WO2019065848A1 - エンジン搭載自立型飛行装置 - Google Patents

エンジン搭載自立型飛行装置 Download PDF

Info

Publication number
WO2019065848A1
WO2019065848A1 PCT/JP2018/035952 JP2018035952W WO2019065848A1 WO 2019065848 A1 WO2019065848 A1 WO 2019065848A1 JP 2018035952 W JP2018035952 W JP 2018035952W WO 2019065848 A1 WO2019065848 A1 WO 2019065848A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
rotor
sub
flight device
self
Prior art date
Application number
PCT/JP2018/035952
Other languages
English (en)
French (fr)
Inventor
満 石川
秀高 茅沼
Original Assignee
株式会社石川エナジーリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石川エナジーリサーチ filed Critical 株式会社石川エナジーリサーチ
Priority to CN202310692817.9A priority Critical patent/CN116834958A/zh
Priority to US16/651,173 priority patent/US20210016880A1/en
Priority to CN201880024839.5A priority patent/CN110546069A/zh
Publication of WO2019065848A1 publication Critical patent/WO2019065848A1/ja
Priority to US17/971,831 priority patent/US20230042223A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • B64D27/33
    • B64D27/026
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control; Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control; Arrangement thereof
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/27Transmission of mechanical power to rotors or propellers with a single motor serving two or more rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an engine mounted stand-alone flight device, and in particular, a so-called hybrid type engine mounted stand-alone flight in which a main rotor is driven by an engine and power is obtained from a generator driven by the engine. It relates to the device.
  • a transportation field, a surveying field, an imaging field, etc. can be considered.
  • survey equipment and photographing equipment are equipped to the flight device.
  • a flight device By applying a flight device to such a field, it is possible to fly the flight device to an area where people do not enter, and to carry out transportation, photographing and surveying of such area.
  • An invention relating to such a self-sustaining type flying device is described, for example, in Patent Document 1 and Patent Document 2.
  • a stand-alone flight device equipped with an engine has appeared in order to realize continuous flight over a long time.
  • the generator is rotated by the driving force of the engine, and the rotor is rotationally driven by the electric power generated by the generator.
  • Such a stand-alone flight device is also referred to as a series drone since the engine and the generator are connected in series in a path where energy is supplied from the power source to the rotor.
  • a wide range of imaging and surveying can be performed by performing imaging and surveying using such a self-supporting flight device.
  • a flight device equipped with an engine is described in, for example, Patent Document 3.
  • the stand-alone flight device is required to increase the weight of a loadable load, that is, to increase the payload. Furthermore, the free-standing flight device is also required to fly continuously for a long time to fly a long distance.
  • the payload of a battery-powered self-sustaining flight device is about 10 kg, and its continuous flight time is about 20 minutes.
  • the payload in the case of a series-type self-supporting flight device in which the rotor is rotated using electric power generated by the engine, the payload can be made relatively large because the drive source is the engine, and furthermore, the continuous flight time is relatively long. can do.
  • the payload of a series type stand-alone flight device is about 20 kg, and the continuous flight time is about 1 hour.
  • the energy transmitted to the rotor passes through the engine, the generator, the power conditioner and the motor, so energy loss occurs depending on the efficiency of the generator and the power conditioner. Therefore, the series type of stand-alone flight device has a problem that the energy efficiency as a whole is not high and it is not easy to make the payload large.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to ensure a large payload and continuous flight time and to be able to accurately adjust the position and orientation at the time of flight. It is in providing a type flight device.
  • the engine-mounted self-supporting flight device comprises: a main rotor for providing a main thrust to an airframe; a subrotor for performing attitude control of the airframe; an engine for generating energy for rotating the main rotor and the subrotor; An arithmetic control unit for controlling the rotation of the sub-rotor, wherein the main rotor is rotated by being drivingly connected to the engine, and the sub-rotor generates electric power generated from a generator operated by the engine
  • the attitude control for tilting the machine body is performed by rotating the motor driven by the motor, the power distribution ratio of the sub-rotor is made larger than when hovering.
  • the arithmetic and control unit sets an output distribution ratio to the sub rotor to 10% or more and 30% or less when performing the attitude control.
  • the engine-mounted self-supporting flight device includes a power converter that converts the power generated from the generator, and a capacitor that stores the power output from the power converter,
  • the control device is characterized in that when the hovering is performed, the capacitor is stored, and when the attitude control is performed, electric power discharged by the capacitor is supplied to the motor.
  • the number of revolutions of the engine is substantially the same in the hovering and in the attitude control.
  • the engine and the main rotor are drivingly connected via a belt.
  • the engine includes a first engine portion having a first piston that reciprocates, and a second piston having a second piston that reciprocates in a state facing the first piston. And an engine unit.
  • the first piston and the second piston reciprocate within a communicating cylinder.
  • the first piston reciprocates inside the first cylinder
  • the second piston is inside the second cylinder formed separately from the first cylinder. It is characterized by reciprocating motion.
  • the sub-rotor is attached to the tip side of a sub arm extending outward from the location where the engine is disposed, and the main rotor is outward from the location where the engine is disposed And is attached to the tip end of the main arm which is longer than the sub arm.
  • the main rotor includes an engine-side pulley attached to a shaft extending outward from a crankshaft of the engine, and a rotor-side pulley attached to the main rotor A driving force is transmitted through the belt disposed between the engine-side pulley and the rotor-side pulley.
  • a direction in which the first engine unit and the second engine unit constituting the engine are aligned is a first direction, and a direction orthogonal to the first direction is a second direction.
  • the main rotor is driven by the first engine unit and is also driven by the second engine unit, and the first main rotor is disposed outside along the first direction.
  • the second sub-rotor disposed at a position facing the first sub-rotor along two directions, and a third sub-rotor disposed outside along the second direction on the second main rotor side And having a said fourth Saburota disposed at a position facing the third Saburota along the second direction.
  • the engine has a crankshaft on which the first balance mass is formed, and a second balance mass formed at symmetrical positions with respect to the first balance mass.
  • a balancer shaft is provided, and the main rotor is rotated by the driving force of the crankshaft and the balancer shaft.
  • the engine-mounted self-supporting flight device comprises: a main rotor for providing a main thrust to an airframe; a subrotor for performing attitude control of the airframe; an engine for generating energy for rotating the main rotor and the subrotor; An arithmetic control unit for controlling the rotation of the sub-rotor, wherein the main rotor is rotated by being drivingly connected to the engine, and the sub-rotor generates electric power generated from a generator operated by the engine
  • the attitude control for tilting the machine body is performed by rotating the motor driven by the motor, the power distribution ratio of the sub-rotor is made larger than when hovering. Therefore, when performing attitude control for tilting the airframe in order to move the engine-mounted self-supporting flight device in the air, the airframe can be moved with a suitable tilt by increasing the power distribution ratio of the sub-rotor.
  • the arithmetic and control unit sets an output distribution ratio to the sub rotor to 10% or more and 30% or less when performing the attitude control. Therefore, when the attitude control is performed, by setting the power distribution ratio to the sub rotor to 10% or more, the sub rotor can obtain sufficient rotational force, and the vehicle body is inclined and moved suitably in the air. Further, by setting the power distribution ratio to the sub rotor at 30% or less, the attitude of the airframe in the air can be stabilized.
  • the engine-mounted self-supporting flight device further includes a power converter that converts the power generated from the generator, and a capacitor that stores the power output from the power converter.
  • the arithmetic and control unit is characterized in that when the hovering is performed, the capacitor is stored, and when the attitude control is performed, electric power discharged by the capacitor is supplied to the motor. Therefore, when performing attitude control, by supplying the electric power discharged by the capacitor to the motor, the output of the sub-rotor can be rapidly increased, and the engine mounted self-standing flight device can be moved at high speed in the air .
  • the number of revolutions of the engine is substantially the same in the hovering and in the attitude control. Therefore, when performing attitude control, although the total energy required by the main rotor and the sub rotor is greater than that during hovering, in the present invention, energy is replenished with electric energy discharged from the capacitor. Therefore, since there is no need to increase the rotational speed of the engine to perform attitude control, attitude control can be simplified.
  • the engine and the main rotor are drivingly connected via a belt. Therefore, by drivingly connecting the engine and the main rotor by means of the belt, even if the distance between the engine and the main rotor is long, both can be easily driven and connected. Furthermore, since the belt is lightweight as compared to other power transmission means such as gears, the adoption of the belt can reduce the weight of the engine-mounted self-supporting flight device.
  • the engine includes a first engine portion having a first piston that reciprocates, and a second piston having a second piston that reciprocates in a state facing the first piston. And an engine unit. Therefore, the reciprocating movement of the pistons arranged opposite to each other between the first engine unit and the second engine unit cancels out the vibration and the like generated by the reciprocating movement and extremely reduces the vibration generated by the operation of the engine. be able to.
  • the first piston and the second piston reciprocate within a communicating cylinder. Therefore, by reciprocating the first piston and the second piston in the same cylinder, it is possible to suppress the vibration generated from the engine, and further, the structure of the engine can be simplified.
  • the first piston reciprocates inside the first cylinder
  • the second piston is inside the second cylinder formed separately from the first cylinder. It is characterized by reciprocating motion. Therefore, by separately providing the first engine unit and the second engine unit with the cylinders, the first engine unit and the second engine unit can be separately prepared, and the manufacturing cost can be reduced. Furthermore, the intake and exhaust paths of the first and second cylinders can be shaped to be suitable for intake and exhaust.
  • the sub-rotor is attached to the tip side of a sub arm extending outward from the location where the engine is disposed, and the main rotor is outward from the location where the engine is disposed And is attached to the tip end of the main arm which is longer than the sub arm. Therefore, by lengthening the main arm to which the main rotor is attached, each rotor constituting the main rotor can be lengthened, and the payload can be further enlarged. Further, by shortening the sub arm to which the sub rotor is attached, attitude control and the like by changing the number of rotations of the sub rotor can be accurately performed.
  • the main rotor includes an engine-side pulley attached to a shaft extending outward from a crankshaft of the engine, and a rotor-side pulley attached to the main rotor A driving force is transmitted through the belt disposed between the engine-side pulley and the rotor-side pulley. Therefore, the driving force generated from the engine can be transmitted to the main rotor with a relatively simple configuration.
  • a direction in which the first engine unit and the second engine unit constituting the engine are aligned is a first direction, and a direction orthogonal to the first direction is a second direction.
  • the main rotor is driven by the first engine unit and is also driven by the second engine unit, and the first main rotor is disposed outside along the first direction.
  • the second sub-rotor disposed at a position facing the first sub-rotor along two directions, and a third sub-rotor disposed outside along the second direction on the second main rotor side And having a said fourth Saburota disposed at a position facing the third Saburota along the second direction.
  • the first main rotor and the second main rotor at both ends along the first direction and having four sub-rotors, it is possible to increase the payload of the first main rotor and the second main rotor, and Attitude control of the whole machine can be precisely performed with two sub-rotors.
  • the engine has a crankshaft on which the first balance mass is formed, and a second balance mass formed at symmetrical positions with respect to the first balance mass.
  • a balancer shaft is provided, and the main rotor is rotated by the driving force of the crankshaft and the balancer shaft. Therefore, each rotor can be driven by the power extracted from the crankshaft and the balancer shaft without having a plurality of engine parts.
  • FIG. 1 It is a figure which shows the self-supporting flight apparatus which concerns on embodiment of this invention, (A) is a perspective view which shows a self-supporting flight apparatus, (B) is a top view. It is a figure showing the self-supporting flight device concerning the embodiment of the present invention, and is a block diagram showing the connection composition of each part. It is a figure showing a self-supporting flight device concerning an embodiment of the present invention, and (A) is a side sectional view showing an engine mounted, and (B) is the upper sectional view.
  • FIG. 6 is a view showing a self-contained flight device according to an embodiment of the present invention, and a side sectional view showing a further other engine mounted thereon.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the self-supporting flight apparatus which concerns on embodiment of this invention, (A) is a side view which shows the airframe inclined 10 degree
  • the configuration of the engine-mounted self-standing flying device of the present embodiment will be described with reference to the drawings.
  • parts having the same configuration will be assigned the same reference numerals and repeated descriptions will be omitted.
  • upper, lower, front, rear, left, and right directions are used, but these directions are for convenience of description.
  • the engine-mounted self-supporting flight device is referred to as a self-supporting flight device 10.
  • the engine mounted self-contained flight device is also referred to as a drone.
  • FIG. 1A is a perspective view generally showing a self-supporting flight device 10
  • FIG. 1B is a top view of the self-supporting flight device 10.
  • a self-supporting flight device 10 is a so-called hybrid self-supporting flight device. That is, while the main rotor 14A and the like are drivingly connected to the engine 30, the sub rotor 15A and the like are supplied with electric energy from the engine 30 via the generator 16A and the like.
  • the main rotor 14A and the like may be referred to simply as the main rotor 14 and the sub rotor 15A and the like may be referred to simply as the sub rotor 15.
  • the left-right direction in the drawing is the first direction in which the engine units constituting the engine 30 are aligned
  • the front-rear direction in the drawing is the second direction.
  • the self-sustaining type flying device 10 includes a frame 11, an engine 30 disposed substantially at the center of the frame 11, a generator 16A or the like driven by the engine 30, and a sub-rotor rotated by electric power generated from the generator 16A or the like. It mainly has a main rotor 14 that rotates by being motively connected to the engine 30.
  • the frame 11 is formed in a frame shape so as to support the engine 30, the generator 16A, various wirings, a control board (not shown here), and the like.
  • metal or resin molded in a frame shape is adopted.
  • a skid 18 is formed which comes into contact with the ground when the free-standing flight device 10 is in contact with the ground.
  • the frame 11 includes a main frame 12A and the like supporting the main rotor 14 and a sub frame 13A and the like supporting the sub rotor 15. The configurations of the main frame 12A and the like and the sub frame 13A and the like will be described later.
  • the engine 30, various wirings, a control board (not shown here), and the like are accommodated in a casing 17.
  • the casing 17 is made of, for example, a synthetic resin plate material molded into a predetermined shape, and is fixed to the central portion of the frame 11.
  • the casing 17 and a member incorporated therein will be referred to as a main body portion 19.
  • the generators 16A, 16B are disposed above the engine 30.
  • the generators 16A, 16B generate electricity by being rotated by the engine 30.
  • the electric power generated from the generators 16A and 16B is supplied to a motor 21 or the like that rotates the sub-rotor 15A or the like.
  • the electric power is also supplied to an arithmetic control unit or the like which controls the rotation of the sub rotor 15A or the like.
  • the main frames 12A and 12B extend linearly from the main body 19 in the left-right direction.
  • the main frames 12A, 12B are made of metal or synthetic resin molded into a rod shape.
  • the main rotor 14A is rotatably disposed at the left end of the main frame 12A extending toward the left.
  • a pulley (not shown) is connected to the main rotor 14A, and a belt 20A is stretched between a pulley on the main rotor 14A side and a pulley (not shown) on the engine 30 side.
  • the main rotor 14B is rotatably disposed at the right end of the main frame 12B extending toward the right.
  • a pulley (not shown) is connected to the main rotor 14B, and a belt 20B is stretched between a pulley on the main rotor 14B side and a pulley (not shown) on the engine 30 side.
  • the main rotor 14 is drivingly connected to the engine 30. Therefore, since the main rotor 14 is directly rotated by the power generated from the engine 30, the energy loss when energy is transmitted from the engine 30 to the main rotor 14 can be smaller than that of the series type.
  • the main rotor 14 has a function of generating a lifting force for suspending the self-contained flight device 10 in the air.
  • the sub-rotor 15 mainly takes charge of attitude control of the self-supporting flight device 10. For example, the sub-rotor 15 appropriately rotates so as to keep the position and orientation of the free-standing flight device 10 constant while the free-standing flight device 10 is hovering. Further, the sub-rotor 15 rotates so as to tilt the free-standing flight device 10 when the free-standing flight device 10 moves. Further, the main rotor 14A and the main rotor 14B rotate in opposite directions.
  • the sub-frames 13A and the like extend in the front-rear direction, and are made of metal or synthetic resin molded in a rod-like shape as the main frame 12A and the like described above.
  • the sub-frames 13A and the like extend from an intermediate portion of the main frame 12A and the like.
  • the sub-rotor 15A is disposed at the front end of the sub-frame 13A, and the sub-rotor 15A is rotated by a motor 21A disposed below the sub-rotor 15A.
  • a sub-rotor 15B is disposed at the front end of the sub-frame 13B, and the sub-rotor 15B is rotated by a motor 21B disposed below the sub-rotor 15B.
  • a sub-rotor 15C is disposed at the rear end of the sub-frame 13C, and the sub-rotor 15C is rotated by a motor 21C disposed below the sub-rotor 15C.
  • a sub rotor 15D is disposed at the rear end of the sub frame 13D, and the sub rotor 15D is rotated by a motor 21D disposed below the sub rotor 15D.
  • the electric power generated by the generators 16A, 16B is supplied to the motors 21A, 21B, 21C, 21D. Wiring for supplying electric power to the motor 21A is routed inside the sub frame 13A and the like.
  • the length L10 of the main frame 12A (the length from the center of the main body 19 to the left end of the main frame 12A) is longer than one blade of the main rotor 14A. By doing this, the rotating main rotor 14A is prevented from contacting the main body portion 19. Furthermore, the length L10 of the main frame 12A is set sufficiently long so that the main rotor 14A does not contact the sub rotors 15A and 15C. The length of the mainframe 12B is equal to that of the mainframe 12A.
  • the length L20 of the sub frame 13D is longer than the length of one blade of the sub rotor 15D so that the sub rotor 15D does not contact the main body 19.
  • the length L20 of the sub-frame 13D (the length from the center of the main body 19 to the rear end of the sub-frame 13D) is set so as not to contact the main rotor 14B.
  • the lengths of the other sub rotors 15A, 15B and 15C are the same as those of the sub rotor 15D.
  • the lengths of the other subframes 13A and the like are also equal to that of the subframe 13D.
  • the length L10 of the main frame 12A is sufficiently longer than the length L20 of the sub frame 13D.
  • the main rotor 14 and the sub rotor 15 described above are disposed in line symmetry with respect to a left-right direction symmetry line passing along the left-right direction at the center of the main body 19. Further, the main rotor 14 and the sub rotor 15 described above are disposed in line symmetry with respect to a longitudinal symmetry line passing along the longitudinal direction of the center of the main body 19. As described above, by arranging the main rotor 14 and the sub rotor 15 symmetrically, it is possible to stabilize the position and orientation of the free-standing flight device 10 in the air.
  • the main rotor 14 etc. and the sub rotor 15A etc. rotate simultaneously.
  • the thrust generated by the rotation of the main rotor 14 or the like causes the freestanding flight device 10 to float in the air, and the subrotor 15A or the like individually rotates to control the position and orientation of the freestanding flight device 10 in the air.
  • attitude control is performed to tilt the free-standing flight device 10 by changing the rotational speed of the sub-rotor 15A or the like while rotating the main rotor 14 or the like at a predetermined speed. The attitude control will be described later.
  • the connection configuration of the self-supporting flight device 10 will be described with reference to the block diagram of FIG.
  • the self-contained flight device 10 has an arithmetic and control unit 31 for controlling the position and orientation in the air.
  • the arithmetic and control unit 31 comprises a CPU, a RAM, a ROM and the like, and controls the rotation of the motor 21A driving the sub-rotor 15A and the like based on instructions from various sensors, a camera and an operation device (not shown).
  • the operating device is connected wirelessly or in a wired manner to the stand-alone flight device 10, enabling the user to manipulate the position, height, moving direction, moving speed, etc. of the stand-alone flight device 10. It is a so-called controller.
  • the main rotor 14 and the sub rotor 15 by rotating the main rotor 14 and the sub rotor 15 with the driving energy generated by the engine 30, it is possible to float in the air and move in a predetermined direction.
  • the control of the position and orientation in the air is performed by controlling the rotational speed of the motor 21A or the like that rotates the sub rotor 15.
  • the motor 21A and the like use the engine 30 as an energy source. Between the engine 30 and the motor 21A and the like, a generator 16A and the like, an inverter 32 (power converter), a capacitor module 34, a driver 24A and the like intervene. With this configuration, the driving force generated from the engine 30 is converted into electric power, and the motor 21A etc. is rotated at a predetermined rotational speed by this electric power, whereby control and movement of the position and orientation of the self-supporting flight device 10 are performed.
  • a generator 16A and the like an inverter 32 (power converter), a capacitor module 34, a driver 24A and the like intervene.
  • the driving force generated from the engine 30 is converted into electric power, and the motor 21A etc. is rotated at a predetermined rotational speed by this electric power, whereby control and movement of the position and orientation of the self-supporting flight device 10 are performed.
  • the engine 30 is a reciprocating type that uses gasoline or the like as a fuel as described later, and drives the generators 16A and 16B by its driving force. Here, as described above, the engine 30 also drives the main rotor 14. The engine 30 is controlled by the arithmetic and control unit 31.
  • AC power generated from the generators 16A and 16B is supplied to the inverter 32.
  • the inverter 32 first, after converting AC power into DC power by the converter circuit, DC power is converted into AC power of a predetermined frequency by the inverter circuit. A part of the power output from the inverter 32 is stored in the capacitor module 34 at the time of hovering. The electric power stored in the capacitor module 34 is supplied to the motor 21A or the like when the self-standing flight device 10 changes the position and orientation. Since the capacitor module 34 can supply a large current to the load in a short time as compared with a storage battery or the like, the rotational speed of the motor 21A or the like can be instantaneously increased, and the freestanding flight device 10 is displaced at high speed. It can be done.
  • the surplus power consumption circuit 33 is a circuit for consuming a portion of the power converted by the inverter 32 that is not used by the motor 21A or the like. By providing the surplus power consumption circuit 33, the engine 30 and the inverter 32 can operate stably. The behavior of the inverter 32 is controlled by the arithmetic and control unit 31.
  • the drivers 24A, 24B, 24C, and 24D control the amounts of current supplied to the motors 21A, 21B, 21C, and 21D, the rotation direction, the timing of rotation, and the like using the power generated from the inverter 32.
  • the behavior of the drivers 24A, 24B, 24C, 24D is controlled by the arithmetic and control unit 31.
  • the power supply system differs between the hovering state of staying at a certain point in the air and the moving state of moving toward the predetermined position.
  • the arithmetic and control unit 31 controls the driver 24A and the like based on the outputs from the various sensors so that the self-supporting flight device 10 stays parallel to the ground and stays at a fixed location.
  • the motor 21A is rotated at a predetermined rotational speed. By doing this, the sub-rotor 15A etc. shown in FIG. 1 can be rotated at a predetermined speed, and the free-standing flight device 10 can stably hover.
  • the arithmetic and control unit 31 supplies the power stored in the capacitor module 34 to the driver 24A and the like based on an instruction or the like of the user via the controller. Therefore, in addition to the power supplied from the inverter 32, the power is also supplied from the capacitor module 34 to the driver 24 and the like.
  • the arithmetic and control unit 31 controls the driver 24A and the like to supply the supplied power to the sub rotors 15C and 15D.
  • the rotation speed of the sub rotors 15C, 15D is made faster than the rotation speed of the sub rotors 15A, 15B by supplying the motors 21C, 21D to be driven.
  • the free-standing flight device 10 tilts so as to slightly rotate counterclockwise.
  • the resultant force of the lift generated by the main rotors 14A and 14B and the gravity acting on the self-supporting flight device 10 acts forward.
  • the free-standing flight device 10 moves forward.
  • the arithmetic and control unit 31 stops the power supply from the capacitor module 34 to the driver 24A etc., and rotates the motors 21A etc. at substantially equal speeds via the driver 24A etc. Let By doing this, the self-supporting flight device 10 performs hovering again.
  • the self-supporting flight apparatus 10 includes a main rotor 14 or the like that is rotated by the driving force of the engine 30, and a sub rotor 15A or the like that is rotated by the motor 21 or the like driven by the engine 30. It is a hybrid type. Therefore, the energy consumption improvement rate can be about 50% in the self-supporting flight device 10 as compared with the above-described series type.
  • the configuration of the engine 30 mounted on the self-supporting flight device 10 having the above-described configuration will be described.
  • the position and orientation of the stand-alone flight device 10 in the air can not be precisely controlled.
  • the vibration type is adopted.
  • FIG. 3A is a cross-sectional view of the engine 30 as viewed from the front
  • FIG. 3B is a cross-sectional view of the engine 30 as viewed from above.
  • the engine 30 shown here has two engine units (a first engine unit 40 and a second engine unit 41) disposed opposite to each other in the left-right direction.
  • engine 30 includes a first engine unit 40 disposed on the left side of the drawing and a second engine unit 41 disposed on the right side. And.
  • the first engine unit 40 includes a first piston 43 that reciprocates in the left-right direction, a first crankshaft 42 that converts the reciprocation of the first piston 43 into rotational motion, a first piston 43, and a first crankshaft 42. And a first connecting rod 44 rotatably connecting the two.
  • the second engine unit 41 includes a second piston 46 that reciprocates in the left-right direction, a second crankshaft 45 that converts the reciprocating motion of the second piston 46 into rotational motion, a second piston 46 and a second crankshaft 45, and the like. And a second connecting rod 47 rotatably connecting the two.
  • the pulley 22 and the generator 16A are connected to the upper end side of the first crankshaft 42. Further, the pulley 23 and the generator 16B are connected to the upper end side of the second crankshaft 45.
  • the combustion chamber 48 is shared by the first piston 43 of the first engine unit 40 and the second piston 46 of the second engine unit 41. In other words, the first piston 43 and the second piston 46 reciprocate inside one communicating cylinder. Therefore, the stroke amount can be reduced and the high expansion ratio of the mixed gas in the combustion chamber 48 can be obtained by the first engine portion 40 and the first piston 43 simultaneously stroke toward the central portion.
  • a volume space communicating with the combustion chamber 48 is formed in the engine 30, and a spark plug is disposed in this volume space.
  • an intake port and an exhaust port are formed in the combustion chamber 48, and an air-fuel mixture containing fuel such as gasoline is introduced from the intake port to the combustion chamber 48, and the exhaust gas after combustion is an exhaust port. Exhaust from the combustion chamber to the outside via
  • engine 30 having the above-described configuration operates as follows. First, in the suction stroke, the first piston 43 and the second piston 46 move from the center to the outside inside the cylinder 49 to introduce an air-fuel mixture, which is a mixture of fuel and air, into the inside of the cylinder 49. Do. Next, in the compression stroke, the inertia of the rotating first crankshaft 42 and second crankshaft 45 causes the first piston 43 and the second piston 46 to be pushed toward the central portion, and the air-fuel mixture in the cylinder 49 It is compressed.
  • an air-fuel mixture which is a mixture of fuel and air
  • the stroke can be divided by the two first pistons 43 and the second pistons 46 that reciprocate in one cylinder 49, so that the mixed gas can be compared with a normal gasoline engine. Compression ratio can be increased.
  • the first piston 43 and the second piston 46 face each other inside the cylinder 49, the cylinder head required for a general engine is not necessary, and the configuration of the engine 30 is simple and lightweight.
  • the members constituting the engine 30, that is, the first piston 43 and the second piston 46, the first crankshaft 42, the second crankshaft 45, etc. ing. From this, the vibration which generate
  • the engine 30 having the above-described structure, it is possible to achieve the size reduction, the weight reduction, and the vibration reduction of the self-standing flight device 10.
  • the vibration it is possible to prevent adverse effects on precision control devices such as arithmetic control devices such as attitude control and motor output control and GPS sensors.
  • precision control devices such as arithmetic control devices such as attitude control and motor output control and GPS sensors.
  • attitude control and motor output control and GPS sensors it is possible to prevent that the delivery package which the free-standing type flight device 10 transports is damaged by vibration.
  • FIG. 4A is a side view of the engine 30 as viewed from the front
  • FIG. 4B is a top view of the engine 30.
  • the engine 30 is composed of a first engine unit 60 on the left side and a second engine unit 61 on the right side. A cylinder is formed. Such matters are different from those of the engine 30 shown in FIG.
  • the first engine unit 60 includes a first cylinder 71, a first piston 70 that reciprocates inside the first cylinder 71, a first crankshaft 80 that converts the reciprocating motion of the first piston 70 into rotational motion, A first connecting rod 75 for movably connecting the one piston 70 and the first crankshaft 80, a first intake valve 64, and a first exhaust valve 62 are provided.
  • the second engine unit 61 includes a second cylinder 73, a second piston 72 reciprocating in the second cylinder 73, and a second crankshaft 81 converting the reciprocating motion of the second piston 72 into rotational motion;
  • a second connecting rod 76 for movably connecting the two pistons 72 and the second crankshaft 81, a second intake valve 65, and a second exhaust valve 63 are provided.
  • first engine unit 60 and the second engine unit 61 described above may be housed in an engine block integrally formed by casting, or the first engine unit 60 and the second engine unit 61 It may be stored separately in the engine block.
  • main components constituting the first engine unit 60 and the second engine unit 61 are disposed along the left-right direction.
  • the first cylinder 71, the first piston 70, the first crankshaft 80, and the first connecting rod 75 of the first engine portion 60 are disposed along the left-right direction.
  • the second cylinder 73, the second piston 72, the second crankshaft 81, and the second connecting rod 76 of the second engine portion 61 are also disposed along the left-right direction.
  • first engine unit 60 and the second engine unit 61 are disposed symmetrically in the left-right direction. With this configuration as well, the vibrations generated by the operation of the respective engine units cancel each other, and the damping effect can be improved.
  • the first engine unit 60 has a valve drive mechanism for controlling the operation of the first intake valve 64 and the second intake valve 65 described above. .
  • the valve drive mechanism includes a crank pulley 82, a cam pulley 85, and a timing belt 74 wound around the crank pulley 82 and the cam pulley 85.
  • the crank pulley 82 is connected to a portion leading to the outside of the first crankshaft 80.
  • the cam pulley 85 is mounted on the camshaft 86 together with a first intake cam 84 for controlling the advancing and retracting movement in contact with the first intake valve 64 and a second intake cam 87 for controlling the advancing and retracting movement in contact with the second intake valve 65.
  • the timing at which the first intake cam 84 presses the first intake valve 64 and the timing at which the second intake cam 87 presses the second intake valve 65 are simultaneous. Thus, it is connected to the camshaft 86 with a phase difference.
  • the pulley 22 and the generator 16A are connected to the upper end side of the first crankshaft 80 of the first engine unit 60, and the upper end side of the second crankshaft 81 of the second engine unit 61.
  • the pulley 23 and the generator 16B are connected to the.
  • a mechanism for driving the first exhaust valve 62 and the second exhaust valve 63 includes a crank pulley 83, a cam pulley 67, and a timing belt 77 which is stretched around the crank pulley 82 and the cam pulley 85.
  • the crank pulley 83 is connected to a portion leading to the outside of the second crankshaft 81.
  • the cam pulley 67 is mounted on the camshaft 66 together with a first exhaust cam 78 for controlling the advancing and retracting movement in contact with the first exhaust valve 62 and a second exhaust cam 79 for controlling the advancing and retracting movement in contact with the second exhaust valve 63.
  • the first exhaust cam 78 and the second exhaust cam 79 have a timing at which the first exhaust cam 78 presses the first exhaust valve 62 and a timing at which the second exhaust cam 79 presses the second exhaust valve 63 simultaneously. , And is connected to the camshaft 66 with a phase difference.
  • a reversing gear 68 is connected to a camshaft 66 to which the first exhaust cam 78 and the like are attached.
  • a reverse gear is also connected to the cam shaft 86 (FIG. 4B).
  • the reverse gear 68 of the cam shaft 66 and the reverse gear of the cam shaft 86 mesh with each other.
  • a crankshaft inversion synchronization mechanism is configured in which the rotational direction of the first crankshaft 80 and the rotational direction of the second crankshaft 81 are reversed.
  • the operation of the engine 30 shown in FIG. 4 is basically the same as the case shown in FIG. That is, the first piston 70 and the second piston 72 simultaneously move inward in the left-right direction to execute a compression stroke or the like, and further simultaneously move outward in the left-right direction to execute a combustion stroke or the like. Do. Further, by configuring as described above, the flow path 88 and the flow path 89, which are the intake and exhaust paths, are simplified, and the intake and the exhaust can be efficiently performed.
  • the engine 30 shown here has one piston 104 and takes out the driving force from the crankshaft 100 and the balancer shaft 107.
  • the engine 30 rotates a cylinder 105, a piston 104 that reciprocates inside the cylinder 105, a crankshaft 100 that converts the reciprocating motion of the piston 104 to rotational motion, the piston 104, and the crankshaft 100. And a connecting rod 103 for possible connection.
  • a crank gear 102, a pulley 22 and a generator 16A are attached to the upper end side of the crankshaft 100.
  • a balance mass 101 is attached to the crankshaft 100. By attaching the balance mass 101, it is possible to reduce the primary inertia force generated by the rotation of the crankshaft 100.
  • the balancer shaft 107 is disposed on the right side of the crankshaft 100.
  • the balancer shaft 107 is a so-called eccentric shaft. By rotating the balancer shaft 107 together with the crankshaft 100, it is possible to reduce the vibration generated as the crankshaft 100 rotates.
  • a balancer gear 109, a flywheel 110, a pulley 23, and a generator 16B are attached.
  • the balance mass 106 is attached to the balancer shaft 107.
  • the positional relationship between the balance mass 101 formed on the crankshaft 100 and the balance mass 106 formed on the balancer shaft 107 is symmetrical. Specifically, the positional relationship between the balance mass 101 and the balance mass 106 is line symmetrical with respect to a symmetry line 111 vertically defined at the center of the rotation center of the crankshaft 100 and the rotation center of the balancer shaft 107. ing.
  • the balance mass 106 may be formed only on the balancer shaft 107, but here, the balance mass 106 is formed on the balancer shaft 107 and the balancer gear 109. Further, the moment of inertia around the balancer shaft 107 including the balance mass 106 and the moment of inertia around the crankshaft 100 including the balance mass 101 are the same or substantially the same. By doing this, it is possible to further reduce the vibration generated by the operation of the engine 30.
  • the flywheel 110 can also be formed on the balancer shaft 107.
  • the damping effect can be further increased.
  • FIG. 6 is a diagram for explaining a coordinate system used for simulation.
  • FIG. 7 (A) is a side view showing the self-contained flying device 10 in the case of being inclined at 10 degrees
  • FIG. 7 (B) is a graph showing the time-dependent change of the output power in that case.
  • FIG. 8A is a side view showing the self-supporting flight device 10 in the case of being inclined at 35 degrees
  • FIG. 6 (A) is a graph showing a space fixed coordinate system
  • FIG. 6 (B) is a graph showing an airframe fixed coordinate system.
  • the translational motion of the center of gravity ⁇ X G , Y G , Z G ⁇ T of the free-standing flight device 10 is described by the following equation 2 in the spatially fixed coordinate system.
  • m is the weight of the self-supporting flight device 10
  • g is the gravitational acceleration
  • T is the thrust generated by the main rotor 14A and the sub rotor 15A.
  • Equation 3 the rotational movement around the center of gravity of the free-standing flight device 10 is described by the following Equation 3 in the fixed body coordinate system.
  • I XX , I YY , I ZZ are the inertial moments of the aircraft about each axis
  • ⁇ W 1 , W 2 , W 3 ⁇ T are angular velocity vectors
  • ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ ⁇ T Represents the torque about each axis created by the attitude control rotor.
  • the power distribution ratio is the ratio of the power generated by the rotation of the main rotor 14A and the like and the power generated by the rotation of the sub rotor 15A and the like.
  • the main rotor 14A or the like When the self-supporting flight device 10 is hovering, the main rotor 14A or the like generates a thrust to lift the device body, while the sub rotor 15A or the like keeps the device body at a predetermined location and maintains the horizontal state. Rotate. Therefore, the output of the main rotor 14 or the like is much larger than the output of the sub rotor 15A or the like.
  • the power output from the main rotor 14 or the like is 3.04 W
  • the power output from the sub rotor 15A or the like is 0.34 W.
  • the power distribution ratio between the main rotor 14 and the like and the sub rotor 15A and the like is, for example, 90%: 10%.
  • the energy loss in the path where energy is transmitted from the engine 30 to the main rotor 14 and the like is very small. That is, the energy efficiency of the path through which energy is transmitted from the engine 30 to the main rotor 14 or the like is very high.
  • the sub rotor 15A etc. is supplied with energy from the engine 30 via the generator 16A etc., the inverter 32, the motor 21A etc. And low. Therefore, by increasing the power distribution ratio of the main rotor 14 or the like at the time of hovering, the energy generated from the engine 30 can be effectively used to float the self-standing flight device 10.
  • the sub-rotor 15A or the like is rotated at high speed in order to incline the self-supporting flight device 10. Therefore, the ratio of the energy supplied to the sub rotors 15A and the like is larger than that at the time of hovering. Further, as the angle at which the self-supporting flight device 10 is inclined is increased, it is necessary to rotate the sub-rotor 15A or the like at a high speed, so the ratio of energy supplied to the sub-rotor 15A or the like is increased.
  • FIG. 7A is a side view showing a state in which the self-supporting flight device 10 is inclined at 10 degrees
  • FIG. 7B is a graph showing a change with time of power generated by each rotor.
  • the power is the thrust generated as each rotor rotates.
  • arithmetic and control unit 31 acts on the rear portion of self-supporting flight device 10 by rotating sub rotors 15C and 15D faster than sub rotors 15A and 15B.
  • the lift force is greater than the lift force acting on its forward portion, causing the free-standing flight device 10 to tilt counterclockwise.
  • the sub-rotor 15A and the like are rotated so that the inclination angle ⁇ of the self-supporting flight device 10 is 10 degrees.
  • the horizontal axis of the graph shown in FIG. 7B is time, and the vertical axis is power generated from each rotor.
  • the alternate long and short dash line indicates the power of the sub rotor 15A and the like
  • the dotted line indicates the power of the main rotor 14 and the like
  • the solid line indicates the total value of the power of the sub rotor 15A and the power of the main rotor 14 and the like.
  • the power of sub rotor 15A or the like shows a maximum value (about 0.5 kW).
  • the inclination angle of the free-standing flight device 10 is set to 10 degrees.
  • the rotational speed of the sub-rotors 15C and 15D can be rapidly increased by the power supplied from the capacitor module 34 shown in FIG.
  • the rotational speed of the sub-rotors 15A and 15B is made higher than that of the sub-rotors 15C and 15D in order to make the free-standing flight device 10 horizontal.
  • the power of the sub rotor 15A or the like is relatively large, but is smaller than the power of time T1.
  • the free-standing flight device 10 is inclined to generate acceleration, and the free-standing flight device 10 is in a horizontal state at time T2 to make the acceleration zero. After time T2, the self-supporting flight device 10 moves at a constant speed.
  • the output of the main rotor 14 or the like basically does not fluctuate, and is about 3 kw.
  • the number of revolutions of the engine 30 may be constant or may be high as necessary.
  • the power distribution ratio between the main rotor 14 and the like and the sub rotor 15A and the like is 86%: 14%.
  • FIG. 8 (A) is a side view showing the self-supporting flight device 10 inclined at 35 degrees
  • FIG. 8 (B) is a graph showing the change with time of the power in this case.
  • the control method for tilting the self-supporting flight device 10 is the same as that shown in FIG.
  • the self-supporting flight device 10 can be moved at a higher speed.
  • the maximum value of the sub rotor 15A etc. at time T3 is about 1.3 kw.
  • the power of the sub-rotor 15A and the like increases again in order to make the self-supporting flight device 10 horizontal.
  • the self-supporting flight device 10 is inclined to generate acceleration, and the self-supporting flight device 10 is in a horizontal state at time T4 to make the acceleration zero.
  • the self-supporting flight device 10 moves at a constant speed.
  • the acceleration acting on the free-standing flight device 10 can be increased, and the free-standing flight device 10 can be moved at high speed.
  • the output of the main rotor 14 or the like basically does not fluctuate, and is about 3 kw.
  • the number of revolutions of the engine 30 may be constant.
  • the power distribution ratio between the main rotor 14 and the like and the sub rotor 15A and the like becomes, for example, 70%: 30%. That is, the output of the sub-rotor 15A or the like is increased as compared with the case where the self-standing flight device 10 is inclined by 10 degrees.
  • the power distribution ratio of the sub-rotor 15A or the like is increased as compared to the hovering time.
  • the sub-rotor 15A etc. is rotated at high speed while the self-supporting flight device 10 is suspended by the thrust of the main rotor 14 etc., and the self-standing flight device 10 is immediately inclined and moved It can be done.
  • the power distribution ratio to the sub rotor 15A or the like at 10% to 30% when the output of the sub rotor 15A or the like becomes maximum.
  • the sub-rotor can obtain sufficient rotational force, and the free-standing flight device 10 can be inclined and moved suitably in the air.
  • the power distribution ratio to 30% or less, the attitude of the self-standing flight device 10 in the air can be stabilized.
  • attitude control of a multi-rotor self-supporting flight device an output response on the order of 100 msec is required, but in an engine-driven self-supporting flight device, an accurate attitude is required because the speed of the output response is not sufficient. It was not easy to control.
  • the attitude control of the self-supporting flight device 10 is performed by electronically controlling the rotation speed of the motor 21A etc. that rotates the sub rotor 15A etc. Output response of the self-propelled aerial vehicle 10 can be performed, and attitude control of the self-supporting flight device 10 can be accurately performed.
  • the self-contained flight device 10 may be provided with a storage battery. That is, a part of the power generated from the generator 16A or the like may be charged to the storage battery, and the motor 21A or the like may be rotated by the power discharged from the storage battery as appropriate.
  • the driving force of engine 30 is transmitted to main rotor 14 through belt 20A etc.
  • the driving force of engine 30 is transmitted to main rotor 14 through other power transmission means such as a gear train. It may be transmitted to the

Abstract

ペイロードおよび連続飛行時間を大きく確保すると共に、飛行時に於ける位置姿勢の調整を正確に行うことができる自立型飛行装置を提供する。 本発明の自立型飛行装置10は、主推力を与えるメインロータ14A等と、姿勢制御を行うサブロータ15A等と、メインロータ14A等およびサブロータ15A等が回転するためのエネルギを発生するエンジン30と、サブロータ15A等の回転を制御する演算制御装置31と、を具備する。また、メインロータ14A等は、エンジン30と駆動的に接続されることで回転する一方、サブロータ15A等は、エンジン30により運転される発電機16A等から発生する電力により駆動するモータにより回転する。更に、演算制御装置31は、機体を傾斜させる姿勢制御を行う際には、ホバリングを行う際よりも、サブロータ15Aの出力配分比を大きくする。

Description

エンジン搭載自立型飛行装置
 本発明は、エンジン搭載自立型飛行装置に関し、特に、エンジンにより駆動的にメインロータを駆動し、エンジンにより駆動される発電機から得られる電力でサブロータを回転させる所謂ハイブリット型のエンジン搭載自立型飛行装置に関する。
 従来から、無人で空中を飛行することが可能な自立型飛行装置が知られている。このような自立型飛行装置は、垂直軸回りに回転するロータの推力で、空中を飛行することを可能としている。
 かかる自立型飛行装置の適用分野としては、例えば、輸送分野、測量分野および撮影分野等が考えられる。このような分野に自立型飛行装置を適用する場合は、測量機器や撮影機器を飛行装置に備え付ける。飛行装置をかかる分野に適用させることで、人が立ち入れない地域に飛行装置を飛行させ、そのような地域の輸送、撮影および測量を行うことができる。かかる自立型飛行装置に関する発明は、例えば、特許文献1や特許文献2に記載されている。
 一般的な自立型飛行装置では、飛行装置に搭載された蓄電池から供給される電力で上記したロータは回転する。しかしながら、蓄電池による電力の供給ではエネルギの供給量が必ずしも十分ではないため、長時間に渡る連続飛行を実現するために、エンジンを搭載した自立型飛行装置も出現している。このような自立型飛行装置では、エンジンの駆動力で発電機を回転させ、かかる発電機で発電された電力でロータを回転駆動している。かかる構成の自立型飛行装置は、動力源からロータにエネルギが供給される経路に、エンジンと発電機とが直列的に接続されることから、シリーズ型ドローンとも称される。このような自立型飛行装置を用いて撮影や測量を行うことで、広範囲な撮影や測量を行うことができる。エンジンが搭載された飛行装置は、例えば特許文献3に記載されている。
特開2012-51545号公報 特開2014-240242号公報 特開2011-251678号公報
 自立型飛行装置の用途が拡大しつつなる現状に鑑みると、自立型飛行装置には、搭載することができる荷物の重量を大きくすること、即ちペイロードを大きくすることが求められる。更には、自立型飛行装置には、長距離を飛行するために長時間にわたり連続して飛行することも求められる。
 しかしながら、ロータの駆動エネルギ源として蓄電池のみを有するバッテリ駆動の自立型飛行装置では、バッテリから得られるエネルギがそれほど大きくないことから、ペイロードおよび連続飛行時間が小さいという課題があった。例えば、バッテリ駆動の自立型飛行装置のペイロードは10kg程度であり、その連続飛行時間は20分程度である。
 また、エンジンで発電した電力を用いてロータを回転させるシリーズ型の自立型飛行装置では、駆動源がエンジンであるため、ペイロードを比較的大きくすることができ、更に、連続飛行時間を比較的長くすることができる。例えば、シリーズ型の自立型飛行装置のペイロードは20kg程度であり、その連続飛行時間は1時間程度である。しかしながら、シリーズ型の自立型飛行装置では、ロータに伝達させるエネルギは、エンジン、発電機、パワーコンディショナーおよびモータを経由しているので、発電機とパワーコンディショナーの効率に応じてエネルギ損失が生じる。よって、シリーズ型の自立型飛行装置は、全体としてのエネルギ効率が高くなく、ペイロードを大きくすることが簡単でない課題を有していた。
 更に、エンジン駆動のロータと、モータ駆動のロータとを備える自立型飛行装置のハイブリット型の自立型飛行装置も開発されているが、運転効率を高めつつ、自立型飛行装置10の姿勢変更等を安定的に行うことは簡単ではなかった。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ペイロードおよび連続飛行時間を大きく確保すると共に、飛行時に於ける位置姿勢の調整を正確に行うことができる自立型飛行装置を提供することにある。
 本発明のエンジン搭載自立型飛行装置は、機体に主推力を与えるメインロータと、前記機体の姿勢制御を行うサブロータと、前記メインロータおよび前記サブロータが回転するためのエネルギを発生するエンジンと、前記サブロータの回転を制御する演算制御装置と、を具備し、前記メインロータは、前記エンジンと駆動的に接続されることで回転し、前記サブロータは、前記エンジンにより運転される発電機から発生する電力により駆動するモータにより回転し、前記演算制御装置は、前記機体を傾斜させる姿勢制御を行う際には、ホバリングを行う際よりも、前記サブロータの出力配分比を大きくすることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記演算制御装置は、前記姿勢制御を行う際には、前記サブロータへの出力配分比を10%以上30%以下とすることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記発電機から発生する前記電力を変換する電力変換器と、前記電力変換器から出力される電力を蓄電するキャパシタと、を具備し、前記演算制御装置は、前記ホバリングを行う際には、前記キャパシタを蓄電し、前記姿勢制御を行う際には、前記キャパシタが放電する電力を前記モータに供給することを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンの回転数は、前記ホバリングを行っている時と、前記姿勢制御を行っている時とで、略同一であることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンと前記メインロータとは、ベルトを介して駆動的に接続されることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンは、往復運動する第1ピストンを有する第1エンジン部と、前記第1ピストンと対峙した状態で往復運動する第2ピストンを有する第2エンジン部と、を有することを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記第1ピストンと前記第2ピストンとは、連通するシリンダの内部で往復運動することを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記第1ピストンは第1シリンダの内部で往復運動し、前記第2ピストンは前記第1シリンダとは別体として形成された第2シリンダの内部で往復運動することを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記サブロータは前記エンジンが配置された箇所から外側に向かって伸びるサブアームの先端側に取り付けられ、前記メインロータは前記エンジンが配置された箇所から外側に向かって伸び、前記サブアームよりも長いメインアームの先端側に取り付けられることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記メインロータには、前記エンジンのクランクシャフトから外部に延出するシャフトに取り付けられたエンジン側プーリと、前記メインロータに取り付けられたロータ側プーリと、前記エンジン側プーリと前記ロータ側プーリとの間に掛けられたベルトと、を介して駆動力が伝達されることを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンを構成する前記第1エンジン部および第2エンジン部が整列する方向を第1方向、前記第1方向に直交する方向を第2方向とした場合、前記メインロータは、前記第1エンジン部で駆動されると共に前記第1方向に沿って外側に配置された第1メインロータと、前記第2エンジン部で駆動されると共に前記第1メインロータと対向する位置に整地された第2メインロータと、を有し、前記サブロータは、前記第1メインロータ側で、前記第2方向に沿って外側に配置された第1サブロータと、前記第2方向に沿って前記第1サブロータと対向する位置に配置された前記第2サブロータと、前記第2メインロータ側で、前記第2方向に沿って外側に配置された第3サブロータと、前記第2方向に沿って前記第3サブロータと対向する位置に配置された前記第4サブロータと、を有することを特徴とする。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンは、第1バランスマスが形成されたクランクシャフトと、前記第1バランスマスに対して対称的な位置に第2バランスマスが形成されたバランサシャフト、を有し、前記クランクシャフトおよび前記バランサシャフトの駆動力により、前記メインロータを回転させることを特徴とする。
 本発明のエンジン搭載自立型飛行装置は、機体に主推力を与えるメインロータと、前記機体の姿勢制御を行うサブロータと、前記メインロータおよび前記サブロータが回転するためのエネルギを発生するエンジンと、前記サブロータの回転を制御する演算制御装置と、を具備し、前記メインロータは、前記エンジンと駆動的に接続されることで回転し、前記サブロータは、前記エンジンにより運転される発電機から発生する電力により駆動するモータにより回転し、前記演算制御装置は、前記機体を傾斜させる姿勢制御を行う際には、ホバリングを行う際よりも、前記サブロータの出力配分比を大きくすることを特徴とする。従って、エンジン搭載自立型飛行装置を空中で移動させるべく、機体を傾斜させる姿勢制御を行う際に、サブロータの出力配分比を大きくすることで、機体を好適に傾斜させて移動することができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記演算制御装置は、前記姿勢制御を行う際には、前記サブロータへの出力配分比を10%以上30%以下とすることを特徴とする。従って、姿勢制御を行う際に、サブロータへの出力配分比を10%以上とすることで、サブロータが十分な回転力を得られ、空中で機体を好適に傾斜させて移動する。また、サブロータへの出力配分比を30%以下とすることで、機体の空中に於ける姿勢を安定化させることができる。
 更に、本発明のエンジン搭載自立型飛行装置では、更に、前記発電機から発生する前記電力を変換する電力変換器と、前記電力変換器から出力される電力を蓄電するキャパシタと、を具備し、前記演算制御装置は、前記ホバリングを行う際には、前記キャパシタを蓄電し、前記姿勢制御を行う際には、前記キャパシタが放電する電力を前記モータに供給することを特徴とする。従って、姿勢制御を行う際に、キャパシタが放電する電力をモータに供給することで、サブロータの出力を迅速に大きくすることができ、エンジン搭載自立型飛行装置を空中で高速に移動させることができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンの回転数は、前記ホバリングを行っている時と、前記姿勢制御を行っている時とで、略同一であることを特徴とする。従って、姿勢制御を行う際には、メインロータおよびサブロータで必要とされる総エネルギはホバリング時と比較すると大きくなるが、本発明ではキャパシタから放電される電気エネルギでエネルギを補充している。よって、姿勢制御を行うためにエンジンの回転速度を速くする必要が無いことから、姿勢制御を簡素化することができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンと前記メインロータとは、ベルトを介して駆動的に接続されることを特徴とする。従って、ベルトによりエンジンとメインロータとを駆動的に接続することで、エンジンとメインロータとの距離が長くても両者を容易に駆動的に接続することができる。更に、ベルトはギアなどの他の動力伝達手段と比較して軽量であるので、ベルトを採用することでエンジン搭載自立型飛行装置の軽量化を図ることができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンは、往復運動する第1ピストンを有する第1エンジン部と、前記第1ピストンと対峙した状態で往復運動する第2ピストンを有する第2エンジン部と、を有することを特徴とする。従って、第1エンジン部と第2エンジン部とで、対向配置されたピストンが往復運動することで、往復運動により発生する振動等が相殺され、エンジンが運転することで発生する振動を極めて小さくすることができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記第1ピストンと前記第2ピストンとは、連通するシリンダの内部で往復運動することを特徴とする。従って、第1ピストンと第2ピストンとが同一のシリンダで往復運動することで、エンジンから発生する振動を抑制でき、更に、エンジンの構成を簡素化することができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記第1ピストンは第1シリンダの内部で往復運動し、前記第2ピストンは前記第1シリンダとは別体として形成された第2シリンダの内部で往復運動することを特徴とする。従って、第1エンジン部と第2エンジン部とで個別にシリンダを有することで、第1エンジン部と第2エンジン部とを個別に用意することができ、製造コストを低減することができる。更には、第1シリンダおよび第2シリンダの吸気経路および排気経路を、吸気および排気に適した形状とすることができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記サブロータは前記エンジンが配置された箇所から外側に向かって伸びるサブアームの先端側に取り付けられ、前記メインロータは前記エンジンが配置された箇所から外側に向かって伸び、前記サブアームよりも長いメインアームの先端側に取り付けられることを特徴とする。従って、メインロータが取り付けられるメインアームを長くすることで、メインロータを構成する各ロータを長くすることができ、ペイロードを更に大きくすることができる。また、サブロータが取り付けられるサブアームを短くすることで、サブロータの回転数を変更することによる姿勢制御等を精密に行うことができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記メインロータには、前記エンジンのクランクシャフトから外部に延出するシャフトに取り付けられたエンジン側プーリと、前記メインロータに取り付けられたロータ側プーリと、前記エンジン側プーリと前記ロータ側プーリとの間に掛けられたベルトと、を介して駆動力が伝達されることを特徴とする。従って、比較的簡素な構成でエンジンから発生した駆動力をメインロータに伝達することができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンを構成する前記第1エンジン部および第2エンジン部が整列する方向を第1方向、前記第1方向に直交する方向を第2方向とした場合、前記メインロータは、前記第1エンジン部で駆動されると共に前記第1方向に沿って外側に配置された第1メインロータと、前記第2エンジン部で駆動されると共に前記第1メインロータと対向する位置に整地された第2メインロータと、を有し、前記サブロータは、前記第1メインロータ側で、前記第2方向に沿って外側に配置された第1サブロータと、前記第2方向に沿って前記第1サブロータと対向する位置に配置された前記第2サブロータと、前記第2メインロータ側で、前記第2方向に沿って外側に配置された第3サブロータと、前記第2方向に沿って前記第3サブロータと対向する位置に配置された前記第4サブロータと、を有することを特徴とする。従って、第1方向に沿って両端部に第1メインロータおよび第2メインロータを有し、且つ4つのサブロータを有することで、第1メインロータおよび第2メインロータでペイロードを大きくしつつ、4つのサブロータで機体全体の姿勢制御を精密に行うことができる。
 更に、本発明のエンジン搭載自立型飛行装置では、前記エンジンは、第1バランスマスが形成されたクランクシャフトと、前記第1バランスマスに対して対称的な位置に第2バランスマスが形成されたバランサシャフト、を有し、前記クランクシャフトおよび前記バランサシャフトの駆動力により、前記メインロータを回転させることを特徴とする。従って、複数のエンジン部を有さずとも、クランクシャフトおよびバランサシャフトから取り出した動力により、各ロータを駆動することができる。
本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は自立型飛行装置を示す斜視図であり、(B)は上面図である。 本発明の実施形態に係る自立型飛行装置を示す図であり、各部位の接続構成を示すブロック図である。 本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は搭載されるエンジンを示す側方断面図であり、(B)はその上方断面図である。 本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は搭載される他のエンジンを示す側方断面図であり、(B)はその上方断面図である。 本発明の実施形態に係る自立型飛行装置を示す図であり、搭載される更なる他のエンジンを示す側方断面図である。 本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は空間固定座標系を示し、(B)は機体固定座標系を示している。 本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は10度傾斜した機体を示す側面図であり、(B)はパワーの経時変化を示すグラフである。 本発明の実施形態に係る自立型飛行装置を示す図であり、(A)は35度傾斜した機体を示す側面図であり、(B)はパワーの経時変化を示すグラフである。
 以下、図を参照して本形態のエンジン搭載自立型飛行装置の構成を説明する。以下の説明では、同一の構成を有する部位には同一の符号を付し、繰り返しの説明は省略する。尚、以下の説明では上下前後左右の各方向を用いるが、これらの各方向は説明の便宜のためである。また、以下の説明では、エンジン搭載自立型飛行装置を自立型飛行装置10と称する。エンジン搭載自立型飛行装置は、ドローンとも称される。
 図1を参照して本実施形態にかかる自立型飛行装置10の概略的構成を説明する。図1(A)は自立型飛行装置10を全体的に示す斜視図であり、図1(B)は自立型飛行装置10の上面図である。
 図1(A)を参照して、自立型飛行装置10は、所謂ハイブリット型の自立型飛行装置である。即ち、メインロータ14A等は駆動的にエンジン30と接続される一方、サブロータ15A等は発電機16A等を介してエンジン30から電気エネルギが供給される。以下の説明では、メインロータ14A等を単にメインロータ14と称し、サブロータ15A等を単にサブロータ15と称する場合もある。ここで、紙面上に於ける左右方向が、エンジン30を構成する各エンジン部が整列する第1方向であり、紙面上に於ける前後方向が第2方向である。
 自立型飛行装置10は、フレーム11と、フレーム11の略中央部分に配設されたエンジン30と、エンジン30により駆動される発電機16A等と、発電機16A等から発生する電力より回転するサブロータ15と、エンジン30と駆動的に接続されることで回転するメインロータ14とを主要に有している。
 フレーム11は、エンジン30、発電機16A、各種配線および制御基板(ここでは不図示)等を支持するように枠状に形成されている。フレーム11としては、フレーム状に成型された金属または樹脂が採用される。フレーム11の下端部分には、自立型飛行装置10が接地する際に地面に接触するスキッド18が形成されている。フレーム11は、メインロータ14を支持するメインフレーム12A等、およびサブロータ15を支持するサブフレーム13A等を含む。メインフレーム12A等およびサブフレーム13A等の構成は後述する。
 エンジン30、各種配線および制御基板(ここでは不図示)等は、ケーシング17に収納されている。ケーシング17は、例えば、所定形状に成形された合成樹脂板材からなり、フレーム11の中心部に固定されている。ここで、ケーシング17およびそれに内蔵される部材を本体部19と称する。
 エンジン30の上方には、発電機16A、16Bが配設されている。発電機16A、16Bは、エンジン30により回転されることで発電する。発電機16A、16Bから発生した電力は、サブロータ15A等を回転させるモータ21等に供給される。また、その電力は、サブロータ15A等の回転を制御する演算制御装置等にも供給される。
 メインフレーム12A、12Bは、本体部19から、左右方向に直線的に延びている。メインフレーム12A、12Bは、棒状に成型された金属または合成樹脂から成る。左方に向かって延びるメインフレーム12Aの左方側端部には、メインロータ14Aが回転可能な状態で配設されている。メインロータ14Aには図示しないプーリが接続しており、メインロータ14A側のプーリとエンジン30側の図示しないプーリとの間にベルト20Aが掛け渡されている。一方、右方に向かって延びるメインフレーム12Bの右方側端部には、メインロータ14Bが回転可能な状態で配設されている。メインロータ14Bには図示しないプーリが接続しており、メインロータ14B側のプーリとエンジン30側の図示しないプーリとの間にベルト20Bが掛け渡されている。かかる構成によりメインロータ14はエンジン30と駆動的に接続される。よって、エンジン30から発生した動力でメインロータ14は直接的に回転するので、シリーズ型のものよりも、エンジン30からメインロータ14にエネルギが伝達する際のエネルギ損失を小さくすることができる。
 メインロータ14は、自立型飛行装置10を空中に浮遊させるための上昇力を発生させる機能を有する。一方、サブロータ15は、主に、自立型飛行装置10の姿勢制御を担う。例えば、サブロータ15は、自立型飛行装置10がホバリングを行っている際に、自立型飛行装置10の位置姿勢を一定に保つべく適宜回転する。また、サブロータ15は、自立型飛行装置10が移動する際に、自立型飛行装置10を傾斜させるべく回転する。また、メインロータ14Aとメインロータ14Bとは逆方向に回転する。
 サブフレーム13A等は、前後方向に延びており、上記したメインフレーム12A等と同様に、棒状に成形された金属または合成樹脂から成る。サブフレーム13A等は、メインフレーム12A等の途中部分から延伸している。サブフレーム13Aの前端部にはサブロータ15Aが配設され、サブロータ15Aはその下方に配設されたモータ21Aで回転されている。サブフレーム13Bの前端部にはサブロータ15Bが配設され、サブロータ15Bはその下方に配設されたモータ21Bで回転されている。サブフレーム13Cの後端部にはサブロータ15Cが配設され、サブロータ15Cはその下方に配設されたモータ21Cで回転されている。サブフレーム13Dの後端部にはサブロータ15Dが配設され、サブロータ15Dはその下方に配設されたモータ21Dで回転されている。モータ21A、21B、21C、21Dには、発電機16A、16Bが発電した電力が供給される。サブフレーム13A等の内部には、電力をモータ21Aに供給するための配線が引き回されている。
 図1(B)を参照して、メインフレーム12Aの長さL10(本体部19の中心からメインフレーム12Aの左端までの長さ)は、メインロータ14Aの一つの羽根よりも長くされている。このようにすることで、回転するメインロータ14Aが本体部19に接触してしまうことを防止している。更に、メインフレーム12Aの長さL10は、メインロータ14Aがサブロータ15A、15Cと接触することが無いように、充分に長く設定されている。メインフレーム12Bの長さは、メインフレーム12Aと同等である。
 サブフレーム13Dの長さL20は、サブロータ15Dが本体部19に接触しないように、サブロータ15Dの1つの羽根の長さよりも長くされている。また、サブフレーム13Dの長さL20(本体部19の中心からサブフレーム13Dの後端までの長さ)は、メインロータ14Bと接触しないような長さとされている。ここで、他のサブロータ15A、15B、15Cの長さは、サブロータ15Dと同様である。また、他のサブフレーム13A等の長さも、サブフレーム13Dと同等である。また、メインフレーム12Aの長さL10は、サブフレーム13Dの長さL20よりも、充分に長い。
 上記したメインロータ14およびサブロータ15は、本体部19の中心を左右方向に沿って通過する左右方向対称線に対して線対称に配置されている。また、上記したメインロータ14およびサブロータ15は、本体部19の中心を前後方向に沿って通過する前後方向対称線に対して線対称に配置されている。このように、メインロータ14およびサブロータ15を、対称的に配置することで、自立型飛行装置10を空中に於ける自立型飛行装置10の位置姿勢を安定化することができる。
 上記した構成の自立型飛行装置10か飛行する際には、メインロータ14等とサブロータ15A等が同時に回転する。メインロータ14等が回転することで発生する推力により自立型飛行装置10が空中に浮遊し、サブロータ15A等が個別に回転することで空中に於ける自立型飛行装置10の位置姿勢が制御される。自立型飛行装置10が移動する際には、メインロータ14等を所定速度で回転させつつ、サブロータ15A等の回転速度を変更することで、自立型飛行装置10を傾斜させる姿勢制御を実行する。係る姿勢制御に関しては後述する。
 図2のブロック図を参照して、自立型飛行装置10の接続構成を説明する。自立型飛行装置10は、その空中に於ける位置姿勢を制御するための演算制御装置31を有している。演算制御装置31は、CPU、RAM、ROM等から成り、ここでは図示しない各種センサ、カメラ、操作装置からの指示に基づいて、サブロータ15A等を駆動するモータ21A等の回転を制御している。ここで、操作装置とは、自立型飛行装置10と無線的または有線的に接続され、使用者が自立型飛行装置10の位置、高度、移動方向、移動速度等を操作することを可能とする所謂コントローラである。
 自立型飛行装置10では、上記したように、エンジン30が発生する駆動エネルギで、メインロータ14およびサブロータ15を回転させることで、空中に浮遊すると共に所定方向に向かって移動することができる。また、空中に於ける位置姿勢の制御は、サブロータ15を回転させるモータ21A等の回転速度を制御することで行っている。
 モータ21A等はエンジン30をエネルギ源としている。エンジン30とモータ21A等との間には、発電機16A等、インバータ32(電力変換器)、キャパシタモジュール34、ドライバ24A等と、が介在している。かかる構成により、エンジン30から発生する駆動力は電力に変換され、この電力によりモータ21A等が所定の回転速度で回転することで、自立型飛行装置10の位置姿勢の制御および移動が行われる。
 エンジン30は、後述するようにガソリン等を燃料とするレシプロ型のものであり、その駆動力で発電機16A、16Bを駆動する。ここで、上記したように、エンジン30は、メインロータ14も駆動している。エンジン30は、演算制御装置31により制御されている。
 発電機16A、16Bから発生した交流の電力はインバータ32に供給される。インバータ32では、先ずコンバータ回路で交流電力を直流電力に変換した後に、インバータ回路で直流電力を所定の周波数の交流電力に変換している。インバータ32から出力される電力の一部は、ホバリング時に、キャパシタモジュール34に蓄電される。キャパシタモジュール34に蓄電された電力は、自立型飛行装置10が位置姿勢を変更する際に、モータ21A等に供給される。キャパシタモジュール34は、蓄電池等と比較すると、短時間で大電流を負荷に供給することができることから、モータ21A等の回転速度を瞬時に速くすることができ、自立型飛行装置10を高速に変位させることができる。
 また、インバータ32から出力される電力の一部は、余剰電力消費回路33にも供給される。余剰電力消費回路33は、インバータ32が変換する電力のうち、モータ21A等で用いられない部分を消費するための回路である。余剰電力消費回路33を備えることで、エンジン30やインバータ32が安定して動作することができる。インバータ32の挙動は演算制御装置31で制御されている。
 ドライバ24A、24B、24C、24Dは、インバータ32から発生する電力を用いて、それぞれ、モータ21A、21B、21C、21Dに流す電流量、その回転方向、回転するタイミング等を制御している。ドライバ24A、24B、24C、24Dの挙動は、演算制御装置31で制御されている。
 上記した構成の自立型飛行装置10では、空中の一定箇所に留まるホバリング状態と、所定位置に向かって移動している移動状態とで、電力の供給系統が異なる。
 具体的には、ホバリング状態では、発電機16A、16B、インバータ32、ドライバ24A等、モータ21A等の順番で、電力が供給される。そして、演算制御装置31は、自立型飛行装置10が地面に対して平行な状態を保ちつつ、一定箇所に留まるように、各種センサからの出力に基づいて、ドライバ24A等を制御することで、モータ21Aを所定の回転数で回転させる。このようにすることで、図1に示したサブロータ15A等が所定の速度で回転するようになり、自立型飛行装置10は安定的にホバリングできる。
 一方、自立型飛行装置10を移動させる移動状態では、先ず、演算制御装置31は、コントローラを介したユーザの指示等に基づいて、キャパシタモジュール34に蓄電された電力をドライバ24A等に供給する。よって、ドライバ24等には、インバータ32から供給される電力に加えて、キャパシタモジュール34からも電力が供給される。例えば、図1を参照して、自立型飛行装置10を前方に向かって移動させる際には、演算制御装置31は、ドライバ24A等を制御することで、供給される電力をサブロータ15C、15Dを駆動するモータ21C、21Dに供給し、サブロータ15C、15Dの回転速度を、サブロータ15A、15Bの回転速度よりも早くする。
 そのようにすると、自立型飛行装置10を右方から見た場合、自立型飛行装置10は反時計回りに若干回転するように傾斜する。このように傾斜した状態で、メインロータ14A、14Bを回転させると、メインロータ14A、14Bが発生する揚力と自立型飛行装置10に作用する重力との合力が前方に向かって作用する。よって、自立型飛行装置10は前方に向かって移動するようになる。
 自立型飛行装置10が所定の箇所まで移動したら、演算制御装置31は、キャパシタモジュール34からドライバ24A等への給電を停止し、ドライバ24A等を介して各モータ21A等を略均等の速度で回転させる。このようにすることで、自立型飛行装置10は再びホバリングを行う。
 上記のように、本実施の形態に係る自立型飛行装置10は、エンジン30の駆動力で回転するメインロータ14等と、エンジン30で駆動されるモータ21等で回転するサブロータ15A等を有する所謂ハイブリット型のものである。よって、上記したシリーズ型のものと比較すると、自立型飛行装置10では、エネルギ消費改善率を約50%とすることができる。
 次に、図3から図5を参照して、上記した構成を有する自立型飛行装置10に搭載されるエンジン30の構成を説明する。本実施形態の自立型飛行装置10では、エンジン30から大きな振動が発生すると、自立型飛行装置10の空中に於ける位置姿勢を精密に制御することができないため、エンジン30として無振動型または低振動型のものを採用している。
 図3を参照して、エンジン30の一形態を説明する。図3(A)はエンジン30を前方から見た断面図であり、図3(B)はエンジン30を上方から見た断面図である。ここに示すエンジン30は、左右方向に対向配置された2つのエンジン部(第1エンジン部40、第2エンジン部41)を有する。
 図3(A)および図3(B)を参照して、エンジン30は、紙面上に於いて左方に配置された第1エンジン部40と、右方側に配置された第2エンジン部41とを有している。
 第1エンジン部40は、左右方向に往復運動する第1ピストン43と、第1ピストン43の往復運動を回転運動に変換する第1クランクシャフト42と、第1ピストン43と第1クランクシャフト42とを回転可能に連結する第1コネクティングロッド44と、を有している。
 第2エンジン部41は、左右方向に往復運動する第2ピストン46と、第2ピストン46の往復運動を回転運動に変換する第2クランクシャフト45と、第2ピストン46と第2クランクシャフト45とを回転可能に連結する第2コネクティングロッド47と、を有している。
 第1クランクシャフト42の上端側には、プーリ22および発電機16Aが接続されている。また、第2クランクシャフト45の上端側には、プーリ23および発電機16Bが接続されている。
 第1エンジン部40の第1ピストン43と、第2エンジン部41の第2ピストン46で、燃焼室48を共有している。換言すると、第1ピストン43と第2ピストン46とは、連通する一つのシリンダの内部を往復運動する。よって、第1エンジン部40および第1ピストン43が中心部に向かって同時にストロークすることで、ストローク量を少なくしつつ、燃焼室48における混合ガスの高膨張比をとることができる。
 また、ここでは図示していないが、エンジン30には、燃焼室48から連通する容積空間が形成されており、この容積空間に点火プラグが配置されている。また、燃焼室48には、ここでは図示しない吸気口および排気口が形成されており、ガソリンなどの燃料を含む混合気が吸気口から燃焼室48に導入され、燃焼後の排気ガスが排気口を経由して燃焼室から外部に排気される。
 図3(A)を参照して、上記した構成のエンジン30は、次のように動作する。先ず、吸込行程では、第1ピストン43および第2ピストン46がシリンダ49の内部で中央部から外側に向かって移動することで、燃料と空気との混合物である混合気をシリンダ49の内部に導入する。次に、圧縮行程では、回転する第1クランクシャフト42および第2クランクシャフト45の慣性により、第1ピストン43および第2ピストン46が中央部に向かって押し出され、シリンダ49の内部で混合気が圧縮される。次に、燃焼行程では、図示しない点火プラグが燃焼室48で点火することで、シリンダ49の内部で混合気が燃焼し、これにより第1ピストン43および第2ピストン46が下死点である外側の端部まで押し出される。その後、排気行程では、回転する第1クランクシャフト42および第2クランクシャフト45の慣性により第1ピストン43および第2ピストン46が内側に押し出され、シリンダ49の内部に存在する燃焼後のガスは、外部に排出される。
 本形態のエンジン30では、一つのシリンダ49の内部で往復運動する2つの第1ピストン43および第2ピストン46で、ストロークを分割することができるので、通常のガソリンエンジンと比較して、混合ガスの圧縮比を大きくすることができる。また、シリンダ49の内部で第1ピストン43および第2ピストン46が対向するので、一般的なエンジンで必要とされるシリンダヘッドが不要と成り、エンジン30の構成が簡素であり且つ軽量とされている。また、エンジン30を構成している各部材、即ち、第1ピストン43および第2ピストン46、第1クランクシャフト42および第2クランクシャフト45等が対向して配置され、かつ対向するように動作している。このことから、エンジン30の各部材から発生する振動が相殺され、エンジン30全体から外部に発生する振動を少なくすることができる。よって、本形態では、上記した構造のエンジン30を搭載することで、自立型飛行装置10の小型化、軽量化および低振動化を達成することができる。特に、低振動化により、姿勢制御、モータ出力制御などの演算制御装置やGPSセンサ等の精密機器への悪影響を防止することが出来る。また、自立型飛行装置10が輸送する配送荷物が振動で損傷してしまうことを防止することができる。
 図4を参照して、エンジン30の他の形態を説明する。図4(A)はエンジン30を前方から見た側面図であり、図4(B)はエンジン30の上面図である。
 図4(A)および図4(B)を参照して、ここでは、エンジン30は、左側の第1エンジン部60と、右側の第2エンジン部61とから成り、各々のエンジン部で個別にシリンダが形成されている。かかる事項が図3に示したエンジン30とは異なる。
 第1エンジン部60は、第1シリンダ71と、第1シリンダ71の内部で往復運動する第1ピストン70と、第1ピストン70の往復運動を回転運動に変換する第1クランクシャフト80と、第1ピストン70と第1クランクシャフト80とを運動可能に連結する第1コネクティングロッド75と、第1吸気バルブ64と、第1排気バルブ62とを有する。
 第2エンジン部61は、第2シリンダ73と、第2シリンダ73の内部で往復運動する第2ピストン72と、第2ピストン72の往復運動を回転運動に変換する第2クランクシャフト81と、第2ピストン72と第2クランクシャフト81とを運動可能に連結する第2コネクティングロッド76と、第2吸気バルブ65と、第2排気バルブ63とを有する。
 ここで、上記した第1エンジン部60と第2エンジン部61とは、鋳造により一体的に形成されたエンジンブロックに収納されても良いし、第1エンジン部60と第2エンジン部61とは個別にエンジンブロックに収納されても良い。
 エンジン30では、第1エンジン部60および第2エンジン部61を構成する主要な構成部品が、左右方向に沿って配置されている。具体的には、第1エンジン部60の第1シリンダ71、第1ピストン70、第1クランクシャフト80および第1コネクティングロッド75が、左右方向に沿って配置されている。更に、第2エンジン部61の第2シリンダ73、第2ピストン72、第2クランクシャフト81および第2コネクティングロッド76も、左右方向に沿って配置されている。このように、各エンジン部の各構成要素を左右方向に沿って配置することで、各エンジン部が動作することで発生する振動が相殺され、制振効果を向上することができる。
 更に、第1エンジン部60と第2エンジン部61とは、左右方向に於いて対称的に配置されている。かかる構成によっても、各エンジン部が動作することで発生する振動が互いに相殺され、制振効果を向上することができる。
 図4(A)および図4(B)を参照して、第1エンジン部60には、上記した第1吸気バルブ64および第2吸気バルブ65の動作を制御するバルブ駆動機構を有している。
 このバルブ駆動機構は、クランクプーリ82と、カムプーリ85と、クランクプーリ82とカムプーリ85とに掛け渡されたタイミングベルト74と、を有している。クランクプーリ82は、第1クランクシャフト80の外部に導出する部分に接続している。カムプーリ85は、第1吸気バルブ64に接してその進退運動を制御する第1吸気カム84と、第2吸気バルブ65に接してその進退運動を制御する第2吸気カム87と共に、カムシャフト86に接続している。第1吸気カム84と第2吸気カム87とは、第1吸気カム84が第1吸気バルブ64を押圧するタイミングと、第2吸気カム87が第2吸気バルブ65を押圧するタイミングが同時となるように、位相差をもってカムシャフト86に接続されている。
 図4(A)を参照して、第1エンジン部60の第1クランクシャフト80の上端側にはプーリ22および発電機16Aが接続され、第2エンジン部61の第2クランクシャフト81の上端側にはプーリ23および発電機16Bが接続されている。
 第1排気バルブ62および第2排気バルブ63を駆動する機構は、クランクプーリ83と、カムプーリ67と、クランクプーリ82とカムプーリ85とに掛け渡されたタイミングベルト77と、を有している。クランクプーリ83は、第2クランクシャフト81の外部に導出する部分に接続している。カムプーリ67は、第1排気バルブ62に接してその進退運動を制御する第1排気カム78と、第2排気バルブ63に接してその進退運動を制御する第2排気カム79と共に、カムシャフト66に接続している。第1排気カム78および第2排気カム79は、第1排気カム78が第1排気バルブ62を押圧するタイミングと、第2排気カム79が第2排気バルブ63を押圧するタイミングが同時となるように、位相差をもってカムシャフト66に接続されている。
 図4(A)に示すように、第1排気カム78等が取り付けられるカムシャフト66には、反転ギア68が接続している。また、ここでは図示しないが、カムシャフト86(図4(B))にも反転ギアが接続している。そして、カムシャフト66の反転ギア68と、カムシャフト86の反転ギアとは歯合している。かかる構成により、第1クランクシャフト80の回転方向と、第2クランクシャフト81の回転方向を逆とするクランクシャフト反転同期機構が構成されている。
 図4に示したエンジン30の動作は、基本的には、図3に示した場合と同様である。即ち、第1ピストン70と第2ピストン72とは、同時に左右方向内側に向かって移動することで圧縮行程等を実行し、更に、同時に左右方向外側に向かって移動することで燃焼行程等を実行する。また、上記のように構成することで、吸気および排気経路である流路88および流路89が簡素化され、吸気および排気を効率的に行うことができる。
 図5を参照して、本実施形態に係る自立型飛行装置10に採用されるエンジン30の他の形態を説明する。ここに示すエンジン30は一つのピストン104を有し、クランクシャフト100およびバランサシャフト107から駆動力を取り出している。
 具体的には、エンジン30は、シリンダ105と、シリンダ105の内部で往復運動するピストン104と、ピストン104の往復運動を回転運動に変換するクランクシャフト100と、ピストン104とクランクシャフト100とを回転可能に連結するコネクティングロッド103と、を有している。クランクシャフト100の上端側にはクランクギア102、プーリ22、発電機16Aが取り付けられている。また、クランクシャフト100にはバランスマス101が取り付けられている。バランスマス101を取り付けることで、クランクシャフト100が回転することで発生する一次慣性力を減少させることが出来る。
 バランサシャフト107は、クランクシャフト100の右方側に配設されている。バランサシャフト107は、所謂偏心シャフトである。バランサシャフト107が、クランクシャフト100と共に回転することで、クランクシャフト100の回転に伴い発生する振動を低減することが出来る。バランサシャフト107の上端側には、バランサギア109、フライホイル110、プーリ23、および発電機16Bが取り付けられている。
 バランサシャフト107には、バランスマス106が取り付けられている。クランクシャフト100に形成されるバランスマス101と、バランサシャフト107に形成されるバランスマス106との位置関係は対称的とされている。具体的には、バランスマス101とバランスマス106との位置関係は、クランクシャフト100の回転中心とバランサシャフト107の回転中心との中央に垂直に規定された対称線111に対して線対称となっている。
 バランスマス106は、バランサシャフト107のみに形成してもよいが、ここでは、バランサシャフト107およびバランサギア109にバランスマス106を形成している。また、バランスマス106も含めたバランサシャフト107周りの慣性モーメントと、バランスマス101を含めたクランクシャフト100周りの慣性モーメントとを、同一または略同一としている。このようにすることで、エンジン30が運転することで発生する振動を更に小さくすることができる。
 ここで、バランサシャフト107にフライホイル110を形成することもできる。この場合、フライホイル110を含めたバランサシャフト107周りの慣性モーメントと、クランクシャフト100の慣性モーメントとを、同一にすることで、制振効果を更に大きくすることができる。
 図6から図8を参照して、移動のために自立型飛行装置10を傾斜させた際の出力配分比に関して説明する。図6はシミュレーションするために用いた座標系を説明するための図である。図7(A)は10度傾斜させた場合の自立型飛行装置10を示す側面図であり、図7(B)はその場合の出力パワーの経時変化を示すグラフである。図8(A)は35度傾斜させた場合の自立型飛行装置10を示す側面図であり、図8(B)はその場合の出力パワーの経時変化を示すグラフである。
 先ず、図6を参照して、自立型飛行装置10の出力をシミュレーションするために用いた運動方程式について説明する。図6(A)は空間固定座標系を示すグラフであり、図6(B)は機体固定座標系を示すグラフである。
 図6(A)のように空間固定座標系をとり、図6(B)のように機体固定座標系をとった場合、この2つの固定座標系の関係は、以下の数1で記述することができる。ここで、φ、θ、ψは、ロール、ピッチ、スピンを表すオイラー角である。
Figure JPOXMLDOC01-appb-M000001
 また、自立型飛行装置10の重心{X、Y、Zの並進運動は、空間固定座標系において以下の数2で記述される。ここで、mは自立型飛行装置10の機体重量であり、gは重力加速度であり、Tはメインロータ14A等とサブロータ15A等が発生する推力である。
Figure JPOXMLDOC01-appb-M000002
 更に、自立型飛行装置10の重心周りの回転運動は、機体固定座標系に於いて以下の数3で記述される。ここで、IXX、IYY、IZZは各軸周りの機体慣性モーメントであり、{W、W、Wは角速度ベクトルであり、{τφ、τθ、τψは姿勢制御ロータが作る各軸周りのトルクを表す。
Figure JPOXMLDOC01-appb-M000003
 上記の方程式に基づき自立型飛行装置10の運動をシミュレーションし、以下の結果を得た。
 このシミュレーションでは、ホバリング時と姿勢制御時とで、パワー配分比の相違を検証した。ここで、姿勢制御時とは、自立型飛行装置10を空中で移動させるために、自立型飛行装置10を例えば10度傾斜させるときである。また、パワー配分比とは、メインロータ14A等が回転することで発生するパワーと、サブロータ15A等が回転することで発生するパワーとの比率である。
 自立型飛行装置10がホバリングしている際には、メインロータ14A等が装置本体を浮上させる推力を発生させる一方、サブロータ15A等は装置本体を所定箇所に留まらせると共に水平状態を維持するために回転する。よって、メインロータ14等の出力は、サブロータ15A等の出力よりも遙かに大きい。例えば、メインロータ14等が出力するパワーは3.04Wであり、サブロータ15A等が出力するパワーは0.34Wである。メインロータ14等とサブロータ15A等との出力配分比は、例えば90%:10%としている。
 メインロータ14等とエンジン30の出力軸とは駆動的に接続されているため、エンジン30からメインロータ14等にエネルギが伝達される経路に於けるエネルギ損失は非常に小さい。即ち、エンジン30からメインロータ14等にエネルギが伝達される経路のエネルギ効率は非常に高い。一方、サブロータ15A等は、図2等に示したように、発電機16A等、インバータ32、モータ21A等を介して、エンジン30からエネルギが供給されるので、この経路のエネルギ効率は例えば70%と低い。よって、ホバリング時に於いて、メインロータ14等の出力配分比を大きくすることで、エンジン30から発生されるエネルギを効果的に用いて自立型飛行装置10を浮遊させることができる。
 一方、姿勢制御時に於いては、自立型飛行装置10を傾斜させるべく、サブロータ15A等を高速に回転させる。よって、ホバリング時と比較すると、サブロータ15A等に供給されるエネルギの比率が大きくなる。また、自立型飛行装置10を傾斜する角度が大きくなるほど、サブロータ15A等を高速に回転させる必要があるので、サブロータ15A等に供給されるエネルギの比率が大きくなる。
 図7を参照して、姿勢制御時に於いて、自立型飛行装置10を10度傾斜させた場合を説明する。図7(A)は自立型飛行装置10が10度傾斜している状態を示す側面図であり、図7(B)は各ロータが発生させるパワーの経時変化を示すグラフである。ここで、パワーとは各ロータが回転することで発生している推力のことである。
 図7(A)を参照して、姿勢制御時には、演算制御装置31が、サブロータ15C、15Dを、サブロータ15A、15Bよりも高速に回転させることで、自立型飛行装置10の後方部分に作用する揚力を、その前方部分に作用する揚力よりも大きくし、自立型飛行装置10を反時計回りに傾斜させる。ここでは、自立型飛行装置10の傾斜角θが10度となるように、サブロータ15A等を回転させている。
 図7(B)に示すグラフの横軸は時間であり、縦軸は各ロータから発生するパワーである。ここで、一点鎖線はサブロータ15A等のパワーを示し、点線はメインロータ14等のパワーを示し、実線はサブロータ15A等のパワーとメインロータ14等のパワーとの合計値を示している。
 この図を参照して、時間T1では、サブロータ15C、15Dを、サブロータ15A、15Bよりも高速に回転させることで、サブロータ15A等のパワーが最大値(約0.5kW)を示している。このようにすることで、上記したように、自立型飛行装置10の傾斜角度を10度とする。この状態で、サブロータ15C、15Dの回転速度を、サブロータ15A、15Bと同等程度とすることで、メインロータ14等の推力により、自立型飛行装置10は前方に向かって移動する。また、本実施形態では、図2に示したキャパシタモジュール34から供給される電力で、サブロータ15C、15Dの回転数を即座に高速化することができる。
 また、時間T2では、自立型飛行装置10が所定の速度に到達したので、自立型飛行装置10を水平状態とするべく、サブロータ15A、15Bの回転数を、サブロータ15C、15Dよりも高速にする。この際にも、サブロータ15A等のパワーは比較的大きくなるが、時間T1のパワーと比較すると小さい。
 時間T1から時間T2までの間は、自立型飛行装置10を傾斜させて加速度を発生させており、時間T2で自立型飛行装置10を水平状態とすることで加速度をゼロとする。時間T2以降は、自立型飛行装置10は一定の速度で移動する。
 自立型飛行装置10の姿勢制御時に於いて、メインロータ14等の出力は基本的には変動せず、約3kwである。また、この時、エンジン30の回転数は、一定でも良いし、必要に応じて高速にしても良い。
 上記のように自立型飛行装置10を10度傾斜させた場合、サブロータ15A等の最大パワーは約0.6kwであり、メインロータ14等のパワーは約3.0kwである。よって、メインロータ14等とサブロータ15A等との出力配分比は86%:14%となる。
 図8を参照して、自立型飛行装置10を35度傾斜させた場合を説明する。図8(A)は35度傾斜した自立型飛行装置10を示す側面図であり、図8(B)はこの場合のパワーの経時変化を示すグラフである。ここで、自立型飛行装置10を移動させるべく傾斜させる制御方法は図7に示した場合と同様である。自立型飛行装置10の傾斜角θをこのように大きくすることで、より高速に自立型飛行装置10を移動させることができる。
 図8(B)を参照して、自立型飛行装置10を35度傾斜させる場合は、サブロータ15C、15Dを更に高速に回転させる必要がある。よって、時間T3のサブロータ15A等の最大値は約1.3kwとなる。また、時間T4では、自立型飛行装置10を水平状態とするべく、サブロータ15A等のパワーは再度大きくなる。ここで、時間T3から時間T4までの間は、自立型飛行装置10を傾斜させて加速度を発生させており、時間T4で自立型飛行装置10を水平状態とすることで加速度をゼロとする。時間T4以降は、自立型飛行装置10は一定の速度で移動する。ここでは、自立型飛行装置10を大きく傾斜させているため、自立型飛行装置10に作用する加速度を大きくし、自立型飛行装置10を高速に移動させることができる。
 上記のように、自立型飛行装置10の姿勢制御時に於いて、メインロータ14等の出力は基本的には変動せず、約3kwである。また、この時、エンジン30の回転数は、一定で良い。
 よって、自立型飛行装置10を35度傾斜させることで移動させた場合、メインロータ14等とサブロータ15A等との出力配分比は、例えば70%:30%となる。即ち、自立型飛行装置10を10度傾斜させる場合と比較すると、サブロータ15A等の出力が大きくなる。
 本実施形態では、自立型飛行装置10の姿勢変更を行う際には、ホバリング時と比較して、サブロータ15A等の出力配分比を大きくしている。このようにすることで、メインロータ14等の推力で自立型飛行装置10を浮遊させた状態のまま、サブロータ15A等を高速に回転させることで、即座に自立型飛行装置10を傾斜させて移動させることができる。
 また、自立型飛行装置10の姿勢変更を行う際に、サブロータ15A等の出力が最大となる際の、サブロータ15A等への出力配分比を10%以上30%以下とすることが好ましい。この出力配分比を10%以上とすることで、サブロータが十分な回転力を得られ、空中で自立型飛行装置10を好適に傾斜させて移動することができる。また、出力配分比を30%以下とすることで、自立型飛行装置10の空中に於ける姿勢を安定化することができる。
 一般に、マルチローター式の自立型飛行装置の姿勢制御の為には、100msecオーダーの出力応答が要求されるところ、エンジン駆動型の自立型飛行装置では出力応答の速度が十分ではないので正確な姿勢制御を行うことは簡単ではなかった。一方、本実施形態に係る自立型飛行装置10では、サブロータ15A等を回転させるモータ21A等の回転数を電子的に制御することで自立型飛行装置10の姿勢制御を行っているため、100msecオーダーの出力応答が可能になり、自立型飛行装置10の姿勢制御を正確に行うことができる。
 以上、本発明の実施形態を示したが、本発明は、上記実施形態に限定されるものではない。
 図2を参照して、自立型飛行装置10に蓄電池を備えても良い。即ち、発電機16A等から発生する電力の一部を蓄電池に充電し、適宜、蓄電池から放電される電力でモータ21A等を回転するようにしても良い。
 図1を参照して、エンジン30の駆動力はベルト20A等を経由してメインロータ14等に伝達されたが、ギア列等の他の動力伝達手段によりエンジン30の駆動力をメインロータ14等に伝達するようにしても良い。
10 自立型飛行装置
11 フレーム
12、12A、12B メインフレーム
13、13A、13B、13C、13D サブフレーム
14、14A、14B メインロータ
15、15A、15B、15C、15D サブロータ
16、16A、16B 発電機
17 ケーシング
18 スキッド
19 本体部
20、20A、20B ベルト
21、21A、21B、21C、21D モータ
22 プーリ
23 プーリ
24、24A、24B、24C、24D ドライバ
30 エンジン
31 演算制御装置
32 インバータ
33 余剰電力消費回路
34 キャパシタモジュール
40 第1エンジン部
41 第2エンジン部
42 第1クランクシャフト
43 第1ピストン
44 第1コネクティングロッド
45 第2クランクシャフト
46 第2ピストン
47 第2コネクティングロッド
48 燃焼室
49 シリンダ
60 第1エンジン部
61 第2エンジン部
62 第1排気バルブ
63 第2排気バルブ
64 第1吸気バルブ
65 第2吸気バルブ
66 カムシャフト
67 カムプーリ
68 反転ギア
70 第1ピストン
71 第1シリンダ
72 第2ピストン
73 第2シリンダ
74 タイミングベルト
75 第1コネクティングロッド
76 第2コネクティングロッド
77 タイミングベルト
78 第1排気カム
79 第2排気カム
80 第1クランクシャフト
81 第2クランクシャフト
82 クランクプーリ
83 クランクプーリ
84 第1吸気カム
85 カムプーリ
86 カムシャフト
87 第2吸気カム
88 流路
89 流路
100 クランクシャフト
101 バランスマス
102 クランクギア
103 コネクティングロッド
104 ピストン
105 シリンダ
106 バランスマス
107 バランサシャフト
109 バランサギア
110 フライホイル
111 対称線

Claims (12)

  1.  機体に主推力を与えるメインロータと、前記機体の姿勢制御を行うサブロータと、前記メインロータおよび前記サブロータが回転するためのエネルギを発生するエンジンと、前記サブロータの回転を制御する演算制御装置と、を具備し、
     前記メインロータは、前記エンジンと駆動的に接続されることで回転し、
     前記サブロータは、前記エンジンにより運転される発電機から発生する電力により駆動するモータにより回転し、
     前記演算制御装置は、前記機体を傾斜させる姿勢制御を行う際には、ホバリングを行う際よりも、前記サブロータの出力配分比を大きくすることを特徴とするエンジン搭載自立型飛行装置。
  2.  前記演算制御装置は、前記姿勢制御を行う際には、前記サブロータへの出力配分比を10%以上30%以下とすることを特徴とする請求項1に記載のエンジン搭載自立型飛行装置。
  3.  更に、前記発電機から発生する前記電力を変換する電力変換器と、前記電力変換器から出力される電力を蓄電するキャパシタと、を具備し、
     前記演算制御装置は、
     前記ホバリングを行う際には、前記キャパシタを蓄電し、
     前記姿勢制御を行う際には、前記キャパシタが放電する電力を前記モータに供給することを特徴とする請求項1または請求項2に記載のエンジン搭載自立型飛行装置。
  4.  前記エンジンの回転数は、前記ホバリングを行っている時と、前記姿勢制御を行っている時とで、略同一であることを特徴とする請求項3に記載のエンジン搭載自立型飛行装置。
  5.  前記エンジンと前記メインロータとは、ベルトを介して駆動的に接続されることを特徴とする請求項1から請求項3の何れかに記載のエンジン搭載自立型飛行装置。
  6.  前記エンジンは、往復運動する第1ピストンを有する第1エンジン部と、前記第1ピストンと対峙した状態で往復運動する第2ピストンを有する第2エンジン部と、を有することを特徴とする請求項1から請求項5の何れかに記載のエンジン搭載自立型飛行装置。
  7.  前記第1ピストンと前記第2ピストンとは、連通するシリンダの内部で往復運動することを特徴とする請求項6に記載のエンジン搭載自立型飛行装置。
  8.  前記第1ピストンは第1シリンダの内部で往復運動し、前記第2ピストンは前記第1シリンダとは別体として形成された第2シリンダの内部で往復運動することを特徴とする請求項6に記載のエンジン搭載自立型飛行装置。
  9.  前記サブロータは前記エンジンが配置された箇所から外側に向かって伸びるサブアームの先端側に取り付けられ、
     前記メインロータは前記エンジンが配置された箇所から外側に向かって伸び、前記サブアームよりも長いメインアームの先端側に取り付けられることを特徴とする請求項1から請求項8の何れかに記載のエンジン搭載自立型飛行装置。
  10.  前記メインロータには、前記エンジンのクランクシャフトから外部に延出するシャフトに取り付けられたエンジン側プーリと、前記メインロータに取り付けられたロータ側プーリと、前記エンジン側プーリと前記ロータ側プーリとの間に掛けられたベルトと、を介し
    て駆動力が伝達されることを特徴とする請求項1に記載のエンジン搭載自立型飛行装置。
  11.  前記エンジンを構成する第1エンジン部および第2エンジン部が整列する方向を第1方向、前記第1方向に直交する方向を第2方向とした場合、
     前記メインロータは、前記第1エンジン部で駆動されると共に前記第1方向に沿って外側に配置された第1メインロータと、前記第2エンジン部で駆動されると共に前記第1メインロータと対向する位置に整地された第2メインロータと、を有し、
     前記サブロータは、
     前記第1メインロータ側で、前記第2方向に沿って外側に配置された第1サブロータと、前記第2方向に沿って前記第1サブロータと対向する位置に配置された前記第2サブロータと、
     前記第2メインロータ側で、前記第2方向に沿って外側に配置された第3サブロータと、前記第2方向に沿って前記第3サブロータと対向する位置に配置された前記第4サブロータと、を有することを特徴とする請求項1に記載のエンジン搭載自立型飛行装置。
  12.  前記エンジンは、第1バランスマスが形成されたクランクシャフトと、前記第1バランスマスに対して対称的な位置に第2バランスマスが形成されたバランサシャフト、を有し、
     前記クランクシャフトおよび前記バランサシャフトの駆動力により、前記メインロータを回転させることを特徴とする請求項1に記載のエンジン搭載自立型飛行装置。
PCT/JP2018/035952 2017-09-27 2018-09-27 エンジン搭載自立型飛行装置 WO2019065848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202310692817.9A CN116834958A (zh) 2017-09-27 2018-09-27 搭载发动机的自主型飞行装置及飞行装置
US16/651,173 US20210016880A1 (en) 2017-09-27 2018-09-27 Engine-mounted autonomous flying device
CN201880024839.5A CN110546069A (zh) 2017-09-27 2018-09-27 搭载发动机的自主型飞行装置
US17/971,831 US20230042223A1 (en) 2017-09-27 2022-10-24 Engine-mounted autonomous flying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185764A JP6707761B2 (ja) 2017-09-27 2017-09-27 エンジン搭載自立型飛行装置
JP2017-185764 2017-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/651,173 A-371-Of-International US20210016880A1 (en) 2017-09-27 2018-09-27 Engine-mounted autonomous flying device
US17/971,831 Continuation US20230042223A1 (en) 2017-09-27 2022-10-24 Engine-mounted autonomous flying device

Publications (1)

Publication Number Publication Date
WO2019065848A1 true WO2019065848A1 (ja) 2019-04-04

Family

ID=65903508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035952 WO2019065848A1 (ja) 2017-09-27 2018-09-27 エンジン搭載自立型飛行装置

Country Status (4)

Country Link
US (2) US20210016880A1 (ja)
JP (1) JP6707761B2 (ja)
CN (2) CN110546069A (ja)
WO (1) WO2019065848A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100387A (ja) * 2018-12-21 2020-07-02 株式会社プロドローン 無人航空機
US11167843B1 (en) * 2020-07-13 2021-11-09 In Heon Kim Drone with sub-rotors
WO2022097359A1 (ja) * 2020-11-05 2022-05-12 株式会社Finemech ハイブリッド回転翼航空機
WO2022234858A1 (ja) * 2021-05-07 2022-11-10 アラセ・アイザワ・アエロスパシアル合同会社 無人飛行体のエンジン装置
EP4137403A4 (en) * 2020-04-14 2024-01-10 Kawasaki Heavy Ind Ltd MULTICOPTER AND METHOD FOR CONTROLLING SAME

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108357685B (zh) * 2018-02-08 2022-11-08 天津凤凰智能科技有限公司 一种动力系统及无人直升机
CN108238259A (zh) * 2018-02-08 2018-07-03 天津曙光天成科技有限公司 一种动力装置及无人直升机
GB201802611D0 (en) * 2018-02-17 2018-04-04 Panelplane Ltd Teleporter
JP7229874B2 (ja) * 2019-02-07 2023-02-28 愛三工業株式会社 マルチコプタ
US11364995B2 (en) * 2019-03-06 2022-06-21 The Boeing Company Multi-rotor vehicle with edge computing systems
JP2021021362A (ja) * 2019-07-29 2021-02-18 三菱重工業株式会社 エンジン及び飛行体
JPWO2021210065A1 (ja) * 2020-04-14 2021-10-21
WO2021210063A1 (ja) * 2020-04-14 2021-10-21 川崎重工業株式会社 マルチコプタ
WO2021220490A1 (ja) * 2020-04-30 2021-11-04 ヤマハ発動機株式会社 飛行体用エンジン発電機ユニット及び飛行体
WO2021220491A1 (ja) * 2020-04-30 2021-11-04 ヤマハ発動機株式会社 飛行体用エンジン発電機ユニット及び飛行体
JP7133745B2 (ja) * 2020-04-30 2022-09-08 ヤマハ発動機株式会社 飛行体用エンジン発電機ユニット及び飛行体
JPWO2022172315A1 (ja) * 2021-02-09 2022-08-18
CN113120232B (zh) * 2021-04-26 2022-02-01 徐倩倩 折叠转桨实现姿态调整的无人机
JP6954708B1 (ja) * 2021-08-26 2021-10-27 株式会社石川エナジーリサーチ エンジン搭載飛行装置
JP6990477B1 (ja) 2021-09-14 2022-01-12 株式会社石川エナジーリサーチ 飛行装置
JP6979251B1 (ja) * 2021-10-07 2021-12-08 株式会社石川エナジーリサーチ 飛行装置
JP7004369B1 (ja) * 2021-11-08 2022-01-21 株式会社石川エナジーリサーチ 飛行装置
CN114604426B (zh) * 2022-02-28 2023-11-03 广州大学 一种用于混凝土建筑裂缝愈合修复无人机系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180336A (ja) * 2015-03-23 2016-10-13 三菱重工業株式会社 回転翼機
US20170029131A1 (en) * 2015-07-29 2017-02-02 Airbus Defence and Space GmbH Hybrid Electric Drive Train For VTOL Drones
WO2017035593A1 (en) * 2015-09-03 2017-03-09 Chan Joy Yin Multi-rotor roto-craft flying machine
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
JP2017154654A (ja) * 2016-03-03 2017-09-07 双葉電子工業株式会社 マルチコプター

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128033B2 (en) * 2006-11-02 2012-03-06 Severino Raposo System and process of vector propulsion with independent control of three translation and three rotation axis
EP1983215A1 (en) * 2007-04-20 2008-10-22 Gomecsys B.V. Reciprocating piston machine and internal combustion engine
FR2961041B1 (fr) * 2010-06-02 2012-07-27 Parrot Procede de commande synchronisee des moteurs electriques d'un drone telecommande a voilure tournante tel qu'un quadricoptere
WO2013046466A1 (ja) * 2011-09-30 2013-04-04 株式会社石川エナジーリサーチ 対向ピストン型エンジン
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
CN104554724B (zh) * 2014-11-14 2016-05-04 山东农业大学 一种低成本高负载的植保专用无人机及驱动方法
FR3032687B1 (fr) * 2015-02-16 2018-10-12 Hutchinson Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
KR101767943B1 (ko) * 2015-05-08 2017-08-17 광주과학기술원 추력의 방향 설정이 가능한 멀티로터 타입의 무인 비행체
CN104859853A (zh) * 2015-06-01 2015-08-26 姚龙江 一种六旋翼油电混合飞行器
KR101820420B1 (ko) * 2015-08-10 2018-01-22 주식회사 성진에어로 하이브리드 드론 시스템
CN105035328B (zh) * 2015-08-19 2017-03-22 张旭超 一种混合动力飞行器
KR20170061884A (ko) * 2015-11-27 2017-06-07 (주)지이에스 동축반전을 이용한 멀티콥터
US11095129B2 (en) * 2016-02-12 2021-08-17 Capacitor Sciences Incorporated Capacitor based power system and unmanned vehicle with the capacitor based power system thereof
CN205602114U (zh) * 2016-04-15 2016-09-28 深圳市卓尔思科技有限公司 一种多旋翼无人机
WO2018076047A1 (en) * 2016-10-24 2018-05-03 Hybridskys Technology Pty Ltd Hybrid aircraft
GB2556092B (en) * 2016-11-18 2019-03-06 Ge Aviat Systems Ltd Electrical power system for aircraft using fuel cells and an energy storage device
CN107140192A (zh) * 2017-04-27 2017-09-08 陶霖密 一种混合动力无人机
DE102017111626A1 (de) * 2017-05-29 2017-07-27 FEV Europe GmbH Dreizylinder-Brennkraftmaschine
CN108100256A (zh) * 2017-12-13 2018-06-01 中国科学院重庆绿色智能技术研究院 一种折叠式六旋翼植保无人飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
JP2016180336A (ja) * 2015-03-23 2016-10-13 三菱重工業株式会社 回転翼機
US20170029131A1 (en) * 2015-07-29 2017-02-02 Airbus Defence and Space GmbH Hybrid Electric Drive Train For VTOL Drones
WO2017035593A1 (en) * 2015-09-03 2017-03-09 Chan Joy Yin Multi-rotor roto-craft flying machine
JP2017154654A (ja) * 2016-03-03 2017-09-07 双葉電子工業株式会社 マルチコプター

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100387A (ja) * 2018-12-21 2020-07-02 株式会社プロドローン 無人航空機
EP4137403A4 (en) * 2020-04-14 2024-01-10 Kawasaki Heavy Ind Ltd MULTICOPTER AND METHOD FOR CONTROLLING SAME
US11167843B1 (en) * 2020-07-13 2021-11-09 In Heon Kim Drone with sub-rotors
WO2022097359A1 (ja) * 2020-11-05 2022-05-12 株式会社Finemech ハイブリッド回転翼航空機
WO2022234858A1 (ja) * 2021-05-07 2022-11-10 アラセ・アイザワ・アエロスパシアル合同会社 無人飛行体のエンジン装置

Also Published As

Publication number Publication date
CN110546069A (zh) 2019-12-06
US20230042223A1 (en) 2023-02-09
CN116834958A (zh) 2023-10-03
US20210016880A1 (en) 2021-01-21
JP6707761B2 (ja) 2020-06-10
JP2019059362A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6707761B2 (ja) エンジン搭載自立型飛行装置
JP7103699B2 (ja) エンジン搭載飛行装置
JP7229874B2 (ja) マルチコプタ
JP2017193321A (ja) エンジン搭載型マルチコプター
JP6770767B2 (ja) エンジン搭載自立型飛行装置
JP2017193209A (ja) エンジン搭載型飛行装置
JP2020100387A (ja) 無人航空機
JP6932411B1 (ja) 無人飛行体のエンジン装置
JP6979251B1 (ja) 飛行装置
JP7399521B2 (ja) 飛行装置
JP2019112050A (ja) 航空機
KR102398982B1 (ko) 발전기를 갖는 피스톤 내연 엔진
JP7004369B1 (ja) 飛行装置
JP2020100241A (ja) 無人航空機
KR102266989B1 (ko) X8형 병렬 하이브리드 멀티콥터
KR100673983B1 (ko) 쌍회전 날개식 수직이착륙 비행체
WO2023199801A1 (ja) 飛行装置
JP7099776B1 (ja) 飛行装置
WO2023189644A1 (ja) 飛行装置および飛行装置制御方法
JP7438589B1 (ja) 飛行装置
WO2023119518A1 (ja) 飛行体用エンジン発電機ユニット及びそれを備えた飛行体
JP2022167541A (ja) マルチコプタ
JP6954708B1 (ja) エンジン搭載飛行装置
WO2022102336A1 (ja) 飛行装置
JP2023182499A (ja) 飛行装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860973

Country of ref document: EP

Kind code of ref document: A1