있다.
본 출원의 피닝 조성물은 기판 상에 형성되는 블록 공중합체의 자기 조립 구조의 배향성 및 위치 선택성을 부여할 수 있다.
본 출원의 피닝 조성물은, 기판 상에 형성되는 블록 공중합체가 우수한 반응 선택성을 나타내도록 할 수 있다.
본 출원의 피닝 조성물은 기판 상에 형성되는 블록 공중합체가 결함이 없고, 정렬도가 높은 수직 라멜라 구조를 가지도록 할 수 있다.
도 1 내지 도 3은 각각 실시예 1 내지 3에 대한 SEM 이미지이다.
도 4는 비교예 1에 대한 SEM 이미지이다.
도 5 내지 도 7는 각각 실시예 4 내지 6에 대한 SEM 이미지이다.
도 8은 기판 상에 피닝층 및 중성층이 형성하고 있는 스트라이프 패턴의 모식도이다.
이하 본 출원에 따르는 실시예 및 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
1. NMR 측정
NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다.
<적용 약어>
br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
2. GPC(Gel Permeation Chromatography)
수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.
<GPC 측정 조건>
기기: Agilent technologies 사의 1200 series
컬럼: Polymer laboratories 사의 PLgel mixed B 2개 사용
용매: THF
컬럼온도: 35℃
샘플 농도: 1mg/mL, 200 μL 주입
표준 시료: 폴리스티렌(Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
3. 부피 분율의 측정
블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였다. 구체적으로 밀도는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에 분석하고자 하는 시료를 넣고, 그 질량을 통해 계산하였다.
제조예 1. 모노머(A)의 합성
하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL의 플라스크에 히드로퀴논 (hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1- Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate) 첨가하고, 75℃에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트를 필터링하여 제거하고 반응에 사용한 아세토니트릴도 제거하였다. 여기에 DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업하고, 분리한 유기층을 모아서 MgSO4에 통과시켜 탈수하였다. 이어서, 컬럼 크로마토그래피에서 DCM(dichloromethane)을 사용하여 흰색 고체상의 목적물(4-도데실옥시페놀)(9.8 g, 35.2 mmol)을 약 37%의 수득률로 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ6.77(dd, 4H); δ4.45(s, 1H); δ3.89(t, 2H); δ1.75(p, 2H); δ1.43(p, 2H); δ1.33-1.26(m,16H); δ0.88(t, 3H).
플라스크에 합성된 4-도데실옥시페놀(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 혼합)에서 재결정하여 흰색 고체상의 목적물(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ7.02(dd, 2H); δ6.89(dd, 2H); δ6.32(dt, 1H); δ5.73(dt, 1H); δ3.94(t, 2H); δ2.05(dd, 3H); δ1.76(p, 2H); δ1.43(p, 2H); 1.34-1.27(m, 16H); δ0.88(t, 3H).
[화학식 A]
Figure PCTKR2018012891-appb-I000007
화학식 A에서 R은 탄소수 12의 직쇄 알킬기이다.
제조예 2. 랜덤 공중합체(B)의 합성
펜타플루오로스티렌 1.677 g, (메타크릴로일옥시)메틸 포스폰산((methacryloyloxy)methyl phosphonic acid, hMAPC1) 0.084 g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(2-cyano-2-propyl benzodithioate) 10 mg, V-40(1,1′-Azobis(cyclohexanecarbonitrile) 6 mg 및 트리플루오로톨루엔(trifluorotoluene) 1.777 g을 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30 분 동안 교반한 후, 95 ℃에서 3 시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 200 mL에 침전시키고, 감압 여과한 후 건조시켜, 랜덤 공중합체(B)를 제조하였다. 랜덤 공중합체(B)에서, 펜타플루오로스티렌 유래 단위의 함량은 약 94.3 중량%였다.
제조예 3. 랜덤 공중합체(C)의 합성
제조예 1의 모노머(A) 2.974 g, (메타크릴로일옥시)메틸 포스폰산((methacryloyloxy)methyl phosphonic acid, hMAPC1) 0.081 g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(2-cyano-2-propyl benzodithioate) 10 mg, V-40(1,1′-Azobis(cyclohexanecarbonitrile) 6 mg 및 트리플루오로톨루엔(trifluorotoluene) 1.777 g을 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30 분 동안 교반한 후, 95 ℃에서 3 시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 200 mL에 침전시키고, 감압 여과한 후 건조시켜, 랜덤 공중합체를 제조하였다. 랜덤 공중합체(C)에서, 제조예 1의 모노머(A) 유래 단위의 함량은 약 96.8 중량%였다.
제조예 4. 랜덤 공중합체(D)의 합성
제조예 1의 모노머(A) 0.520 g, 펜타플루오로스티렌 1.456 g, 글리시딜 메타크릴레이트(glycidyl methacrylate) 0.142 g, AIBN(Azobisisobutyronitrile) 3.3 mg 및 테트라하이드로퓨란(tetrahydrofuran) 1.62 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30 분 동안 교반한 후, 60 ℃에서 12 시간 동안 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시키고, 감압 여과한 후 건조시켜, 랜덤 공중합체를 제조하였다. 랜덤 공중합체의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 39,400 g/mol 및 1.96이고, 랜덤 공중합체의 각 성분 별 함량비는 제조예 1의 모노머(A) 15 몰%, 펜타플루오로스티렌 75 몰% 및 글리시딜 메타크릴레이트 10 몰% 이었다.
제조예 5. 블록 공중합체(E)의 합성
제조예 1의 모노머(A) 2.0 g과 RAFT(Reversible Addition Fragmentation chain Transfer) 시약(2-cyano-2-propyl benzodithioate) 64 mg, 라디칼 개시제인 AIBN(Azobisisobutyronitrile) 23 mg 및 벤젠 5.34 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30 분 동안 교반한 후 70 ℃에서 4 시간 동안 RAFT(Reversible Addition Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 후, 감압 여과하고 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수득률은 약 82.6 중량%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 13,200 g/mol 및 1.16이었다. 거대개시제 0.3 g, 펜타플루오로스티렌 모노머 2.7174 g 및 벤젠 1.306 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30 분 동안 교반한 후 115 ℃에서 4 시간 동안 RAFT(Reversible Addition Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하고 건조시켜 연한 분홍색의 블록공중합체를 제조하였다. 상기 블록 공중합체는 제조예 1의 모노머(A)에서 유래된 것으로서 사슬 형성 원자가 12개(화학식 A의 R의 탄소수)인 제 1 블록과 상기 펜타플루오로스티렌 단량체에서 유래된 제 2 블록을 포함한다. 상기에서 제 1 블록의 부피 분율은 약 0.40 정도였고, 제 2 블록의 부피 분율은 약 0.60 정도였으며, 제조된 블록 공중합체(E)는 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 44,700 g/mol 및 1.19 이었다.
제조예 6. 고분자(F)의 합성
펜타플루오로스티렌 2.39 g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(2-hydroxyethyl-2-(((dodecylthion)carbonothioyl)thio-2-methylpropanoate) 30 mg, AIBN(azobisisobutyronitrile) 5 mg 및 아니졸 0.80 g 을 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30 분 동안 교반한 후, 70 ℃에서 6 시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 200 mL 에 침전시키고, 감압 여과한 후 건조시켜, 고분자(E)를 제조하였다. 고분자(E)의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 10,000 g/mol 및 1.10 이었다.
실시예 1 내지 3
제조예 2의 랜덤 공중합체(B)(hMAPC1 약 2.65 중량% 포함) 또는 제조예 3의 랜덤 공중합체(C)(hMAPC1 약 4.77 중량% 포함)를 농도가 약 1.0 중량%가 되도록 플루오로벤젠에 용해시켜서 피닝 조성물을 제조하였다. 이어서, 상기 피닝 조성물을, 실리콘 웨이퍼(미처리 기재층) 상에 약 30 ㎚ 두께로 코팅하고, 하기 표 1과 같이 조절된 온도에서(실시예 1 내지 3) 5분간 열적 어닐링(thermal annealing)한 후, 플루오로벤젠에 10분 동안 침지시켜서 미반응 랜덤 공중합체(B) 또는 미반응 랜덤 공중합체(C)를 제거시켜서 피닝층을 형성하였다. 이어서, 제조예 4의 블록 공중합체(E)를 농도가 약 0.8 중량%가 되도록 플루오로벤젠에 용해시켜서 고분자 조성물을 제조하고, 이를 상기 피닝층 상에 약 30 ㎚ 두께로 스핀 코팅하고 230 ℃에서 약 5 분간 열적 어닐링하여 고분자 막을 형성하였다. 고분자 막 내의 블록 공중합체(E)의 패턴을 SEM(Scanning Electron Microscope)을 통해 확인하였다.
비교예 1
랜덤 공중합체(B) 또는 랜덤 공중합체(C) 대신 제조예 6의 고분자(F)를 사용하고, 하기 표 1과 같이 조절된 온도에서 열적 어닐링 한 것을 제외하고는 실시예와 동일한 조건으로 고분자 막을 형성하였다.
블록 공중합체(E)는 실리콘 웨이퍼 상에서는 수직 배향되며, 피닝(pinning)층 상에서는 수평 배향 및 수직 배향이 혼재되는 특성을 지닌다. 따라서, 블록 공중합체의 패턴이 기판에 대해 수평 배향과 수직 배향이 혼재된 형태인지 여부를 통하여 실리콘 웨이퍼(기재층)에 대한 피닝(pinning) 조성물의 반응 여부를 판단하였다. 구체적으로, 상기 피닝 조성물의 기재층과의 반응 여부는, 제조된 고분자 막을 주사형 전자 현미경(SEM)을 이용하여 가속 전압 2.0 kV의 조건에서, 50,000의 배율로, 촬영하여 판단하였다.
이에 따라, 하기 표 1에는, 기재층 상에 형성된 고분자 막 내의 블록 공중합체(E)가 수직 배향 및 수평 배향된 구조가 혼재되는 상태로 관찰된 경우를 O로 표시하고, 블록 공중합체(E)가 수직 배향된 상태만 관찰되는 경우를 Ⅹ로 표시하였다.
피닝 조성물 어닐링 온도 (℃) 기판 종류 기판과의 반응 여부
실시예 1 랜덤 공중합체 B 100 실리콘웨이퍼 O
2 랜덤 공중합체 B 40 실리콘웨이퍼 O
3 랜덤 공중합체 C 40 실리콘웨이퍼 O
비교예 1 고분자 F 120 실리콘웨이퍼 X
도 1 내지 도 3은 각각 실시예 1 내지 3에 대한 SEM 이미지이다. 이를 통하여, 실시예 1 내지 3에서는 수직 및 수평 배향이 혼재하는 라멜라 패턴이 형성된 것을 확인할 수 있다. 이를 통하여, 본 출원의 피닝 조성물은 기재층과 충분히 결합한 것을 알 수 있다.
도 4는 비교예 1에 대한 SEM 이미지이다. 도 4를 통하여, 본 출원의 피닝 조성물과는 다른 종류의 고분자가 적용된 피닝 조성물은 130 ℃ 미만의 온도에서 열적 어닐링하는 경우에는 기재층과 충분히 결합할 수 없음을 알 수 있다.
실시예 4 내지 6
제조예 4의 랜덤 공중합체(D)의 농도가 약 0.5 중량%가 되도록 플루오로벤젠에 용해시킨한 중성층 조성물을 실리콘 웨이퍼(기재층) 상에 스핀 코팅하고, 200 ℃의 온도에서 약 5분간 열처리하였다. 이어서, 플루오로벤젠 약 1분간 침지시켜서, 잔여 랜덤 공중합체(D)를 제거하여, 두께가 약 10 nm인 중성층의 패턴이 형성된 기판(중성층 기판)을 준비하였다.
랜덤 공중합체(B) 또는 랜덤 공중합체(C)의 농도가 약 1.0 중량%가 되도록 플루오로벤젠에 용해시킨 피닝 조성물을 제조하였다. 상기 피닝 조성물을 중성층 기판 상에 약 30 nm의 두께로 스핀 코팅한 후, 하기 표 2와 같은 온도 조건(실시예 4 내지 6)에서 약 5 분간 열적 어닐링 하였다. 이후 플루오로벤젠에 10 분 동안 침지시켜서 미반응 랜덤 공중합체(B) 또는 랜덤 공중합체(C)를 제거하여 상기 중성층 기판 상에 피닝층을 형성하였다. 이어서, 제조예 4의 블록 공중합체(E)의 농도가 약 0.8 중량%가 되도록 플루오로벤젠에 용해시킨 고분자 조성물을 제조하고, 이를 약 30 ㎚ 두께로 피닝층 상에 스핀 코팅하고 230 ℃에서 약 5 분간 열적 어닐링하여 고분자 막을 형성하였다.
제조된 고분자 막을 주사형 전자 현미경(SEM)을 이용하여 가속 전압 2.0 kV의 조건에서, 50,000의 배율로 촬영하여 얻은 고분자 막 내의 블록 공중합체(E)의 라멜라 구조의 패턴을 통하여 피닝 조성물이 기판 상의 중성층과 반응하는지 여부를 확인하였다. 구체적으로, 하기 표 2에서, 피닝 조성물이 기판 상의 중성층과 반응하게 되어 블록 공중합체의 자기 조립으로 형성된 수직 라멜라 패턴의 표면에서 결함이 관찰되면 O로 표시하였다. 그리고, 하기 표 2에서, 피닝 조성물이 기판 상의 중성층과 반응하지 않아서 블록 공중합체의 자기 조립으로 형성된 수직 라멜라 패턴의 결함이 관찰되지 않으면 X로 표시하였다.
어닐링 온도(℃ 사용 화합물 중성층과의 반응여부
실시예 4 100 랜덤 공중합체 B X
실시예 5 40 랜덤 공중합체 B X
실시예 6 40 랜덤 공중합체 C X
도 5 내지 7은 각각 실시예 4 내지 6의 SEM 이미지이다. 이를 통하여, 실시예 4 내지 6의 고분자 막 내의 블록 공중합체(E)의 라멜라 구조의 패턴은 결함이 관찰되지 않음을 알 수 있다.
상기 표 1과 표 2에 따르면 본 출원의 피닝 조성물은 비교적 낮은 공정 온도(130 ℃ 미만)에서 어닐링되더라도, 기재층과 결합할 수 있고, 중성층과는 결합하지 않음을 알 수 있다. 그렇지만, 비교예 1에 따르면, 본 출원과 다른 고분자가 적용된 피닝 조성물은 낮은 공정 온도(130 ℃ 미만)에서 어닐링되는 경우에는 기재층과 결합하지 못함을 알 수 있다.
상기 실시예 및 비교예를 통해서, 본 출원에 따른 피닝층 조성물은 저온 공정에서도 기재층과 반응할 수 있고, 중성층과는 반응하지 않을 수 있어서, 정렬도가 높은 블록 공중합체의 수직 배향 자기조립 구조를 형성하는데 적합함을 확인할 수 있다.

Claims (21)

  1. 하기 화학식 1로 표시되는 단위 및 하기 화학식 3 또는 화학식 4로 표시되는 단위를 포함하는 랜덤 공중합체:
    [화학식 1]
    Figure PCTKR2018012891-appb-I000008
    화학식 1에서, R은 수소 또는 알킬기이고, A는 산소 원자, 황 원자, -S(=O)2-, 카보닐기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자 또는 황 원자이고, B는 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, C는 하기 화학식 2로 표시된다:
    [화학식 2]
    Figure PCTKR2018012891-appb-I000009
    화학식 2에서, L은 단일 결합 또는 산소 원자이다:
    [화학식 3]
    Figure PCTKR2018012891-appb-I000010
    [화학식 4]
    Figure PCTKR2018012891-appb-I000011
    화학식 3 또는 화학식 4에서, R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1-, 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, 화학식 3에서, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이며, 화학식 4에서, Y는 8개 이상의 사슬 형성 원자를 가지는 직쇄 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
  2. 제1 항에 있어서, 화학식 3에서 W의 할로겐 원자는 불소 원자인 랜덤 공중합체.
  3. 제1 항에 있어서, 화학식 4에서 Y의 고리 구조는 방향족 고리 구조 또는 지환족 고리 구조인 랜덤 공중합체.
  4. 제1 항에 있어서, 화학식 3 또는 화학식 4로 표시되는 단위는 전체 랜덤 공중합체에 80 중량% 내지 99.9 중량%의 비율로 포함되는 랜덤 공중합체.
  5. 제1 항에 있어서, 화학식 3 또는 화학식 4로 표시되는 단위 100 중량부 대비 화학식 1로 표시되는 단위를 1 중량부 내지 30 중량부로 포함하는 랜덤 공중합체.
  6. 제1 항의 랜덤 공중합체를 포함하는 피닝 조성물.
  7. 제6 항에 있어서, 랜덤 공중합체를 0.1 중량% 내지 20 중량%의 비율로 포함하는 피닝 조성물.
  8. 기재층; 및 기재층의 표면에 존재하는 피닝층을 포함하고, 상기 피닝층은 제1 항의 랜덤 공중합체를 포함하는 기판.
  9. 제8 항에 있어서, 피닝층은 기재층의 표면에서 스트라이프 패턴을 형성하고 있는 기판.
  10. 제8 항에 있어서, 기재층의 표면에 존재하는 중성층을 추가로 포함하고, 상기 중성층과 피닝층은 교대로 반복되는 스트라이프 패턴을 형성하고 있는 기판.
  11. 제10 항에 있어서, 중성층은 하기 화학식 3로 표시되는 단위 및 하기 화학식 4로 표시되는 단위를 포함하는 랜덤 공중합체를 포함하는 기판:
    [화학식 3]
    Figure PCTKR2018012891-appb-I000012
    [화학식 4]
    Figure PCTKR2018012891-appb-I000013
    화학식 3 또는 화학식 4에서, R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1-, 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, 화학식 3에서, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이며, 화학식 4에서, Y는 8개 이상의 사슬 형성 원자를 가지는 직쇄 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
  12. 제11 항에 있어서, 중성층에 포함되는 랜덤 공중합체는 화학식 4로 표시되는 단위를 9 몰% 내지 32 몰%의 비율로 포함하는 기판.
  13. 제11 항에 있어서, 중성층에 포함되는 랜덤 공중합체에서, 화학식 4로 표시되는 단위의 몰 수(A)와 화학식 3으로 표시되는 단위의 몰 수(B)의 비율(B/A)은 2 내지 10의 범위 내인 기판.
  14. 제8 항 또는 제10 항에 있어서, 피닝층 또는 피닝층과 중성층 상에 형성된 고분자 막을 추가로 포함하고, 고분자 막은 제1 블록 및 상기 제1 블록과는 다른 제2 블록을 포함하는 블록 공중합체를 포함하는 기판.
  15. 제14 항에 있어서, 블록 공중합체는 스피어, 실린더, 자이로이드 또는 라멜라 구조를 형성하고 있는 기판.
  16. 제14 항에 있어서, 블록 공중합체의 제1 블록 또는 제2 블록은 상기 화학식 3 또는 상기 화학식 4의 단위를 포함하는 기판.
  17. 기재층 상에 제6 항의 피닝 조성물을 코팅하고, 130 ℃ 미만의 온도에서 어닐링하여 피닝층을 형성하는 단계를 포함하는 패턴화 기판의 제조 방법.
  18. 제17 항에 있어서, 어닐링은 열적 어닐링인 패턴화 기판의 제조 방법.
  19. 제17 항에 있어서, 어닐링되는 기재층은 중성층이 형성되어 있는 패턴화 기판의 제조 방법.
  20. 제17 항에 있어서, 피닝층 상에 제1 블록 및 상기 제1 블록과는 다른 제2 블록을 포함하는 블록 공중합체를 포함하는 고분자 막을 자기 조립된 상태로 형성하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.
  21. 제20 항에 있어서, 고분자 막에서 블록 공중합체의 제1 블록 또는 제2 블록을 선택적으로 제거하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.
PCT/KR2018/012891 2017-10-27 2018-10-29 랜덤 공중합체 및 이를 포함하는 피닝 조성물 WO2019083337A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880064036.2A CN111164146B (zh) 2017-10-27 2018-10-29 无规共聚物和包含其的钉扎组合物
EP18870910.9A EP3677644A4 (en) 2017-10-27 2018-10-29 STATISTICAL COPOLYMER AND ANCHORING COMPOSITION INCLUDING THIS
US16/652,565 US12006384B2 (en) 2017-10-27 2018-10-29 Random copolymer and pinning composition comprising the same
JP2020517386A JP7120517B2 (ja) 2017-10-27 2018-10-29 ランダム共重合体およびこれを含むピニング組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170141006 2017-10-27
KR10-2017-0141006 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019083337A1 true WO2019083337A1 (ko) 2019-05-02

Family

ID=66246605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012891 WO2019083337A1 (ko) 2017-10-27 2018-10-29 랜덤 공중합체 및 이를 포함하는 피닝 조성물

Country Status (6)

Country Link
US (1) US12006384B2 (ko)
EP (1) EP3677644A4 (ko)
JP (1) JP7120517B2 (ko)
KR (2) KR20190047638A (ko)
CN (1) CN111164146B (ko)
WO (1) WO2019083337A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695441A (ja) * 1992-01-10 1994-04-08 Fuji Photo Film Co Ltd 電子写真式平版印刷用原版
KR20120122655A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 중성표면을 형성하기 위한 랜덤 공중합체 및 그 제조 및 사용 방법들
WO2014184114A1 (en) * 2013-05-13 2014-11-20 AZ Electronic Materials (Luxembourg) S.à.r.l. Template for self assembly and method of making a self assembled pattern
KR20160061971A (ko) * 2013-09-27 2016-06-01 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. 자기 조립 촉진용 하지층 조성물 및 제조 및 사용 방법
KR20170029389A (ko) * 2015-09-07 2017-03-15 아이엠이씨 브이제트더블유 트렌치 보조 케모에피탁시(trac) dsa 흐름
KR20170141006A (ko) 2016-06-14 2017-12-22 삼성전자주식회사 전자 장치에서 가입자 식별 모듈을 연결하는 방법 및 그에 따른 전자 장치

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392618A (ja) * 1986-10-07 1988-04-23 Sumitomo Chem Co Ltd リン酸エステルを含む光硬化性組成物
JPH0389353A (ja) * 1989-09-01 1991-04-15 Nippon Paint Co Ltd ポジ型感光性樹脂組成物
JPH0467151A (ja) * 1990-07-09 1992-03-03 Fuji Photo Film Co Ltd 電子写真式平版印刷用原版
WO1993014447A1 (en) * 1992-01-10 1993-07-22 Fuji Photo Film Co., Ltd. Original plate for electrophotographic lithography
JPH09179321A (ja) * 1995-12-27 1997-07-11 Fuji Photo Film Co Ltd 直描型平版印刷用原版
JP4150180B2 (ja) * 2000-10-19 2008-09-17 ユニケミカル株式会社 燃料電池用リン酸基含有固体高分子電解質(複合)膜及びその製造方法
ATE338090T1 (de) * 2003-02-24 2006-09-15 Basf Ag Carboxylat-haltige polymere für die metalloberflächenbehandlung
JP2009227836A (ja) 2008-03-24 2009-10-08 Fujifilm Corp 有機無機複合組成物、成型品の製造方法および光学部品
JP2010000612A (ja) * 2008-06-18 2010-01-07 Fujifilm Corp ナノインプリント用硬化性組成物、パターン形成方法
GB2474827A (en) * 2009-08-04 2011-05-04 Cambridge Display Tech Ltd Surface modification
JP2012233287A (ja) 2011-05-06 2012-11-29 Wacoal Corp カップ部を有する衣類
JP5887244B2 (ja) * 2012-09-28 2016-03-16 富士フイルム株式会社 パターン形成用自己組織化組成物、それを用いたブロックコポリマーの自己組織化によるパターン形成方法、及び自己組織化パターン、並びに電子デバイスの製造方法
US8853101B1 (en) 2013-03-15 2014-10-07 GlobalFoundries, Inc. Methods for fabricating integrated circuits including formation of chemical guide patterns for directed self-assembly lithography
EP3078690B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6419820B2 (ja) * 2013-12-06 2018-11-07 エルジー・ケム・リミテッド ブロック共重合体
KR101763010B1 (ko) 2013-12-06 2017-08-03 주식회사 엘지화학 블록 공중합체
WO2016195449A1 (ko) 2015-06-04 2016-12-08 주식회사 엘지화학 중성층 조성물
EP3101043B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN107075055B (zh) * 2014-09-30 2019-08-27 株式会社Lg化学 嵌段共聚物
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
JP6392618B2 (ja) * 2014-10-03 2018-09-19 エムケー精工株式会社 洗車機
US9574107B2 (en) * 2015-02-16 2017-02-21 International Business Machines Corporation Fluoro-alcohol additives for orientation control of block copolymers
US9458353B1 (en) * 2015-04-15 2016-10-04 International Business Machines Corporation Additives for orientation control of block copolymers
KR101985802B1 (ko) * 2015-06-11 2019-06-04 주식회사 엘지화학 적층체
KR101865997B1 (ko) * 2015-07-24 2018-06-08 현대자동차주식회사 염료감응 태양전지용 집전극 보호막 및 이의 형성방법
CN107118313A (zh) * 2017-05-12 2017-09-01 浙江工业大学之江学院 一种具有三重形状记忆效应聚合物及其制备方法
JP7027668B2 (ja) * 2017-07-14 2022-03-02 エルジー・ケム・リミテッド 中性層組成物
US11193036B2 (en) * 2017-07-14 2021-12-07 Lg Chem, Ltd. Neutral layer composition
US11857997B2 (en) * 2020-06-18 2024-01-02 International Business Machines Corporation Metal surface protection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695441A (ja) * 1992-01-10 1994-04-08 Fuji Photo Film Co Ltd 電子写真式平版印刷用原版
KR20120122655A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 중성표면을 형성하기 위한 랜덤 공중합체 및 그 제조 및 사용 방법들
WO2014184114A1 (en) * 2013-05-13 2014-11-20 AZ Electronic Materials (Luxembourg) S.à.r.l. Template for self assembly and method of making a self assembled pattern
KR20160061971A (ko) * 2013-09-27 2016-06-01 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. 자기 조립 촉진용 하지층 조성물 및 제조 및 사용 방법
KR20170029389A (ko) * 2015-09-07 2017-03-15 아이엠이씨 브이제트더블유 트렌치 보조 케모에피탁시(trac) dsa 흐름
KR20170141006A (ko) 2016-06-14 2017-12-22 삼성전자주식회사 전자 장치에서 가입자 식별 모듈을 연결하는 방법 및 그에 따른 전자 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677644A4

Also Published As

Publication number Publication date
JP2020536137A (ja) 2020-12-10
KR102522189B1 (ko) 2023-04-14
EP3677644A4 (en) 2021-05-05
KR20220153557A (ko) 2022-11-18
KR20190047638A (ko) 2019-05-08
US12006384B2 (en) 2024-06-11
CN111164146B (zh) 2022-08-16
EP3677644A1 (en) 2020-07-08
US20200239701A1 (en) 2020-07-30
CN111164146A (zh) 2020-05-15
JP7120517B2 (ja) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2015084127A1 (ko) 블록 공중합체
WO2015084126A1 (ko) 블록 공중합체
WO2016052999A1 (ko) 블록 공중합체
WO2016052994A1 (ko) 블록 공중합체
WO2016053001A1 (ko) 블록 공중합체
WO2015084130A1 (ko) 블록 공중합체
WO2015084123A1 (ko) 블록 공중합체
WO2015084133A1 (ko) 블록 공중합체
WO2015084132A1 (ko) 블록 공중합체
WO2015084129A1 (ko) 블록 공중합체
WO2015084131A1 (ko) 블록 공중합체
WO2016195449A1 (ko) 중성층 조성물
WO2016053010A1 (ko) 블록 공중합체
WO2016053009A9 (ko) 블록 공중합체
WO2016053011A1 (ko) 블록 공중합체
WO2016053005A1 (ko) 블록 공중합체
WO2016053000A1 (ko) 블록 공중합체
WO2018101741A1 (ko) 적층체
WO2016053014A1 (ko) 패턴화 기판의 제조 방법
WO2016053007A1 (ko) 패턴화 기판의 제조 방법
WO2015084125A1 (ko) 블록 공중합체
WO2015084124A1 (ko) 블록 공중합체
WO2015084122A1 (ko) 블록 공중합체
WO2015084120A1 (ko) 단량체 및 블록 공중합체
WO2015084121A1 (ko) 블록 공중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517386

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018870910

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE