WO2019072079A1 - 车辆控制方法、装置、系统及存储介质 - Google Patents

车辆控制方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2019072079A1
WO2019072079A1 PCT/CN2018/106707 CN2018106707W WO2019072079A1 WO 2019072079 A1 WO2019072079 A1 WO 2019072079A1 CN 2018106707 W CN2018106707 W CN 2018106707W WO 2019072079 A1 WO2019072079 A1 WO 2019072079A1
Authority
WO
WIPO (PCT)
Prior art keywords
behavior information
manipulation behavior
vehicle
stress
manipulation
Prior art date
Application number
PCT/CN2018/106707
Other languages
English (en)
French (fr)
Inventor
向南
张伟
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2019072079A1 publication Critical patent/WO2019072079A1/zh
Priority to US16/589,204 priority Critical patent/US11447146B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/202Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/22Psychological state; Stress level or workload

Definitions

  • the present application relates to the field of self-driving vehicles, and in particular, to a vehicle control method, apparatus, system, and storage medium.
  • the self-driving vehicle senses the surrounding environment of the vehicle through the in-vehicle sensing system, and controls the steering and speed of the vehicle based on the road information obtained by the sensing, other vehicle position information, and obstacle information, thereby enabling the vehicle to safely and reliably on the road. Drive on.
  • the driver can manually switch the operation behavior to withdraw the vehicle from the automatic driving mode, and switch to manual Driving mode.
  • the manual switching operation behavior may be that the brake pedal is depressed or the accelerator pedal is depressed, and the vehicle may detect the driver's depression of the brake pedal and the accelerator pedal through a pressure sensor disposed at the brake pedal or the accelerator pedal. Pressure, when the pressure is greater than the threshold, the vehicle is switched from the automatic driving mode to the manual driving mode.
  • the driver may exercise stress control actions on the vehicle due to stress, such as slamming the steering wheel, stepping on the brake pedal, or stepping on the accelerator pedal.
  • stress such as slamming the steering wheel, stepping on the brake pedal, or stepping on the accelerator pedal.
  • the vehicle misinterprets the information generated by the driver's stress manipulation behavior as the manual switching operation behavior information, thereby switching from the automatic driving mode state to the manual driving mode by the driver.
  • the improper manipulation behavior has a greater chance of causing a traffic safety accident, so the switching method in the related art is not intelligent and the safety performance is relatively good. low.
  • the embodiments of the present application provide a vehicle control method, apparatus, system, and storage medium to solve the problems in the related art.
  • the technical solution is as follows:
  • a vehicle control method including:
  • the first manipulation behavior information is collected by the in-vehicle sensing system, and the manipulation behavior information is information generated by the manipulation behavior of the vehicle;
  • a vehicle control apparatus comprising:
  • An acquiring module configured to acquire first manipulation behavior information by using an in-vehicle sensing system when the vehicle is in an automatic driving mode, where the first manipulation behavior information is information generated by a manipulation behavior of the vehicle;
  • An identification module configured to identify whether the first manipulation behavior information belongs to stress manipulation behavior information, where the stress manipulation behavior information is information corresponding to a manipulation behavior triggered by a stress response in an emergency situation;
  • a control module configured to switch the vehicle from the automatic driving mode to the manual driving mode if the first manipulation behavior information does not belong to the stress manipulation behavior information.
  • a vehicle control system comprising: an in-vehicle sensing system and a vehicle control device;
  • the in-vehicle sensing system is configured to collect manipulation behavior information, and transmit the manipulation behavior information to the vehicle control device, where the manipulation behavior information is information generated by a manipulation behavior of the vehicle;
  • the vehicle control device is configured to acquire the manipulation behavior information collected by the in-vehicle sensing system, and identify whether the manipulation behavior information belongs to stress manipulation behavior information, where the stress manipulation behavior information is in an emergency situation Information corresponding to the manipulation behavior triggered by the stress response;
  • the vehicle is switched from the automatic driving mode to the manual driving mode.
  • a computer readable storage medium stores at least one instruction loaded by a processor and executed to implement the vehicle control method of the first aspect.
  • the vehicle control device By identifying whether the first manipulation behavior information belongs to the stress manipulation behavior information, the vehicle control device is prevented from misinterpreting the information of the stress response behavior generated by the driver under the stress reaction as the manual switching operation behavior information, thereby erroneously placing the vehicle
  • the control is given to the driver, so that the driver is in danger due to the improper control behavior under the stress reaction.
  • the vehicle with the automatic driving mode can give the vehicle control to the driver according to the driver's real control intention, so that the vehicle can be
  • the automatic driving mode is switched to the manual driving mode to be more intelligent, and the safety performance of the vehicle is improved.
  • FIG. 1 is a schematic structural diagram of a vehicle control system according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of a vehicle control method according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method of a vehicle control method according to another embodiment of the present invention.
  • Figure 4 is a graph showing the change of the pressure value generated by depressing the brake pedal under time in a stress reaction
  • FIG. 5 is a block diagram of a device of a vehicle control device according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a vehicle control device according to an embodiment of the present invention.
  • the vehicle control method in the related art misinterprets the driver's stress manipulation behavior information as manual switching operation behavior information, thereby switching the vehicle from the automatic driving mode state to the manual driving mode, putting the driver into danger.
  • the vehicle control method provided by the embodiment of the present invention provides the following technical solution: when the vehicle is in an automatic driving state, the first manipulation behavior information is collected by the in-vehicle sensing system; and whether the first manipulation behavior information belongs to the stress is recognized. Manipulating behavior information; if the first manipulation behavior information is not the stress manipulation behavior information, switching from the automatic driving mode to the manual driving mode.
  • the embodiment of the present invention avoids the vehicle control device misjudge the information of the stress reaction behavior generated by the driver under the stress reaction as the manual switching operation behavior information, thereby Incorrectly giving the vehicle control to the driver, causing the driver to be in danger due to improper handling of the stress response, realizing that the vehicle with the automatic driving mode can give the vehicle control to the driver according to the driver's actual control intention. It makes the vehicle switch from the automatic driving mode to the manual driving mode more intelligent and improves the safety performance of the vehicle.
  • FIG. 1 is a schematic structural diagram of a vehicle control system according to an embodiment of the present invention.
  • the vehicle control system provided by the embodiment of the present invention includes an in-vehicle sensing system emergency button 140 and a vehicle control device 150.
  • the vehicle control device 150 and the in-vehicle sensing system and the emergency button 140 establish a communication connection by wire or wirelessly.
  • the in-vehicle sensing system obtains control behavior information through the first sensor assembly 110 located near the brake pedal, the second sensor assembly 120 located on the accelerator pedal accessory, and the third sensor assembly 130 located on the steering wheel, through other locations in the vehicle.
  • the sensor component obtains vehicle operating state information and transmits the handling behavior information and the vehicle operating state information to the vehicle control device 150; the emergency button 140 has the highest authority, and when the emergency button 140 is pressed, the vehicle is directly switched from the automatic driving mode to the manual Driving mode.
  • the manipulation behavior information is information generated by the driver's manipulation behavior of the vehicle, and the manipulation behavior information includes first manipulation behavior information and second manipulation behavior information.
  • the first manipulation behavior information is information generated by the driver's manipulation behavior of the vehicle in the automatic driving mode of the vehicle; the second manipulation behavior information is information generated by the driver's manipulation behavior of the vehicle in the manual driving mode of the vehicle.
  • the driver's handling behavior on the vehicle may be at least one of depressing the brake pedal, depressing the accelerator pedal, and turning the steering wheel.
  • the stress manipulation behavior information is information corresponding to the manipulation behavior triggered by the driver's stress response in an emergency.
  • the stress manipulation behavior information is information generated by a driver's stress response on at least one of a brake pedal, an accelerator pedal, and a steering wheel, for example, the driver depresses the brake pedal in an emergency. Pressing the accelerator pedal and turning at least one of the information generated in the steering wheel.
  • the stress manipulation behavior information is image information of a camera in the vehicle control system that collects a driver's stress response in an emergency situation, for example, the camera collects a face that the driver generates a stress response in an emergency situation. Expression and/or range of motion.
  • the in-vehicle sensing system can collect control behavior information in the following manner.
  • the first sensor assembly 110 includes a first pressure sensor and/or a first displacement sensor that measures a first pressure value applied by the driver to the brake pedal when the brake pedal is depressed, and/or through the first pressure sensor
  • the first displacement sensor measures a first distance value at which the brake pedal is moved by the driver when the brake pedal is depressed.
  • the second sensor assembly 120 includes a second pressure sensor and/or a second displacement sensor that measures a second pressure value applied by the driver on the accelerator pedal when the accelerator pedal is depressed, and/or through the second The displacement sensor measures a second distance value at which the accelerator pedal is moved by the driver when the accelerator pedal is depressed.
  • the third sensor assembly 130 includes a torque sensor and/or an angle sensor that measures the torque value of the steering wheel when the driver turns the steering wheel through the torque sensor, and/or measures the angle value of the steering wheel rotation of the driver when turning the steering wheel by the angle sensor.
  • the vehicle control system further includes a camera located in the vehicle, and the camera can collect image information of the driver's driving action including the facial expression of the driver and/or the motion range of the driver's driving action.
  • the first manipulation information is obtained, and the first manipulation information is transmitted to the vehicle control device, and the vehicle control device processes the first manipulation information by calling the stress response prediction model to determine whether the first manipulation information is the stress manipulation behavior information.
  • the stress response prediction model is a machine learning model for indicating whether the driving action is a stress manipulation behavior based on the image information of the driving action.
  • the sensor assembly is configured to set a position that the driver is most likely to touch in an emergency in accordance with behavioral characteristics in human conditional reflections.
  • the sensor assembly for measuring the operational state of the vehicle is located at other locations within the vehicle, which may be a speed sensor and/or an angular velocity sensor, the speed value of the vehicle is measured by the speed sensor, and/or the angular velocity value of the vehicle is measured by the angular velocity sensor.
  • the emergency button 140 is disposed at a position close to the vehicle gear lever for switching the vehicle from the automatic driving mode to the manual driving mode after the driver presses the emergency button 140, and is required for a vehicle having an automatic driving mode.
  • the emergency button 140 with the highest priority is set so that the driver can control the control in his or her own hands at any time.
  • FIG. 2 shows a flowchart of a method of a vehicle control method according to an embodiment of the present invention.
  • the vehicle control method is used in the vehicle control device 150 shown in FIG. 1 , and the method includes:
  • step 201 when the vehicle is in the automatic driving state, the vehicle control device acquires the first manipulation behavior information through the in-vehicle sensing system, and the first manipulation behavior information is information generated by the manipulation behavior taken by the vehicle.
  • the vehicle control device collects the first manipulation behavior information through the in-vehicle sensing system, the first manipulation behavior information includes information generated by the driver pressing the brake pedal, information generated by pressing the accelerator pedal, and rotating the steering wheel At least one of the generated information.
  • the first sensing component of the in-vehicle sensing system measures information generated by depressing the brake pedal including a first pressure value and/or a first distance value and the first pressure value and/or The first distance value is transmitted to the vehicle control device;
  • the second sensing component of the in-vehicle sensing system measures information generated by the depression of the accelerator pedal including the second pressure value and/or the second distance value, and the second pressure value and/or The second distance value is transmitted to the vehicle control device;
  • the third sensing component of the in-vehicle sensing system measures the information generated by the steering wheel including the torque value and/or the angle value and transmits the torque value and/or the angle value to the vehicle control device.
  • step 202 the vehicle control device identifies whether the first manipulation behavior information belongs to stress manipulation behavior information, and the stress manipulation behavior information is information corresponding to the manipulation behavior triggered by the stress response in an emergency situation.
  • the driver's control behavior triggered by the stress response in an emergency situation is not the driver's true intention.
  • the driver will step on the brake pedal, step on the accelerator pedal, hit the steering wheel, or respond.
  • the accelerator pedal is mistakenly mistaken for the brake pedal to be depressed. Therefore, the vehicle control device needs to recognize the driver's first manipulation behavior information and determine whether the first manipulation behavior information belongs to the stress manipulation behavior information.
  • the brake pedal will be stepped on in the panic, the accelerator pedal is stepped on, the steering wheel is swung or the steering wheel is turned excessively.
  • the combination of the wrong manipulation behavior produces information: because the driver is in an emergency situation, the vehicle reacts to the vehicle in a panic due to the stress reaction, for example, the brake pedal and the accelerator pedal are simultaneously depressed. The behavior is not normal.
  • the driver applies a relatively large force to at least one of the brake pedal, the accelerator pedal and the steering wheel during over-operation. Transmitting the first pressure value to the vehicle control device when the first sensing component detects the first pressure value; and transmitting the second pressure value to the vehicle control device when the second sensing component detects the second pressure value; When the third sensing component detects a torque value, the torque value is transmitted to the vehicle control device. Determining the first maneuver when the vehicle control device determines that the first maneuvering behavior information satisfies at least one of the three conditions that the first pressure value is greater than the first threshold, the second pressure value is greater than the second threshold, and the torque value is greater than the third threshold Behavioral information is information about stress behavior.
  • the first manipulation behavior information includes at least one of a first pressure value, a second pressure value, and a torque value.
  • the first threshold is a large pressure value obtained by experimental and computational simulation.
  • the second threshold is a large pressure value obtained by experimental and computational simulation, when the pressure value generated by the driver stepping on the accelerator pedal exceeds the first
  • the driver's action to step on the accelerator pedal is not its true intention, but the excessive manipulation of the accelerator pedal under the stress response
  • the third threshold is a large torque value obtained through experimental and computational simulations.
  • the vehicle control system determines that the first manipulation behavior information is stress behavior information.
  • the first manipulation behavior information includes an angle value.
  • the fourth threshold is a large angle value obtained by experimental and computational simulation.
  • the first control behavior information includes a first pressure value, a second pressure value, a torque value, and an angle value
  • the vehicle control system determines whether the first manipulation behavior information satisfies the first pressure value is greater than the first threshold, and the second pressure value And greater than the second threshold, the torque value is greater than the third threshold, at least one of the three cases, when the first manipulation behavior satisfies any one of the three conditions, determining that the first manipulation behavior is stress behavior information; If the first manipulation behavior does not satisfy any of the three situations, determining whether the angle value is greater than a fourth threshold, and if the angle value is not greater than the fourth threshold, determining that the first manipulation behavior is not stress behavior information, if the angle value If it is greater than the fourth threshold, it is determined that the first manipulation behavior is stress behavior information.
  • the first sensing component detects the first pressure value and/or the first distance value and transmits to the vehicle control
  • the second sensing component detects a second pressure value and/or a second distance value and transmits to the vehicle control device
  • the vehicle control device calculates a first pressure value and/or a first time value generated by the first distance value
  • the second time value generated by the second pressure value and/or the second distance value is determined to be the stress behavior information if the difference between the first time and the second time is less than the fifth threshold.
  • the first steering behavior information includes a first pressure value and/or a first distance value, and a second pressure value and/or a second distance value.
  • the fifth threshold is a short period of time value obtained by experiment and calculation simulation.
  • the difference between the first time when the driver pedal is depressed and the information generated when the accelerator pedal is depressed is less than the fifth time.
  • the driver is improperly manipulating the brake pedal and the accelerator pedal simultaneously under stress.
  • the first control behavior information includes a first pressure value, a first distance value, a second pressure value, a second distance value, and a torque value
  • the vehicle control system determines whether the first manipulation behavior information satisfies the first pressure value greater than the first a threshold value, the second pressure value is greater than the second threshold value, and the torque value is greater than the third threshold value.
  • determining the first manipulation behavior For the stress behavior information; when the first manipulation behavior does not satisfy any of the three conditions, determining whether the difference between the first time and the second time is less than a fifth threshold, if the first time and the second time If the difference is not less than the fifth threshold, it is determined that the first manipulation behavior is not the stress behavior information, and if the difference between the first time and the second time is less than the fifth threshold, determining that the first manipulation behavior is stress behavior information.
  • the first pressure value and/or the first distance value are generated only when the accelerator pedal is depressed, because the in-vehicle sensing system continuously collects the driver.
  • the behavior information is manipulated, so the driver may turn the steering wheel for a long time after stepping on the accelerator pedal alone, generating a torque value and/or an angle value, and the in-vehicle sensing system will have a first pressure value and/or a first distance.
  • the value, and the torque value and/or the angle value are transmitted to the vehicle control device, if the first pressure value and/or the first time value produced by the first time value and the third time of the torque value and/or the angle value are generated
  • the first manipulation behavior information is stress behavior information, wherein the first manipulation behavior information includes a first pressure value and/or a first distance value, and a torque value and/or an angle value.
  • the sixth threshold is a longer period value obtained by experimental and computational simulation.
  • the first control behavior information includes a first pressure value, a first distance value, a second pressure value, and a torque value
  • the vehicle control system determines whether the first manipulation behavior information satisfies the first pressure value being greater than the first threshold, and second The pressure value is greater than the second threshold, and the torque value is greater than the third threshold.
  • determining the first manipulation behavior as the stress behavior information
  • determining whether the difference between the first time and the third time is greater than a sixth threshold, if the difference between the first time and the third time is not greater than The sixth threshold determines that the first manipulation behavior is not the stress behavior information. If the difference between the first time and the third time is greater than the sixth threshold, determining that the first manipulation behavior is stress behavior information.
  • step 203 if the first manipulation behavior information does not belong to the stress manipulation behavior information, the vehicle control device switches the vehicle from the automatic driving mode to the manual driving mode.
  • the vehicle control device determines that the first manipulation behavior information does not belong to the stress manipulation behavior information, the vehicle is switched from the automatic driving mode to the manual driving mode, and the manipulation right is given to the driver.
  • the vehicle control device by identifying whether the first manipulation behavior information belongs to the stress manipulation behavior information, the vehicle control device is prevented from misjudged the driver's stress reaction behavior information generated under the stress reaction as Manually switching the operational behavior information, thereby erroneously handing over the vehicle control to the driver, causing the driver to be in danger due to improper handling behavior under the stress reaction, realizing that the vehicle with the automatic driving mode can be based on the driver's actual control intention Vehicle control is given to the driver, making the vehicle more intelligent from the automatic driving mode to the manual driving mode, improving the safety performance of the vehicle.
  • FIG. 3 shows a flowchart of a method of a vehicle control method provided by another embodiment of the present application.
  • the vehicle control method is used in the vehicle control device 150 shown in FIG. 1 , and the method includes:
  • step 301 when the vehicle is in the automatic driving mode, the vehicle control device acquires first manipulation behavior information through the in-vehicle sensing system, and the first manipulation behavior information is information generated by the manipulation behavior taken by the vehicle.
  • the vehicle control device collects the first manipulation behavior information through the in-vehicle sensing system, the first manipulation behavior information includes information generated by the driver pressing the brake pedal, information generated by pressing the accelerator pedal, and rotating the steering wheel At least one of the generated information.
  • the first sensor component measures information generated by depressing the brake pedal including a first pressure value and/or a first distance value and transmits the first pressure value and/or the first distance value to a vehicle control device;
  • the second sensor component measures information generated by stepping on the accelerator pedal including a second pressure value and/or a second distance value, and transmits the second pressure value and/or the second distance value to the vehicle control device;
  • the sensor assembly measures information generated by the rotating steering wheel including torque values and/or angle values and transmits the torque values and/or angle values to the vehicle control device.
  • the vehicle control device After the vehicle control device acquires the first manipulation behavior information, if the first manipulation behavior information includes information generated by pressing the brake pedal, proceeding to step 302a; if the first manipulation behavior information includes information generated by pressing the accelerator pedal, then entering the step 302b; if the first manipulation behavior information includes information generated by rotating the steering wheel, proceeding to step 302c; if the first manipulation behavior information includes information generated by pressing the brake pedal and information generated by pressing the accelerator pedal, the method may proceed to step 302a. Going to step 302b again, or proceeding to step 302b, and then proceeding to step 302a; if the first manipulation behavior information includes information generated by pressing the brake pedal and information generated by rotating the steering wheel, the method may proceed to step 302a, and proceed to step 302c.
  • step 302c proceed to step 302c, and then proceed to step 302a; if the first manipulation behavior information includes information generated by pressing the accelerator pedal and information generated by rotating the steering wheel, proceed to step 302b, proceed to step 302c, or proceed to step 302c, Going to step 302b again; if the first manipulation behavior includes pressing the information generated by the brake pedal, stepping on The information generated by the accelerator pedal and the information generated by turning the steering wheel proceeds to steps 302a, 302b, and 302c, and the order of steps 302a, 302b, and 302c is not limited.
  • the first manipulation behavior of the driver under the stress reaction is different from the normal manipulation behavior (such as manual switching operation behavior), so the first manipulation behavior information generated by the in-vehicle sensing system under the stress reaction is normal.
  • the first manipulation behavior information generated under the manipulation behavior is also different.
  • the driver suddenly presses the brake pedal under the stress reaction, so the pressure applied by the driver to the brake pedal and the moving distance of the brake pedal are suddenly increased and then slowed down. Increased; for the action of stepping on the accelerator pedal, the driver suddenly stepped on the accelerator pedal under the stress reaction, so the pressure applied by the driver to the accelerator pedal and the moving distance of the accelerator pedal are suddenly increased and then slowly increased.
  • the driver suddenly turns the steering wheel under the stress reaction, so the torque applied by the driver to the steering wheel and the rotation angle of the steering wheel are suddenly increased and then slowly increased.
  • the driver's stepping on the brake pedal under the stress reaction is taken as an example to illustrate the relationship of the first manipulation information generated under the stress reaction with time.
  • FIG. 4 shows the relationship between the first pressure value and the time generated by the driver pressing the brake pedal under the stress reaction.
  • the driver's stress response triggered by the stress response in an emergency situation is different from the normal control behavior.
  • the pressure applied by the brake pedal is suddenly increased and then slowly increased, while in the normal control behavior.
  • the pressure of the driver to step on the brake pedal is gradually increased.
  • determining whether the information generated by the driver pressing the brake pedal is information of the stress manipulation behavior may be determined by determining whether the magnitude of the change of the first pressure value in the first time period is greater than the second The magnitude of the change in the time period is achieved, wherein the second time period is after the first time period.
  • the first time period ⁇ T1 is a time period from 0 to T1
  • the second time period ⁇ T2 is a time period from T1 to T2
  • the values of ⁇ T1 and ⁇ T2 are the same
  • the first time is ⁇ T1.
  • the magnitude of the change of the pressure value is P1
  • the magnitude of the change of the first pressure value in ⁇ T2 is (P2-P1). Since P1>(P2-P1), it can be determined that the first pressure value is the information of the stress manipulation behavior.
  • determining whether the information generated by the driver pressing the brake pedal is the stress manipulation behavior information, and determining whether the magnitude of the change of the first distance value in the first time period is greater than The magnitude of the change during the second time period is achieved, wherein the second time period is after the first time period.
  • determining whether the information generated by the driver pressing the accelerator pedal is a stress manipulation behavior information may be determined by determining whether the second pressure value is greater than the fourth during the third time period. The magnitude of the change in the time period is achieved, wherein the fourth time period is after the third time period.
  • determining whether the information generated by the driver turning the steering wheel is the stress manipulation behavior information may be determined by determining whether the magnitude of the change of the torque value in the fifth time period is greater than the sixth time period. The magnitude of the change is achieved, wherein the sixth time period is after the fifth time period.
  • step 302a the vehicle control device determines whether the information generated by the brake pedal depression is stress behavior information.
  • the vehicle control device needs to recognize the information generated by the driver pressing the brake pedal, and determine whether the information generated by pressing the brake pedal belongs to the stress manipulation behavior information.
  • the information generated by the brake pedal depression includes a first pressure value
  • the vehicle control system determines whether the magnitude of the change of the first pressure value in the first time period is greater than the variation range in the second time period. And wherein the second time period is after the first time period, and if yes, determining that the first pressure value is stress behavior information, and if not, determining that the first pressure value is not stress behavior information.
  • the information generated by the brake pedal depression includes a first distance value
  • the vehicle control system determines whether the magnitude of the change of the first distance value in the first time period is greater than the variation range in the second time period. And wherein the second time period is after the first time period, and if yes, determining that the first distance value is stress behavior information, and if not, determining that the first distance value is not stress behavior information.
  • the information generated by the brake pedal depression includes a first pressure value and a first distance value, and if any one of the first pressure value and the first distance value is stress behavior information, or A pressure value and a first distance value are stress behavior information, and it is determined that the information generated by the brake pedal depression is stress behavior information. If neither the first pressure value nor the first distance value is stress behavior information, it is determined that the information generated by the brake pedal depression is not stress behavior information.
  • the vehicle control system determines whether the first pressure value is greater than the first threshold, and when the first pressure value is greater than the first threshold, determining that the information generated by the brake pedal depression is stress behavior information; When the first pressure value is not greater than the first threshold value, it is determined whether the information generated by the brake pedal depression is the stress behavior information by any one of the above three determination methods.
  • step 302b the vehicle control device determines whether the information generated by the accelerator pedal depression is stress behavior information.
  • the vehicle control device needs to identify the information generated by the driver's stepping on the accelerator pedal, and determine whether the information generated by the accelerator pedal is a stress manipulation behavior information.
  • the information generated by the accelerator pedal depression includes a second pressure value
  • the vehicle control system determines whether the magnitude of the change of the second pressure value in the third time period is greater than the variation range in the fourth time period.
  • the fourth time period is after the third time period, and if yes, determining that the second pressure value is stress behavior information, and if not, determining that the second pressure value is not stress behavior information.
  • the information generated by the accelerator pedal depression includes a second distance value
  • the vehicle control system determines whether the magnitude of the change of the second distance value in the third time period is greater than the variation range in the fourth time period.
  • the fourth time period is after the third time period, and if yes, determining that the second distance value is stress behavior information, and if not, determining that the second distance value is not stress behavior information.
  • the information generated by the accelerator pedal depression includes a second pressure value and a second distance value, if any one of the second pressure value and the second distance value is stress behavior information, or the second The pressure value and the second distance value are both stress behavior information, and it is determined that the information generated by the accelerator pedal depression is the stress behavior information. If neither the second pressure value nor the second distance value is stress behavior information, it is determined that the information generated by the accelerator pedal depression is not stress behavior information.
  • the vehicle control system determines whether the second pressure value is greater than the second threshold, and when the second pressure value is greater than the second threshold, determining that the information generated by the accelerator pedal depression is stress behavior information; When the two pressure values are not greater than the second threshold value, it is determined whether the information generated by the accelerator pedal depression is the stress behavior information by any one of the above three determination methods.
  • step 302c the vehicle control device determines whether the information generated by turning the steering wheel is stress behavior information.
  • the vehicle control device needs to recognize the information generated by the driver turning the steering wheel and determine whether the information generated by the rotating steering wheel belongs to the stress manipulation behavior information.
  • the information generated by the rotating steering wheel includes a torque value
  • the vehicle control system determines whether the magnitude of the change of the torque value in the fifth time period is greater than a variation range in the sixth time period, wherein the sixth time period After the fifth time period, if yes, it is determined that the torque value is stress behavior information, and if not, it is determined that the torque value is not stress behavior information.
  • the information generated by rotating the steering wheel includes an angle value
  • the vehicle control system determines whether the magnitude of the change of the angle value in the fifth time period is greater than a variation range in the sixth time period, wherein the sixth time period After the fifth time period, if yes, the angle value is determined to be stress behavior information, and if not, the angle value is determined not to be stress behavior information.
  • the information generated by the accelerator pedal depression includes a torque value and an angle value, and if any of the torque value and the angle value is stress behavior information, or both the torque value and the angle value are stress behaviors The information determines that the information generated by turning the steering wheel is the stress behavior information. If neither the torque value nor the angle value is stress behavior information, it is determined that the information generated by turning the steering wheel is not stress behavior information.
  • the vehicle control system determines whether the torque value is greater than a third threshold, and when the torque value is greater than the third threshold, determining that the information generated by the steering wheel is stress behavior information; when the torque value is not greater than the third threshold At any time, whether the information generated by the steering wheel is the stress behavior information is determined by any one of the above three determination methods.
  • step 303 the vehicle control device determines that the first manipulation behavior information is not stress behavior information.
  • the first manipulation behavior information is determined as the stress behavior information.
  • the first manipulation behavior information is not the stress behavior information.
  • step 304 the vehicle control device switches the vehicle from the automatic driving mode to the manual driving mode.
  • the vehicle control device determines that the first manipulation behavior information is not the stress manipulation behavior information, the vehicle is switched from the automatic driving mode to the manual driving mode.
  • the above process realizes the process of handing over the vehicle control right to the driver according to the driver's true steering intention, and intelligently switching the vehicle from the automatic driving mode to the manual driving mode.
  • the following steps are provided in the embodiment of the present application for the control operation after switching to the manual driving mode.
  • step 305 when the vehicle is in the manual driving mode, the vehicle control device acquires second manipulation behavior information and vehicle operating state information through the in-vehicle sensing system, and the second manipulation behavior information is information generated by the manipulation behavior taken by the vehicle.
  • the vehicle operating state information includes a speed value and/or an angular velocity value of the vehicle
  • the in-vehicle sensing system acquires a speed value and/or an angular velocity value of the vehicle, and transmits the speed value and/or the angular velocity value of the vehicle to the vehicle control device.
  • the in-vehicle sensing system collects second manipulation behavior information, and the second manipulation behavior information includes at least one of information generated by the driver pressing the brake pedal, information generated by pressing the accelerator pedal, and information generated by rotating the steering wheel in the manual driving mode.
  • the second manipulation behavior information includes at least one of information generated by the driver pressing the brake pedal, information generated by pressing the accelerator pedal, and information generated by rotating the steering wheel in the manual driving mode.
  • the first sensor component measures information generated by depressing the brake pedal including a first pressure value and/or a first distance value and transmits the first pressure value and/or the first distance value to a vehicle control device;
  • the second sensor component measures information generated by stepping on the accelerator pedal including a second pressure value and/or a second distance value, and transmits the second pressure value and/or the second distance value to the vehicle control device;
  • the sensor assembly measures information generated by the rotating steering wheel including torque values and/or angle values and transmits the torque values and/or angle values to the vehicle control device.
  • step 306 the vehicle control device identifies whether the second manipulation behavior information belongs to the dangerous behavior information according to the second manipulation behavior information and the vehicle operation state information.
  • the vehicle operating state information includes a speed value of the vehicle and/or an angular velocity value of the vehicle, and the speed value of the vehicle identifies whether the vehicle is accelerating too fast or decelerating too fast, and whether the vehicle is excessively steered by the angular velocity value of the vehicle.
  • the vehicle control device identifies, according to the second control behavior information and the vehicle operating state information, whether the second steering behavior information causes the vehicle to accelerate too fast, decelerates too fast, or turns too large, and if so, determines that the second handling behavior information is dangerous behavior information, Go to step 307; if no, determine that the second manipulation behavior information is not dangerous behavior information, and proceed to step 304.
  • the vehicle control device determines whether the second steering behavior information causes the vehicle to accelerate too quickly.
  • the vehicle control device obtains the second manipulation behavior information and the speed value of the vehicle, and determines whether the speed value of the vehicle is higher than the seventh threshold in the seventh time period under the action of the second manipulation behavior information, and if yes, determining the second The manipulation behavior information is dangerous behavior information, and the flow proceeds to step 307.
  • the seventh threshold is a large speed value obtained by experiment and calculation simulation, and when the vehicle is greater than the seventh threshold value in the seventh time period under the action of the second manipulation behavior information, the vehicle may accelerate Too fast and in danger.
  • the vehicle control device determines if the second steering behavior information causes the vehicle to decelerate too quickly.
  • the vehicle control device obtains the second manipulation behavior information and the speed value of the vehicle, and determines whether the speed value of the vehicle is lower than the eighth threshold value in the seventh time period under the action of the second manipulation behavior information, and if yes, determining the second The manipulation behavior information is dangerous behavior information, and the flow proceeds to step 307.
  • the eighth threshold is a smaller speed value obtained by experiment and calculation simulation, and when the vehicle is less than the eighth threshold value in the seventh time period under the action of the second manipulation behavior information, the vehicle may be decelerated Too fast and in danger.
  • the vehicle control device determines if the second steering behavior information would cause the vehicle to turn too large.
  • the vehicle control device obtains the second steering behavior information and the angular velocity value of the vehicle, and determines whether the angular velocity value of the vehicle is higher than the ninth threshold value in the eighth time period under the action of the second steering behavior information, and if yes, determining the second The manipulation behavior information is dangerous behavior information, and the flow proceeds to step 307.
  • the ninth threshold is a large angular velocity value obtained by experimental and computational simulation.
  • the angular velocity value is greater than the ninth threshold when the vehicle is under the action of the second steering behavior information, the vehicle may turn Too big to be in danger.
  • step 307 the vehicle control device identifies whether the second manipulation behavior information is driving behavior information or braking behavior information.
  • the vehicle control device determines, by the second manipulation behavior information, whether the manipulation behavior information is driving behavior information or braking behavior information.
  • the driving behavior information is information generated by the driver on the driving behavior of the vehicle
  • the braking behavior information is information generated by the driver on the braking behavior of the vehicle.
  • the second manipulation behavior information received by the vehicle control device includes information generated by rotating the steering wheel, such as a torque value and/or an angle value, or the second manipulation behavior information received by the vehicle control device is The information generated by turning the steering wheel and the information generated by pressing the accelerator pedal, such as the torque value and the second pressure value, the torque value and the second distance value, the angle value and the second pressure value, the angle value and the second distance value, etc., are determined
  • the second manipulation behavior information is driving behavior information, and proceeds to step 308a.
  • the second handling behavior information received by the vehicle control device includes information generated by depressing the brake pedal, such as a first pressure value and/or a first distance value, or the vehicle control device receives
  • the second manipulation behavior information is information generated by turning the steering wheel and information generated by depressing the brake pedal, such as a torque value and a first pressure value, a torque value and a first distance value, an angle value and a first pressure value, an angle value and The first distance value or the like determines that the second manipulation behavior information is the braking behavior information, and proceeds to step 308b.
  • step 308a the assisted driving mode is turned on.
  • the vehicle control device determines that the second manipulation behavior information belongs to the dangerous behavior information, and activates the auxiliary manipulation mode.
  • there are two modes of assisted steering one is to assist the driver in driving the vehicle's assisted driving mode, and the other is to assist the driver in braking the vehicle's auxiliary braking mode.
  • the vehicle control device determines that the second manipulation behavior information belongs to the dangerous behavior information, and the second manipulation behavior information is the driving behavior information, and then the assist driving mode is turned on.
  • the vehicle control device turns on the assisted driving mode to assist in controlling at least one of the brake pedal, the accelerator pedal, and the steering wheel of the vehicle.
  • the vehicle control device For example, when the driver's steering wheel is excessively rotated and the torque value and/or angle value received by the vehicle control device is large, the Electronic Power Steering (EPS) is turned off, making it difficult for the driver to turn the steering wheel, correcting The wrong driving behavior in which the driver's steering wheel is excessively rotated; for example, when the driver's action of stepping on the accelerator is large, and the second pressure value and/or the second distance value are large, the vehicle control device generates by lowering the driver's depression of the accelerator pedal. The second pressure value and/or the second distance value enable the vehicle to receive a smaller information generated by stepping on the accelerator pedal and correct the wrong driving behavior of the driver's accelerator pedal depression.
  • EPS Electronic Power Steering
  • step 308b the auxiliary braking mode is turned on.
  • the vehicle control device determines that the second manipulation behavior information belongs to the dangerous behavior information, and the second manipulation behavior information is the brake behavior information, and then turns on the auxiliary braking mode.
  • the vehicle control device turns on the auxiliary braking mode to assist in controlling at least one of the brake pedal, the accelerator pedal, and the steering wheel of the vehicle. For example, when the driver's action of depressing the brake pedal is large, and the first pressure value and/or the first distance value is large, the vehicle control device reduces the first pressure value generated by the driver pressing the brake pedal and/or Or the first distance value, so that the vehicle receives a small information generated by pressing the brake pedal, corrects the wrong driving behavior of the driver's brake pedal depression; when the driver presses the brake pedal to enter the manual operation mode Since the steering device discriminates in the panic and the vehicle control device determines that the driver's braking behavior information is dangerous behavior information, the auxiliary braking mode is turned on, and the electronically assisted steering system is turned off, making it difficult for the driver to turn the steering wheel, reducing driver error. The danger of hitting the steering wheel.
  • the vehicle control device by identifying whether the first manipulation behavior information belongs to the stress manipulation behavior information, the vehicle control device is prevented from misjudged the driver's stress reaction behavior information generated under the stress reaction as Manually switching the operational behavior information, thereby erroneously handing over the vehicle control to the driver, causing the driver to be in danger due to improper handling behavior under the stress reaction, realizing that the vehicle with the automatic driving mode can be based on the driver's actual control intention Vehicle control is given to the driver, making the vehicle more intelligent from the automatic driving mode to the manual driving mode, improving the safety performance of the vehicle.
  • the auxiliary control mode is turned on, and the brake pedal, the accelerator pedal, and the steering wheel of the vehicle are At least one of the auxiliary controls solves the danger problem caused by the dangerous operation of the driver after the vehicle switches to the manual driving mode, and realizes that the vehicle with the driverless mode gives the vehicle control right to the driver.
  • the safety of manual driving can be ensured by the auxiliary control mode, and the safety performance of the vehicle is improved.
  • FIG. 5 a block diagram of a device of a vehicle control device provided by an embodiment of the present application is shown.
  • the vehicle control device is used in the vehicle control device 150 shown in FIG. 1 , and the device includes an acquisition module 501 , an identification module 502 , and a control module 503 .
  • the obtaining module 501 is configured to implement the functions related to obtaining implied in the foregoing step 201, step 301, step 305 and each step.
  • the identification module 502 is configured to implement the functions related to the identification implied in the foregoing step 202, step 302a, step 302b, step 302c, step 303, step 306, step 307 and each step.
  • the control module 503 is configured to implement the functions related to the control implied in the foregoing steps 203, 304, 305, 308a, and 308b and the respective steps.
  • the vehicle control device by identifying whether the first manipulation behavior information belongs to the stress manipulation behavior information, the vehicle control device is prevented from misjudged the driver's stress reaction behavior information generated under the stress reaction as Manually switching the operational behavior information, thereby erroneously handing over the vehicle control to the driver, causing the driver to be in danger due to improper handling behavior under the stress reaction, realizing that the vehicle with the automatic driving mode can be based on the driver's actual control intention Vehicle control is given to the driver, making the vehicle more intelligent from the automatic driving mode to the manual driving mode, improving the safety performance of the vehicle.
  • the identification module identifies whether the manipulation behavior information belongs to the dangerous behavior information, and if yes, turns on the auxiliary manipulation mode, the brake pedal and the accelerator pedal of the vehicle, At least one of the steering wheels performs auxiliary control, thereby solving the dangerous problem caused by the dangerous operation of the driver after the vehicle switches to the manual driving mode, realizing that the vehicle with the driverless mode gives the vehicle control right to the driver After that, it is still possible to ensure the safety of manual driving through the auxiliary control mode and improve the safety performance of the vehicle.
  • the vehicle control device includes a processor 601, a processor 602, and a communication interface 603.
  • the communication interface 603 is connected to the processor 601 by a bus or other means for receiving first manipulation behavior information, second manipulation behavior information, and vehicle running state information transmitted by the in-vehicle sensing system.
  • the processor 601 may be a central processing unit (CPU), a network processor (in English), or a combination of a CPU and an NP.
  • the processor 603 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), and a general array logic (GAL). Or any combination thereof.
  • the memory 602 is coupled to the processor 601 by a bus or other means.
  • the memory 601 stores at least one instruction, at least one program, a code set or a set of instructions, and the at least one instruction, the at least one program, the code set or the instruction set is processed by the processor 601. Loaded and executed to implement the vehicle control method of FIG. 2 or FIG.
  • the memory 602 can be a volatile memory (English: volatile memory), a non-volatile memory (English: non-volatile memory), or a combination thereof.
  • the volatile memory can be a random access memory (RAM), such as static random access memory (SRAM), dynamic random access memory (English: dynamic random access memory) , DRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • the non-volatile memory can be a read only memory image (ROM), such as a programmable read only memory (PROM), an erasable programmable read only memory (English: erasable) Programmable read only memory (EPROM), electrically erasable programmable read-only memory (EEPROM).
  • ROM read only memory image
  • PROM programmable read only memory
  • EPROM erasable programmable read only memory
  • EEPROM electrically erasable programmable read-only memory
  • the non-volatile memory can also be a flash memory (English: flash memory), a magnetic memory, such as a magnetic tape (English: magnetic tape), a floppy disk (English: floppy disk), a hard disk.
  • the non-volatile memory can also be an optical disc.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the storage medium has at least one instruction, at least one program, a code set or a set of instructions, at least one instruction, At least one program, code set or set of instructions is loaded and executed by the processor to implement the vehicle control method as shown in FIG. 2 or FIG. 3.
  • the computer readable storage medium comprises a high speed access memory, non-volatile Memory.
  • the present application also provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the vehicle control method described in the various aspects above.
  • a plurality as referred to herein means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆的控制方法、装置、系统及存储介质,属于自动驾驶车辆技术领域。所述方法包括:在车辆处于自动驾驶模式时,通过车内感知系统采集第一操控行为信息(201);识别第一操控行为信息是否属于应激操控行为信息(202);若第一操控行为信息不属于应激操控行为信息,则从自动驾驶模式切换为人工驾驶模式(203)。通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。

Description

车辆控制方法、装置、系统及存储介质
本申请要求于2017年10月10日提交的申请号为201710936580.9、发明名称为“车辆控制方法、系统及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶车辆技术领域,特别涉及一种车辆控制方法、装置、系统及存储介质。
背景技术
自动驾驶车辆是通过车载传感系统感知车辆周围环境,并根据感知所获得的道路信息、其它车辆位置信息以及障碍物信息等,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
相关技术中,当处于自动驾驶模式的车辆遇到紧急情况,例如前方有其他车辆骤停,即将要发生碰撞时,驾驶员可以通过手动切换操作行为将车辆从自动驾驶模式中退出,切换为人工驾驶模式。例如,该手动切换操作行为可以是踩下制动踏板或踩下油门踏板,车辆可以通过设置在制动踏板或油门踏板处的压力传感器检测驾驶员对制动踏板和油门踏板的踩下动作的压力,当该压力大于阈值时,车辆由自动驾驶模式切换为人工驾驶模式。
在紧急情况时,驾驶员会因为应激反应对车辆做出应激操控行为,例如猛打方向盘、使劲踩制动踏板、或使劲踩油门踏板等。当驾驶员对车辆做出应激操控行为时,车辆会将驾驶员的应激操控行为产生的信息误判为手动切换操作行为信息,从而从自动驾驶模式状态切换为人工驾驶模式,由驾驶员人工驾驶车辆,由于驾驶员的操控行为为应激反应下做出的不当操控行为,该不当操控行为会有较大几率导致交通安全事故,因此相关技术中的切换方式并不智能且安全性能较低。
发明内容
本申请实施例提供了一种车辆控制方法、装置、系统及存储介质,以解决 相关技术中的问题。所述技术方案如下:
一方面,提供了一种车辆控制方法,包括:
在车辆处于自动驾驶模式时,通过车内感知系统采集第一操控行为信息,所述操控行为信息是对所述车辆采取的操控行为所产生的信息;
识别所述第一操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
若所述第一操控行为信息不属于所述应激操控行为信息,则从所述自动驾驶模式切换为人工驾驶模式。
一方面,提供了一种车辆控制装置,包括:
获取模块,用于在车辆处于自动驾驶模式时,通过车内感知系统获取第一操控行为信息,所述第一操控行为信息是对所述车辆采取的操控行为所产生的信息;
识别模块,用于识别所述第一操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
控制模块,用于若所述第一操控行为信息不属于所述应激操控行为信息,将所述车辆从所述自动驾驶模式切换为人工驾驶模式。
一方面,提供了一种车辆控制系统,所述系统包括:车内感知系统和车辆控制设备;
所述车内感知系统,用于采集操控行为信息,并将所述操控行为信息传输至所述车辆控制设备,所述操控行为信息是对所述车辆采取的操控行为所产生的信息;
所述车辆控制设备,用于获取所述车内感知系统采集到的所述操控行为信息,识别所述操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
若所述操控行为信息不属于所述应激操控行为信息,将所述车辆从所述自动驾驶模式切换为人工驾驶模式。
一方面,提供了一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如第一方面所述的车辆控制方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,实现了具有自动驾驶模式的车辆可根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的车辆控制系统的结构示意图;
图2是本发明一个实施例提供的车辆控制方法的方法流程图;
图3是本发明本发明另一个实施例提供的车辆控制方法的方法流程图;
图4是应激反应下踩下制动踏板的产生的压力值随时间变化的曲线图;
图5是本发明一个实施例提供的车辆控制装置的装置框图;
图6是本发明一个实施例提供的车辆控制设备的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
相关技术中的车辆控制方法会将驾驶员的应激操控行为信息误判为手动切换操作行为信息,从而将车辆从自动驾驶模式状态退出切换为人工驾驶模式,使驾驶员陷入危险。基于此问题,本发明实施例提供的车辆控制方法,提供了如下技术方案:在车辆处于自动驾驶状态时,通过车内感知系统采集第一操控行为信息;识别第一操控行为信息是否属于应激操控行为信息;若第一操控行为信息不属于应激操控行为信息,则从自动驾驶模式切换为人工驾驶模式。本发明实施例通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为 手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,实现了具有自动驾驶模式的车辆可根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。
请参考图1,其示出了本发明一个实施例提供的车辆控制系统的结构示意图。如图所示,本发明实施例提供的车辆控制系统包括车内感知系统紧急按钮140以及车辆控制设备150。车辆控制设备150和车内感知系统以及紧急按钮140通过有线或无线方式建立通信连接。其中,车内感知系统通过位于制动踏板附近的第一传感器组件110、位于油门踏板附件的第二传感器组件120、位于方向盘上的第三传感器组件130获得操控行为信息,通过位于车内其他位置的传感器组件获得车辆运行状态信息,并将操控行为信息和车辆运行状态信息传输至车辆控制设备150;紧急按钮140具有最高权限,当按下紧急按钮140时,车辆直接由自动驾驶模式切换到手动驾驶模式。
操控行为信息是由驾驶员对车辆的操控行为产生的信息,操控行为信息包括第一操控行为信息和第二操控行为信息。其中,第一操控行为信息是在车辆的自动驾驶模式下由驾驶员对车辆的操控行为产生的信息;第二操控行为信息是在车辆的人工驾驶模式由驾驶员对车辆的操控行为产生的信息。示例性的,驾驶员对车辆的操控行为可以是踩下制动踏板、踩下油门踏板、转动方向盘中的至少一种。
应激操控行为信息是驾驶员在紧急情况下的应激反应所触发的操控行为所对应的信息。可选的,应激操控行为信息是驾驶员的应激反应对制动踏板、油门踏板以及方向盘中的至少一种的操控行为产生的信息,例如,驾驶员在紧急情况下踩下制动踏板、踩下油门踏板、转动方向盘中的至少一种产生的信息。可选的,应激操控行为信息是车辆控制系统中的摄像头采集驾驶员在紧急情况下的应激反应的图像信息,例如,摄像头采集到驾驶员在遇到紧急情况时产生应激反应的面部表情和/或动作幅度。
车内感知系统可通过以下方式采集操控行为信息。
第一传感器组件110包括第一压力传感器和/或第一位移传感器,通过第一压力传感器测量驾驶员在踩下制动踏板时施加在制动踏板上的第一压力值,和/或,通过第一位移传感器测量驾驶员在踩下制动踏板时制动踏板移动的第一距 离值。
第二传感器组件120包括第二压力传感器和/或第二位移传感器,通过第二压力传感器测量驾驶员在踩下油门踏板时施加在油门踏板上的第二压力值,和/或,通过第二位移传感器测量驾驶员在踩下油门踏板时油门踏板移动的第二距离值。
第三传感器组件130包括扭矩传感器和/或角度传感器,通过扭矩传感器测量驾驶员在转动方向盘时方向盘的扭矩值,和/或,通过角度传感器测量驾驶员在转动方向盘时方向盘转动的角度值。
可选的,车辆控制系统还包括位于车内的摄像头,该摄像头可以采集驾驶员的驾驶动作(该驾驶动作包括驾驶员的面部表情和/或驾驶员的驾驶动作的动作幅度)的图像信息,得到第一操控信息,将第一操控信息传输至车辆控制设备,车辆控制设备通过调用应激反应预测模型对第一操控信息进行处理,确定第一操控信息是否是应激操控行为信息。其中,应激反应预测模型是一种机器学习模型,其用于表示基于驾驶动作的图像信息判断驾驶动作是否是应激操控行为的规律。
上述传感器组件依据人体条件反射中的行为特征,设置在紧急情况下驾驶员最可能触碰的位置。
用于测量车辆运行状态的传感器组件位于车内其他位置,该传感器组件可以是速度传感器和/或角速度传感器,通过速度传感器测量车辆的速度值,和/或,通过角速度传感器测量车辆的角速度值。
紧急按钮140设置在紧贴车辆档位杆的位置,其用于在驾驶员按下紧急按钮140后,使车辆从自动驾驶模式切换到人工驾驶模式,对于具有自动驾驶模式的车辆来说,需要设置具有最高优先权限的紧急按钮140,让驾驶员在任何时候都能够第一时间将操控权掌握在自己手中。
请参考图2,其示出了本发明一个实施例提供的车辆控制方法的方法流程图。本实施例以该车辆控制方法用于如图1所示的车辆控制设备150中为例,该方法包括:
在步骤201中,在车辆处于自动驾驶状态时,车辆控制设备通过车内感知系统获取第一操控行为信息,第一操控行为信息是对车辆采取的操控行为所产生的信息。
在车辆处于自动驾驶模式时,车辆控制设备通过车内感知系统采集第一操控行为信息,第一操控行为信息包括驾驶员踩下制动踏板产生的信息、踩下油门踏板产生的信息和转动方向盘产生的信息中的至少一种。
在一个可选的实施例中,车内感知系统的第一传感组件测量踩下制动踏板产生的信息包括第一压力值和/或第一距离值,并将第一压力值和/或第一距离值传输至车辆控制设备;车内感知系统的第二传感组件测量踩下油门踏板产生的信息包括第二压力值和/或第二距离值,并将第二压力值和/或第二距离值传输至车辆控制设备;车内感知系统的第三传感组件测量转动方向盘产生的信息包括扭矩值和/或角度值,并将扭矩值和/或角度值传输至车辆控制设备。
在步骤202中,车辆控制设备识别第一操控行为信息是否属于应激操控行为信息,应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息。
通常,驾驶员在面对紧急情况时的应激反应所触发的操控行为并不是驾驶员的真实意图,例如,驾驶员会使劲踩制动踏板,使劲踩油门踏板,猛打方向盘,或在应激反应下错将油门踏板误认为是制动踏板踩下,因此,车辆控制设备需要对驾驶员的第一操控行为信息进行识别,判断第一操控行为信息是否属于应激操控行为信息。
应激操控行为信息通常具有以下特征:
第一种情况,过度的操控产生的信息:由于驾驶员面对紧急情况时,由于应激反应在慌乱中会使劲踩制动踏板,使劲踩油门踏板,猛打方向盘或转动方向盘过度。
第二种情况,错误的操控行为组合产生的信息:由于驾驶员面对紧急情况时,由于应激反应在慌乱中会随意操控车辆,例如,同时踩下制动踏板和油门踏板,这种操控行为是不正常的。
第三种情况,只踩下油门踏板却没有转动方向盘,这种操控行为也不是正常的:通常来说驾驶员在应激反应中将油门踏板误认为是制动踏板才会只踩下油门踏板而不做相应的转动方向盘的操作。
在一个可选的实施例中,针对上述第一种情况,过度操作时,驾驶员会对制动踏板、油门踏板和方向盘中至少一种施加较大的力。当第一传感组件检测到第一压力值时,将第一压力值传输至车辆控制设备;当第二传感组件检测到第二压力值时,将第二压力值传输至车辆控制设备;当第三传感组件检测到扭 矩值时,将扭矩值传输至车辆控制设备。当车辆控制设备确定第一操控行为信息满足第一压力值大于第一阈值,第二压力值大于第二阈值,扭矩值大于第三阈值这三种情况中的至少一种时,确定第一操控行为信息为应激行为信息。在该实施例中,第一操控行为信息包括第一压力值、第二压力值、扭矩值中至少一种。
第一阈值是通过实验和计算模拟得到的一个较大的压力值,当驾驶员踩下制动踏板产生的压力值超过该第一阈值时,驾驶员踩下制动踏板的动作并不是其真实意图,而是应激反应下对制动踏板做出的过度操控;第二阈值是通过实验和计算模拟得到的一个较大的压力值,当驾驶员踩下油门踏板产生的压力值超过该第二阈值时,驾驶员踩下油门踏板的动作并不是其真实意图,而是应激反应下对油门踏板做出的过度操控;第三阈值是通过实验和计算模拟得到的一个较大的扭矩值,当驾驶员转动方向盘产生的扭矩值超过该第三阈值时,驾驶员转动方向盘的动作并不是其真实意图,而是应激反应下对方向盘做出的过度操控。
在一个可选的实施例中,如果驾驶员在应激反应下转动方向盘过度,方向盘转动的角度会非常大,第三传感组件检测到方向盘转动产生的角度值并传输至车辆控制设备,当角度值大于第四阈值时,车辆控制系统确定第一操控行为信息为应激行为信息。在该实施例中,第一操控行为信息包括角度值。第四阈值是通过实验和计算模拟得到的一个较大的角度值,当驾驶员转动方向盘产生的角度值超过该第四阈值时,驾驶员转动方向盘的动作并不是其真实意图,而是应激反应下对方向盘做出的过度操控。
可选的,第一操控行为信息包括第一压力值、第二压力值、扭矩值以及角度值,车辆控制系统判断第一操控行为信息是否满足第一压力值大于第一阈值,第二压力值大于第二阈值,扭矩值大于第三阈值这三种情况中的至少一种,当第一操控行为满足这三种情况中的任意一种时,确定第一操控行为为应激行为信息;当第一操控行为不满足这三种情况中的任意一种时,判断角度值是否大于第四阈值,若角度值不大于第四阈值,则确定第一操控行为不是应激行为信息,若角度值大于第四阈值,则确定第一操控行为是应激行为信息。
在一个可选的实施例中,针对上述第二种情况,同时踩下制动踏板和油门踏板时,第一传感组件检测到第一压力值和/或第一距离值并传输至车辆控制设备,第二传感组件检测到第二压力值和/或第二距离值并传输至车辆控制设备, 车辆控制设备计算第一压力值和/或第一距离值产生的第一时间,以及第二压力值和/或第二距离值产生的第二时间,若第一时间和第二时间的差值小于第五阈值时,则确定第一操控行为信息是应激行为信息。在该实施例中,第一操控行为信息包括第一压力值和/或第一距离值,以及第二压力值和/或第二距离值。第五阈值是通过实验和计算模拟得到的一个较短的时间段值,当驾驶员踩下制动踏板产生信息的第一时间和踩下油门踏板产生信息第二时间的差值小于该第五阈值时,驾驶员是在应激反应下同时踩下制动踏板和油门踏板的不当操控。
可选的,第一操控行为信息包括第一压力值、第一距离值、第二压力值、第二距离值以及扭矩值,车辆控制系统判断第一操控行为信息是否满足第一压力值大于第一阈值,第二压力值大于第二阈值,扭矩值大于第三阈值这三种情况中的至少一种,当第一操控行为满足这三种情况中的任意一种时,确定第一操控行为为应激行为信息;当第一操控行为不满足这三种情况中的任意一种时,判断第一时间和第二时间的差值是否小于第五阈值,若第一时间和第二时间的差值不小于第五阈值,则确定第一操控行为不是应激行为信息,若第一时间和第二时间的差值小于第五阈值,则确定第一操控行为是应激行为信息。
在一个可选的实施例中,针对上述第三种情况,只踩下油门踏板时,会产生第一压力值和/或第一距离值,由于车内传感系统是不停地采集驾驶员的操控行为信息,因此驾驶员可能在单独踩下油门踏板很长一段时间后又转动了方向盘,产生扭矩值和/或角度值,车内传感系统将第一压力值和/或第一距离值,以及扭矩值和/或角度值传输至车辆控制设备,若第一压力值和/或第一距离值产生的第一时间和扭矩值和/或角度值产生的第三时间之间的差值大于第六阈值时,则确定第一操控行为信息是应激行为信息,其中,第一操控行为信息包括第一压力值和/或第一距离值,以及扭矩值和/或角度值。第六阈值是通过实验和计算模拟得到的一个较长的时间段值,当驾驶员踩下油门踏板产生信息的第一时间和转动方向盘产生信息第三时间的差值大于该第六阈值时,驾驶员是在应激反应下单独踩下油门踏板的错误操控。
可选的,第一操控行为信息包括第一压力值、第一距离值、第二压力值以及扭矩值,车辆控制系统判断第一操控行为信息是否满足第一压力值大于第一阈值,第二压力值大于第二阈值,扭矩值大于第三阈值这三种情况中的至少一种,当第一操控行为满足这三种情况中的任意一种时,确定第一操控行为为应 激行为信息;当第一操控行为不满足这三种情况中的任意一种时,判断第一时间和第三时间的差值是否大于第六阈值,若第一时间和第三时间的差值不大于第六阈值,则确定第一操控行为不是应激行为信息,若第一时间和第三时间的差值大于第六阈值,则确定第一操控行为是应激行为信息。
在步骤203中,若第一操控行为信息不属于应激操控行为信息,则车辆控制设备将车辆从自动驾驶模式切换为人工驾驶模式。
当车辆控制设备判断第一操控行为信息不属于应激操控行为信息,则将车辆从自动驾驶模式切换为人工驾驶模式,将操控权交给驾驶员。
综上所示,本发明实施例中,通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,实现了具有自动驾驶模式的车辆可根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。
请参考图3,其示出了本申请另一个实施例提供的车辆控制方法的方法流程图。本实施例以该车辆控制方法用于如图1所示的车辆控制设备150中为例,该方法包括:
在步骤301中,在车辆处于自动驾驶模式时,车辆控制设备通过车内感知系统获取第一操控行为信息,第一操控行为信息是对车辆采取的操控行为所产生的信息。
在车辆处于自动驾驶模式时,车辆控制设备通过车内感知系统采集第一操控行为信息,第一操控行为信息包括驾驶员踩下制动踏板产生的信息、踩下油门踏板产生的信息和转动方向盘产生的信息中的至少一种。
在一个可选的实施例中,第一传感器组件测量踩下制动踏板产生的信息包括第一压力值和/或第一距离值,并将第一压力值和/或第一距离值传输至车辆控制设备;第二传感器组件测量踩下油门踏板产生的信息包括第二压力值和/或第二距离值,并将第二压力值和/或第二距离值传输至车辆控制设备;第三传感器组件测量转动方向盘产生的信息包括扭矩值和/或角度值,并将扭矩值和/或角度值传输至车辆控制设备。
车辆控制设备获取第一操控行为信息之后,若第一操控行为信息包括踩下 制动踏板产生的信息,则进入步骤302a;若第一操控行为信息包括踩下油门踏板产生的信息,则进入步骤302b;若第一操控行为信息包括转动方向盘产生的信息,则进入步骤302c;若第一操控行为信息包括踩下制动踏板产生的信息和踩下油门踏板产生的信息,则可以先进入步骤302a,再进入步骤302b,或先进入步骤302b,再进入步骤302a;若第一操控行为信息包括踩下制动踏板产生的信息和转动方向盘产生的信息,则可以先进入步骤302a,在进入步骤302c,或先进入步骤302c,再进入步骤302a;若第一操控行为信息包括踩下油门踏板产生的信息和转动方向盘产生的信息,则先进入步骤302b,在进入步骤302c,或先进入步骤302c,再进入步骤302b;若第一操控行为包括踩下制动踏板产生的信息、踩下油门踏板产生的信息以及转动方向盘产生的信息,则进入步骤302a、302b以及302c,进入步骤302a、302b以及302c的先后顺序不做限定。
驾驶员在应激反应下的第一操控行为和正常的操控行为(例如手动切换操作行为)是不同的,因此车内感知系统获得的在应激反应下产生的第一操控行为信息和在正常操控行为下产生的第一操控行为信息也是不同的。对于踩下制动踏板的动作,驾驶员在应激反应下是突然踩下制动踏板,因此驾驶员对制动踏板施加的压力,以及踩下制动踏板的移动距离都是突然增加再缓慢增加的;对于踩下油门踏板的动作,驾驶员在应激反应下是突然踩下油门踏板,因此驾驶员对油门踏板施加的压力,以及踩下油门踏板的移动距离都是突然增加再缓慢增加的;对于转动方向盘的动作,驾驶员在应激反应下是突然转动方向盘,因此驾驶员对方向盘施加的扭矩,以及转动方向盘的转动角度都是突然增加再缓慢增加的。以下以驾驶员在应激反应下踩下制动踏板为例,说明在应激反应下产生的第一操控信息随时间变化的关系。
请参考图4,其示出了驾驶员在应激反应下做出的踩下制动踏板产生的第一压力值和时间的关系。如图所示,驾驶员在紧急情况下的应激反应所触发的操控行为和正常的操控行为不同,其踩下制动踏板施加的压力是突然增加然后再缓慢增加的,而正常操控行为中,驾驶员踩下制动踏板的压力是逐渐增加的。
因此,在一个可选的实施例中,判断驾驶员踩下制动踏板产生的信息是否为应激操控行为信息,可以通过判断第一压力值在第一时间段内的变化幅度是否大于第二时间段内的变化幅度实现,其中,第二时间段在第一时间段之后。例如,如图4所示,第一时间段△T1为0到T1的时间段,第二时间段△T2为T1到T2的时间段,△T1和△T2的值相同,△T1内第一压力值的变化幅度 为P1,△T2内第一压力值的变化幅度为(P2-P1),由于P1>(P2-P1),因此可以确定第一压力值是应激操控行为信息。
同理,在一个可选的实施例中,判断驾驶员踩下制动踏板产生的信息是否为应激操控行为信息,还可以通过判断第一距离值在第一时间段内的变化幅度是否大于第二时间段内的变化幅度实现,其中,第二时间段在第一时间段之后。
同理,在一个可选的实施例中,判断驾驶员踩下油门踏板产生的信息是否为应激操控行为信息,可以通过判断第二压力值在第三时间段内的变化幅度是否大于第四时间段内的变化幅度实现,其中,第四时间段在第三时间段之后。
同理,在一个可选的实施例中,判断驾驶员踩下油门踏板产生的信息是否为应激操控行为信息,还可以通过判断第二距离值在第三时间段内的变化幅度是否大于第四时间段内的变化幅度实现,其中,第四时间段在第三时间段之后。
同理,在一个可选的实施例中,判断驾驶员转动方向盘产生的信息是否为应激操控行为信息,可以通过判断扭矩值在第五时间段内的变化幅度是否大于第六时间段内的变化幅度实现,其中,第六时间段在第五时间段之后。
同理,在一个可选的实施例中,判断驾驶员转动方向盘产生的信息是否为应激操控行为信息,还可以通过判断角度值在第五时间段内的变化幅度是否大于第六时间段内的变化幅度实现,其中,第六时间段在第五时间段之后。
在步骤302a中,车辆控制设备判断制动踏板踩下产生的信息是否是应激行为信息。
车辆控制设备需要对驾驶员踩下制动踏板产生的信息进行识别,判断踩下制动踏板产生的信息是否属于应激操控行为信息。
在一个可选的实施例中,制动踏板踩下产生的信息包括第一压力值,车辆控制系统判断第一压力值在第一时间段内的变化幅度是否大于第二时间段内的变化幅度,其中,第二时间段在第一时间段之后,若是,则确定第一压力值是应激行为信息,若否,则确定第一压力值不是应激行为信息。
在一个可选的实施例中,制动踏板踩下产生的信息包括第一距离值,车辆控制系统判断第一距离值在第一时间段内的变化幅度是否大于第二时间段内的变化幅度,其中,第二时间段在第一时间段之后,若是,则确定第一距离值是应激行为信息,若否,则确定第一距离值不是应激行为信息。
在一个可选的实施例中,制动踏板踩下产生的信息包括第一压力值和第一距离值,若第一压力值和第一距离值其中任意一项为应激行为信息,或第一压 力值和第一距离值都是应激行为信息,则确定制动踏板踩下产生的信息为应激行为信息。若第一压力值和第一距离值都不是应激行为信息,则确定制动踏板踩下产生的信息不是应激行为信息。
在一个可选的实施例中,车辆控制系统判断第一压力值是否大于第一阈值,当第一压力值大于第一阈值时,确定制动踏板踩下产生的信息是应激行为信息;当第一压力值不大于第一阈值时,通过上述三种判断方式中的任意一种判断制动踏板踩下产生的信息是否是应激行为信息。
在步骤302b中,车辆控制设备判断油门踏板踩下产生的信息是否是应激行为信息。
车辆控制设备需要对驾驶员踩下油门踏板产生的信息进行识别,判断踩下油门踏板产生的信息是否属于应激操控行为信息。
在一个可选的实施例中,油门踏板踩下产生的信息包括第二压力值,车辆控制系统判断第二压力值在第三时间段内的变化幅度是否大于第四时间段内的变化幅度,其中,第四时间段在第三时间段之后,若是,则确定第二压力值是应激行为信息,若否,则确定第二压力值不是应激行为信息。
在一个可选的实施例中,油门踏板踩下产生的信息包括第二距离值,车辆控制系统判断第二距离值在第三时间段内的变化幅度是否大于第四时间段内的变化幅度,其中,第四时间段在第三时间段之后,若是,则确定第二距离值是应激行为信息,若否,则确定第二距离值不是应激行为信息。
在一个可选的实施例中,油门踏板踩下产生的信息包括第二压力值和第二距离值,若第二压力值和第二距离值其中任意一项为应激行为信息,或第二压力值和第二距离值都为应激行为信息,则确定油门踏板踩下产生的信息为应激行为信息。若第二压力值和第二距离值都不是应激行为信息,则确定油门踏板踩下产生的信息不是应激行为信息。
在一个可选的实施例中,车辆控制系统判断第二压力值是否大于第二阈值,当第二压力值大于第二阈值时,确定油门踏板踩下产生的信息是应激行为信息;当第二压力值不大于第二阈值时,通过上述三种判断方式中的任意一种判断油门踏板踩下产生的信息是否是应激行为信息。
在步骤302c中,车辆控制设备判断转动方向盘产生的信息是否是应激行为信息。
车辆控制设备需要对驾驶员转动方向盘产生的信息进行识别,判断转动方 向盘产生的信息是否属于应激操控行为信息。
在一个可选的实施例中,转动方向盘产生的信息包括扭矩值,车辆控制系统判断扭矩值在第五时间段内的变化幅度是否大于第六时间段内的变化幅度,其中,第六时间段在第五时间段之后,若是,则确定扭矩值是应激行为信息,若否,则确定扭矩值不是应激行为信息。
在一个可选的实施例中,转动方向盘产生的信息包括角度值,车辆控制系统判断角度值在第五时间段内的变化幅度是否大于第六时间段内的变化幅度,其中,第六时间段在第五时间段之后,若是,则确定角度值是应激行为信息,若否,则确定角度值不是应激行为信息。
在一个可选的实施例中,油门踏板踩下产生的信息包括扭矩值和角度值,若扭矩值和角度值其中任意一项为应激行为信息,或扭矩值和角度值都为应激行为信息,则确定转动方向盘产生的信息为应激行为信息。若扭矩值和角度值都不是应激行为信息,则确定转动方向盘产生的信息不是应激行为信息。
在一个可选的实施例中,车辆控制系统判断扭矩值是否大于第三阈值,当扭矩值大于第三阈值时,确定转动方向盘产生的信息是应激行为信息;当扭矩值不大于第三阈值时,通过上述三种判断方式中的任意一种判断转动方向盘产生的信息是否是应激行为信息。
在步骤303中,车辆控制设备确定第一操控行为信息不是应激行为信息。
若踩下制动踏板产生的信息、踩下油门踏板产生的信息以及转动方向盘产生的信息中的至少一项为应激行为信息,则确定第一操控行为信息为应激行为信息。
若踩下制动踏板产生的信息、踩下油门踏板产生的信息以及转动方向盘产生的信息都不是应激行为信息,则确定第一操控行为信息不是应激行为信息。
在步骤304中,车辆控制设备将车辆由自动驾驶模式切换为人工驾驶模式。
车辆控制设备确定第一操控行为信息不是应激操控行为信息时,将车辆由自动驾驶模式切换为人工驾驶模式。
以上过程实现了根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式智能切换到人工驾驶模式的过程。作为一种可选实施例,对于切换到人工驾驶模式之后的控制操作,本申请实施例还提供了如下步骤。
在步骤305中,在车辆处于人工驾驶模式时,车辆控制设备通过车内感知系统获取第二操控行为信息和车辆运行状态信息,第二操控行为信息是对车辆 采取的操控行为所产生的信息。
车辆运行状态信息包括车辆的速度值和/或角速度值,车内感知系统获取车辆的速度值和/或角速度值,并将车辆的速度值和/或角速度值传输至车辆控制设备。车内感知系统采集第二操控行为信息,第二操控行为信息包括在人工驾驶模式时驾驶员踩下制动踏板产生的信息、踩下油门踏板产生的信息和转动方向盘产生的信息中的至少一种。
在一个可选的实施例中,第一传感器组件测量踩下制动踏板产生的信息包括第一压力值和/或第一距离值,并将第一压力值和/或第一距离值传输至车辆控制设备;第二传感器组件测量踩下油门踏板产生的信息包括第二压力值和/或第二距离值,并将第二压力值和/或第二距离值传输至车辆控制设备;第三传感器组件测量转动方向盘产生的信息包括扭矩值和/或角度值,并将扭矩值和/或角度值传输至车辆控制设备。
在步骤306中,车辆控制设备根据第二操控行为信息和车辆运行状态信息识别第二操控行为信息是否属于危险行为信息。
通常车辆运行状态信息包括车辆的速度值和/或车辆的角速度值,通过车辆的速度值识别车辆是否加速过快或减速过快,通过车辆的角速度值识别车辆是否转向过大。车辆控制设备根据第二操控行为信息和车辆运行状态信息识别第二操控行为信息是否会使车辆加速过快、减速过快或转向过大,若是,则确定第二操控行为信息是危险行为信息,进入步骤307;若否,则确定第二操控行为信息不是危险行为信息,进入步骤304。
在一个可选的实施例中,车辆控制设备判断第二操控行为信息是否会使车辆加速过快。车辆控制设备获得第二操控行为信息和车辆的速度值,判断在第二操控行为信息的作用下,车辆的速度值在第七时间段内是否会高于第七阈值,若是,则确定第二操控行为信息为危险行为信息,进入步骤307。
其中,第七阈值是通过实验和计算模拟得到的一个较大的速度值,当车辆在第二操控行为信息的作用下在第七时间段内速度值大于该第七阈值时,车辆会因为加速过快而陷入危险。
在一个可选的实施例中,车辆控制设备判断第二操控行为信息是否会使车辆减速过快。车辆控制设备获得第二操控行为信息和车辆的速度值,判断在第二操控行为信息的作用下,车辆的速度值在第七时间段内是否会低于第八阈值,若是,则确定第二操控行为信息为危险行为信息,进入步骤307。
其中,第八阈值是通过实验和计算模拟得到的一个较小的速度值,当车辆在第二操控行为信息的作用下在第七时间段内速度值小于该第八阈值时,车辆会因为减速过快而陷入危险。
在一个可选的实施例中,车辆控制设备判断第二操控行为信息是否会使车辆转向过大。车辆控制设备获得第二操控行为信息和车辆的角速度值,判断在第二操控行为信息的作用下,车辆的角速度值在第八时间段内是否会高于第九阈值,若是,则确定第二操控行为信息为危险行为信息,进入步骤307。
其中,第九阈值是通过实验和计算模拟得到的一个较大的角速度值,当车辆在第二操控行为信息的作用下在第八时间段内角速度值大于该第九阈值时,车辆会因为转向过大而陷入危险。
在步骤307中,车辆控制设备识别第二操控行为信息是驾驶行为信息还是制动行为信息。
车辆控制设备通过第二操控行为信息判断该操控行为信息是驾驶行为信息还是制动行为信息。其中,驾驶行为信息是驾驶员对车辆的驾驶行为产生的信息,制动行为信息是驾驶员对车辆的制动行为产生的信息。
在一个可选的实施例中,车辆控制设备接收到的第二操控行为信息包括转动方向盘产生的信息,例如扭矩值和/或角度值,或,车辆控制设备接收到的第二操控行为信息是转动方向盘产生的信息和踩下油门踏板产生的信息,例如扭矩值和第二压力值,扭矩值和第二距离值,角度值和第二压力值,角度值和第二距离值等,则确定第二操控行为信息是驾驶行为信息,进入步骤308a。
在一个可选的实施例中,车辆控制设备接收到的第二操控行为信息包括踩下制动踏板产生的信息,例如第一压力值和/或第一距离值,或,车辆控制设备接收到的第二操控行为信息是转动方向盘产生的信息和踩下制动踏板产生的信息,例如扭矩值和第一压力值,扭矩值和第一距离值,角度值和第一压力值,角度值和第一距离值等,确定第二操控行为信息是制动行为信息,进入步骤308b。
在步骤308a中,开启辅助驾驶模式。
车辆控制设备确定第二操控行为信息属于危险行为信息,开启辅助操控模式。
在一个可选的实施例中,辅助操控模式有两种,一种是辅助驾驶员驾驶车辆的辅助驾驶模式,另一种是辅助驾驶员制动车辆的辅助制动模式。
车辆控制设备确定第二操控行为信息属于危险行为信息,且第二操控行为信息是驾驶行为信息,则开启辅助驾驶模式。
在一个可选的实施例中,车辆控制设备开启辅助驾驶模式,对车辆的制动踏板、油门踏板、方向盘中的至少一种进行辅助控制。例如,当驾驶员方向盘转动过度时,车辆控制设备接收到的扭矩值和/或角度值较大,则关闭电子辅助转向系统(Electrical Power Steering,EPS),使驾驶员转动方向盘变得困难,纠正驾驶员方向盘转动过度的错误驾驶行为;例如,当驾驶员踩下油门的动作较大,第二压力值和/或第二距离值较大时,车辆控制设备通过降低驾驶员踩下油门踏板产生的第二压力值和/或第二距离值,使车辆接收较小的踩下油门踏板产生的信息,纠正驾驶员油门踏板踩下动作过大的错误驾驶行为。
在步骤308b中,开启辅助制动模式。
车辆控制设备确定第二操控行为信息属于危险行为信息,且第二操控行为信息是制动行为信息,则开启辅助制动模式。
在一个可选的实施例中,车辆控制设备开启辅助制动模式,对车辆的制动踏板、油门踏板、方向盘中的至少一种进行辅助控制。例如,当驾驶员踩下制动踏板的动作较大,第一压力值和/或第一距离值较大时,车辆控制设备通过降低驾驶员踩下制动踏板产生的第一压力值和/或第一距离值,使车辆接收较小的踩下制动踏板产生的信息,纠正驾驶员制动踏板踩下动作过大的错误驾驶行为;当驾驶员踩下制动踏板进入人工操作模式后,由于在慌乱中乱打方向盘,车辆控制设备判断驾驶员的制动行为信息为危险行为信息,则开启辅助制动模式,关闭电子辅助转向系统,使驾驶员转动方向盘变得困难,降低驾驶员误打方向盘所带来的危险。
综上所述,本申请实施例中,通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,实现了具有自动驾驶模式的车辆可根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。
可选的,本申请实施例中,通过在车辆切换到人工驾驶模式之后,识别操控行为信息是否属于危险行为信息,若是,则开启辅助操控模式,对车辆的制动踏板、油门踏板、方向盘中的至少一种进行辅助控制,从而解决了当车辆切 换到人工驾驶模式之后,由于驾驶员的危险操作导致的危险问题,实现了具有无人驾驶模式的车辆将车辆操控权交给驾驶员后依然可以通过辅助操控模式保证人工驾驶的安全,提高了车辆的安全性能。
请参见图5,其示出了本申请一个实施例提供的车辆控制装置的装置框图。本实施例以该车辆控制装置用于如图1所示的车辆控制设备150中为例,该装置包括:获取模块501、识别模块502以及控制模块503。
获取模块501,用于实现上述步骤201、步骤301、步骤305及各个步骤中隐含的有关获取的功能。
识别模块502,用于实现上述步骤202、步骤302a、步骤302b、步骤302c、步骤303、步骤306、步骤307及各个步骤中隐含的有关识别的功能。
控制模块503,用于实现上述步骤203、步骤304、步骤305、步骤308a、步骤308b及各个步骤中隐含的有关控制的功能。
综上所述,本发明实施例中,通过识别第一操控行为信息是否属于应激操控行为信息,避免了车辆控制装置将驾驶员在应激反应下的产生的应激反应行为信息误判为手动切换操作行为信息,从而错误地将车辆操控权交给驾驶员,使驾驶员由于应激反应下的不当操控行为陷入危险,实现了具有自动驾驶模式的车辆可根据驾驶员的真实操控意图将车辆操控权交给驾驶员,使车辆从自动驾驶模式切换到人工驾驶模式更加智能化,提高了车辆的安全性能。
可选的,本申请实施例中,通过在车辆切换到人工驾驶模式之后,识别模块识别操控行为信息是否属于危险行为信息,若是,则开启辅助操控模式,对车辆的制动踏板、油门踏板、方向盘中的至少一种进行辅助控制,从而解决了当车辆切换到人工驾驶模式之后,由于驾驶员的危险操作导致的危险问题,实现了具有无人驾驶模式的车辆将车辆操控权交给驾驶员后依然可以通过辅助操控模式保证人工驾驶的安全,提高了车辆的安全性能。
请参见图6,其示出了本申请一个实施例提供的车辆控制设备的结构框图。该车辆控制设备包括:处理器601、处理器602以及通信接口603。
通信接口603通过总线或其它方式与处理器601相连,用于接收车内感知系统传输的第一操控行为信息、第二操控行为信息以及车辆运行状态信息。
处理器601可以是中央处理器(英文:central processing unit,CPU),网 络处理器(英文:network processor,NP)或者CPU和NP的组合。处理器603还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,ASIC),可编程逻辑器件(英文:programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,FPGA),通用阵列逻辑(英文:generic array logic,GAL)或其任意组合。
存储器602通过总线或其它方式与处理器601相连,存储器601中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器601加载并执行以实现如图2或图3的车辆控制方法。存储器602可以为易失性存储器(英文:volatile memory),非易失性存储器(英文:non-volatile memory)或者它们的组合。易失性存储器可以为随机存取存储器(英文:random-access memory,RAM),例如静态随机存取存储器(英文:static random access memory,SRAM),动态随机存取存储器(英文:dynamic random access memory,DRAM)。非易失性存储器可以为只读存储器(英文:read only memory image,ROM),例如可编程只读存储器(英文:programmable read only memory,PROM),可擦除可编程只读存储器(英文:erasable programmable read only memory,EPROM),电可擦除可编程只读存储器(英文:electrically erasable programmable read-only memory,EEPROM)。非易失性存储器也可以为快闪存储器(英文:flash memory),磁存储器,例如磁带(英文:magnetic tape),软盘(英文:floppy disk),硬盘。非易失性存储器也可以为光盘。
本申请实施例还提供了一种计算机可读存储介质,该存储介质中一种计算机可读存储介质,存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如图2或图3所示的车辆控制方法,可选地,该计算机可读存储介质包括高速存取存储器、非易失性存储器。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的车辆控制方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种车辆控制方法,其特征在于,包括:
    在车辆处于自动驾驶模式时,通过车内感知系统获取第一操控行为信息,所述第一操控行为信息是对所述车辆采取的操控行为所产生的信息;
    识别所述第一操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
    若所述第一操控行为信息不属于所述应激操控行为信息,则从所述自动驾驶模式切换为人工驾驶模式。
  2. 根据权利要求1所述的方法,其特征在于,所述第一操控行为信息包括:踩下制动踏板的第一压力值、踩下油门踏板的第二压力值和转动方向盘的扭矩值中至少一种;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述第一压力值大于所述第一阈值,则确定所述第一操控行为信息属于所述应激操控行为信息;
    和/或,
    若所述第二压力值大于所述第二阈值,则确定所述第一操控行为信息属于所述应激操控行为信息;
    和/或,
    若所述扭矩值大于第三阈值,则确定所述第一操控行为信息属于所述应激操控行为信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括转动方向盘的角度值;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述角度值大于第四阈值,则确定所述第一操控行为信息属于所述应激操控行为信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括:踩下制动踏板的第一时间和踩下油门踏板的第二时间;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述第一时间和所述第二时间之间的差值小于第五阈值,则确定所述第一操控行为信息属于所述应激操控行为信息。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括:踩下油门踏板的第一时间和转动方向盘的第三时间;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述第一时间和所述第三时间之间的差值大于第六阈值,则确定所述第一操控行为信息属于所述应激操控行为信息。
  6. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括:踩下制动踏板的第一压力值和/或踩下制动踏板的第一距离值;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述第一压力值在第一时间段内的变化幅度大于第二时间段内的变化幅度,所述第二时间段是位于所述第一时间段之后的时间段时,确定所述第一操控行为信息属于所述应激操控行为信息;
    和/或,
    若所述第一距离值在第一时间段内的变化幅度大于第二时间段内的变化幅度,所述第二时间段是位于所述第一时间段之后的时间段时,确定所述第一操控行为信息属于所述应激操控行为信息。
  7. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括:踩下油门踏板的第二压力值和/或踩下油门踏板的第二距离值;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述第二压力值在第三时间段内的变化幅度大于第四时间段内的变化幅度,所述第四时间段是位于所述第三时间段时,确定所述第一操控行为信息属于所述应激操控行为信息;
    和/或,
    若所述第二距离值在第三时间段内的变化幅度大于第四时间段内的变化幅度,所述第四时间段是位于所述第三时间段之后的时间段时,确定所述第一操控行为信息属于所述应激操控行为信息。
  8. 根据权利要求1或2所述的方法,其特征在于,所述第一操控行为信息包括:转动方向盘的扭矩值和/或转动方向盘的角度值;
    所述识别所述第一操控行为信息是否属于应激操控行为信息,包括:
    若所述扭矩值在第五时间段内的变化幅度大于第六时间段内的变化幅度,所述第六时间段是位于所述第五时间段之后的时间段时,确定所述第一操控行为信息属于所述应激操控行为信息;
    和/或,
    若所述角度值在第五时间段内的变化幅度大于第六时间段内的变化幅度,所述第六时间段是位于所述第五时间段之后的时间段时,确定所述第一操控行为信息属于所述应激操控行为信息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述从所述自动驾驶模式切换为人工驾驶模式之后,还包括:
    在车辆处于人工驾驶模式时,通过车内感知系统获取第二操控行为信息和车辆运行信息,所述第二操控行为信息是对所述车辆采取的操控行为所产生的信息;
    根据所述第二操控行为信息和所述车辆运行状态信息识别所述第二操控行为信息是否属于危险行为信息;
    若所述第二操控行为信息属于所述危险行为信息,则开启辅助操控模式,所述辅助操控模式用于根据所述第二操控行为信息和所述车辆运行状态信息对所述车辆的制动踏板、油门踏板、方向盘中的至少一种进行辅助控制。
  10. 根据权利要求9所述的方法,其特征在于,所述车辆运行状态信息包括所述车辆的速度值,所述根据所述第二操控行为信息和所述车辆运行状态信息识别所述操控行为信息是否属于危险行为信息包括:
    根据所述第二操控行为信息、所述车辆的速度值,判断所述车辆的速度值在第七时间段内是否会高于第七阈值,若是,则判断所述第二操控行为信息为危险行为信息;
    或,
    根据所述第二操控行为信息、所述车辆的速度值,判断所述车辆的速度值 在第七时间段内是否会低于第八阈值,若是,则判断所述第二操控行为信息为危险行为信息。
  11. 根据权利要求9所述的方法,其特征在于,所述车辆运行状态信息包括所述车辆的角速度值,所述根据所述第二操控行为信息和所述车辆运行状态信息识别所述操控行为信息是否属于危险行为信息包括:
    根据所述第二操控行为信息、所述车辆的角速度值,判断所述车辆的角速度值在第八时间段内是否会高于第九阈值,若是,则判断所述第二操控行为信息为危险行为信息。
  12. 一种车辆控制装置,其特征在于,包括:
    获取模块,用于在车辆处于自动驾驶模式时,通过车内感知系统获取第一操控行为信息,所述第一操控行为信息是对所述车辆采取的操控行为所产生的信息;
    识别模块,用于识别所述第一操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
    控制模块,用于若所述第一操控行为信息不属于所述应激操控行为信息,将所述车辆从所述自动驾驶模式切换为人工驾驶模式。
  13. 一种车辆控制系统,其特征在于,所述系统包括:车内感知系统和车辆控制设备;
    所述车内感知系统,用于在车辆处于自动驾驶模式时,获取第一操控行为信息,并将所述第一操控行为信息传输至所述车辆控制设备,所述第一操控行为信息是对所述车辆采取的操控行为所产生的信息;
    所述车辆控制设备,用于获取所述车内感知系统采集到的所述第一操控行为信息,识别所述第一操控行为信息是否属于应激操控行为信息,所述应激操控行为信息是在紧急情况下的应激反应所触发的操控行为所对应的信息;
    若所述第一操控行为信息不属于所述应激操控行为信息,将所述车辆从所述自动驾驶模式切换为人工驾驶模式。
  14. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至11任一所述的车辆控制方法。
PCT/CN2018/106707 2017-10-10 2018-09-20 车辆控制方法、装置、系统及存储介质 WO2019072079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/589,204 US11447146B2 (en) 2017-10-10 2019-10-01 Vehicle control method, apparatus and system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936580.9A CN108297877B (zh) 2017-10-10 2017-10-10 车辆控制方法、系统及装置
CN201710936580.9 2017-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/589,204 Continuation US11447146B2 (en) 2017-10-10 2019-10-01 Vehicle control method, apparatus and system, and storage medium

Publications (1)

Publication Number Publication Date
WO2019072079A1 true WO2019072079A1 (zh) 2019-04-18

Family

ID=62869989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106707 WO2019072079A1 (zh) 2017-10-10 2018-09-20 车辆控制方法、装置、系统及存储介质

Country Status (3)

Country Link
US (1) US11447146B2 (zh)
CN (1) CN108297877B (zh)
WO (1) WO2019072079A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891612B1 (ko) * 2016-09-30 2018-08-24 엘지전자 주식회사 자율 주행 차량
US11107300B2 (en) * 2017-08-23 2021-08-31 Panasonic Intellectual Property Corporation Of America Driving management system, vehicle, and information processing method
CN108297877B (zh) * 2017-10-10 2019-08-13 腾讯科技(深圳)有限公司 车辆控制方法、系统及装置
DE102018207301A1 (de) * 2018-05-09 2019-11-14 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem und Verfahren zum automatisierten Fahren mit automatisierter Längsführung
CN109398336B (zh) * 2018-10-19 2021-01-19 东南大学 一种基于人机共驾的自动驾驶车辆通用制动系统及制动方法
CN111252045A (zh) * 2018-11-30 2020-06-09 北汽福田汽车股份有限公司 车辆控制方法、装置、计算机可读存储介质及车辆
CN110341787B (zh) * 2019-07-16 2021-08-03 上海高爱特汽车电子股份有限公司 一种基于eps的汽车驾驶模式的切换方法
JP7358164B2 (ja) * 2019-09-30 2023-10-10 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
CN112706772B (zh) * 2019-10-24 2022-10-18 比亚迪股份有限公司 车辆的接管检测方法、装置、介质及车辆
CN110843794B (zh) * 2020-01-15 2020-05-05 北京三快在线科技有限公司 驾驶场景理解方法、装置和轨迹规划方法、装置
CN113547955B (zh) * 2020-04-23 2023-06-16 宁德时代新能源科技股份有限公司 电池的充电控制方法、装置、电池管理系统和介质
CN112109731B (zh) * 2020-09-27 2022-01-28 阿波罗智联(北京)科技有限公司 车辆控制方法、装置、电子设备、存储介质及车辆
CN114475622B (zh) * 2020-11-13 2024-06-11 博泰车联网科技(上海)股份有限公司 监控驾驶行为的方法及相关装置
CN112722075B (zh) * 2021-01-29 2022-09-06 重庆长安汽车股份有限公司 一种智能驾驶方向盘的接管方法
CN116802101A (zh) * 2021-03-29 2023-09-22 深圳市大疆创新科技有限公司 用于车辆的提示方法和装置
CN113263911B (zh) * 2021-05-24 2022-08-30 浙江吉利控股集团有限公司 油门踏板控制方法、装置及可读存储介质
CN113291319A (zh) * 2021-06-11 2021-08-24 东风柳州汽车有限公司 一种智能驾驶卡车的中转控制方法及系统
WO2024065526A1 (zh) * 2022-09-29 2024-04-04 华为技术有限公司 一种角度偏差的修正方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711591A (zh) * 2016-04-26 2016-06-29 百度在线网络技术(北京)有限公司 无人驾驶车辆、无人驾驶车辆的控制方法和装置
CN105807764A (zh) * 2015-01-19 2016-07-27 丰田自动车株式会社 自动驾驶车辆系统
CN105807763A (zh) * 2015-01-19 2016-07-27 丰田自动车株式会社 车辆系统
CN106873596A (zh) * 2017-03-22 2017-06-20 北京图森未来科技有限公司 一种车辆控制方法及装置
CN106891895A (zh) * 2017-03-22 2017-06-27 北京图森未来科技有限公司 一种车辆控制方法及装置
CN108297877A (zh) * 2017-10-10 2018-07-20 腾讯科技(深圳)有限公司 车辆控制方法、系统及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751534B2 (en) * 2013-03-15 2017-09-05 Honda Motor Co., Ltd. System and method for responding to driver state
US9150224B2 (en) * 2013-09-24 2015-10-06 Ford Global Technologies, Llc Transitioning from autonomous vehicle control to to driver control to responding to driver control
JP6065328B2 (ja) * 2013-12-17 2017-01-25 みこらった株式会社 自動運転車及び自動運転車用プログラム
CN105523039B (zh) * 2014-10-22 2018-03-23 中国移动通信集团公司 一种车辆驾驶模式切换方法及系统
KR20160076262A (ko) * 2014-12-22 2016-06-30 엘지전자 주식회사 차량의 주행 모드 전환 장치 및 그 방법
US9684306B2 (en) * 2015-01-09 2017-06-20 Qualcomm Incorporated Transitioning from autonomous vehicle control to operator vehicle control
JP6176263B2 (ja) * 2015-01-19 2017-08-09 トヨタ自動車株式会社 自動運転装置
JP6260544B2 (ja) * 2015-01-19 2018-01-17 トヨタ自動車株式会社 自動運転装置
JP6394474B2 (ja) * 2015-04-10 2018-09-26 トヨタ自動車株式会社 自動運転装置
EP3091411B1 (en) * 2015-05-05 2020-02-19 Volvo Car Corporation Vehicle system, vehicle comprising a vehicle system and method for allowing transition from an autonomous driving mode
JP2017001597A (ja) * 2015-06-15 2017-01-05 トヨタ自動車株式会社 自動運転装置
JP6552316B2 (ja) * 2015-07-29 2019-07-31 修一 田山 車輌の自動運転システム
CN204989831U (zh) * 2015-08-04 2016-01-20 内蒙古麦酷智能车技术有限公司 一种无人驾驶汽车控制系统
US10037031B2 (en) * 2016-02-05 2018-07-31 Ford Global Technologies, Llc Vehicle operation states
JP6460008B2 (ja) * 2016-02-25 2019-01-30 トヨタ自動車株式会社 自動運転装置
JP6583061B2 (ja) * 2016-03-08 2019-10-02 トヨタ自動車株式会社 自動運転制御装置
CN109311510A (zh) * 2016-06-06 2019-02-05 日本精工株式会社 电动动力转向装置
JP6849415B2 (ja) * 2016-11-30 2021-03-24 トヨタ自動車株式会社 自動運転システム
JP6320499B2 (ja) * 2016-12-08 2018-05-09 みこらった株式会社 自動運転車及び自動運転車用プログラム
CN107031396B (zh) * 2017-04-14 2019-03-19 李星辉 一种汽车油门踏板误踩补救装置及方法
KR20180116663A (ko) * 2017-04-17 2018-10-25 호남대학교 산학협력단 자율주행 제어권 전환 시스템 및 방법
US20200070848A1 (en) * 2018-08-30 2020-03-05 Arm Limited Method and System for Initiating Autonomous Drive of a Vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807764A (zh) * 2015-01-19 2016-07-27 丰田自动车株式会社 自动驾驶车辆系统
CN105807763A (zh) * 2015-01-19 2016-07-27 丰田自动车株式会社 车辆系统
CN105711591A (zh) * 2016-04-26 2016-06-29 百度在线网络技术(北京)有限公司 无人驾驶车辆、无人驾驶车辆的控制方法和装置
CN106873596A (zh) * 2017-03-22 2017-06-20 北京图森未来科技有限公司 一种车辆控制方法及装置
CN106891895A (zh) * 2017-03-22 2017-06-27 北京图森未来科技有限公司 一种车辆控制方法及装置
CN108297877A (zh) * 2017-10-10 2018-07-20 腾讯科技(深圳)有限公司 车辆控制方法、系统及装置

Also Published As

Publication number Publication date
US11447146B2 (en) 2022-09-20
CN108297877A (zh) 2018-07-20
CN108297877B (zh) 2019-08-13
US20200031363A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2019072079A1 (zh) 车辆控制方法、装置、系统及存储介质
US10202121B2 (en) Stop control device
TW201718297A (zh) 車輛駕駛模式切換系統和方法
CN106891895B (zh) 一种车辆控制方法及装置
US11500375B2 (en) Method and apparatus for vehicle control
US9862379B2 (en) Parking assist apparatus and method for controlling vehicle speed
JP4671242B2 (ja) 車両制御装置
CN109969150B (zh) 安全行车驾驶辅助方法、系统及车辆
US11292463B2 (en) Determination of a control signal for an in-part-autonomous vehicle
WO2017002669A1 (ja) 運転支援装置、及び運転支援方法
CN112606805A (zh) 一种车辆自动紧急制动系统aeb的控制方法
CN113805515A (zh) 车辆远程控制方法、装置、设备、存储介质和远程驾驶舱
JP2013233893A (ja) 走行制御装置
KR20140091333A (ko) 차량 제어 장치 및 차량 제어 방법
JP5853528B2 (ja) 車載電子制御装置
WO2019129414A2 (en) Garage mode control unit, control system and control method
US11767015B2 (en) System, vehicle, method and non-transitory computer readable storage medium for improving driving safety
US20230202475A1 (en) Driving assistance apparatus, driving assistance method, and program
KR101463265B1 (ko) 자동 주차 시스템
JP2019121243A (ja) 危険運転防止装置
JP2004110346A (ja) 車両用運転操作補助装置、車両用運転操作補助方法、およびその方法を適用した車両
WO2022152080A1 (zh) 远程车辆控制方法、车辆、系统、设备及计算机存储介质
CN113635885B (zh) 控制车辆行驶的方法、装置、车辆及存储介质
US11951832B2 (en) Driver assistance system
JP7270795B1 (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866831

Country of ref document: EP

Kind code of ref document: A1