WO2019073836A1 - 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板 - Google Patents

光硬化性組成物、積層体及びその製法、ディスプレイ用導光板 Download PDF

Info

Publication number
WO2019073836A1
WO2019073836A1 PCT/JP2018/036644 JP2018036644W WO2019073836A1 WO 2019073836 A1 WO2019073836 A1 WO 2019073836A1 JP 2018036644 W JP2018036644 W JP 2018036644W WO 2019073836 A1 WO2019073836 A1 WO 2019073836A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
photocurable composition
refractive index
acrylate
cured product
Prior art date
Application number
PCT/JP2018/036644
Other languages
English (en)
French (fr)
Inventor
早川 誠一郎
亨 金
Original Assignee
オーウエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーウエル株式会社 filed Critical オーウエル株式会社
Priority to JP2018552013A priority Critical patent/JP7248429B2/ja
Publication of WO2019073836A1 publication Critical patent/WO2019073836A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a photocurable composition for photoimprinting, and more specifically, the cured product having a low viscosity and excellent adhesion to a substrate, and the resulting cured product has a refractive index match with the substrate,
  • the present invention relates to a photocurable composition excellent in refractive index accuracy, and further relates to a laminate comprising the cured product and a substrate, a method for producing the same, and a light guide plate for a display provided with the laminate.
  • a photocurable composition is photocured in a gap between a transparent substrate such as glass and a mold having a fine surface shape, and the mold is peeled (released) to form a transparent group. This is a method of obtaining a laminate of a material / cured product.
  • the fine surface asperity shape is various, such as a lenticular shape having periodic asperities and a microlens shape having curvature, and the size is various from nanometer size to millimeter size.
  • a mechanical method such as cutting
  • the method of finely processing by wet / dry etching is expensive and it is difficult to achieve a large area and mass production.
  • a photo imprinting method it is possible to manufacture an optical component which has been finely processed with high accuracy and high productivity. In the case where the fine shape has a nanometer size, it is called light nanoimprint.
  • the photocurable composition used for photoimprinting is required to have not only transparency but also low viscosity to increase the transferability of the fine shape, adhesion to the substrate, removability from the mold, etc. . Furthermore, in recent years, high refractive index adjustment is required, and in particular, the refractive index of the cured product is matched with the refractive index of the substrate in order to reduce interface reflection and internal scattering with the substrate / cured product. (This is called "refractive index matching").
  • the refractive index matching property for example, when the base material is BK7 (refractive index 1.517) manufactured by SCHOTT AG, which is a general optical glass, a refractive index of 1.517 is also required for the cured product Etc.
  • the refractive index fluctuation between cured product lots occurs due to the fluctuation of the residual amount of the polymerization inhibitor and the like contained in the raw material itself, but in the cured product, the refractive index between cured product lots Refractive index accuracy with a difference of ⁇ 0.001 is required.
  • the refractive index also depends on the degree of curing (the degree of polymerization) of the cured product, sufficient consideration for light curing is required.
  • the refractive index is a refractive index nD at 25 ° C. in the sodium (Na) D line of wavelength 589 nm.
  • the Abbe number DD of the cured product is far from the Abbe number DD of the base material, the refractive indices of the two diverge depending on the wavelength, and thus the interface reflection between the base material and the cured product is increased.
  • the substrate is BK 7 (Abbe number ⁇ D: 64) which is a general optical glass, even if the refractive index nD of the cured product is identical at the green NaD line (589 nm), the Abbe number of the cured product If DD is less than 40, the refractive index nF at the blue NaF line (486 nm) and the refractive index nC at the red NaC line (656 nm) do not match, and the interface reflection of blue or red tends to increase.
  • glass is generally used for a light guide plate for a display.
  • various glasses excellent in light-transmitting property including the above-mentioned BK7 (refractive index nD 1.517) are used.
  • B270 (a registered trademark) manufactured by SCHOTT AG called a so-called white board (Refractive index nD 1.523), Pyrex (registered trademark) (refractive index nD 1.472) manufactured by Corning Incorporated, and the like.
  • the refractive index nD of such a glass is somewhat different depending on the manufacturing company and the lot even with the same kind of glass.
  • the refractive index nD of the glass used for the light guide plate is usually about 1.45 to 1.55.
  • the light guide plate for displays in recent years is an edge light system.
  • an edge light system for example, in the case of a large-area television in recent years, light from a light source is guided horizontally in the laminate by 1 m or more.
  • the guided distance optical path length
  • the refractive index of the base material and the cured product differs by 0.001
  • interface reflection does not occur by 0.1%
  • the edge light system interface reflection occurs over the entire long optical path length. The difference in refractive index can not be ignored. That is, the inside of the laminate is required to be nearly optically uniform.
  • a urethane (meth) acrylate-based compound excellent in refractive index accuracy has been proposed as a photocurable composition for optical imprint (for example, Patent Document 1). Further, a photocurable composition excellent in transfer accuracy has been proposed (for example, Patent Document 2). In addition, a high refractive index photocurable composition containing a specific (meth) acrylate monomer and a specific urethane (meth) acrylate has been proposed (for example, Patent Document 3).
  • the urethane (meth) acrylate type compound currently indicated by patent documents 1 is excellent in refractive index accuracy certainly by itself, it mixes the other ingredient (except a photopolymerization initiator), and is a photocurable composition.
  • the refractive index accuracy is lowered, and it becomes difficult to make the refractive index of the cured product coincide with the refractive index of various substrates.
  • the interface / reflection of the substrate / cured material tends to increase.
  • the photocurable composition disclosed in Patent Document 2 can ensure the transfer accuracy but can not ensure the refractive index accuracy. In the photocurable composition disclosed in Patent Document 3, it is difficult to guarantee the refractive index up to the third decimal place.
  • the photocurable composition for photoimprinting has a low viscosity and excellent adhesion to a substrate under such background, and in particular, the refractive index matching with the substrate and the refraction.
  • a photocurable composition capable of forming a cured product excellent in rate accuracy.
  • a laminate using the photocurable composition, a process for producing the same, and a light guide plate for a display comprising the laminate are provided.
  • a photocurable composition comprising the following components (A), (B), (C) and (D) solves the above-mentioned problems.
  • a photocurable composition for photoimprinting which comprises the following components (A), (B), (C), and (D).
  • the component (C) is a radical polymerization monomer (C1) having a refractive index nD of 1.52 to 1.7 and a thiol-ene addition polymerization monomer (C2) having a refractive index nD of 1.52 to 1.7
  • the radical polymerization monomer (C1) is an aromatic (meth) acrylate compound
  • the thiol-ene addition polymerization monomer (C2) is a polyfunctional thiol compound [3] ]
  • the photocurable composition as described.
  • Step (1) A step of applying the photocurable composition according to any one of [1] to [9] to a mold having an uneven surface formed on the surface.
  • Step (2) A step of covering the photocurable composition with a glass plate.
  • Step (3) A step of photocuring the photocurable composition by light irradiation to obtain a laminate of a glass plate / cured product.
  • Process (4) The process of peeling the laminated body which consists of said glass plate / hardened
  • the photocurable composition for photoimprints of the present invention has a low viscosity and is excellent in adhesion to a substrate, and the obtained cured product is excellent in refractive index matching with a substrate and refractive index accuracy.
  • (meth) acrylic means acrylic or methacrylic
  • (meth) acryloyl means acryloyl or methacryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • refractive index means refractive index nD at 25 ° C. in NaD line of wavelength 589 nm, unless otherwise specified.
  • the photocurable composition of the present invention contains the following components (A), (B), (C) and (D), and more preferably components (A), (B) and (C) , And (D) only.
  • A Urethane (meth) acrylate.
  • B A (meth) acrylate compound excluding component (A).
  • C At least two types of refractive index adjusting monomers except components (A) and (B).
  • D Photopolymerization initiator.
  • the urethane (meth) acrylate used as the component (A) is excellent in quick curability and is an effective component for securing the adhesion to the substrate.
  • the urethane (meth) acrylate is not particularly limited as long as it is a (meth) acrylate having a urethane skeleton, and known compounds can be used. For example, polyol compounds, polyisocyanate compounds, and hydroxyl group-containing It is obtained by reacting a meta) acrylate compound.
  • polyol compounds examples include aliphatic polyols, alicyclic polyols, polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols, (meth) acrylic polyols, and polysiloxane polyols. Etc. Among these, polyether-based polyols and polyester-based polyols are preferable in terms of the adhesion between the substrate and the cured product.
  • polyisocyanate compound examples include, for example, isophorone diisocyanate, bis (isocyanatomethyl) tricyclo [5.2.1.0 2,6 ] decane, norbornane isocyanatomethyl, and 1,3-diisocyanatocyclohexane.
  • isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate are preferable in terms of water absorption reduction.
  • hydroxyl-containing (meth) acrylate type compound 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy -3- Examples include (meth) acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tri (meth) acrylate and the like. Among these, 2-hydroxyethyl (meth) acrylate and pentaerythritol tri (meth) acrylate are preferable.
  • urethane (meth) acrylate As a method for producing urethane (meth) acrylate, a method is generally used in which the above-mentioned polyol compound, polyisocyanate compound and hydroxyl group-containing (meth) acrylate compound are charged in a reactor or separately and reacted.
  • a method in which a hydroxyl group-containing (meth) acrylate compound is reacted with a reaction product obtained by reacting a polyol compound and a polyisocyanate compound in advance is useful in terms of reaction stability, reduction of by-products, etc. It is.
  • Examples of commercially available urethane (meth) acrylates that are the above component (A) include “UA-160TM” and “UA-4200” manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the refractive index nD of the urethane (meth) acrylate is preferably 1.43 to 1.52, more preferably 1.45 to 1.50, and still more preferably 1.47 to 1. 49. If the refractive index nD is less than the lower limit, the refractive index matching of the substrate / cured product tends to be difficult. Conversely, if the upper limit is exceeded, the Abbe number of the cured material is decreased, and the substrate / cured There is a tendency for the interface reflection of objects to increase.
  • such urethane (meth) acrylates contain an alicyclic structure in the chemical structure from the viewpoint of reducing the water absorption of the photocurable composition and the cured product. More preferably, in view of the further reduction of water absorption, the number of alicyclic structures is 2 or more, particularly preferably an aromatic ring is not contained in the light resistance of the cured product.
  • the urethane (meth) acrylate of the said component (A) can be used individually or in combination of 2 or more types.
  • (meth) acrylate compounds other than the component (A) used as the component (B) are effective for lowering the viscosity of the photocurable composition, and adhesion to a substrate and a mold It is a component for adjusting the releasability of
  • the (meth) acrylate compounds other than the above component (A) are not particularly limited, and monofunctional (meth) acrylates or polyfunctional (meth) compounds (meta) Known compounds such as acrylates can be used.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, lauryl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, Aliphatic monofunctional (meth) acrylates such as octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate and n-stearyl (meth) acrylate; Alicyclic monofunctional (meth) acrylates such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate and dicyclopentenyl (meth) acrylate; 2-Hyd
  • Ether group-containing (meth) acrylates such as glycidyl (meth) acrylate, furfuryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, butoxyethyl (meth) acrylate, acryloyl morpholine;
  • Examples thereof include phosphoric acid group-containing (meth) acrylates such as 2- (meth) acryloyloxyethyl acid phosphate.
  • polyfunctional (meth) acrylate for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane Aliphatic difunctional (meth) acrylates such as diol di (meth) acrylates; Hydroxyl group-containing bifunctional (meth) acrylates such as glycerin di (meth) acrylate and pentaerythritol di (meth) acrylate; Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, Ether group-containing bifunctional (meth) acrylate,
  • polyfunctional (meth) acrylate in addition to said bifunctional (meth) acrylate, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tri (meth) acryloyloxyethoxy trimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanuric acid Ethylene oxide modified tri (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified di Teraerythritol hexa (
  • ether group-containing monofunctional (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate and acryloyl morpholine, bis (hydroxymethyl), in terms of adhesion to the substrate and releasability from the mold.
  • Alicyclic bifunctional (meth) acrylates such as tricyclo [5.2.1.0 2,6 ] decane-di (meth) acrylate and mixtures thereof are preferred, and more preferably adhesion to a substrate and molding These are mixtures in that the releasability from the mold can be balanced.
  • the refractive index nD of the (meth) acrylate compound is preferably 1.43 to 1.52, more preferably 1.45 to 1.515, and still more preferably 1.47 to 1. It is .51. If the refractive index nD is less than the lower limit, the refractive index matching of the substrate / cured product tends to be difficult. Conversely, if the upper limit is exceeded, the Abbe number of the cured material is decreased, and the substrate / cured There is a tendency for the interface reflection of objects to increase.
  • Component (C)> The feature of the present invention is that as the component (C), at least two types of refractive index adjusting monomers (except the components (A) and (B)) are blended.
  • the components (A) and (B) mentioned above may be difficult to change not only the compound to be used but also the mixing ratio to secure various properties such as transparency, viscosity, quick curing, water absorption etc. Many, it is nearly impossible to match the refractive index nD to the substrate with only these components. In such a case, two or more kinds of refractive index adjusting monomers having different refractive indices nD are required.
  • the refractive index nD of the third digit after the decimal point is adjusted by the first type of refractive index adjusting monomer
  • the component (C) generally has a refractive index larger than those of the components (A) and (B), and in terms of the refractive index matching between the substrate and the cured product, the refractive index nD 1.52 to It is preferable to contain a radical polymerization type monomer (C1) of 1.7 and a thiol-ene addition polymerization type monomer (C2) having a refractive index nD of 1.52 to 1.7, and more preferably component (C1) and component It consists only of (C2).
  • the radical polymerization monomer (C1) is an aromatic (meth) acrylate compound and the thiol-ene addition polymerization monomer (C2) is a polyfunctional thiol in view of the refractive index accuracy of the cured product. It is a system compound.
  • the photocuring polymerization system is various, and as the refractive index adjusting monomer, in addition to the above radical polymerization type monomer (C1) and the thiol-ene addition polymerization type monomer (C2), a cationic polymerization type monomer, an anion polymerization type Monomers, composite polymerization type monomers, etc. may be mentioned.
  • the reason for preferably using different kinds of monomers such as the radical polymerization type monomer (C1) and the thiol-ene addition polymerization type monomer (C2) is that the radical polymerization type monomer (C1) has a curing degree (polymerization degree)
  • the reason is that the thiol / ene addition polymerization type monomer (C2) is less likely to vary, as compared with the case where the refractive index nD of the cured product is likely to vary depending on That is, even when the light irradiation conditions such as the amount of light are applied at the time of photocuring, the refractive index accuracy can be maintained.
  • a polymerization inhibitor is usually added to the above-mentioned radical polymerization type monomer (C1) in order to secure storage stability, such a polymerization inhibitor has different residual amount for each lot, so that it is possible to use photocuring At the same time, it becomes a factor that the polymerization behavior fluctuates. That is, unevenness in the degree of curing (degree of polymerization) tends to occur, and as a result, the refractive index nD of the cured product tends to fluctuate.
  • the monomer suitably used as the radical polymerization type monomer (C1) is, for example, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethylene oxide (EO) modified phenyl (meth) acrylate, propylene oxide (PO) Modified phenyl (meth) acrylate, benzyl (meth) acrylate, EO modified benzyl (meth) acrylate, PO modified benzyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3 -Phenoxypropyl (meth) acrylate, 2- (o-phenylphenoxy) methyl (meth) acrylate, 2- (m-phenylphenoxy) methyl (meth) acrylate, 2- (p-phenylphenoxy) methyl (meth) acrylate ) Acrylate, 2- (o-phenylphenoxy) ethyl (meth) acrylate
  • EO-modified 2- (o-phenylphenoxy) ethyl (meth) acrylate and EO-modified bisphenol A-type di (meth) acrylate are preferable in terms of adhesion between the substrate and the cured product, and more preferably EO-modified 2- (o-phenylphenoxy) ethyl (meth) acrylate having an EO modification degree of 0.1 to 3 and EO-modified bisphenol having an EO modification degree of 1 to 10 in terms of lowering the viscosity of the photocurable composition It is an A-type di (meth) acrylate, and more preferably an EO-modified bisphenol A-type di (meth) acrylate having an EO modification degree of 2 to 5 in terms of the refractive index matching of the substrate and the cured product.
  • group monomer (C2) benzene dithiol, benzene trithiol, xylylene dithiol, tolylene trithiol, hexane dithiol, octane dithiol, pentaerythritol tetrakis is mentioned, for example.
  • the refractive index nD of the glass used is usually 1.45, although it differs depending on the refractive index nD of the substrate, component (A) and component (B)
  • the refractive index nD of both refractive index adjusting monomers is preferably 1.52 to 1.65, more preferably 1.525 to 1.6, and more preferably 1.527 to 1. 58 is more preferred.
  • refractive index nD of both refractive index adjusting monomers is excessively low, a large amount of refractive index adjusting monomers must be used, so the properties of the cured product tend to lose balance, and conversely, excessive When it is high, the refractive index accuracy of the entire photocurable composition tends to decrease due to the compounding fluctuation of the refractive index adjusting monomer.
  • the compounding ratio (C1: C2) of the radical polymerization type monomer (C1) and the thiol-ene addition polymerization type monomer (C2) is the chemical structure and the compounding amount of the component (A) and the component (B) in weight ratio However, it is preferably 99: 1 to 50:50, more preferably 97: 3 to 60:40, still more preferably 95: 5 to 70:30. If the proportion of the component (C1) is too small, the refractive index matching of the substrate / cured product tends to decrease, and if too large, the refractive index accuracy of the cured material tends to decrease.
  • the content of the component (A), the component (B) and the component (C) in the photocurable composition in the present invention is 10 to 60% by weight (A) and 20 to 80% by weight (B), respectively It is preferably 5 to 20% by weight (C). More preferably, 15 to 55% by weight (A), 25 to 75% by weight (B), 6 to 17% by weight (C), still more preferably 18 to 52% by weight (A), 30 to 73% by weight B), 7 to 15% by weight (C).
  • the content of the component (A) is too small, the adhesion between the substrate and the cured product tends to decrease, and if too large, the viscosity reduction of the photocurable composition tends to become difficult. is there.
  • the amount of the component (B) is too small, the transferability of the fine shape and the releasability from the mold tend to be lowered. Conversely, when the amount is too large, the rapid curing tends to be lowered.
  • the amount of the component (C) is too small, the refractive index matching property and the refractive index accuracy tend to decrease, and when the amount is too large, the water absorption of the cured product tends to increase.
  • any photopolymerization initiator may be used as long as it generates radicals by the action of light, for example, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, bis ( 2,4,6-Trimethylbenzoyl) -phenylphosphine oxide, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- (4-Isopropylenephenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2 -Hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1 Hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthioxyl phenyl ketone, 2-methyl-1- [4- (
  • the content of the component (D) is preferably 0.01 to 5 parts by weight, more preferably 0 based on 100 parts by weight in total of the components (A), (B) and (C).
  • the content is preferably in the range of 0.32 to 2 parts by weight, more preferably 0.04 to 1 parts by weight, and particularly preferably 0.05 to 0.5 parts by weight.
  • auxiliary agent of the above-mentioned photopolymerization initiator for example, triethanolamine, triisopropanolamine, 4,4'-dimethylaminobenzophenone (Michler's ketone), 4,4'-diethylaminobenzophenone, 2-dimethylaminoethylbenzoic acid, Ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2, It is also possible to use 4-diisopropylthioxanthone and the like in combination. These can be used alone or in combination of two or more.
  • Additives include, for example, silane coupling agents, antioxidants, polymerization inhibitors, anti-yellowing agents, ultraviolet light absorbers, fillers, dyes, pigments, oils, plasticizers, waxes, desiccants, dispersants, wetting Agents, emulsifiers, gelling agents, stabilizers, antifoaming agents, leveling agents, thixotropy-imparting agents, flame retardants, fillers, reinforcing agents, matting agents, crosslinking agents and the like. These can be used alone or in combination of two or more. In addition, a solvent is not normally mix
  • the photocurable composition of this invention is obtained by adding an additive to the said component (A), (B), (C), and (D) as needed.
  • the photocurable composition of the present invention preferably has a viscosity at 25 ° C. of 10 to 3000 mPa ⁇ s. More preferably, it is 30 to 2000 mPa ⁇ s, still more preferably 50 to 2000 mPa ⁇ s. If the viscosity is too low, the rapid curing property tends to decrease, and if it is too high, the transferability of the fine shape tends to decrease.
  • the photocurable composition of the present invention and the cured product thereof are required to have low water absorption to eliminate the environmental dependence of the refractive index nD as much as possible.
  • the cured product obtained by using a low moisture content photocurable composition also has a low moisture content (low water absorption).
  • the refractive index nD of water is 1.33, for example, when the water content in the photocurable composition exceeds 1% by weight, it causes a refractive index fluctuation exceeding 0.001, so that photocuring
  • the water content in the base composition is preferably 1% by weight or less. More preferably, it is 0.5% by weight or less, still more preferably 0.2% by weight or less. If the water content is too high, as described above, the refractive index accuracy of the cured product tends to be lowered.
  • the lower limit of the water content is usually 0.001% by weight.
  • the laminate of the present invention is produced, for example, by using a glass plate as a base material, by the following steps (1) to (4) and, if necessary, a step (5).
  • Step (1) A step of applying the photocurable composition to a mold having a fine uneven shape formed on the surface.
  • Step (2) A step of covering the photocurable composition with a glass plate.
  • Step (3) A step of photocuring the photocurable composition by light irradiation to obtain a laminate of a glass plate / cured product.
  • Process (4) The process of peeling the laminated body which consists of said glass plate / hardened
  • Step (5) A step of heat treating the above-mentioned laminate.
  • the coating method is not particularly limited, and a known method such as die coater, roll coater, screen printing, dispensing can be used.
  • a mold a mold, a glass mold, a resin mold or the like can be used.
  • leveling or degassing may be performed.
  • the coating thickness is generally 0.01 to 1 mm.
  • the photocurable composition of this invention is for optical imprints, addition of a solvent is unnecessary essentially. However, it is also possible to add a small amount of solvent at the time of application in order to improve the leveling property. In such a case, the solvent is dried immediately after application.
  • step (2) it is preferable to surface-treat the glass surface with a silane coupling agent in order to improve the adhesion of the glass plate / cured product. Moreover, you may apply
  • the light irradiation is preferably performed using ultraviolet light having a wavelength of 200 to 400 nm under an irradiation light amount of 0.5 to 10 J / cm 2 .
  • a more preferable range of the irradiation light amount is 1 to 5 J / cm 2 , and more preferably 2 to 4 J / cm 2 . If the amount of irradiation light is too small, curing tends to be insufficient. Conversely, if it is too large, productivity tends to decrease.
  • the light irradiation may be divided into multiple times.
  • an ultraviolet-ray source a metal halide lamp, a high pressure mercury lamp, an electrodeless mercury lamp, an LED lamp etc. are mentioned, for example.
  • the mold or the laminate may be heated / cooled at the time of peeling from the mold. Such a method enables smooth removal.
  • the step (5) is carried out as needed for the purpose of completion of polymerization of the cured product, release of stress strain, color stabilization and the like.
  • heat treatment it is usually carried out at 50 to 200 ° C. for 1 minute to 1 hour.
  • the heat treatment may also be performed by infrared radiation.
  • the laminate of the present invention is obtained.
  • cured material which comprises this laminated body is demonstrated.
  • the refractive index nD of the cured product is preferably 1.45 to 1.55. More preferably, it is 1.46 to 1.54, more preferably 1.47 to 1.53. Even if the refractive index nD is less than the lower limit value or exceeds the upper limit value, the refractive index matching with the glass substrate tends to be difficult.
  • cured material is 40 or more. More preferably, it is 45 to 70, more preferably 50 to 65. If the Abbe number DD is less than the lower limit value, the interface reflection of the glass plate / the cured product tends to increase, and it tends to be difficult to increase the brightness of the display.
  • the total thickness of the laminate of the present invention is preferably 0.5 to 20 mm. More preferably, it is 1 to 10 mm, more preferably 1.3 to 5 mm. If the total thickness is too thin, the rigidity tends to be insufficient, and if it is too thick, it tends to be difficult to make the display light and thin.
  • the thickness of the cured product layer does not have to be uniform, but is preferably 0.1 to 2 mm. More preferably, it is 0.2 to 1 mm, further preferably 0.3 to 0.7 mm. When the thickness of the cured product layer is too thin, the transferability of the fine shape tends to decrease, and when it is too thick, the productivity tends to decrease.
  • the laminate of the present invention is preferably colorless and transparent in terms of enhancing the brightness of the display. More preferably, the total light transmittance (%) in JIS K 7105: 1981 is 80% or more, particularly preferably 85% or more, and still more preferably 90% or more. The upper limit of the light transmittance is usually 99%.
  • the laminate of the present invention can also be provided with an antireflective film on one side or both sides to further improve the light transmittance.
  • the laminate of the present invention when light is incident from one end of the laminate, light emitted from the end of the laminate on the opposite side is preferably uniform in the thickness direction. That is, it is preferable that there is no difference in brightness or color between the light emitted from the end of the substrate and the light emitted from the end of the cured product. By this inspection, it can be confirmed that there is no interface reflection of the substrate / cured product and that the optical performances of the substrate and the cured product match.
  • the laminate of the present invention is suitable as a light guide plate for displays, since there is little interface reflection of the substrate / cured product.
  • the properties of the photocurable composition prepared in the examples, the cured product produced by photocuring the photocurable composition, and the laminate were measured according to the measurement conditions shown below.
  • the substrate and the cured product were measured for the refractive index nD and the Abbe number DD.
  • Viscosity (mPa ⁇ s) The photocurable composition was measured at 25 ° C. at a rotational speed of 5 rpm (EMD 3 ° cone) using an E-type viscometer manufactured by Tokyo Keiki Co., Ltd.
  • Refractive index nD The refractive index nD of the test piece at the NaD line of 589 nm wavelength was measured at 25 ° C. using “Multi-wavelength Abbe refractometer DR-M4” manufactured by Atago Co., Ltd.
  • cured material produced the hardened
  • Optical inspection 1000 lx of white light was made to enter from one end of the laminate, and light emitted from the other end was observed visually according to the following criteria.
  • the optical path length is 400 mm.
  • Good The brightness and the color are the same at the end of the substrate and at the end of the cured product.
  • The brightness and the color are slightly different between the end of the substrate and the end of the cured product.
  • X ... The brightness and the color are clearly different at the substrate end and the cured product end.
  • Example 1 [Preparation of base material and mold] A 300 mm ⁇ 400 mm ⁇ 1 mm white sheet glass (“B270” manufactured by SCHOTT AG) was selected as the substrate. The refractive index nD of this white sheet glass was 1.5231, and the Abbe number ⁇ D was 66. The surface of the white sheet glass in contact with the photocurable composition was treated with a silane coupling agent solution. The silane coupling agent solution used has a composition of 3-methacryloxypropyltrimethoxysilane (0.1%) / isopropyl alcohol (99.9%). A 300 mm ⁇ 400 mm ⁇ 1 mm nickel stamper (surface chrome plating) was prepared as a mold.
  • the obtained photocurable composition I is coated on the above-mentioned mold having a spacer of 0.5 mm in thickness installed in the peripheral part, covered with white plate glass surface-treated from the top, and a glass surface using a mercury lamp Photocuring was carried out by irradiating 2 J / cm 2 of ultraviolet light from the side. Next, the mold was peeled off from the surface of the cured product on which the uneven shape was formed. The peelability was good. The obtained laminate of glass plate / cured product was heat-treated at 100 ° C. for 1 hour to obtain a laminate I. The transfer accuracy of the cured product surface was good.
  • the obtained photocurable composition I is applied onto the test piece-producing glass on which a spacer with a thickness of 0.5 mm is installed at the periphery. Then cover the top with another glass for test piece preparation, irradiate with 2J / cm 2 UV light using a mercury lamp to perform photocuring, and use 0.5mm thick cured material I for refractive index measurement Obtained.
  • Example 2 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 1 except that each component in Example 1 was changed to parts (content) shown in Table 1 below.
  • Example 3 A laminate and a cured product were obtained in the same manner as in Example 1 except that the preparation of the photocurable composition was changed to the following contents to obtain a photocurable composition in Example 1.
  • component (A) 52.5 parts of urethane acrylate having a refractive index nD of 1.482 ("UA-160TM” manufactured by Shin-Nakamura Chemical Co., Ltd.), and as component (B), acryloyl morpholine having a refractive index nD of 1.509 ( KJ Chemicals "ACMO" 20.2 parts, bis (hydroxymethyl) tricyclo [5.2.1.0 2,6 ] decane diacrylate having a refractive index nD of 1.503 (manufactured by Shin-Nakamura Chemical Co., Ltd.
  • A- DCP 11.1 parts, as component (C1), EO modified 2- (o-phenylphenoxy) ethyl (meth) acrylate (refractive index nD 1.576) (" A-LEN-10 "manufactured by Shin-Nakamura Chemical Co., Ltd.) 15.2 parts, as component (C2), 1 part of pentaerythritol tetrakis ( ⁇ -thiopropionate) (“PETP” manufactured by Sakai Chemical Co., Ltd.) having a refractive index nD of 1.529, component ( ) As 2,4,6-trimethylbenzoyl diphenylphosphine oxide (BASF Corp. of "IRGACURE TPO”) 0.1 parts, mixed with stirring for 1 hour at room temperature, to obtain a photocurable composition.
  • component (C1) EO modified 2- (o-phenylphenoxy) ethyl (meth) acrylate (refractive index nD 1.576)
  • component (C2) 1 part
  • Example 4 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 3 except that each component in Example 3 was changed to parts (content) shown in Table 1 below.
  • Example 5 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 3 except that each component in Example 3 was changed to parts (content) shown in Table 1 below.
  • Example 6 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 5 except that the production lot of the component (B) was changed in Example 5.
  • Comparative Example 1 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 1 except that the EO-modified bisphenol A type di (meth) acrylate of component (C1) was not used.
  • Comparative Example 2 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Example 3 except that pentaerythritol tetrakis ( ⁇ -thiopropionate) as the component (C2) was not used in Example 3.
  • Comparative Example 3 A photocurable composition, a laminate and a cured product were obtained in the same manner as in Comparative Example 2 except that the production lot of the urethane acrylate of Component (A) was changed in Comparative Example 2.
  • the photocurable compositions obtained from the above Examples and Comparative Examples show the components of the components (A) to (D), the refractive index nD and the content thereof, and the photocurable compositions
  • the results of viscosity and moisture content are shown in Table 1 below.
  • the photocurable compositions of Examples 1 to 6 use two types of refractive index adjusting monomers as the component (C), compared with the photocurable compositions of Comparative Examples 1 to 3, the cured products are different. It is understood that the refractive index nD substantially matches the refractive index nD of the substrate, and as a result, the result of the optical inspection of the laminate is also good. Furthermore, when the cured products of Examples 3 to 5 are compared with Comparative Example 2, it is understood that the component (C2) is effective for matching the refractive index of the cured product and the substrate. Moreover, it turns out that a component (C2) contributes to the refractive index precision of hardened
  • the photocurable composition for photoimprints of the present invention has a low viscosity and a low viscosity, so it is excellent in the transferability of a fine shape and the adhesion with a substrate, and the resulting cured product has Excellent in refractive index matching and refractive index accuracy.
  • It is useful as various film-forming materials such as photoimprint materials, lens-forming materials, coatings, adhesives, sealants, adhesives, paints, inks, coating binders and the like.
  • it is suitably used as a lens forming agent for forming microlenses such as lenticular lenses, Fresnel lenses, and microlens arrays on a substrate.
  • a laminate of a substrate / cured product produced using the photocurable composition is a light guide plate for display, an optical sheet or film, an imaging sensor, an optical communication, a solar cell, an illumination, It is useful as an optical component for memory etc.

Abstract

低粘度であり、基材との密着性に優れる光インプリント用の光硬化性組成物であって、特に、基材との屈折率整合性と、屈折率精度に優れた硬化物を形成することができる光硬化性組成物として、下記成分(A)、(B)、(C)、及び(D)を含有する光硬化性組成物、を提供する。 (A)ウレタン(メタ)アクリレート。 (B)成分(A)を除く、(メタ)アクリレート系化合物。 (C)成分(A)及び(B)を除く、少なくとも2種類の屈折率調整用モノマー。 (D)光重合開始剤。

Description

光硬化性組成物、積層体及びその製法、ディスプレイ用導光板
 本発明は、光インプリント用の光硬化性組成物に関し、更に詳しくは、低粘度であり、かつ基材との密着性に優れ、得られる硬化物は基材との屈折率整合性と、屈折率精度に優れる光硬化性組成物である、更には、該硬化物及び基材よりなる積層体とその製法、並びにそれを備えたディスプレイ用導光板に関する。
 近年、ディスプレイ、イメージングセンサー、光通信、太陽電池、照明等の光関連産業の進展と共に、光インプリント法により製造される各種光学部品が注目されている。かかる光インプリント法とは、ガラス等の透明基材と微細な表面形状を有する成形型の間隙で光硬化性組成物を光硬化し、成形型を剥離(脱型)することにより、透明基材/硬化物よりなる積層体を得る手法である。
 かかる手法により、硬化物表面には、成形型の微細な表面凹凸形状が転写される。微細な表面凹凸形状は、周期的な凹凸を有するレンチキュラー形状や、曲率を有するマイクロレンズ形状等、多様であり、サイズもナノメートルサイズからミリメートルサイズまで多様である。一般的に、ガラス表面を、切削等の機械的な手法で微細加工するのは困難であり、またウェット/ドライエッチングで微細加工する手法は、高価かつ大面積化や量産化が困難である。しかし、光インプリント法を用いれば、精度良く、かつ生産性良く、微細加工が施された光学部品を製造することができる。なお、微細形状がナノメートルサイズの場合は、光ナノインプリントと呼ばれる。
 光インプリントに使用される光硬化性組成物には、透明性はもとより、微細形状の転写性を上げるため低粘度で、基材との密着性、成形型からの剥離性等が要望される。更に近年、高度な屈折率調整が要望されており、特に、基材/硬化物との界面反射や内部散乱を低減するため、硬化物の屈折率は、基材の屈折率と一致していることが求められている(これを「屈折率整合性」という)。かかる屈折率整合性としては、例えば、基材が、一般的な光学ガラスであるSCHOTT AG社製のBK7(屈折率1.517)の場合、硬化物にも屈折率1.517が要求される等が挙げられる。
 また更に、硬化物は、原料自体に含まれる重合禁止剤等の残存量のふれ等によって硬化物ロット間での屈折率ふれが発生するが、硬化物には、硬化物ロット間での屈折率差が±0.001以内である屈折率精度が要求される。
 かかる屈折率整合性と屈折率精度を達成するためには、原料となる光硬化性組成物の組成を正確に調整する必要がある。当然のことながら、屈折率は硬化物の硬化度(重合度)にも依存するため、光硬化には充分な配慮が必要となる。
 なお、ここでいう屈折率とは、波長589nmのナトリウム(Na)D線における25℃での屈折率nDである。
 更に、硬化物のアッベ数νDが、基材のアッベ数νDとかけ離れている場合は、波長によって両者の屈折率が乖離するため、基材/硬化物との界面反射が増大する。例えば、基材が、一般的な光学ガラスであるBK7(アッベ数νD:64)の場合、緑色のNaD線(589nm)において硬化物の屈折率nDが一致していても、硬化物のアッベ数νDが40未満では、青色のNaF線(486nm)での屈折率nFや赤色のNaC線(656nm)での屈折率nCが一致せず、青色や赤色の界面反射が増大する傾向にある。かかる現象は、一般的に、高屈折率の樹脂(硬化物)ほどアッベ数νDが低下するため、発生しやすくなる。また、当然のことながら、低アッベ数の硬化物は色分散が大きくなるため、導光板の場合、光学設計上は回避することが好ましい。
 一方、ディスプレイ用の導光板には、ガラスが汎用されている。このようなガラスとしては、上述したBK7(屈折率nD 1.517)をはじめ、透光性に優れる各種ガラスが使用されており、例えば、いわゆる白板と呼ばれるSCHOTT AG社製のB270(登録商標)(屈折率nD 1.523)、コーニング社製のパイレックス(登録商標)(屈折率nD 1.472)等が挙げられる。かかるガラスの屈折率nDは、同じ種類のガラスでも、製造会社やロットによって多少異なっているのが現状である。例えば、上述した白板の場合でも、±0.001程度の差はあるため、光硬化性組成物も実際取り扱う白板に合わせて屈折率nDを調整する必要がある。なお、導光板に使用されるガラスの屈折率nDは、通常、1.45~1.55程度である。
 なぜここまで厳密な屈折率整合性が必要かと言うと、近年のディスプレイ用導光板がエッジライト方式であるためである。かかるエッジライト方式では、例えば近年の大面積テレビの場合、光源からの光が積層体内部を水平方向に1m以上導波することとなる。一方、直下型ライト方式では、光源からの光が積層体内部を厚み方向に導波するため、導波距離(光路長)は、たかだか数mm~数cm程度である。直下型ライト方式では、基材と硬化物の屈折率が0.001異なっていても、界面反射は0.1%も生じないが、エッジライト方式では、長い光路長全域で界面反射が生じるため、屈折率のずれは無視できないこととなる。すなわち、積層体内部は、光学的に均一に近いことが要求される。
 このような状況下、光インプリント用光硬化性組成物として、屈折率精度に優れるウレタン(メタ)アクリレート系化合物が提案されている(例えば、特許文献1)。また、転写精度に優れた光硬化性組成物が提案されている(例えば、特許文献2)。また、特定の(メタ)アクリレート系モノマーと特定のウレタン(メタ)アクリレートを含有する高屈折率な光硬化性組成物が提案されている(例えば、特許文献3)。
特開2008-297293号公報 特開2013-36027号公報 特開2017-82115号公報
 しかしながら、特許文献1に開示されているウレタン(メタ)アクリレート系化合物は、確かに単体では屈折率精度に優れるものの、他の成分(光重合開始剤を除く)を配合して光硬化性組成物とした場合には屈折率精度が低下し、硬化物の屈折率を各種基材の屈折率に一致させることが困難となる。更に、高屈折率すなわち低アッベ数であるため、基材/硬化物の界面反射が増大する傾向にある。
 特許文献2に開示されている光硬化性組成物は、転写精度は確保されているものの、屈折率精度を確保できていない。
 特許文献3に開示されている光硬化性組成物は、屈折率を小数点以下3桁目まで保証することが困難である。
 本発明ではこのような背景下において、低粘度であり、基材との密着性に優れる光インプリント用の光硬化性組成物であって、特に、基材との屈折率整合性と、屈折率精度に優れた硬化物を形成することができる光硬化性組成物を提供する。更に、該光硬化性組成物を用いた積層体及びその製法、該積層体を備えたディスプレイ用導光板を提供する。
 本発明者等が鋭意検討した結果、下記成分(A)、(B)、(C)、及び(D)よりなる光硬化性組成物が、上記課題を解決することを見出した。
 (A)ウレタン(メタ)アクリレート。
 (B)成分(A)を除く、(メタ)アクリレート系化合物。
 (C)成分(A)及び(B)を除く、少なくとも2種類の屈折率調整用モノマー。
 (D)光重合開始剤。
 すなわち、本発明は、以下の[1]~[12]を要旨とする。
[1] 光インプリント用の光硬化性組成物であって、下記成分(A)、(B)、(C)、及び(D)を含有することを特徴とする光硬化性組成物。
 (A)ウレタン(メタ)アクリレート。
 (B)成分(A)を除く、(メタ)アクリレート系化合物。
 (C)成分(A)及び(B)を除く、少なくとも2種類の屈折率調整用モノマー。
 (D)光重合開始剤。
[2] 上記成分(A)の屈折率nD、及び成分(B)の屈折率nDが、1.43~1.52であることを特徴とする[1]記載の光硬化性組成物。
[3] 上記成分(C)が、屈折率nD 1.52~1.7のラジカル重合系モノマー(C1)と、屈折率nD 1.52~1.7のチオール・エン付加重合系モノマー(C2)を含有することを特徴とする[1]または[2]に記載の光硬化性組成物。
[4] 上記ラジカル重合系モノマー(C1)が芳香族系(メタ)アクリレート系化合物であり、上記チオール・エン付加重合系モノマー(C2)が多官能チオール系化合物であることを特徴とする[3]記載の光硬化性組成物。
[5] 光硬化性組成物に対する上記成分(A)、(B)及び(C)の含有量が、下記範囲であることを特徴とする[1]~[4]のいずれかに記載の光硬化性組成物。
 成分(A)10~60重量%。
 成分(B)20~80重量%。
 成分(C)5~20重量%。
[6] 25℃における粘度が、10~3000mPa・sであることを特徴とする[1]~[5]のいずれかに記載の光硬化性組成物。
[7] 水分率が、1重量%以下であることを特徴とする[1]~[6]のいずれかに記載の光硬化性組成物。
[8] 光硬化後の硬化物の屈折率nDが、1.45~1.55であることを特徴とする[1]~[7]のいずれかに記載の光硬化性組成物。
[9] 光硬化後の硬化物のアッベ数νDが、40以上であることを特徴とする[1]~[8]のいずれかに記載の光硬化性組成物。
[10] [1]~[9]のいずれかに記載の光硬化性組成物を光硬化してなる硬化物と、ガラス板とを備える積層体。
[11] 下記工程(1)~(4)を有する光インプリント法で製造することを特徴とする積層体の製法。
 工程(1)[1]~[9]のいずれかに記載の光硬化性組成物を、表面に凹凸形状が形成された成形型に塗布する工程。
 工程(2)上記光硬化性組成物を、ガラス板で覆う工程。
 工程(3)光照射により、上記光硬化性組成物を光硬化してガラス板/硬化物よりなる積層体を得る工程。
 工程(4)上記ガラス板/硬化物よりなる積層体を、成形型から剥離する工程。
[12] [10]記載の積層体を備えることを特徴とするディスプレイ用導光板。
 本発明の光インプリント用光硬化性組成物は、低粘度であり、基材との密着性に優れ、得られる硬化物は、基材との屈折率整合性と、屈折率精度に優れる。
 以下に、本発明を詳細に説明するが、これらは望ましい実施態様の一例を示すものである。
 なお、本発明において、「(メタ)アクリル」とはアクリルあるいはメタクリルを、「(メタ)アクリロイル」とはアクリロイルあるいはメタクリロイルを、「(メタ)アクリレート」とはアクリレートあるいはメタクリレートをそれぞれ意味するものである。
 また、本発明において、「屈折率」とは、特に断りのない限り、波長589nmのNaD線における25℃での屈折率nDを意味するものである。
 本発明の光硬化性組成物は、下記成分(A)、(B)、(C)、及び(D)を含有するものであり、より好ましくは成分(A)、(B)、(C)、及び(D)のみからなる。
 (A)ウレタン(メタ)アクリレート。
 (B)成分(A)を除く、(メタ)アクリレート系化合物。
 (C)成分(A)及び(B)を除く、少なくとも2種類の屈折率調整用モノマー。
 (D)光重合開始剤。
 かかる光硬化性組成物を構成する各成分について、以下、順次説明する。
<成分(A)>
 本発明において、成分(A)として使用されるウレタン(メタ)アクリレートは、速硬化性に優れ、基材との密着性を確保するために有効な成分である。かかるウレタン(メタ)アクリレートとしては、ウレタン骨格を有する(メタ)アクリレートであれば特に制限はなく、公知の化合物を使用することできるが、例えば、ポリオール系化合物、ポリイソシアネート系化合物、及び水酸基含有(メタ)アクリレート系化合物を、反応させることにより得られるものである。
 上記ポリオール系化合物としては、例えば、脂肪族ポリオール、脂環族ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。
 これらの中では、基材と硬化物との密着性の点で、ポリエーテル系ポリオール、ポリエステル系ポリオールが好ましい。
 上記ポリイソシアネート系化合物の具体例としては、例えば、イソホロンジイソシアネート、ビス(イソシアナトメチル)トリシクロ[5.2.1.02,6]デカン、ノルボルナンイソシアナトメチル、1,3-ジイソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ジイソシアナトシクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(4-イソシアナトシクロヘキシル)メタン、2,2-ビス(4-イソシアナトシクロヘキシル)プロパン、水添化キシリレンジイソシアネート、水添化ジフェニルメタンジイソシアネート等が挙げられる。中でも、低吸水化の点で、イソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネートが好ましい。
 上記水酸基含有(メタ)アクリレート系化合物の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。これらの中では、2-ヒドロキシエチル(メタ)アクリレートとペンタエリスリトールトリ(メタ)アクリレートが好ましい。
 ウレタン(メタ)アクリレートの製造法としては、通常、上記ポリオール系化合物、ポリイソシアネート系化合物、及び水酸基含有(メタ)アクリレート系化合物を、反応器に一括または別々に仕込み反応させる方法が用いられるが、ポリオール系化合物とポリイソシアネート系化合物とを予め反応させて得られる反応生成物に、水酸基含有(メタ)アクリレート系化合物を反応させる方法が、反応の安定性や副生成物の低減等の点で有用である。
 上記成分(A)であるウレタン(メタ)アクリレートの市販されている例としては、例えば、新中村化学工業社製「UA-160TM」、「UA-4200」等が挙げられる。
 そして、上記ウレタン(メタ)アクリレートの屈折率nDとしては、1.43~1.52であることが好ましく、より好ましくは、1.45~1.50、更に好ましくは、1.47~1.49である。かかる屈折率nDが、下限値未満では、基材/硬化物の屈折率整合が困難となる傾向にあり、逆に、上限値を超えると、硬化物のアッベ数が低下し、基材/硬化物の界面反射が増大する傾向にある。
 更に、かかるウレタン(メタ)アクリレートは、化学構造の中に脂環構造を含有することが、光硬化性組成物、及び硬化物の低吸水化の点で好ましい。より好ましくは、更なる低吸水化の点で、脂環構造が2個以上、特に好ましくは、硬化物の耐光性の点で、芳香環を含有しないことである。
 なお、上記成分(A)のウレタン(メタ)アクリレートは、単独でもしくは2種以上併せて用いることができる。
<成分(B)>
 本発明において、成分(B)として使用される上記成分(A)以外の(メタ)アクリレート系化合物は、光硬化性組成物の低粘度化に有効であり、基材との密着性や成形型との剥離性を調整するための成分である。
 かかる上記成分(A)以外の(メタ)アクリレート系化合物(以下、「(メタ)アクリレート系化合物」と略すことがある)としては、特に制限はなく、単官能(メタ)アクリレートや多官能(メタ)アクリレート等の公知の化合物を使用することできる。
 上記単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート等の脂肪族単官能(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環族単官能(メタ)アクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド等の水酸基含有単官能(メタ)アクリレート;
 グリシジル(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アクリロイルモルフォリン等のエーテル基含有(メタ)アクリレート;
 2-(メタ)アクリロイルオキシエチルアシッドホスフェート等のリン酸基含有(メタ)アクリレート等が挙げられる。
 上記多官能(メタ)アクリレートとしてば、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の脂肪族2官能(メタ)アクリレート;
 グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等の水酸基含有2官能(メタ)アクリレート;
 ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等のエーテル基含有2官能(メタ)アクリレート;
 ビス(ヒドロキシ)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート、ビス(ヒドロキシ)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、ビス(ヒドロキシメチル)ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカン=ジ(メタ)アクリレート、2,2-ビス[4-(β-(メタ)アクリロイルオキシエトキシ)シクロヘキシル]プロパン、1,3-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,3-ビス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン、1,4-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,4-ビス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン等の脂環族2官能(メタ)アクリレート;
 2-アクリロイルオキシエチルアシッドホスフェートジエステル等のリン酸基含有2官能(メタ)アクリレート;
 アリル(メタ)アクリレート等の2官能(メタ)アクリレート等が挙げられる。
 また、上記多官能(メタ)アクリレートとしては、上記2官能(メタ)アクリレート以外にも、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、1,3,5-トリス((メタ)アクリロイルオキシメチル)シクロヘキサン、1,3,5-トリス((メタ)アクリロイルオキシエチルオキシメチル)シクロヘキサン等の3官能以上の(メタ)アクリレートが挙げられる。
 なお、上記成分(B)の(メタ)アクリレート系化合物は単独でもしくは2種以上併せて用いることができる。
 これらの中でも、基材との密着性、及び成形型からの剥離性の点で、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルフォリン等のエーテル基含有単官能(メタ)アクリレート、ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジ(メタ)アクリレート等の脂環族2官能(メタ)アクリレート、及びこれらの混合物が好ましく、より好ましくは基材との密着性と成形型からの剥離性のバランスが取れる点で、これらの混合物である。
 そして、上記(メタ)アクリレート系化合物の屈折率nDとしては、1.43~1.52であることが好ましく、より好ましくは、1.45~1.515、更に好ましくは、1.47~1.51である。かかる屈折率nDが、下限値未満では、基材/硬化物の屈折率整合が困難となる傾向にあり、逆に、上限値を超えると、硬化物のアッベ数が低下し、基材/硬化物の界面反射が増大する傾向にある。
<成分(C)>
 本発明の特徴は、成分(C)として、少なくとも2種類の屈折率調整用モノマー(成分(A)及び(B)を除く)を配合する点である。上述した成分(A)や成分(B)は、透明性、粘度、速硬化性、吸水率等の諸性能を確保するために、使用される化合物はもとより、配合割合の変更すら困難な場合が多く、これらの成分だけで屈折率nDを基材に合わせることは不可能に近い。かかる場合に、屈折率nDの異なる2種以上の屈折率調整用モノマーが必要になる。更に、例えば、ディスプレイ用の導光板のように、屈折率精度が±0.001以内を求められる場合は、1種類目の屈折率調整用モノマーによって、小数点以下3桁目の屈折率nDを調整し、2種類目の屈折率調整用モノマーによって、4桁目を調整する必要が生じる。かかる手法により、成分(C)以外の屈折率nDが、ロットふれや配合ふれ等の理由で多少変動しても、光硬化性組成物全体の屈折率nDを正確に調整することが可能になる。その結果、硬化物の屈折率nDが安定し、積層体の製造歩留まりを向上させることができる。
 本発明において、成分(C)は、通常、成分(A)及び(B)より屈折率が大きいものであり、基材と硬化物の屈折率整合性の点で、屈折率nD 1.52~1.7のラジカル重合系モノマー(C1)と、屈折率nD 1.52~1.7のチオール・エン付加重合系モノマー(C2)を含有することが好ましく、より好ましくは成分(C1)及び成分(C2)のみからなる。
 更に好ましくは、硬化物の屈折率精度の点で、上記ラジカル重合系モノマー(C1)が芳香族系(メタ)アクリレート系化合物であり、上記チオール・エン付加重合系モノマー(C2)が多官能チオール系化合物である。なお、光硬化の重合系は多様であり、屈折率調整用モノマーとしては、上記ラジカル重合系モノマー(C1)やチオール・エン付加重合系モノマー(C2)以外に、カチオン重合系モノマー、アニオン重合系モノマー、複合重合系モノマー等が挙げられる。
 本発明において、上記ラジカル重合系モノマー(C1)とチオール・エン付加重合系モノマー(C2)という異なる種類のモノマーを好適に用いる理由は、ラジカル重合系モノマー(C1)が、硬化度(重合度)によって、硬化物の屈折率nDが変動しやすいのに比べて、チオール・エン付加重合系モノマー(C2)は、変動しにくいためである。すなわち、光硬化の際に、光量等の光照射条件がふれても、屈折率精度を維持することができる。更に、上記ラジカル重合系モノマー(C1)には、通常、保存安定性の確保のために重合禁止剤が配合されているが、かかる重合禁止剤はロット毎に残存量が異なるため、光硬化の際に重合挙動が変動する要因になる。すなわち、硬化度(重合度)にムラが生じやすく、その結果として硬化物の屈折率nDが変動しやすい。一方、多官能チオール等のチオール・エン付加重合系モノマー(C2)には、通常、重合禁止剤は配合されていないため、硬化物の屈折率変動を招かない利点がある。
 本発明において、上記ラジカル重合系モノマー(C1)として好適に使用されるモノマーは、例えば、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エチレンオキサイド(EO)変性フェニル(メタ)アクリレート、プロピレンオキサイド(PO)変性フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、EO変性ベンジル(メタ)アクリレート、PO変性ベンジル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(o-フェニルフェノキシ)メチル(メタ)アクリレート、2-(m-フェニルフェノキシ)メチル(メタ)アクリレート、2-(p-フェニルフェノキシ)メチル(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、EO変性2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、PO変性2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、2-(m-フェニルフェノキシ)エチル(メタ)アクリレート、EO変性2-(m-フェニルフェノキシ)エチル(メタ)アクリレート、PO変性2-(m-フェニルフェノキシ)エチル(メタ)アクリレート、2-(p-フェニルフェノキシ)エチル(メタ)アクリレート、EO変性2-(p-フェニルフェノキシ)エチル(メタ)アクリレート、PO変性2-(p-フェニルフェノキシ)エチル(メタ)アクリレート、2-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、EO変性2-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、PO変性2-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-(m-フェニルフェノキシ)プロピル(メタ)アクリレート、EO変性2-(m-フェニルフェノキシ)プロピル(メタ)アクリレート、PO変性2-(m-フェニルフェノキシ)プロピル(メタ)アクリレート、2-(p-フェニルフェノキシ)プロピル(メタ)アクリレート、EO変性2-(p-フェニルフェノキシ)プロピル(メタ)アクリレート、PO変性2-(p-フェニルフェノキシ)プロピル(メタ)アクリレート、2-フェニル-2'-(β-(メタ)アクリロイルオキシメトキシフェニル)プロパン、2-フェニル-2'-(β-(メタ)アクリロイルオキシエトキシフェニル)プロパン、2-フェニル-2'-(β-(メタ)アクリロイルオキシプロポキシフェニル)プロパン等の単官能(メタ)アクリレート、EO変性ビスフェノールA型ジ(メタ)アクリレート、PO変性ビスフェノールA型ジ(メタ)アクリレート、EO変性ビスフェノールF型ジ(メタ)アクリレート、PO変性ビスフェノールF型ジ(メタ)アクリレート、EO変性ビスフェノールS型ジ(メタ)アクリレート、PO変性ビスフェノールS型ジ(メタ)アクリレート等の多官能(メタ)アクリレートが挙げられる。これら成分(C1)の化合物は、単独でもしくは2種以上併せて用いることができる。
 これらの中では、基材と硬化物の密着性の点で、EO変性2-(o-フェニルフェノキシ)エチル(メタ)アクリレートとEO変性ビスフェノールA型ジ(メタ)アクリレートが好ましく、より好ましくは、光硬化性組成物の低粘度化の点で、EO変性度が0.1~3のEO変性2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、EO変性度が1~10のEO変性ビスフェノールA型ジ(メタ)アクリレートであり、更に好ましくは、基材と硬化物の屈折率整合性の点で、EO変性度が2~5のEO変性ビスフェノールA型ジ(メタ)アクリレートである。
 また、上記チオール・エン付加重合系モノマー(C2)として好適に使用されるモノマーとしては、例えば、ベンゼンジチオール、ベンゼントリチオール、キシリレンジチオール、トリレントリチオール、ヘキサンジチオール、オクタンジチオール、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ジエチレングリコールビス(β-チオプロピオネート)、ジエチレングリコールビス(チオグリコレート)、トリエチレングリコールビス(β-チオプロピオネート)、トリエチレングリコールビス(チオグリコレート)、ジペンタエリスリトールヘキサキス(β-チオプロピオネート)、ジペンタエリスリトールヘキサキス(チオグリコレート)、トリス[2-(β-チオプロピオニルオキシ)エチル]トリイソシアヌレート、トリス(2-チオグリコニルオキシエチル)トリイソシアヌレート、トリス[2-(β-チオプロピオニルオキシエトキシ)エチル]トリイソシアヌレート、トリス(2-チオグリコニルオキシエトキシエチル)トリイソシアヌレート、トリス[3-(β-チオプロピオニルオキシ)プロピル]トリイソシアヌレート、トリス(3-チオグリコニルオキシプロピル)トリイソシアヌレート等の多官能チオールが挙げられる。これら成分(C2)の化合物は、単独でもしくは2種以上併せて用いることができる。
 これらの中では、硬化物の耐光性の点で、ヘキサンジチオール、オクタンジチオール、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ジエチレングリコールビス(β-チオプロピオネート)、ジエチレングリコールビス(チオグリコレート)、トリエチレングリコールビス(β-チオプロピオネート)、トリエチレングリコールビス(チオグリコレート)、ジペンタエリスリトールヘキサキス(β-チオプロピオネート)、ジペンタエリスリトールヘキサキス(チオグリコレート)等の脂肪族系多官能チオールが好ましく、より好ましくは、硬化物の耐熱性の点で、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)、トリメチロールプロパントリス(β-チオプロピオネート)、トリメチロールプロパントリス(チオグリコレート)、ジエチレングリコールビス(β-チオプロピオネート)、ジエチレングリコールビス(チオグリコレート)、トリエチレングリコールビス(β-チオプロピオネート)、トリエチレングリコールビス(チオグリコレート)、ジペンタエリスリトールヘキサキス(β-チオプロピオネート)、ジペンタエリスリトールヘキサキス(チオグリコレート)等の3官能以上のチオールであり、更に好ましくは、光硬化性組成物の硬化性の点で、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)である。
 また、屈折率nD 1.52~1.7のラジカル重合系モノマー(C1)と、屈折率nD 1.52~1.7のチオール・エン付加重合系モノマー(C2)の好ましい屈折率nDとしては、基材、成分(A)、及び成分(B)の屈折率nDにより異なるが、例えば、ディスプレイ用導光板の場合、上述した通り、使用されるガラスの屈折率nDが、通常、1.45~1.55程度であるため、両屈折率調整用モノマーの屈折率nDは、いずれも1.52~1.65が好ましく、1.525~1.6がより好ましく、1.527~1.58が更に好ましい。両屈折率調整用モノマーの屈折率nDが、過度に低いと、屈折率調整用モノマーを多量に使用しなければならないため、硬化物の諸特性がバランスを失う傾向にあり、逆に、過度に高いと、屈折率調整用モノマーの配合ふれにより、光硬化性組成物全体の屈折率精度が低下する傾向にある。
 上記ラジカル重合系モノマー(C1)と、上記チオール・エン付加重合系モノマー(C2)の配合割合(C1:C2)は、重量比で、成分(A)及び成分(B)の化学構造や配合量により異なるが、99:1~50:50が好ましく、より好ましくは97:3~60:40、更に好ましくは95:5~70:30である。
 成分(C1)の割合が少なすぎると、基材/硬化物の屈折率整合性が低下する傾向にあり、逆に多すぎると、硬化物の屈折率精度が低下する傾向にある。
 本発明における光硬化性組成物中の成分(A)、成分(B)、及び成分(C)の含有量は、それぞれ、10~60重量%(A)、20~80重量%(B)、5~20重量%(C)であることが好ましい。より好ましくは、15~55重量%(A)、25~75重量%(B)、6~17重量%(C)、更に好ましくは、18~52重量%(A)、30~73重量%(B)、7~15重量%(C)である。
 かかる含有量において、成分(A)が少なすぎると、基材と硬化物の密着性が低下する傾向にあり、逆に多すぎると、光硬化性組成物の低粘度化が困難になる傾向にある。また、成分(B)が少なすぎると、微細形状の転写性や成形型からの剥離性が低下する傾向にあり、逆に多すぎると、速硬化性が低下する傾向にある。また、成分(C)が少なすぎると、屈折率整合性や屈折率精度が低下する傾向にあり、逆に多すぎると、硬化物の吸水率が増大する傾向にある。
 本発明において、成分(D)として使用される光重合開始剤としては、光の作用によりラジカルを発生するものであればよく、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピレンフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、3,3'-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、カンファーキノン、ジベンゾスベロン、2-エチルアンスラキノン、4',4"-ジエチルイソフタロフェノン、3,3',4,4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、α-アシロキシムエステル、メチルフェニルグリオキシレート、9,10-フェナンスレンキノン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン等が挙げられる。これらの中では、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドと1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。これら成分(D)は単独でもしくは2種以上併せて用いることができる。
 成分(D)の含有量は、成分(A)、成分(B)、及び成分(C)の合計100重量部に対して、0.01~5重量部であることが好ましく、より好ましくは0.03~2重量部、更に好ましくは0.04~1重量部、特に好ましくは0.05~0.5重量部である。かかる含有量が少なすぎると硬化速度が遅くなる傾向があり、多すぎると硬化物の色相が悪化する傾向がある。
 更に、上記光重合開始剤の助剤として、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4'-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4'-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。これらは単独でもしくは2種以上併せて用いることができる。
 本発明の光硬化性組成物には、本発明の効果を損なわない範囲内で、少量(30重量%未満)の共重合成分や、各種添加剤を配合してもよい。添加剤としては、例えば、シランカップリング剤、酸化防止剤、重合禁止剤、黄変防止剤、紫外線吸収剤、フィラー、染料、顔料、油、可塑剤、ワックス類、乾燥剤、分散剤、湿潤剤、乳化剤、ゲル化剤、安定剤、消泡剤、レベリング剤、チクソトロピー性付与剤、難燃剤、充填剤、補強剤、艶消し剤、架橋剤等が挙げられる。これらは単独でもしくは2種以上併せて用いることができる。
 なお、本発明の光硬化性組成物には通常、溶剤は配合されない。
 上記成分(A)、(B)、(C)、及び(D)に、必要に応じて、添加物を加えることにより、本発明の光硬化性組成物が得られる。
 本発明の光硬化性組成物は、25℃における粘度が、10~3000mPa・sであることが好ましい。より好ましくは30~2000mPa・s、更に好ましくは50~2000mPa・sである。かかる粘度が低すぎると、速硬化性が低下する傾向にあり、逆に高すぎると、微細形状の転写性が低下する傾向にある。
 また、本発明の光硬化性組成物及びその硬化物は、屈折率nDの環境依存性をできるだけ排除するために、低吸水性が要求される。低水分率の光硬化性組成物を用いて得られる硬化物もまた低水分率(低吸水性)となる。水の屈折率nDが1.33であることを考慮すると、例えば、光硬化性組成物中の水分率が1重量%を超えると、0.001を超える屈折率変動を引き起こすことから、光硬化性組成物中の水分率が1重量%以下であることが好ましい。より好ましくは0.5重量%以下、更に好ましくは0.2重量%以下である。かかる水分率が高すぎると、前述した通り、硬化物の屈折率精度が低下する傾向にある。なお、通常、水分率の下限値は、0.001重量%である。
 次に、得られた該光硬化性組成物を用いた光インプリント法による積層体の製造方法について説明する。
 本発明の積層体は、例えば、ガラス板を基材とした場合、下記工程(1)~(4)、そして必要に応じて更に工程(5)を加えた工程により製造される。
 工程(1)光硬化性組成物を、表面に微細な凹凸形状が形成された成形型に塗布する工程。
 工程(2)上記光硬化性組成物を、ガラス板で覆う工程。
 工程(3)光照射により、上記光硬化性組成物を光硬化してガラス板/硬化物よりなる積層体を得る工程。
 工程(4)上記ガラス板/硬化物よりなる積層体を、成形型から剥離する工程。
 工程(5)上記積層体を熱処理する工程。
 工程(1)において、塗布法は特に限定されず、ダイコーター、ロールコーター、スクリーン印刷、ディスペンス等公知の手法を用いることができる。成形型としては、金型、ガラス型、樹脂型等を用いることができる。塗布後、レベリングや脱泡を行ってもよい。塗布厚は、一般的に、0.01~1mmである。なお、本発明の光硬化性組成物は光インプリント用であるため、本来、溶剤の添加は不要である。しかし、塗布時に、レベリング性の向上を目的に、少量の溶剤を添加することも可能である。かかる場合、塗布後すみやかに溶剤は乾燥される。
 工程(2)において、ガラス板/硬化物の密着性向上のために、ガラス表面をシランカップリング剤で表面処理することが好ましい。また、気泡の巻き込み回避のために、ガラス側の一部もしくは全面に光硬化性組成物を塗布しておいてもよい。
 工程(3)において、光照射は、波長200~400nmの紫外線を用いて、照射光量0.5~10J/cm2で行うことが好ましい。照射光量のより好ましい範囲は1~5J/cm2、更に好ましくは2~4J/cm2である。照射光量が少なすぎると硬化不足になる傾向にあり、逆に、多すぎると生産性が低下する傾向にある。光照射は、複数回に分割して行ってもよい。紫外線源としては、例えば、メタルハライドランプ、高圧水銀ランプ、無電極水銀ランプ、LEDランプ等が挙げられる。
 工程(4)において、成形型からの剥離時に、成形型や積層体を加熱/冷却してもよい。かかる手法により、スムーズな脱型が可能となる。
 工程(5)は、硬化物の重合完結、応力歪の開放、色相安定化等を目的として、必要に応じてなされる。かかる熱処理を行う場合は、通常、50~200℃で1分~1時間行われる。また、熱処理を、赤外線照射により行ってもよい。
 かくして本発明の積層体が得られる。
 ここで、かかる積層体を構成する硬化物について説明する。
 上記硬化物の屈折率nDとしては、1.45~1.55であることが好ましい。より好ましくは1.46~1.54、更に好ましくは1.47~1.53である。かかる屈折率nDが、下限値未満でも上限値を超えても、ガラス基材との屈折率整合が困難となる傾向にある。
 また、上記硬化物のアッベ数νDは、40以上であることが好ましい。より好ましくは45~70、更に好ましくは50~65である。かかるアッベ数νDが、下限値未満だと、ガラス板/硬化物の界面反射が増大し、ディスプレイの高輝度化が困難となる傾向にある。
 次に、本発明の積層体について説明する。
 本発明の積層体の総厚としては、0.5~20mmが好ましい。より好ましくは1~10mm、更に好ましくは1.3~5mmである。かかる総厚が薄すぎると、剛性が不足する傾向にあり、逆に厚すぎると、ディスプレイの軽量薄型化が困難となる傾向にある。
 硬化物層の厚みは、均一である必要は無いが、0.1~2mmが好ましい。より好ましくは0.2~1mm、更に好ましくは0.3~0.7mmである。硬化物層が薄すぎると、微細形状の転写性が低下する傾向にあり、逆に厚すぎると、生産性が低下する傾向にある。
 本発明の積層体は、ディスプレイの高輝度化の点で、無色透明であることが好ましい。より好ましくは、JIS K 7105:1981における全光線透過率(%)が80%以上、特に好ましくは85%以上、更に好ましくは90%以上である。なお、光線透過率の上限値は、通常、99%である。本発明の積層体は、更なる光線透過率向上のために、片面または両面に、反射防止膜を設けることもできる。
 本発明の積層体は、積層体の一方の端部から光を入射させた時に、反対側の積層体端部より出射する光が、厚み方向において均一であることが好ましい。すなわち、基材端部からの出射光と、硬化物端部からの出射光に、明るさや色の違いが無いことが好ましい。かかる検査により、基材/硬化物の界面反射が無いことや、基材と硬化物の光学性能が一致していることを確認できる。
 本発明の積層体は、基材/硬化物の界面反射が少なく、ディスプレイ用導光板として好適である。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 なお、例中「部」、「%」とあるのは、断りのない限り重量基準を意味する。
 実施例において調製した光硬化性組成物、該光硬化性組成物を光硬化して作製した硬化物、及び積層体についての各特性については、下記に示す測定条件にしたがって測定した。なお、屈折率nD、アッベ数νDについては、基材と、硬化物とを各々測定した。
(1)粘度(mPa・s)
 東京計器社製E型粘度計を用いて、光硬化性組成物を、25℃、回転数5rpm(EMD3°コーン)で測定した。
(2)水分率(%)
 カールフィッシャー法水分測定装置(三菱化学社製、CA-200型)を用いて、23℃における光硬化性組成物中の水分率(%)を測定した。
(3)屈折率nD
 アタゴ社製の「多波長アッベ屈折計DR-M4」を用いて、25℃で、波長589nmのNaD線における、試験片の屈折率nDを測定した。なお、硬化物の屈折率nDは、100mm×100mm×0.5mmの硬化物を作製し、8mm×40mmサイズに切り出して試験片とした。
(4)アッベ数νD
 アタゴ社製の「多波長アッベ屈折計DR-M4」を用いて、25℃で、波長589nmのNaD線、波長486nmのNaF線、及び波長656nmのNaC線における、試験片の3つの屈折率を測定し、かかる3つの屈折率からアッベ数を算出した。なお、硬化物の屈折率は、100mm×100mm×0.5mmの硬化物を作製し、8mm×40mmサイズに切り出して試験片とした。
(5)全光線透過率(%)
 50mm×50mm×0.5mmの硬化物試験片を3枚用意し、日本電色社ヘイズメーター「NDH-2000」で全光線透過率(%)を測定し、3枚の平均値を算出した。
(6)密着性
 JIS K 5400(1990年版)に準じて、ガラス板/硬化物の積層体の密着性をクロスハッチ法により下記の基準で評価した。
  ○・・・硬化物の剥がれ無し
  ×・・・硬化物の剥がれ有り
(7)光学検査
 積層体の一方の端部から、1000 lxの白色光を入射させ、反対側の端部の出射光を、目視により下記の基準で観察した。光路長は400mmである。
  ○・・・基材端部と硬化物端部で、明るさや色が同じである。
  △・・・基材端部と硬化物端部で、明るさや色が少し異なる。
  ×・・・基材端部と硬化物端部で、明るさや色が明らかに異なる。
<実施例1>
 〔基材と成形型の準備〕
 基材として、300mm×400mm×1mmの白板ガラス(SCHOTT AG社製「B270」)を選択した。かかる白板ガラスの屈折率nDは1.5231、アッベ数νDは66であった。かかる白板ガラスの光硬化性組成物と接する面を、シランカップリング剤溶液で処理した。使用したシランカップリング剤溶液は、3-メタクリロキシプロピルトリメトキシシラン(0.1%)/イソプロピルアルコール(99.9%)の組成である。
 成形型として、300mm×400mm×1mmのニッケル製スタンパー(表面クロムメッキ)を用意した。該スタンパーの表面には、表面凹凸形状として幅100μm、深さ100μmの鋸状の溝が、ピッチ100μmで周期的に形成されている。
 また、屈折率nD及びアッベ数νD測定用の硬化物試験片を作製するための準備として、100mm×100mm×1mmの青板ガラス2枚を、剥離用フッ素系シランカップリング剤溶液(ダイキン社製「オプツール」)で表面処理し、試験片作製用ガラスを用意した。
 〔光硬化性組成物Iの調製〕
 成分(A)として、屈折率nD 1.482のウレタンアクリレート(新中村化学工業社製「UA-160TM」)20部、成分(B)として、屈折率nD 1.456のテトラヒドロフルフリルアクリレート(大阪有機化学工業社製「ビススコート#150」)20.5部、屈折率nD 1.509のアクリロイルモルフォリン(KJケミカルズ社製「ACMO」)40部、屈折率nD 1.503のビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジアクリレート(新中村化学工業社製「A-DCP」)11.6部、成分(C1)として、屈折率nD 1.543のEO変性ビスフェノールA型ジアクリレート(新中村化学工業社製「ABE-300」)7部、成分(C2)として、屈折率nD 1.529のペンタエリスリトールテトラキス(β-チオプロピオネート)(淀化学社製「PETP」)0.9部、成分(D)として、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASF社製「IRGACURE TPO」)0.1部を、室温(25℃)で1時間撹拌混合し、光硬化性組成物Iを得た。かかる光硬化性組成物Iの粘度は、80mPa・sであり、水分率は0.2%であった。
 〔積層体、並びに試験片の作製〕
 得られた光硬化性組成物Iを、厚み0.5mmのスペーサが周辺部に設置された上記成形型上に塗布し、上部より表面処理された白板ガラスを被せ、水銀ランプを用いてガラス面側から2J/cm2の紫外線を照射して光硬化を行った。次いで、凹凸形状が形成された硬化物表面から成形型を剥離した。剥離性は良好であった。得られたガラス板/硬化物の積層体を、100℃で1時間熱処理し、積層体Iを得た。硬化物表面の転写精度は良好であった。
 また、上記用意した2枚の試験片作製用ガラスを用いて、得られた光硬化性組成物Iを、厚み0.5mmのスペーサが周辺部に設置された上記試験片作製用ガラス上に塗布し、上部よりもう1枚の試験片作製用ガラスを被せ、水銀ランプを用いて2J/cm2の紫外線を照射して光硬化を行い、厚み0.5mmの屈折率測定用の硬化物Iを得た。
 〔積層体、並びに硬化物の評価〕
 得られた積層体Iのガラス板/硬化物の密着性は良好であり、積層体Iの光学検査を行ったところ、基材端部と硬化物端部で、出射光の明るさや色は同じであり、導光板として優れた性能を有していた。
 また、硬化物Iの屈折率nDは1.5231であり、ガラスの屈折率nDと一致していた。硬化物Iのアッベ数νDは48であり、ガラスのアッベ数νDとの乖離は少なかった。
<実施例2>
 実施例1において、各成分を下記の表1に示す部(含有量)に変更する以外は実施例1と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<実施例3>
 実施例1において、光硬化性組成物の調製を下記内容に変更して光硬化性組成物を得た以外は、実施例1と同様にして、積層体と硬化物を得た。
 〔光硬化性組成物の調製〕
 成分(A)として、屈折率nD 1.482のウレタンアクリレート(新中村化学工業社製「UA-160TM」)52.5部、成分(B)として、屈折率nD 1.509のアクリロイルモルフォリン(KJケミカルズ「ACMO」)20.2部、屈折率nD 1.503のビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]デカン=ジアクリレート(新中村化学工業社製「A-DCP」)11.1部、成分(C1)として、屈折率nD 1.576のEO変性2-(o-フェニルフェノキシ)エチル(メタ)アクリレート(新中村化学工業社製「A―LEN-10」)15.2部、成分(C2)として、屈折率nD 1.529のペンタエリスリトールテトラキス(β-チオプロピオネート)(淀化学社製「PETP」)1部、成分(D)として、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASF社製「IRGACURE TPO」)0.1部を、室温で1時間撹拌混合し、光硬化性組成物を得た。
<実施例4>
 実施例3において、各成分を下記の表1に示す部(含有量)に変更する以外は実施例3と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<実施例5>
 実施例3において、各成分を下記の表1に示す部(含有量)に変更する以外は実施例3と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<実施例6>
 実施例5において、成分(B)の製造ロットを変更する以外は実施例5と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<比較例1>
 実施例1において、成分(C1)のEO変性ビスフェノールA型ジ(メタ)アクリレートを用いない以外は実施例1と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<比較例2>
 実施例3において、成分(C2)のペンタエリスリトールテトラキス(β-チオプロピオネート)を用いない以外は実施例3と同様にして、光硬化性組成物、積層体及び硬化物を得た。
<比較例3>
 比較例2において、成分(A)のウレタンアクリレートの製造ロットを変更する以外は比較例2と同様にして、光硬化性組成物、積層体及び硬化物を得た。
 上記実施例及び比較例より得られた光硬化性組成物について、その構成成分(A)~(D)の各成分、それらの屈折率nD及び含有量を示すと共に、その光硬化性組成物の粘度及び水分率の結果について下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、上記実施例1~6及び比較例1~3の光硬化性組成物を光硬化して得られた硬化物の、屈折率nD、アッベ数νD及び全光線透過率について、基材の屈折率nD及びアッベ数と比較する形で下記表2に示す。これと共に、得られた積層体の密着性及び光学検査の結果を下記表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~6の光硬化性組成物は、成分(C)として2種類の屈折率調整用モノマーを用いているため、比較例1~3の光硬化性組成物に比べて、硬化物の屈折率nDが基材の屈折率nDとほぼ合致しており、その結果、積層体の光学検査の結果も良好であることがわかる。
 更に、実施例3~5の硬化物と比較例2とを比較すると、成分(C2)が硬化物と基材の屈折率整合に有効であることがわかる。また、実施例6や比較例3の結果から、成分(C2)が硬化物の屈折率精度に寄与することがわかる。
 また、このように基材と硬化物との屈折率整合性と、屈折率精度に優れる積層体を用いることで、得られるディスプレイ用導光板も界面反射が少なく光学特性に優れるものであった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の光インプリント用光硬化性組成物は、低粘度であり、低粘度であることから微細形状の転写性、基材との密着性に優れ、得られる硬化物は、基材との屈折率整合性と、屈折率精度に優れる。光インプリント材料、レンズ形成材料、コーティング剤、接着剤、封止剤、粘着剤、塗料、インク、コーティングバインダー等、各種の被膜形成材料として有用である。特に、基材上に、レンチキュラーレンズ、フレネルレンズ、マイクロレンズアレイ等の微小レンズを形成するレンズ形成剤としても好適に使用される。また、該光硬化性組成物を用いて製造される基材/硬化物の積層体は、ディスプレイ用の導光板、光学シートやフィルム、イメージングセンサー用、光通信用、太陽電池用、照明用、メモリー用等の光学部品として有用である。

Claims (12)

  1.  光インプリント用の光硬化性組成物であって、下記成分(A)、(B)、(C)、及び(D)を含有することを特徴とする光硬化性組成物。
     (A)ウレタン(メタ)アクリレート。
     (B)成分(A)を除く、(メタ)アクリレート系化合物。
     (C)成分(A)及び(B)を除く、少なくとも2種類の屈折率調整用モノマー。
     (D)光重合開始剤。
  2.  上記成分(A)の屈折率nD、及び成分(B)の屈折率nDが、1.43~1.52であることを特徴とする請求項1記載の光硬化性組成物。
  3.  上記成分(C)が、屈折率nD 1.52~1.7のラジカル重合系モノマー(C1)と、屈折率nD 1.52~1.7のチオール・エン付加重合系モノマー(C2)を含有することを特徴とする請求項1または2に記載の光硬化性組成物。
  4.  上記ラジカル重合系モノマー(C1)が芳香族系(メタ)アクリレート系化合物であり、上記チオール・エン付加重合系モノマー(C2)が多官能チオール系化合物であることを特徴とする請求項3記載の光硬化性組成物。
  5.  光硬化性組成物に対する上記成分(A)、(B)及び(C)の含有量が、下記範囲であることを特徴とする請求項1~4のいずれか一項に記載の光硬化性組成物。
     成分(A)10~60重量%。
     成分(B)20~80重量%。
     成分(C)5~20重量%。
  6.  25℃における粘度が、10~3000mPa・sであることを特徴とする請求項1~5のいずれか一項に記載の光硬化性組成物。
  7.  水分率が、1重量%以下であることを特徴とする請求項1~6のいずれか一項に記載の光硬化性組成物。
  8.  光硬化後の硬化物の屈折率nDが、1.45~1.55であることを特徴とする請求項1~7のいずれか一項に記載の光硬化性組成物。
  9.  光硬化後の硬化物のアッベ数νDが、40以上であることを特徴とする請求項1~8のいずれか一項に記載の光硬化性組成物。
  10.  請求項1~9のいずれか一項に記載の光硬化性組成物を光硬化してなる硬化物と、ガラス板とを備える積層体。
  11.  下記工程(1)~(4)を有する光インプリント法で製造することを特徴とする積層体の製法。
     工程(1)請求項1~9のいずれか一項に記載の光硬化性組成物を、表面に凹凸形状が形成された成形型に塗布する工程。
     工程(2)上記光硬化性組成物を、ガラス板で覆う工程。
     工程(3)光照射により、上記光硬化性組成物を光硬化してガラス板/硬化物よりなる積層体を得る工程。
     工程(4)上記ガラス板/硬化物よりなる積層体を、成形型から剥離する工程。
  12.  請求項10記載の積層体を備えることを特徴とするディスプレイ用導光板。
PCT/JP2018/036644 2017-10-13 2018-10-01 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板 WO2019073836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552013A JP7248429B2 (ja) 2017-10-13 2018-10-01 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017199742 2017-10-13
JP2017-199742 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019073836A1 true WO2019073836A1 (ja) 2019-04-18

Family

ID=66100774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036644 WO2019073836A1 (ja) 2017-10-13 2018-10-01 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板

Country Status (2)

Country Link
JP (1) JP7248429B2 (ja)
WO (1) WO2019073836A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3907246A1 (en) * 2020-05-07 2021-11-10 ThreeBond Co., Ltd. Photocurable resin composition, cured product, and laminate
WO2023204257A1 (ja) * 2022-04-20 2023-10-26 東洋鋼鈑株式会社 活性エネルギー線硬化型樹脂組成物、硬化物、および積層体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087306A (ja) * 1983-09-22 1985-05-17 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン 光学接続方法
JPH05306146A (ja) * 1992-04-24 1993-11-19 Borden Inc 耐有機溶剤性および耐水性があり、熱、酸化および加水分解に安定な光ファイバー用放射線硬化可能なコーティング、該コーティングで被覆された光ファイバーならびに該光ファイバーの製造方法
JP2000297246A (ja) * 1999-04-14 2000-10-24 Mitsubishi Rayon Co Ltd 光学シート用活性エネルギー線硬化性組成物及び光学シート
JP2008242190A (ja) * 2007-03-28 2008-10-09 Toppan Printing Co Ltd カラーフィルタ基板およびその製造方法
JP2009048184A (ja) * 2007-07-23 2009-03-05 Hitachi Chem Co Ltd 積層型光学部材用光硬化型樹脂組成物、及びこれを用いてなる積層型光学部材と視野角拡大フィルム
JP2011157543A (ja) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化性組成物及びその用途
JP2011187824A (ja) * 2010-03-10 2011-09-22 Fujifilm Corp 微細パターン製造方法、微細パターン付き基板、微細パターン付き基板を含む光源装置および画像表示装置
JP2014053068A (ja) * 2013-10-11 2014-03-20 Hitachi Maxell Ltd 光ディスク装置
JP2016071132A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、反射防止フィルムの製造方法、反射防止フィルムと清掃用布を含むキット
JP2017082115A (ja) * 2015-10-29 2017-05-18 日本合成化学工業株式会社 光硬化性組成物およびそれを用いた積層体、並びに導光板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073025A (ja) * 1993-06-18 1995-01-06 Tokuyama Corp 光重合性組成物
JPH08259648A (ja) * 1995-03-27 1996-10-08 Nippon Kayaku Co Ltd レンズ用樹脂組成物及びその硬化物
JP4034098B2 (ja) 2002-03-25 2008-01-16 電気化学工業株式会社 ポリエン−ポリチオール系光硬化性樹脂組成物
JP6340760B2 (ja) 2012-07-30 2018-06-13 三菱ケミカル株式会社 捕水剤、それを用いた有機電子デバイス及び有機elデバイス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087306A (ja) * 1983-09-22 1985-05-17 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン 光学接続方法
JPH05306146A (ja) * 1992-04-24 1993-11-19 Borden Inc 耐有機溶剤性および耐水性があり、熱、酸化および加水分解に安定な光ファイバー用放射線硬化可能なコーティング、該コーティングで被覆された光ファイバーならびに該光ファイバーの製造方法
JP2000297246A (ja) * 1999-04-14 2000-10-24 Mitsubishi Rayon Co Ltd 光学シート用活性エネルギー線硬化性組成物及び光学シート
JP2008242190A (ja) * 2007-03-28 2008-10-09 Toppan Printing Co Ltd カラーフィルタ基板およびその製造方法
JP2009048184A (ja) * 2007-07-23 2009-03-05 Hitachi Chem Co Ltd 積層型光学部材用光硬化型樹脂組成物、及びこれを用いてなる積層型光学部材と視野角拡大フィルム
JP2011157543A (ja) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化性組成物及びその用途
JP2011187824A (ja) * 2010-03-10 2011-09-22 Fujifilm Corp 微細パターン製造方法、微細パターン付き基板、微細パターン付き基板を含む光源装置および画像表示装置
JP2014053068A (ja) * 2013-10-11 2014-03-20 Hitachi Maxell Ltd 光ディスク装置
JP2016071132A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、反射防止フィルムの製造方法、反射防止フィルムと清掃用布を含むキット
JP2017082115A (ja) * 2015-10-29 2017-05-18 日本合成化学工業株式会社 光硬化性組成物およびそれを用いた積層体、並びに導光板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3907246A1 (en) * 2020-05-07 2021-11-10 ThreeBond Co., Ltd. Photocurable resin composition, cured product, and laminate
US11560475B2 (en) 2020-05-07 2023-01-24 Threebond Co., Ltd. Photocurable resin composition, cured product, and laminate
WO2023204257A1 (ja) * 2022-04-20 2023-10-26 東洋鋼鈑株式会社 活性エネルギー線硬化型樹脂組成物、硬化物、および積層体

Also Published As

Publication number Publication date
JPWO2019073836A1 (ja) 2020-09-17
JP7248429B2 (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
EP2275459B1 (en) Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
CN102532426B (zh) 光固化树脂组合物、制造光学膜的方法和光学膜
JP4859998B2 (ja) 活性エネルギー線硬化性組成物及びその用途
KR20170097602A (ko) 무기 미립자 분산액의 제조 방법, 당해 분산액을 포함하는 경화성 조성물, 및 그 경화물
KR102303672B1 (ko) 자외선 경화성 도공 조성물, 하드 코트 필름 및 그의 제조 방법
JP7248429B2 (ja) 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板
KR20190053544A (ko) 광경화성 조성물 및 이의 경화물을 포함하는 코팅층
KR20110016925A (ko) 광학부품 제조용 수지 조성물 및 그 이용
TW202000799A (zh) 光可固化塗料組合物及其應用
US11708498B2 (en) Photocurable resin composition, method for preparing the same, and optical film comprising the same
KR101025721B1 (ko) 무용제형 자외선 경화형 백색잉크 조성물
TW202028794A (zh) 樹脂組合物、光纖及光纖之製造方法
JP7330738B2 (ja) 低光沢な外観を呈する積層体及び表面コーティング剤
JP7072452B2 (ja) 光硬化性組成物
KR101251457B1 (ko) 아크릴 아크릴레이트 화합물 및 이를 포함하는 수지 조성물
JP6651821B2 (ja) ハードコートフィルムの製造方法、ハードコートフィルムを備える偏光板の製造方法、ハードコートフィルムを備える透過型液晶ディスプレイの製造方法
WO2015152339A1 (ja) 樹脂フィルム又はシート形成用光硬化型組成物
JP4761418B2 (ja) 高屈折率(メタ)アクリル酸エステル化合物を含有する樹脂組成物およびその硬化物
CN112080199B (zh) 一种增亮膜用光固化组合物
JP6255860B2 (ja) 硬化性樹脂組成物、硬化物、積層体、ハードコートフィルム及びフィルム積層体
KR101967409B1 (ko) 광경화성 수지 조성물, 이의 제조방법 및 이를 포함하는 광학 필름
JP7279454B2 (ja) 硬化性樹脂組成物、硬化物および光学部材
KR102010904B1 (ko) 광경화성 수지 조성물, 이의 제조방법 및 이를 포함하는 광학 필름
KR101967408B1 (ko) 광경화성 수지 조성물, 이의 제조방법 및 이를 포함하는 광학 필름
KR102010907B1 (ko) 광경화성 수지 조성물, 이의 제조방법 및 이를 포함하는 광학 필름

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865992

Country of ref document: EP

Kind code of ref document: A1