WO2022097359A1 - ハイブリッド回転翼航空機 - Google Patents

ハイブリッド回転翼航空機 Download PDF

Info

Publication number
WO2022097359A1
WO2022097359A1 PCT/JP2021/032570 JP2021032570W WO2022097359A1 WO 2022097359 A1 WO2022097359 A1 WO 2022097359A1 JP 2021032570 W JP2021032570 W JP 2021032570W WO 2022097359 A1 WO2022097359 A1 WO 2022097359A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion
propulsion shaft
motor
shaft
internal combustion
Prior art date
Application number
PCT/JP2021/032570
Other languages
English (en)
French (fr)
Inventor
一美 平岩
Original Assignee
株式会社Finemech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Finemech filed Critical 株式会社Finemech
Publication of WO2022097359A1 publication Critical patent/WO2022097359A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/04Aircraft characterised by the type or position of power plants of piston type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/08Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/33Supply or distribution of electrical power generated by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a hybrid rotary wing aircraft generally called a drone or a multicopter, which is powered by an internal combustion engine and a battery and has rotary wings (propellers) connected to a motor on three or more propulsion axes.
  • the above-mentioned conventional hybrid rotary wing aircraft has a feature that the flight time is long and it is easy to secure safety in the event of an internal combustion engine failure, but since all the power of the internal combustion engine is used for power generation, it is large. There was a problem that a dedicated generator with a capacity was required.
  • the present invention uses a dedicated generator that uses all the power of the internal combustion engine for power generation, a large-capacity dedicated generator is required, which solves the conventional problems that the manufacturing cost is high and the weight is heavy. It is a thing.
  • an object of the present invention is to provide a hybrid rotary wing aircraft that does not require a dedicated generator, has a low manufacturing cost, and is light in weight.
  • the hybrid rotary wing aircraft of the present invention includes an internal combustion engine, a motor, and a first propulsion shaft, a second propulsion shaft, and a third propulsion shaft that each have a rotary wing to which the motor is connected and emits lift.
  • a rotary blade connected to a motor that can be driven by an engine and can generate power is defined as a first propulsion blade
  • a rotary blade other than the first propulsion blade is defined as a second propulsion blade
  • two or more first propulsion blades are defined.
  • two or more second propulsion blades are distributed to each propulsion shaft so that the lift generated by each propulsion shaft can be freely controlled.
  • one first propulsion wing is provided on the first propulsion shaft and the second propulsion shaft, and one second propulsion wing is provided on the first propulsion shaft and the third propulsion shaft, respectively.
  • Two first propulsion blades are provided on one of the first propulsion shaft and the second propulsion shaft, and one first propulsion blade and one second propulsion blade are provided on the other side of the first propulsion shaft and the second propulsion shaft. At the same time, it is also preferable to provide two second propulsion blades on the third propulsion shaft.
  • a fourth propulsion shaft is further provided, and one first propulsion wing and one second propulsion wing are provided for each of the first propulsion shaft, the second propulsion shaft, the third propulsion shaft, and the fourth propulsion shaft. At the same time, it is also preferable to provide two first propulsion blades on the remaining one of the first propulsion shaft, the second propulsion shaft, the third propulsion shaft, and the fourth propulsion shaft.
  • a fourth propulsion shaft is further provided, a second propulsion blade is provided on each of the second propulsion shaft and the third propulsion shaft, and a differential mechanism and a right drive shaft are provided between the internal combustion engine and the first propulsion shaft and the fourth propulsion shaft. It is also preferable that the first propulsion shaft and the fourth propulsion shaft are provided with the first propulsion blades, respectively, with the left drive shaft and the left drive shaft interposed therebetween.
  • a fifth propulsion shaft is further provided, and at least one first propulsion wing is provided on the fifth propulsion shaft.
  • the hybrid rotary wing aircraft of the present invention comprises an internal combustion engine, a plurality of motors, and a plurality of propulsion shafts each connected to the plurality of motors and each having at least one rotary wing for generating lift.
  • the rotary wing connected to the motor capable of driving the internal combustion engine and generating power is used as the first propulsion wing
  • the rotary wing connected to the motor not driven by the internal combustion engine is referred to as the second propulsion wing. If the first propulsion wing is provided on only a part of the above-mentioned propulsion shafts and the second propulsion wing is provided on the remaining propulsion shafts, or if one propulsion shaft has a plurality of rotary blades.
  • the propulsion shaft provided with the first propulsion wing is directly driven by the internal combustion engine and is driven by the motor. Power is generated, and the propulsion shaft provided with the second propulsion wing is electrically driven by a motor. In this way, all the power of the internal combustion engine is not used for power generation but also for direct mechanical drive. As a result, a large-capacity dedicated generator becomes unnecessary, and the function can be sufficiently achieved by power generation by an electric motor.
  • a motor for driving the first propulsion wing is generated in parallel with mechanically driving the first propulsion wing in an internal combustion engine, and the generated power is used for other purposes. Since it is configured to drive the rotor blades, it does not require a dedicated generator, so the manufacturing cost can be reduced and the weight can be reduced.
  • FIG. 1 is a plan view showing an outline of the hybrid rotary wing aircraft 1 according to the first embodiment of the present invention as viewed from above.
  • the first rotary blades 21a and 21b arranged on the first propulsion shaft 11 described later, the second rotary blade 22 arranged on the second propulsion shaft 12 described later, and the third rotary blade 13 arranged on the third propulsion shaft 13 described later are shown.
  • the third rotor 23 is shown.
  • in order to show the internal combustion engine 40 connected to the first propulsion shaft 11 and the second propulsion shaft 12 a part of the machine body 10 is shown in a hollowed out state.
  • the arrow 2 indicates the forward direction when the hybrid rotary wing aircraft 1 flies in the horizontal direction.
  • FIG. 2 is represented by arrow A in FIG. 1, and is a schematic view showing the connection relationship between the first rotary blades 21a and 21b and the second rotary blade 22 and the drive shaft 42.
  • the hybrid rotary wing aircraft 1 includes an airframe 10, a first arm 10a, a second arm 10b and a third arm 10c extending outward in the radial direction from the airframe 10, and these first arm 10a, second arm 10b and the like.
  • a first propulsion shaft 11, a second propulsion shaft 12, and a third propulsion shaft 13 supported by the third arm 10c, respectively, are provided.
  • the first propulsion shaft 11 is provided with an upper first rotary blade 21a and a lower first rotary blade 21b
  • the second propulsion shaft 12 is provided with a second rotary blade 22.
  • the propulsion shaft 13 is provided with a third rotary blade 23.
  • the reference numerals of the rotary blade, the motor generator motor, the bevel gear, and the one-way clutch (hereinafter referred to as OWC) provided on each propulsion shaft are described as follows. That is, for the tens place of the reference code, 2 is attached to the rotary blade, 3 is attached to the motor, 5 is attached to the bevel gear, and 6 is attached to the OWC.
  • the propulsion shaft 12 and the third propulsion shaft 13 are provided with 1, 2 and 3, respectively, and when two rotary blades are provided on each propulsion shaft, except for the bevel gear, after the 1st place of the reference code. , In FIG. 2, a is attached to the upper one and b is attached to the lower one.
  • Each rotor is connected to each motor. That is, the upper first rotor 21a is attached to the first motor 31a, the lower first rotor 21b is attached to the first motor 31b, the second rotor 22 is attached to the second motor 32, and the third rotor 23 is attached to the first motor 32. It is connected to each of the three motors 33.
  • a total of four rotary blades 21a, 21b, 22 and 23 arranged on the first propulsion shaft 11, the second propulsion shaft 12 and the third propulsion shaft 13 are provided by a motor connected to each of the four rotary blades 21a, 21b, 22 and 23, or an internal combustion engine described later. Driven by 40, it is configured to rotate and generate lift in the vertical direction upwards.
  • the propulsion shaft is provided with two rotor blades, the upper rotary blade and the lower rotary blade rotate in opposite directions to each other.
  • the internal combustion engine 40 may be a reciprocating type, a rotary type, or a turbine type.
  • the internal combustion engine 40 is connected to the drive shaft 42 via the first drive gear 40a, and the drive shaft 42 is connected to the first motor 31a via the first bevel gear 51 and the first OWC 61a, and the second bevel gear 52.
  • the second OWC 62 are connected to the second motor 32, respectively.
  • the first OWC 61a and the second OWC 62 transmit power only in the direction in which the first motor 31a and the second motor 32 are driven from the internal combustion engine 40 side, respectively, and are cam type commonly used in general automatic transmissions for automobiles. Is preferably used.
  • the two rotor blades (first rotary blade 21a and second rotary blade 22) connected to the first motor 31a and the second motor 32, respectively, are driven by the internal combustion engine 40 via the first OWC 61a and the second OWC 62, respectively. It is possible and constitutes the first propulsion wing of the present invention.
  • the first motor 31a and the second motor 32 have a function as an electric motor and a function as a generator. Further, the two first rotary blades 21a and the second rotary blade 22 are connected to the first motor when the internal combustion engine 40 is not rotating, for example, when the internal combustion engine 40 fails and is stopped. It can be driven by 31a and the second motor 32, respectively.
  • the internal combustion engine 40 drives the first rotary blade 21a and the second rotary blade 22 and drives the first motor 31a and the second motor 32 to generate electric power, and the electric power is generated via a controller (not shown). Can be supplied to the motor of.
  • the first motor 31b is connected to the first bevel gear 51 via the reverse rotation OWC66.
  • the reversing OWC 66 can transmit power when the first motor 31b rotates in the direction opposite to the lift generated by the first rotary blade 21b, and is capable of transmitting power, and is capable of transmitting power to the first bevel gear 51, the first drive shaft 42, and the first drive.
  • the internal combustion engine 40 can be rotated via the gear 40a. This is to operate only when the internal combustion engine 40 is started.
  • Such a reverse OWC66 preferably includes an outer ring having a pocket on the inner circumference, an inner ring arranged substantially concentrically with the outer ring and having a notch on the outer circumference, and a pocket as described in Japanese Patent Application Laid-Open No.
  • 2001-208104 It is configured by using a ratchet type one-way clutch that is housed in the inner ring and is composed of a claw body for transmitting torque between the inner ring and the outer ring and an elastic body for urging the claw body to the inner ring. After starting the internal combustion engine 40, the claw body comes off the notch due to the action of centrifugal force.
  • the third rotary blade 23 arranged on the third propulsion shaft 13 and the above-mentioned first rotary blade 21b, which are not shown in FIG. 2, are driven only from the first motor 31b and the third motor 33 which are connected to each other. It produces lift and constitutes the second propulsion wing of the present invention.
  • the hybrid rotary wing aircraft 1 of the present embodiment has a fuel tank, a battery, a monitoring sensor for each motor, an altitude sensor, a communication device, a camera, and a GPS (Global Positioning System) in addition to the controller described above. ), And if necessary, it is equipped with a flight recorder and a GPS sensor.
  • GPS Global Positioning System
  • first motor 31b Electric power is supplied from the battery to the first motor 31b, and the first motor 31b is rotated in the opposite direction as described above to rotate the internal combustion engine 40 and start the engine.
  • the two rotary blades of the first rotary blade 21a and the second rotary blade 22 connected to the first motor 31a and the second motor 32 are acted on by the first OWC61a and the second OWC62, and the internal combustion engine 40 Driven from, it rotates in the direction of generating lift.
  • the first motor 31a and the second motor 32 generate electric power and supply the electric power to the first motor 31b and the third motor 33, and these two motors also rotate in the direction of generating lift. Therefore, when the internal combustion engine 40 is started, the rotation direction of the first motor 31b described above is switched to the direction in which lift is generated.
  • the second propulsion shaft 12 since the second rotary blade 22 rotates in proportion to the rotation speed of the internal combustion engine 40, only the rotation speed of the internal combustion engine 40 is operated to control the lift.
  • the first rotary blade 21a rotates at a speed proportional to the rotation speed of the internal combustion engine 40, but the first rotary blade 21b is controlled by manipulating the rotation speed of the first motor 31b. Since it is possible, the rotation speed of the internal combustion engine 40 and the rotation speed of the first motor 31b are operated to control the lift of the first rotary blade 21a and the first rotary blade 21b.
  • the lift of the third propulsion shaft 13 is controlled by manipulating the rotational speed of the third motor 33 connected to the third rotary blade 23.
  • the lifts of the first propulsion shaft 11, the second propulsion shaft 12, and the third propulsion shaft 13 are freely controlled to ascend, descend, maintain altitude (hovering), level flight, change direction, attitude control, and the like.
  • the description thereof will be omitted. What is important is that the lift of the first propulsion shaft 11, the second propulsion shaft 12, and the third propulsion shaft 13 is provided while the first rotary blade 21a and the second rotary blade 22 that can be driven by the internal combustion engine 40 are provided. It can be controlled freely.
  • the total of the two first motors 31a and the second motor 32 that generate power by driving the internal combustion engine 40 and the first motor 31b and the third motor 33 connected to the first rotary blade 21b and the third rotary blade 23. Assuming that the capacity of each of the four motors is 1, the total capacity is 4.
  • the controller When climbing, if only the generated power of the first motor 31a and the second motor 32 is insufficient, fly while supplying power from the battery. For example, when it is desired to suppress the noise of the internal combustion engine 40 in a low altitude flight, the flight is performed while suppressing the output of the internal combustion engine 40, and the insufficient electric power is replenished from the battery. On the contrary, when there is a margin in the generated power of the first motor 31a and the second motor 32 in level flight or the like, the battery is charged with the power. The controller also comprehensively controls the input / output power of these batteries.
  • a dedicated generator is provided in order to realize the same functions as those of the conventional example using the battery and the internal combustion engine 40 as power sources. Since two motors connected to the first rotary wing 21a and the second rotary wing 22 constituting the first propulsion wing of the present invention are used as the generator, the electric motor and the generator are not required, as compared with the conventional example.
  • the capacity can be halved. That is, in the case of the conventional example, assuming that each capacity of the four motors is 1, since a dedicated generator having at least the same capacity is provided, all the capacities of the motor and the generator are 8, whereas this implementation is carried out. As described above, the morphology requires only 4 capacities.
  • the rotary blades and motors of the second propulsion shaft 12 and the third propulsion shaft 13 on the front side in the traveling direction and the first propulsion shaft 11 on the rear side in the traveling direction are provided in consideration of the position of the center of gravity of the machine body 10.
  • the sizes and capacities can be different from each other.
  • FIG. 3 is a schematic view showing the connection relationship between the first rotary blades 21a and 21b, the second rotary blades 22a and 22b, and the drive shaft 42 in the hybrid rotary wing aircraft 1 according to the second embodiment of the present invention. And is represented corresponding to FIG.
  • the parts different from the case of the first embodiment will be mainly described, and the parts substantially the same as those will be designated by the same reference numerals and the description and illustration thereof will be omitted.
  • the arrangement of the first propulsion shaft 11, the second propulsion shaft 12, and the third propulsion shaft 13 is the same as in the case of the first embodiment shown in FIG.
  • the difference between the second embodiment and the first embodiment is that in the second embodiment, there are two rotor blades on each of the three axes of the first propulsion shaft 11, the second propulsion shaft 12, and the third propulsion shaft 13. Is to be provided.
  • the configuration of the first propulsion shaft 11 is the same as that of the first embodiment.
  • the second rotary wing 22a and the second rotary wing 22b are provided on the second propulsion shaft 12, and the second rotary wing 22a and the second rotary wing 22b are separated from the first drive shaft 42 by the internal combustion engine 40. It is driven via the two bevel gears 52 and the second OWC62a and the second OWC62b, respectively.
  • the third rotor 23a and the third rotor 23b arranged on the third propulsion shaft 13 are driven by the third motor 33a and the third motor 33b, which are connected to each other.
  • the three rotor blades of the first rotary blade 21a, the second rotary blade 22a, and the second rotary blade 22b constitute the first propulsion blade of the present invention that can be driven from the internal combustion engine 40. Further, the first rotary blade 21b, the third rotary blade 23a and the third rotary blade 23b are driven only from the motors connected to each of them, and these three rotary blades constitute the second propulsion blade of the present invention.
  • the internal combustion engine 40 can drive the first rotary blade 21a, the second rotary blade 22a, and the second rotary blade 22b, and can also drive three motors, the first motor 31a, the second motor 32a, and the second motor 32b. be. As a result, the three motors generate electricity, and the electric power is supplied to the other three motors via a controller (not shown).
  • each propulsion shaft has two rotor blades
  • the number of motors driven from the internal combustion engine 40 to generate power is three
  • the number of motors driving each rotary blade is three. Is the same as in the case of the first embodiment.
  • the lift control of each propulsion shaft will be described.
  • the two rotor blades 22a and 22b are both driven in connection with the internal combustion engine 40, and their lift can be freely controlled by controlling the rotational speed of the internal combustion engine 40. Can be controlled to.
  • the first rotary blade 21a is driven by being connected to the internal combustion engine 40, but the first rotary blade 21b is not driven without being connected to the internal combustion engine 40 and is driven by the first motor 31b. .. Therefore, by controlling the rotation speed of the first motor 31b, the lift combined with the first rotary blade 21a can be freely controlled.
  • the lift can be freely controlled by controlling the rotational speed of the third motor 33 connected to the third rotary blade 23. Since other operations and operations are basically the same as in the case of the first embodiment, detailed description thereof will be omitted.
  • the hybrid rotary wing aircraft 1 has the same functions as the conventional example using the battery and the internal combustion engine 40 as the power sources, while having the same functions.
  • three motors connected to the first rotary blade 21a, the first rotary blade 21b, and the second rotary blade 22a constituting the first propulsion blade of the present invention without requiring a dedicated generator are used. Since it is used as a generator, the capacities of the motor and the generator can be halved as compared with the conventional example as in the first embodiment, so that the manufacturing cost is of course reduced and the weight is reduced for flight. The effect of suppressing the energy consumption that accompanies it can be expected.
  • the diameters of the first rotary blade 21a and the first rotary blade 21b of the first propulsion shaft 11 on the rear side are increased to about 1.4 times the diameter on the front side. It is possible to increase the capacities of the two motors that drive them to about twice the capacity of the front side.
  • FIG. 4 is a plan view showing an outline of the hybrid rotary wing aircraft 1 according to the third embodiment of the present invention as viewed from above, and is drawn corresponding to FIG. 1.
  • FIG. 5 is a schematic showing the connection relationship between the first rotary blades 21a and 21b arranged on the first propulsion shaft 11, the third rotary blades 23a and 23b arranged on the third propulsion shaft 13, and the first drive shaft 42. It is a figure, and is drawn when viewed from the 4th propulsion shaft 14 side in FIG.
  • the parts different from those of the first embodiment and the second embodiment will be mainly described, and the parts substantially the same as them are designated by the same reference numerals, and the description and illustration thereof will be omitted.
  • the difference from the first embodiment of the third embodiment is that in the third embodiment, the four first arms 10a, the second arm 10b, the third arm 10c, and the fourth arm radially protruding from the machine body 10.
  • a first propulsion shaft 11, a second propulsion shaft 12, a third propulsion shaft 13 and a fourth propulsion shaft 14 are provided at the tip of 10d, respectively, and these four propulsion shafts are provided as in the case of the second embodiment.
  • Two rotor blades are arranged in each of the two rotor blades, and at least one of the two rotor blades can be driven from the internal combustion engine 40.
  • the internal combustion engine 40 drives the first drive shaft 42 via the first drive gear 40a and drives the second drive shaft 44 via the second drive gear 40b.
  • the second drive gear 40b is a bevel gear
  • the first drive shaft 42 and the second drive shaft 44 are arranged in an X shape so as to overlap each other near the center of the machine body 10, but there is a gap in the vertical direction between the first drive shaft 42 and the second drive shaft 44. have.
  • the connection relationship between the first rotary blade 21a and the first motor 31a arranged on the first propulsion shaft 11, the first rotary blade 21b and the first motor 31b arranged on the first propulsion shaft 11, and the internal combustion engine 40 is , The same as in the case of the first embodiment and the second embodiment. Further, the third rotary blade 23a and the third motor 33a arranged on the third propulsion shaft 13, the third rotary blade 23a and the first motor 33b arranged on the third propulsion shaft 13, and the internal combustion engine 40 are connected.
  • the relationship is basically the same as that of the second propulsion shaft 12 in the second embodiment, but in this embodiment, the first propulsion shaft 11 and the third propulsion shaft 13 are not adjacent to each other in the circumferential direction. Since the relationship of the rotation direction is different from that of the second embodiment, the meshing relationship of the third bevel gear 53 is different from that of the second bevel gear 52 of the second embodiment.
  • the configuration of the second propulsion shaft 12 and the fourth propulsion shaft 14 is the same as the case where the upper second rotary blade 22a and the fourth rotary blade 24a are the first propulsion shaft 11 and the third propulsion shaft 13. Similarly, it can be driven by the internal combustion engine 40 via the second bevel gear 52 and the fourth bevel gear 54, and the second OWC 62a and the fourth OWC 64a, respectively, and can be driven by the lower second rotary blade 22b and the fourth rotary blade 24b, respectively. Can be driven from the second motor 32b and the fourth motor 34b to which these are connected, respectively.
  • the five rotary blades of the first rotary blade 21a, the second rotary blade 22a, the third rotary blade 23a, the third rotary blade 23b, and the fourth rotary blade 24a can be driven by the internal combustion engine 40, the first of the present invention. Consists of propulsion wings. Further, the first rotary blade 21b, the second rotary blade 22b, and the fourth rotary blade 24b are driven only from the motors connected to each other, and these three rotary blades constitute the second propulsion blade of the present invention.
  • each motor set the capacity of each motor as follows. Assuming that the capacities of the first motor 31b, the second motor 32b, and the fourth motor 34b on the side that drives each rotary blade are 1, respectively, the first motor 31a, the second motor 32a, the third motor 33a, and the third motor on the power generating side are the first.
  • the total five capacities of the three motors 33b and the fourth motor 34a are 3/5, that is, 0.6, respectively, by simple calculation. Although flight is possible even with this capacity, the first motor 31a, the second motor 32a, the third motor 33a, and the third motor 33a arranged on the upper side are arranged in consideration of the case where the internal combustion engine 40 described later fails.
  • the capacity of a total of four motors of the four motors 34a is 0.6
  • the lower third motor 33b is 1, and the capacity of each propulsion shaft is 1.6.
  • each of the four shafts of the first propulsion shaft 11, the second propulsion shaft 12, the third propulsion shaft 13, and the fourth propulsion shaft 14 has two rotary blades, and is driven by the internal combustion engine 40. It is the same as the case of the first embodiment and the second embodiment except that the number of motors for generating power is five and the number of motors for driving each rotary blade is three.
  • the lift control of each propulsion shaft will be described.
  • the third propulsion shaft 13 in which the two rotor blades are driven from the internal combustion engine 40 can freely control the lift by controlling the rotational speed of the internal combustion engine 40.
  • the other three shafts of the first propulsion shaft 11, the second propulsion shaft 12, and the fourth propulsion shaft 14 one of the two rotary blades is driven from the internal combustion engine 40, and the other is the first motor 31b and the second motor. Since it is driven by the 32b and the fourth motor 34b, the lift of each of the three axes can be freely controlled by controlling the rotation speeds of the other three motors.
  • each propulsion shaft has a total capacity of 1.6, and all the motors are 1 as in the second embodiment.
  • the capacity is 80% of that of the case where the capacity is increased. Therefore, when the internal combustion engine 40 is stopped, the lift is 80% of the normal lift, and it is easy to continue the flight while maintaining the altitude. Since other operations and operations are basically the same as in the case of the first embodiment, detailed description thereof will be omitted.
  • the same functions as those of the conventional example using the battery and the internal combustion engine 40 as the power source are obtained as in the case of the first embodiment.
  • a dedicated generator is not required, and five motors connected to each of the five rotors constituting the first propulsion wing of the present invention are used as a generator, and the capacity of four of them is reduced. Therefore, since the electric capacity can be reduced by 60% as compared with the conventional example, the effect of suppressing the energy consumption associated with the flight can be expected by reducing the weight as well as the manufacturing cost.
  • the flight speed is increased by providing two rotor blades different from the above, which generate thrust in the forward direction in horizontal flight. There is potential for raising it.
  • FIG. 6 is a plan view showing an outline of the hybrid rotary wing aircraft 1 according to the fourth embodiment of the present invention in a state of being viewed from above, and is shown corresponding to FIG. 1.
  • FIG. 7 shows the connection relationship between the first rotary blades 21a and 21b and the fourth rotary blades 24a and 24b arranged on the first propulsion shaft 11 and the fourth propulsion shaft 14, which will be described later, and the differential mechanism 70 described later.
  • the difference between the first embodiment and the third embodiment of the fourth embodiment is that in the fourth embodiment, the internal combustion engine 40 is between the first propulsion shaft 11 and the fourth propulsion shaft 14.
  • the differential mechanism 70, the left drive shaft 72, and the right drive shaft 74 are provided.
  • the differential mechanism 70 uses a well-known double pinion type planetary gear, and although detailed description thereof will be omitted, a bevel gear may be used.
  • the internal combustion engine 40 passes through the drive gear 40a and the differential mechanism 70, the left drive shaft 72 and the first bevel gear 51, and the first OWC 61b, and then the first motor 31b and the first rotation. It is connected to the blade 21b, and is further connected to the first motor 31a and the first rotary blade 21a via the drive gear 40a, the differential mechanism 70, the left drive shaft 72, and the first bevel gear 51.
  • the internal combustion engine 40 passes through the drive gear 40a and the differential mechanism 70, the right drive shaft 74 and the fourth bevel gear 54, and the fourth OWC 64b, and the fourth motor 34b and the fourth rotary blade 24b. Further, it is connected to the 4th motor 34a and the 4th rotary blade 24a via the drive gear 40a, the differential mechanism 70, the right drive shaft 74 and the 4th cap gear 54, and the friction clutch 80.
  • the first bevel gear 51 is directly connected to the first motor 31a and the first rotary blade 21a, and a friction clutch is formed between the fourth bevel gear 54 and the fourth motor 34a and the fourth rotary blade 24a. It is different from the case of the first to third embodiments that 80 is interposed.
  • the friction clutch 80 when the friction clutch 80 is connected, the first motor 31a and the first rotary blade 21a and the fourth motor 34a and the fourth rotary blade 24a are internal combustion engines like the left and right wheels of an automobile.
  • the engine 40 is connected via the differential mechanism 70, and power can be transmitted between both the first motor 31a and the fourth motor 34a and the internal combustion engine 40 regardless of the rotation direction. Therefore, it is possible to drive the internal combustion engine 40 from the side of the first motor 31a and the fourth motor 34a.
  • the friction clutch 80 when the friction clutch 80 is released, power transmission is not performed between both the first motor 31a and the fourth motor 34a and the internal combustion engine 40, and the first motor is in a state where the internal combustion engine 40 is stopped.
  • the 31a and the fourth motor 34a can rotate freely. That is, the friction clutch 80 is connected except when the internal combustion engine 40 fails. Therefore, as the friction clutch 80, it is preferable to use a type that is always connected by the pressure contact force of a spring (not shown).
  • a total of four rotor blades arranged on the first propulsion shaft 11 and the fourth propulsion shaft 14 can be driven from the internal combustion engine 40 and constitute the first propulsion blade of the present invention.
  • Each of the second propulsion shaft 12 and the third propulsion shaft 13 is provided with two rotor blades.
  • the second rotors 22a and 22b are driven by the connected second motors 32a and 32b, respectively, and the third rotors 23a and 23b are driven by the connected third motors 33a and 33b, respectively.
  • These four rotor blades constitute the second propulsion blade of the present invention.
  • the internal combustion engine 40 is started by the first motor 31a and the fourth motor 34a driving the internal combustion engine 40 with the friction clutch 80 connected.
  • the flight after the internal combustion engine 40 is started is basically the same as that of the first embodiment, but a differential mechanism 70 is provided between the internal combustion engine 40 and the first propulsion shaft 11 and the fourth propulsion shaft 14. Therefore, unlike the left and right wheels of an automobile, the first propulsion shaft 11 and the fourth propulsion shaft 14 can rotate at different speeds from each other, which is different from the case of the first embodiment.
  • the lift of the first propulsion shaft 11 and the fourth propulsion shaft 14 can be freely controlled. Further, when the internal combustion engine 40 fails and stops, the connection of the friction clutch 80 is immediately released, and electric power is supplied from the battery to all the motors to continue the flight. Other operations and operations are the same as in the case of the first embodiment, and thus the description thereof will be omitted.
  • the electric capacity can be reduced by 50% as compared with the conventional example while having the same functions as the conventional example, so that the manufacturing cost is of course.
  • the effect of suppressing energy consumption associated with flight can be expected.
  • the four rotor blades arranged on the lower side of the above-mentioned rotary blades may be deleted, and only the four rotary blades arranged on the upper side may be formed.
  • FIG. 8 is a plan view showing an outline of the hybrid rotary wing aircraft 1 according to the fifth embodiment of the present invention in a state of being viewed from above, and is shown corresponding to FIG.
  • FIG. 9 is a schematic view showing the connection relationship between the fifth rotary blade 25 and the internal combustion engine 40, and is shown in a state viewed from above.
  • the parts different from those of the first embodiment and the fourth embodiment will be mainly described, and the parts substantially the same as those will be designated by the same reference numerals and the description thereof will be omitted.
  • the difference between the fifth embodiment and the first embodiment is that, as shown in FIG. 8, in the fifth embodiment, the first propulsion shaft 11 and the second propulsion shaft 12 in the fourth embodiment , The third propulsion shaft 13 and the fourth propulsion shaft 14, plus the fifth propulsion shaft 15 and the sixth propulsion shaft 16, are provided at a total of six shafts at equidistant positions on the circumference. Each of the propulsion shafts has one rotor blade.
  • the differential mechanism 70 and the left are between the internal combustion engine 40 and the first propulsion shaft 11 and the fourth propulsion shaft 14.
  • the provision of the drive shaft 72 and the right drive shaft 74 is also different from the case of the first embodiment.
  • the fifth propulsion shaft 15 is added and the first propulsion shaft 11 and the fourth propulsion shaft 14 are not adjacent to each other along the circumferential direction, the first rotary blade 21a and the first rotary blade 21a are not adjacent to each other.
  • the point that the four rotary blades 24a rotate in the same direction is different from the case of the fourth embodiment. That is, the first bevel gear 51 has the same meshing relationship as the third bevel gear 53 in the third embodiment.
  • the fifth propulsion shaft 15 has a second drive gear 70b integrally configured with the case 70a of the differential mechanism 70, and a third drive driven by the second drive gear 70b.
  • a shaft 46 and a fifth bevel gear 55, and a fifth motor 35 and a fifth rotary blade 25 connected via the fifth OWC 65 are arranged.
  • the fifth rotary blade 25 constitutes the first propulsion blade of the present invention that can be driven from the internal combustion engine 40.
  • the sixth rotary blade 26 connected to the sixth motor 36 is arranged on the sixth propulsion shaft 16 as well as the second propulsion shaft 12 and the third propulsion shaft 13.
  • the sixth rotor 26 constitutes the second propulsion blade of the present invention, which is driven only by the sixth motor 36.
  • the first motor 31, the fourth motor 34, and the fifth motor 35 that generate electricity by driving the internal combustion engine 40, and the second motor exclusively drives each rotary blade connected to each of the first motor 31, the fourth motor 34, and the fifth motor 35.
  • 32, the third motor 33, and the sixth motor 36 the capacities of all six motors are set to 1. Others are basically the same as in the case of the first embodiment and the fourth embodiment, and thus the description thereof will be omitted.
  • the internal combustion engine 40 is started by the first motor 31 and the fourth motor 34 driving the internal combustion engine 40 as in the case of the fourth embodiment.
  • the fifth rotor 25 is driven in connection with the internal combustion engine 40, and therefore rotates at a speed proportional to the rotation speed of the internal combustion engine 40.
  • the lifts of the first rotary blade 21 and the fourth rotary blade 24 can be controlled by controlling the first motor 31 and the fourth motor 34, as in the case of the fourth embodiment.
  • the lift of each of the three rotor blades driven by the internal combustion engine 40 can be controlled.
  • the lift of the other second rotary blade 22, the third rotary blade 23, and the sixth rotary blade 26 can be freely controlled by controlling the motor connected to each of the second rotary blade 22, the third rotary blade 23, and the sixth rotary blade 26. Subsequent flights are the same as in the case of the first embodiment and the fourth embodiment, and thus the description thereof will be omitted.
  • the capacities of the motor and the generator can be halved as compared with the conventional example while having the same functions as the conventional example, so that the manufacturing cost can be reduced.
  • the weight By reducing the weight, the effect of suppressing energy consumption associated with flight can be expected.
  • one rotary blade is provided on each propulsion shaft, but by providing two rotary blades on each propulsion shaft as in the fourth embodiment, a larger hybrid rotation can be performed. It can be a wing aircraft 1.
  • hybrid rotary wing aircraft of the present invention can be implemented in various ways, such as combining the features of each embodiment without being particular about the contents illustrated in each embodiment.
  • the hybrid rotary wing aircraft of the present invention can be carried out regardless of manned flight or unmanned flight, and can be used not only for transporting large items requiring long-distance flight but also for transporting humans.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

ハイブリッド回転翼航空機(1)は、内燃機関(40)と、モータ(31a、31b、32、33)と、モータが連結された回転翼(21a、21b、22、23)をそれぞれ有し揚力を発出する第1推進軸(11)、第2推進軸(12)及び第3推進軸(13)とを備え、内燃機関が駆動可能で発電可能なモータ(31a、32)と連結した回転翼を第1推進翼(21a、22)と定義し、第1推進翼以外の回転翼を第2推進翼(21b、23)と定義したとき、2つ以上の第1推進翼と2つ以上の第2推進翼を、各推進軸に分配して設けることにより、各推進軸が発出する揚力をそれぞれ自在に制御可能に構成した。

Description

ハイブリッド回転翼航空機
 本発明は、一般にドローン又はマルチコプターと呼ばれ、内燃機関とバッテリとを動力源とする、モータと連結した回転翼(プロペラ)を3つ以上の推進軸上に備えたハイブリッド回転翼航空機に関する。
 従来、内燃機関とバッテリとを動力源とする、3つ以上の推進軸上に回転翼を備えたハイブリッド回転翼航空機としては、内燃機関の動力で発電機を駆動して、そこで得られた電力を各モータに供給して各回転翼を駆動する例(例えば特許文献1)が知られている。
 しかしながら、上記従来のハイブリッド回転翼航空機にあっては、飛行可能時間が長くて万一の内燃機関故障時の安全が確保しやすい特徴を有するが、内燃機関の動力をすべて発電に使うため、大容量の専用発電機が必要という問題があった。
特表2019-501057号公報
 従って、本発明は、内燃機関の動力をすべて発電に使う専用発電機を用いるため、大容量の専用発電機が必要となって、製造コストが高く、重量が重くなるという従来の課題を解消するものである。
 即ち、本発明の目的は、専用発電機を不要とし、製造コストが安く、重量が軽いハイブリッド回転翼航空機を提供することにある。
 本発明のハイブリッド回転翼航空機は、内燃機関と、モータと、モータが連結された回転翼をそれぞれ有し揚力を発出する第1推進軸、第2推進軸及び第3推進軸とを備え、内燃機関が駆動可能で発電が可能なモータと連結した回転翼を第1推進翼と定義し、第1推進翼以外の回転翼を第2推進翼と定義したとき、2つ以上の第1推進翼と2つ以上の第2推進翼を、各推進軸に分配して設けることにより、各推進軸が発出する揚力をそれぞれ自在に制御可能に構成した。
 内燃機関と第1推進翼との間に設けられたワンウエイクラッチを備えていることが好ましい。
 第1推進軸と第2推進軸とに1つの第1推進翼をそれぞれ設け、第1推進軸と第3推進軸とに1つの第2推進翼をそれぞれ設けたことも好ましい。
 第1推進軸と第2推進軸との一方に2つの第1推進翼を設け、第1推進軸と第2推進軸との他方に1つの第1推進翼と1つの第2推進翼を設けると共に、第3推進軸に2つの第2推進翼を設けたことも好ましい。
 第4推進軸をさらに備え、第1推進軸、第2推進軸、第3推進軸及び第4推進軸のうちの3つに1つの第1推進翼と1つの第2推進翼とをそれぞれ設けると共に、第1推進軸、第2推進軸、第3推進軸及び第4推進軸のうちの残りの1つに2つの第1推進翼を設けたことも好ましい。
 第2推進翼と連結したモータと内燃機関との間に連結された逆転ワンウエイクラッチを備えており、この逆転ワンウエイクラッチを介して上述したモータが内燃機関を駆動可能とすることも好ましい。
 第4推進軸をさらに備え、第2推進軸及び第3推進軸にそれぞれ第2推進翼を設け、内燃機関と第1推進軸及び第4推進軸との間に、差動機構と右駆動軸及び左駆動軸とをそれぞれ介在させ、第1推進軸及び第4推進軸にそれぞれ第1推進翼を設けたことも好ましい。
 第5推進軸をさらに備え、この第5推進軸に少なくとも1つの第1推進翼を設けたことがより好ましい。
 本発明のハイブリッド回転翼航空機として、内燃機関と、複数のモータと、これら複数のモータにそれぞれ連結されており、少なくとも1つの回転翼をそれぞれが有する揚力発出用の複数の推進軸とを備え、複数のモータのうち内燃機関が駆動可能でありかつ発電可能なモータと連結した回転翼を第1推進翼とし、内燃機関が駆動しないモータと連結した回転翼を第2推進翼とした場合に、第1推進翼を上述した複数の推進軸のうちの一部の推進軸のみに設けると共に第2推進翼を残りの推進軸に設けるか、又は1つの推進軸が複数の回転翼を有する場合は第1推進翼をその一部の回転翼として設けると共に第2推進翼をその残りの回転翼として設けることにより、第1推進翼を設けた推進軸では内燃機関による直接駆動が行われると共にモータによる発電が行われ、第2推進翼を設けた推進軸ではモータによる電動駆動が行われる。このように、内燃機関の動力は、全て発電に使用されるのではなく機械的な直接駆動にも使用される。その結果、大容量の専用発電機は不要となり、電動用のモータによる発電で充分に機能を達成することができる。
 本発明のハイブリッド回転翼航空機によれば、内燃機関で第1推進翼を機械的に駆動するのと並行して第1推進翼を駆動するためのモータで発電し、発電した電力を用いて他の回転翼を駆動するように構成したため、専用の発電機がいらないので、製造コストを安く軽量にすることができる。
本発明の第1の実施形態に係るハイブリッド回転翼航空機を上方から見た平面図である。 図1のハイブリッド回転翼航空機における駆動軸から回転翼に至る駆動系を示す模式図である。 本発明の第2の実施形態に係るハイブリッド回転翼航空機における駆動軸から回転翼に至る駆動系を示す模式図である。 本発明の第3の実施形態に係るハイブリッド回転翼航空機を上方から見た平面図である。 図4のハイブリッド回転翼航空機における第1駆動軸から回転翼に至る駆動系を示す模式図である。 本発明の第4の実施形態に係るハイブリッド回転翼航空機を上方から見た平面図である。 図6のハイブリッド回転翼航空機における差動機構から回転翼に至る駆動系を示す模式図である。 本発明の第5の実施形態に係るハイブリッド回転翼航空機を上方から見た平面図である。 図8のハイブリッド回転翼航空機における差動機構から第5回転翼に至る駆動系を示す模式図である。
 以下、本発明に係るハイブリッド回転翼航空機を、実施形態に基づき図を参照して説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係るハイブリッド回転翼航空機1の概要を上方から見た状態で表した平面図である。同図には、後述する第1推進軸11に配置した第1回転翼21a及び21bと、後述する第2推進軸12に配置した第2回転翼22と、後述する第3推進軸13に配置した第3回転翼23とが示されている。同図では、これら第1推進軸11及び第2推進軸12と連結する内燃機関40を示すため、機体10の一部をくりぬいた状態で表されている。矢印2は、ハイブリッド回転翼航空機1が水平方向に飛行する際の前進方向を示す。図2は、図1の矢視Aで表しており、第1回転翼21a及び21b並びに第2回転翼22と、駆動軸42との連結関係を示す模式図である。
 ハイブリッド回転翼航空機1は、機体10と、この機体10から、それぞれ放射方向外側に伸長する第1アーム10a、第2アーム10b及び第3アーム10cと、これら第1アーム10a、第2アーム10b及び第3アーム10cにそれぞれ支持された、第1推進軸11、第2推進軸12及び第3推進軸13とを備えている。第1推進軸11には上側の第1回転翼21aと下側の第1回転翼21bとが設けられており、第2推進軸12には第2回転翼22が設けられており、第3推進軸13には第3回転翼23が設けられている。
 以降の各実施形態において、各推進軸に設けられた回転翼、電動発電機モータ、傘歯車及びワンウエイクラッチ(以降、OWCと記述する)の参照符号を次のように表記する。即ち、参照符号の10の位について、回転翼は2を、モータは3を、傘歯車は5を、OWCは6を付し、参照符号の1の位について、第1推進軸11、第2推進軸12及び第3推進軸13は1、2及び3をそれぞれ付し、さらに、各推進軸に2つの回転翼を設けた場合は、傘歯車を除いて、参照符号の1の位の後に、図2において上側のものにはaを、下側のものにはbをそれぞれ付すものである。
 各回転翼は各モータに連結されている。即ち、上側の第1回転翼21aは第1モータ31aに、下側の第1回転翼21bは第1モータ31bに、第2回転翼22は第2モータ32に、第3回転翼23は第3モータ33にそれぞれ連結されている。
 第1推進軸11、第2推進軸12及び第3推進軸13に配置されている合計4つの回転翼21a、21b、22及び23は、それぞれに連結されているモータによって、又は後述する内燃機関40によって駆動されて回転し、鉛直方向上向きの揚力を発出するように構成されている。推進軸に2つの回転翼を備えた場合は、上側の回転翼と下側の回転翼とが互いに逆回転する。第2推進軸12及び第3推進軸13のように、機体10の周方向に沿って隣り合う推進軸同士の同数の回転翼、例えば、第2回転翼22及び第3回転翼23は、互いに逆方向に回転する。これも、以降の各実施形態において共通する。
 次に、図1及び図2に示した、第1推進軸11及び第2推進軸12に配置されている合計3つの回転翼21a、21b及び22と、内燃機関40との連結関係を説明する。なお、内燃機関40は、レシプロ型であっても良いし、ロータリ型やタービン型であっても良い。
 内燃機関40は、第1駆動歯車40aを介して駆動軸42と連結されており、駆動軸42は、第1傘歯車51と第1OWC61aとを介して第1モータ31aに、第2傘歯車52と第2OWC62とを介して第2モータ32にそれぞれ連結されている。第1OWC61a及び第2OWC62は、内燃機関40側から第1モータ31a及び第2モータ32をそれぞれ駆動する方向のみ動力を伝達するものであり、一般的な自動車用の自動変速機に多用されるカム式が好適に用いられる。
 第1モータ31a及び第2モータ32にそれぞれ連結されている2つの回転翼(第1回転翼21a及び第2回転翼22)は、いずれも第1OWC61a及び第2OWC62をそれぞれ介して内燃機関40によって駆動可能であり、本発明の第1推進翼を構成している。第1モータ31a及び第2モータ32は、電動機としての機能と発電機としての機能とを有している。また、2つの第1回転翼21a及び第2回転翼22は、内燃機関40が回転していない場合、例えば内燃機関40が故障して停止している等の場合、連結されている第1モータ31a及び第2モータ32によってそれぞれ駆動可能である。
 従って、内燃機関40は、第1回転翼21a及び第2回転翼22を駆動すると共に、第1モータ31a及び第2モータ32を駆動して発電させ、その電力を、図示しないコントローラを介して他のモータに供給することができる。
 第1モータ31bは、逆転OWC66を介して第1傘歯車51と連結されている。逆転OWC66は、第1モータ31bが第1回転翼21bで揚力を発するのと逆の方向に回転する場合において動力伝達が可能であり、第1傘歯車51、第1駆動軸42及び第1駆動歯車40aを介して内燃機関40を回転させることができる。これは、内燃機関40を始動する際にのみ動作させるものである。このような逆転OWC66は、望ましくは、特開2001-208104号公報に記載されているような、内周にポケットを有する外輪と、外輪とほぼ同心に配置され外周にノッチを有する内輪と、ポケットに収納され、内輪と外輪との間でトルクを伝達するための爪体と、爪体を内輪へ付勢するための弾性体とによって構成されるラチェット型ワンウエイクラッチを用いて構成され、上記の内燃機関40を始動した後は遠心力の作用で爪体がノッチから外れる。
 図2には示されていない第3推進軸13に配置した第3回転翼23と、前述の第1回転翼21bとは、連結されている第1モータ31b及び第3モータ33のみから駆動されて揚力を発出するものであり、本発明の第2推進翼を構成している。
 次に、第1の実施形態の動作及び作用について説明する。本実施形態のハイブリッド回転翼航空機1は、図示を省略するが、前述したコントローラの他に、燃料タンク、バッテリ、各モータの監視センサ、高度センサ、通信装置、カメラ、及びGPS(全地球測位システム)や、必要に応じてフライトレコーダ及び測距センサなどを備えている。これから説明する動作及び作用は、人の操作によるか又は自動的に、コントローラを介して行われる。これらは、以降の各実施形態にも共通する。
 初めに、バッテリから第1モータ31bに電力を供給して、第1モータ31bを、前述したように逆方向に回転させることで、内燃機関40を回転させて始動する。内燃機関40が始動すると、第1モータ31a及び第2モータ32と連結した、第1回転翼21a及び第2回転翼22の2つの回転翼は、第1OWC61a及び第2OWC62の作用で、内燃機関40から駆動されて揚力を発出する方向に回転する。そして、第1モータ31a及び第2モータ32が発電して、その電力を第1モータ31b及び第3モータ33に供給し、これら2つのモータも揚力を発出する方向に回転する。従って、内燃機関40が始動すると、前述した第1モータ31bの回転方向は、揚力を発出する方向に切り替わる。
 続いて、内燃機関40の回転速度を上げていくと4つの回転翼すべての回転速度が増すと共に、揚力が増えてハイブリッド回転翼航空機1は離陸して上昇を開始する。
 離陸後に、安定した飛行をするためには第1推進軸11、第2推進軸12及び第3推進軸13の3つの推進軸における揚力を自在に制御する必要がある。揚力は各回転翼の回転速度で決まるので、以下のように制御する。
 第2推進軸12については、第2回転翼22が内燃機関40の回転速度に比例して回転しているので、内燃機関40の回転速度のみを操作して揚力を制御する。第1推進軸11については、第1回転翼21aは内燃機関40の回転速度に比例した速度で回転しているが、第1回転翼21bは第1モータ31bの回転速度を操作することで制御可能であるため、内燃機関40の回転速度と第1モータ31bの回転速度とを操作して、第1回転翼21aと第1回転翼21bとを併せた揚力を制御する。第3推進軸13については、第3回転翼23と連結した第3モータ33の回転速度を操作することで、揚力を制御する。
 このように、第1推進軸11、第2推進軸12及び第3推進軸13の各揚力を自在に制御して、上昇、下降、高度維持(ホバリング)、水平飛行、方向転換、姿勢制御などを行うことができるが、これらは周知のことであるので説明を省略する。大事なことは、内燃機関40で駆動可能な第1回転翼21a及び第2回転翼22の2つを備えながら、第1推進軸11、第2推進軸12及び第3推進軸13の揚力を自在に制御できることである。
 ここで、内燃機関40の駆動により発電する2つの第1モータ31a及び第2モータ32と、第1回転翼21b及び第3回転翼23に連結した第1モータ31b及び第3モータ33との計4つのモータの各々の容量を1とすると、全体の容量は4である。
 上昇時にあっては第1モータ31a及び第2モータ32の発電電力のみで不足する場合は、バッテリから電力を補給しながら飛行する。例えば、高度の低い飛行で内燃機関40の騒音を抑えたい場合に、内燃機関40の出力を抑えながら飛行し、不足する電力をバッテリから補給する。逆に、水平飛行などにおいて第1モータ31a及び第2モータ32の発電電力に余裕がある場合は、その電力でバッテリを充電する。これらのバッテリの入出力電力についてもコントローラが総合的に制御する。
 また、飛行中に内燃機関40が故障して停止した場合は、ただちに全モータをバッテリから供給する電力での駆動に切り替えて、バッテリ容量の許す範囲内で安全に飛行し、やがて降下して着陸することができる。
 以上説明した第1の実施形態のハイブリッド回転翼航空機1によれば、バッテリと内燃機関40を動力源とした従来例と同様の機能を有しながら、これを実現するために専用の発電機を必要とせず、本発明の第1推進翼を構成する第1回転翼21a及び第2回転翼22と連結した2つのモータを発電機として充てているため、従来例に比べて電動機及び発電機の容量を半減することができる。即ち、従来例の場合は4つのモータの各容量を1とすると、少なくともこれと同じ容量の専用発電機を備えるので、電動機及び発電機の全ての容量が8であるのに対して、本実施形態は前述したように容量が4で済む。
 これは、モータだけでなく、一般的にモータの制御に用いられるインバータの容量も同様に減らす効果がある。むろん、そのため前述したように、歯車や軸及びOWCを備える必要があるので、小型のハイブリッド回転翼航空機には適さないが、大型であればあるほどその効果は大きく現れる。そして、製造コストはむろんのこと、重量を減らすことで、飛行に伴うエネルギ消費を抑える効果が期待できる。
 なお、進行方向前側の第2推進軸12及び第3推進軸13と、進行方向後側の第1推進軸11の、それぞれに備えた回転翼及びモータを、機体10の重心位置などを勘案して、互いに異なる大きさ及び容量とすることができる。
[第2の実施形態]
 図3は、本発明の第2の実施形態に係るハイブリッド回転翼航空機1における、第1回転翼21a及び21bと、第2回転翼22a及び22bと、駆動軸42との連結関係を示す模式図であり、図2に対応して表されている。ここでは、第1の実施形態の場合と異なる部分を中心に説明し、それらと実質的に同じ部分については、同じ符号を付しそれらの説明と図示を省略する。なお、図示は省略するが、第1推進軸11、第2推進軸12及び第3推進軸13の配置は、図1に示した第1の実施形態の場合と同様である。
 第2の実施形態の第1の実施形態との違いは、第2の実施形態では、第1推進軸11、第2推進軸12及び第3推進軸13の3つの軸にそれぞれ2つの回転翼を設けたことである。第1推進軸11の構成は、第1の実施形態の場合と同様である。第2推進軸12には第2回転翼22a及び第2回転翼22bが設けられており、これら第2回転翼22a及び第2回転翼22bは、内燃機関40によって、第1駆動軸42から第2傘歯車52と第2OWC62a及び第2OWC62bとをそれぞれ介して駆動される。図示は省略したが、第3推進軸13に配置された第3回転翼23a及び第3回転翼23bは、それぞれが連結した第3モータ33a及び第3モータ33bによって駆動される。
 従って、第1回転翼21a、第2回転翼22a及び第2回転翼22bの3つの回転翼は、内燃機関40から駆動可能な本発明の第1推進翼を構成する。また、第1回転翼21b、第3回転翼23a及び第3回転翼23bは、それぞれに連結されたモータのみから駆動され、これら3つの回転翼は本発明の第2推進翼を構成する。
 内燃機関40は、第1回転翼21aと第2回転翼22a及び第2回転翼22bとを駆動すると共に、第1モータ31a、第2モータ32a及び第2モータ32bの3つのモータを駆動可能である。これによって3つのモータは発電し、その電力を、図示しないコントローラを介して他の3つのモータに供給する。
 次に、第2の実施形態の動作及び作用について説明する。ここでも第1の実施形態の場合と同様の部分は説明を省略する。上述したように、各推進軸にそれぞれ2つの回転翼を有することと、内燃機関40から駆動されて発電するモータの数が3つで、各回転翼を駆動するモータが3つであること以外は、第1の実施形態の場合と同様である。
 ここで、各推進軸の揚力の制御について説明する。第2推進軸12について、第2回転翼22a及び22bの2つの回転翼が共に内燃機関40と連結して駆動されるので、それらの揚力は内燃機関40の回転速度を制御することで、自在に制御することができる。第1推進軸11について、第1回転翼21aは内燃機関40と連結されて駆動されるが、第1回転翼21bは内燃機関40と連結されないで駆動されず、第1モータ31bで駆動される。このため、第1モータ31bの回転速度を制御することで、第1回転翼21aと併せた揚力を自在に制御することができる。また、第3推進軸13については、第3回転翼23に連結された第3モータ33の回転速度を制御することで、揚力を自在に制御することができる。その他の動作及び作用は、基本的に第1の実施形態の場合と同様であるので詳細な説明は省略する。
 以上説明した第2の実施形態のハイブリッド回転翼航空機1によれば、第1の実施形態の場合と同様に、バッテリと内燃機関40を動力源とした従来例と同様の機能を有しながら、これを実現するために専用の発電機を必要とせず、本発明の第1推進翼を構成する、第1回転翼21a、第1回転翼21b及び第2回転翼22aと連結した3つのモータを発電機として充てているため、第1の実施形態と同様に従来例に比べて電動機及び発電機の容量を半減することができるので、製造コストはむろんのこと、重量を減らすことで、飛行に伴うエネルギ消費を抑える効果が期待できる。
 本実施形態においても、第1の実施形態で説明したように、例えば、後側の第1推進軸11の第1回転翼21a及び第1回転翼21bの直径を前側の1.4倍程度に、これらを駆動する2つのモータの容量を前側の2倍程度に、それぞれ大きくすることが可能である。
[第3の実施形態]
 図4は、本発明の第3の実施形態に係るハイブリッド回転翼航空機1の概要を上方から見た状態で表した平面図であり、図1に対応して描いている。図5は、第1推進軸11に配置した第1回転翼21a及び21bと、第3推進軸13に配置した第3回転翼23a及び23bと、第1駆動軸42との連結関係を示す模式図であり、図4において第4推進軸14側から見て描いている。ここでは、第1の実施形態及び第2の実施形態の場合と異なる部分を中心に説明し、それらと実質的に同じ部分については同じ符号を付し、それらの説明と図示を省略する。
 第3の実施形態の第1の実施形態との違いは、第3の実施形態では、機体10から放射状に突き出た4つの第1アーム10a、第2アーム10b、第3アーム10c及び第4アーム10dの先端部に、第1推進軸11、第2推進軸12、第3推進軸13及び第4推進軸14がそれぞれ設けてあり、第2の実施形態の場合と同様にそれら4つの推進軸に各2つの回転翼が配置されており、各2つの回転翼のうち少なくとも1つは、内燃機関40から駆動可能になっていることである。
 即ち、内燃機関40は第1駆動歯車40aを介して第1駆動軸42を駆動すると共に、第2駆動歯車40bを介して第2駆動軸44を駆動する。第2駆動歯車40bは傘歯車であり、第1駆動軸42及び第2駆動軸44は、機体10の中央部付近で重なるようにX字状に配置されているが、両者は上下方向に隙間を有している。
 第1推進軸11に配置された第1回転翼21a及び第1モータ31aと、第1推進軸11に配置された第1回転翼21b及び第1モータ31bと、内燃機関40との連結関係は、第1の実施形態及び第2の実施形態の場合と同様である。また、第3推進軸13に配置された第3回転翼23a及び第3モータ33aと、第3推進軸13に配置された第3回転翼23a及び第1モータ33bと、内燃機関40との連結関係は、第2の実施形態における第2推進軸12と基本的に同様の構成であるが、本実施形態では第1推進軸11と第3推進軸13とが周方向に隣り合っていないため、回転方向の関係が第2の実施形態の場合と異なるので、第3傘歯車53の噛み合い関係が、第2の実施形態の第2傘歯車52と異なる。
 図示は省略するが、第2推進軸12及び第4推進軸14の構成は、上側の第2回転翼22a及び第4回転翼24aが、第1推進軸11及び第3推進軸13の場合と同様に、それぞれ第2傘歯車52及び第4傘歯車54と、第2OWC62a及び第4OWC64aとをそれぞれ介して内燃機関40によって駆動可能であり、下側の第2回転翼22b及び第4回転翼24bは、これらがそれぞれ連結された第2モータ32b及び第4モータ34bから駆動可能となっている。
 従って、第1回転翼21a、第2回転翼22a、第3回転翼23a、第3回転翼23b及び第4回転翼24aの5つの回転翼は、内燃機関40によって駆動可能な本発明の第1推進翼を構成する。また、第1回転翼21b、第2回転翼22b及び第4回転翼24bは、それぞれ連結されたモータのみから駆動され、これら3つの回転翼は本発明の第2推進翼を構成する。
 内燃機関40によって駆動される第1モータ31a、第2モータ32a、第3モータ33a、第3モータ33b及び第4モータ34aの計5つのモータは発電を行い、発電によって得られた電力を、図示しないコントローラを介して他の3つのモータ31b、32b及び34bに供給する。
 ここで、各モータの容量を以下のように設定する。各回転翼を駆動する側の第1モータ31b、第2モータ32b及び第4モータ34bの容量をそれぞれ1とすると、発電する側の第1モータ31a、第2モータ32a、第3モータ33a、第3モータ33b及び第4モータ34aの計5つの容量は、単純計算でそれぞれ3/5つまり0.6となる。この容量であっても飛行は可能であるが、後述する内燃機関40が故障した場合のことを考慮して、上側に配置した第1モータ31a、第2モータ32a、第3モータ33a、及び第4モータ34aの計4つのモータの容量を0.6として、下側の第3モータ33bを1とし、各推進軸の容量を計1.6としている。
 次に、第3の実施形態の動作及び作用について説明する。ここでも第1の実施形態及び第2の実施形態の場合と同様の部分は説明を省略する。上述したように、第1推進軸11、第2推進軸12、第3推進軸13及び第4推進軸14の4つの軸にそれぞれ2つの回転翼を有することと、内燃機関40から駆動されて発電するモータの数が5つで、各回転翼を駆動するモータが3つであること以外は、第1の実施形態及び第2の実施形態の場合と同様である。
 ここで、各推進軸の揚力の制御について説明する。第2の実施形態で説明したのと同様に、2つの回転翼が内燃機関40から駆動される第3推進軸13は、内燃機関40の回転速度の制御で揚力を自在に制御できる。他の第1推進軸11、第2推進軸12、第4推進軸14の3軸は、それぞれ2つの回転翼のうち一方が内燃機関40から駆動され、他方は第1モータ31b、第2モータ32b、第4モータ34bで駆動されるので、それら他方の3つのモータの回転速度を制御することで、3軸それぞれの揚力を自在に制御できる。
 次に、飛行中に内燃機関40が故障して停止した場合に、バッテリから全てのモータに電力を供給して飛行することは、第1の実施形態の場合と同様であるが、前述したように発電するモータのうち、上側の各モータの容量を0.6としたので、各推進軸はそれぞれ計1.6の容量であり、第2の実施形態のようにすべてのモータが1であった場合に比べて80%の容量である。したがって、内燃機関40が停止した場合は通常時の80%の揚力となり、高度を維持しながら飛行をつづけることは容易である。その他の動作及び作用は、基本的に第1の実施形態の場合と同様であるので詳細の説明を省略する。
 以上説明した第3の実施形態のハイブリッド回転翼航空機1によれば、第1の実施形態の場合と同様に、バッテリと内燃機関40を動力源とした従来例と同様の機能を有しながら、これを実現するために専用の発電機を必要とせず、本発明の第1推進翼を構成する、5つの各回転翼と連結した5つのモータを発電機として充てて、うち4つの容量を小さくしたため、従来例に比べて電機容量を60%減らすことができるので、製造コストはむろんのこと、重量を減らすことで、飛行に伴うエネルギ消費を抑える効果が期待できる。
 本実施形態は、上記した発電する側のモータが5つと多いことを生かして、機体に水平飛行で前進方向の推力を発する、上記とは別の回転翼を2つ設けることで、飛行速度を上げるようにするなどの発展性がある。
[第4の実施形態]
 図6は、本発明の第4の実施形態に係るハイブリッド回転翼航空機1の概要を上方から見た状態で表した平面図であり、図1に対応して表されている。図7は、後述する第1推進軸11及び第4推進軸14にそれぞれ配置された第1回転翼21a及び21b並びに第4回転翼24a及び24bと、後述する差動機構70との連結関係を示す模式図であり、図6における矢視Bで図2に対応して表されている。
 第4の実施形態の、第1の実施形態及び第3の実施形態との違いは、第4の実施形態では、内燃機関40と第1推進軸11及び第4推進軸14との間に、差動機構70と左駆動軸72及び右駆動軸74を設けたことである。なお、差動機構70は、周知のダブルピニオン型遊星歯車を用いたものであり、詳細な説明を省略するが、傘歯車を用いたものであってもよい。
 即ち、第1推進軸11について、内燃機関40は、駆動歯車40a及び差動機構70、左駆動軸72及び第1傘歯車51、並びに第1OWC61bを経由して、第1モータ31b及び第1回転翼21bと連結しており、さらに、駆動歯車40a及び差動機構70並びに左駆動軸72及び第1傘歯車51を経由して、第1モータ31a及び第1回転翼21aと連結している。第4推進軸14について、内燃機関40は、駆動歯車40a及び差動機構70、右駆動軸74及び第4傘歯車54、並びに第4OWC64bを経由して、第4モータ34b及び第4回転翼24bと連結しており、さらに、駆動歯車40a及び差動機構70、右駆動軸74及び第4傘歯車54、並びに摩擦クラッチ80を経由して第4モータ34a及び第4回転翼24aと連結している。
 本実施形態では、第1傘歯車51と第1モータ31a及び第1回転翼21aとが直接連結し、第4傘歯車54と第4モータ34a及び第4回転翼24aとの間に、摩擦クラッチ80を介在させているのが、第1~第3の実施形態の場合と異なる。本実施形態において、摩擦クラッチ80が接続された状態にあっては、第1モータ31a及び第1回転翼21aと第4モータ34a及び第4回転翼24aとは、自動車の左右輪のように内燃機関40と差動機構70を介して連結し、第1モータ31a及び第4モータ34aの両者と内燃機関40との間で、回転方向を問わずに動力伝達ができる。従って、第1モータ31a及び第4モータ34aの側から内燃機関40を駆動することが可能である。
 一方、摩擦クラッチ80が解放された場合は、第1モータ31a及び第4モータ34aの両者と内燃機関40との間で動力伝達が行われなくなり、内燃機関40が停止した状態において、第1モータ31a及び第4モータ34aは自由に回転することができる。つまり、内燃機関40が故障した場合を除いて、摩擦クラッチ80は接続しておく。従って、摩擦クラッチ80として、図示しないスプリングの圧接力で常時つながっているタイプを用いることが好適である。第1推進軸11及び第4推進軸14に配置された計4つの回転翼は、内燃機関40から駆動可能であり、本発明の第1推進翼を構成する。
 第2推進軸12及び第3推進軸13の各々は、2つの回転翼を備えている。第2回転翼22a及び22bはそれぞれ連結されている第2モータ32a及び32bによって駆動され、第3回転翼23a及び23bはそれぞれ連結されている第3モータ33a及び33bによって駆動される。これら4つの回転翼は、本発明の第2推進翼を構成する。
 前述の摩擦クラッチ80が接続され内燃機関40が第1推進軸11及び第4推進軸14の各回転翼を駆動して飛行する状態にあっては、発電するモータが4つであり、第2推進軸12及び第3推進軸13の各回転翼を駆動するモータが4つであるので、全てのモータの容量を1とする。その他の構成は、第1の実施形態の場合と同様であるので説明を省略する。
 次に、第4の実施形態の動作及び作用について説明する。ここでも第1の実施形態の場合と同様の部分は説明を省略する。内燃機関40の始動は、摩擦クラッチ80が接続されている状態で、第1モータ31a及び第4モータ34aが内燃機関40を駆動して行う。内燃機関40が始動した後の飛行は基本的に第1の実施形態と同様であるが、内燃機関40と第1推進軸11及び第4推進軸14との間に、差動機構70を備えているため、自動車の左右輪のように、第1推進軸11及び第4推進軸14は、互いに異なる速度で回転することができる点が第1の実施形態の場合と異なる。
 従って、第1推進軸11及び第4推進軸14の各モータの回転速度を制御することで、第1推進軸11及び第4推進軸14の揚力を自在に制御することができる。また、内燃機関40が故障して停止した場合は、ただちに摩擦クラッチ80の接続を解放して、全てのモータにバッテリから電力を供給して飛行を続ける。その他の作動及び作用は、第1の実施形態の場合と同様であるので説明を省略する。
 以上説明した第4の実施形態のハイブリッド回転翼航空機1によれば、従来例と同様の機能を有しながら、従来例に比べて電機容量を50%減らすことができるので、製造コストはむろんのこと、重量を減らすことで、飛行に伴うエネルギ消費を抑える効果が期待できる。なお、本実施形態は、上記した回転翼のうち下側に配置した4つの回転翼を削除して、上側に配置した4つの回転翼のみで構成することもできる。
[第5の実施形態]
 図8は、本発明の第5の実施形態に係るハイブリッド回転翼航空機1の概要を上方から見た状態で表した平面図であり、図1に対応して表されている。また、図9は、第5回転翼25と内燃機関40との連結関係を示す模式図であり、上方から見た状態で表わされている。ここでは、第1の実施形態及び第4の実施形態の場合と異なる部分を中心に説明し、それらと実質的に同じ部分については、同じ符号を付しそれらの説明を省略する。
 第5の実施形態の第1の実施形態との違いは、図8に示されているように、第5の実施形態では、第4の実施形態における第1推進軸11、第2推進軸12、第3推進軸13及び第4推進軸14に、第5推進軸15及び第6推進軸16を加えた計6つの軸を、円周上等分位置に備えていることであり、それら6つの推進軸にそれぞれ1つの回転翼を有していることである。
 これと関連して、第5の実施形態では、第4の実施形態の場合と同様に、内燃機関40と第1推進軸11及び第4推進軸14との間に、差動機構70と左駆動軸72及び右駆動軸74を備えていることも、第1の実施形態の場合と異なる。また、第5の実施形態では、第5推進軸15が追加されて、第1推進軸11と第4推進軸14とが周方向に沿って隣り合う関係でないため、第1回転翼21aと第4回転翼24aとが同じ方向に回転する点が、第4の実施形態の場合と異なる。つまり、第1傘歯車51は、第3の実施形態における第3傘歯車53と同様の噛み合い関係になっている。
 また、図9に示されているように、第5推進軸15には、差動機構70のケース70aと一体的に構成されている第2駆動歯車70bと、これによって駆動される第3駆動軸46及び第5傘歯車55と、第5OWC65を介して連結した第5モータ35及び第5回転翼25とが配置されている。第5回転翼25は、内燃機関40から駆動可能な、本発明の第1推進翼を構成する。
 そして、第6推進軸16には、第2推進軸12及び第3推進軸13と同様に、第6モータ36と連結した第6回転翼26が配置されている。第6回転翼26は、第6モータ36のみから駆動される、本発明の第2推進翼を構成する。
 従って、内燃機関40の駆動で発電するのは、第1モータ31、第4モータ34及び第5モータ35の3つであり、それぞれと連結した各回転翼を専用に駆動するのは第2モータ32、第3モータ33及び第6モータ36の3つである。ここで、6つの全てのモータの容量を1とする。その他は、基本的に第1の実施形態及び第4の実施形態の場合と同様であるので、説明を省略する。
 次に、第5の実施形態の動作及び作用について説明する。ここでも第1の実施形態及び第4の実施形態の場合と同様の部分は説明を省略する。内燃機関40の始動は、第4の実施形態の場合と同様に、第1モータ31及び第4モータ34が内燃機関40を駆動して行う。前述したように、通常飛行時においては、第5回転翼25は内燃機関40と連結して駆動されるので、内燃機関40の回転速度に比例した速度で回転する。第1回転翼21及び第4回転翼24は、第4の実施形態の場合と同様に、第1モータ31及び第4モータ34を制御することで、それぞれの揚力を制御することができる。
 つまり、内燃機関40で駆動する3つの回転翼は、それぞれの揚力を制御可能である。他の、第2回転翼22、第3回転翼23及び第6回転翼26は、それぞれと連結したモータを制御することで、揚力を自在に制御することができる。以降の飛行は、第1の実施形態及び第4の実施形態の場合と同様であるので、説明を省略する。
 以上説明した第5の実施形態のハイブリッド回転翼航空機1によれば、従来例と同様の機能を有しながら、従来例に比べて電動機及び発電機の容量を半減することができるので、製造コストはむろんのこと、重量を減らすことで、飛行に伴うエネルギ消費を抑える効果が期待できる。
 なお、以上の説明は各推進軸に1つの回転翼を設けた構成であるが、これを第4の実施形態のように各推進軸に2つの回転翼を設けることによって、より大型のハイブリッド回転翼航空機1とすることができる。
 以上、本発明のハイブリッド回転翼航空機の概要を説明したが、各実施形態に共通しているのは、回転翼を駆動するモータのうち半数又はそれ以上を、内燃機関40の動力で飛行する際の発電機としたため、従来例に比べて全体として電動機及び発電機の容量を半減することができるというメリットである。これは、ハイブリッド回転翼航空機が大型になるほど効果が大きく現れるので、製造コストだけでなく、重量の低減によるエネルギ消費を減らす効果が期待できる。
 本発明のハイブリッド回転翼航空機の具体的な構成は、各実施形態で図示した内容にこだわることなく、各実施形態の特徴同士を組み合わせるなど、種々の工夫をこらした態様で実施することができる。
 本発明のハイブリッド回転翼航空機は、有人飛行、無人飛行に関係なく実施できるし、大型で長距離飛行を要求される物品の運搬のみでなく、人の輸送に用いることができる。

Claims (8)

  1.  内燃機関と、モータと、前記モータが連結された回転翼をそれぞれ有し揚力を発出する第1推進軸、第2推進軸及び第3推進軸とを備え、前記内燃機関が駆動可能で発電可能な前記モータと連結した前記回転翼を第1推進翼と定義し、前記第1推進翼以外の前記回転翼を第2推進翼と定義したとき、2つ以上の前記第1推進翼と2つ以上の前記第2推進翼を、前記各推進軸に分配して設けることにより、前記各推進軸が発出する揚力をそれぞれ自在に制御可能に構成したことを特徴とするハイブリッド回転翼航空機。
  2.  前記内燃機関と前記第1推進翼との間に設けられたワンウエイクラッチを備えていることを特徴とする請求項1に記載のハイブリッド回転翼航空機。
  3.  前記第1推進軸と前記第2推進軸とに1つの前記第1推進翼をそれぞれ設け、前記第1推進軸と前記第3推進軸とに1つの前記第2推進翼をそれぞれ設けたことを特徴とする請求項1又は2に記載のハイブリッド回転翼航空機。
  4.  前記第1推進軸と前記第2推進軸との一方に2つの前記第1推進翼を設け、前記第1推進軸と前記第2推進軸との他方に1つの前記第1推進翼と1つの前記第2推進翼を設けると共に、前記第3推進軸に2つの前記第2推進翼を設けたことを特徴とする請求項1又は2に記載のハイブリッド回転翼航空機。
  5.  第4推進軸をさらに備え、前記第1推進軸、前記第2推進軸、前記第3推進軸及び前記第4推進軸のうちの3つに1つの前記第1推進翼と1つの前記第2推進翼とをそれぞれ設けると共に、前記第1推進軸、前記第2推進軸、前記第3推進軸及び前記第4推進軸のうちの残りの1つに2つの前記第1推進翼を設けたことを特徴とする請求項1又は2に記載のハイブリッド回転翼航空機。
  6.  前記第2推進翼と連結した前記モータと前記内燃機関との間に連結された逆転ワンウエイクラッチを備えており、該逆転ワンウエイクラッチを介して前記モータが前記内燃機関を駆動可能としたことを特徴とする請求項1に記載のハイブリッド回転翼航空機。
  7.  第4推進軸をさらに備え、前記第2推進軸及び前記第3推進軸にそれぞれ前記第2推進翼を設け、前記内燃機関と前記第1推進軸及び前記第4推進軸との間に、差動機構と右駆動軸及び左駆動軸とをそれぞれ介在させ、前記第1推進軸及び前記第4推進軸にそれぞれ前記第1推進翼を設けたことを特徴とする請求項1又は2に記載のハイブリッド回転翼航空機。
  8.  第5推進軸をさらに備え、該第5推進軸に少なくとも1つの前記第1推進翼を設けたことを特徴とする請求項7に記載のハイブリッド回転翼航空機。
PCT/JP2021/032570 2020-11-05 2021-09-06 ハイブリッド回転翼航空機 WO2022097359A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-185384 2020-11-05
JP2020185384 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097359A1 true WO2022097359A1 (ja) 2022-05-12

Family

ID=81457767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032570 WO2022097359A1 (ja) 2020-11-05 2021-09-06 ハイブリッド回転翼航空機

Country Status (2)

Country Link
JP (1) JP2022075536A (ja)
WO (1) WO2022097359A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024142248A1 (ja) * 2022-12-27 2024-07-04 株式会社クボタ 移動型産業機械および無人航空機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
US20180194484A1 (en) * 2017-01-10 2018-07-12 Aurora Flight Sciences Corporation Vertical Lift by Series Hybrid-Propulsion
JP2019038464A (ja) * 2017-08-28 2019-03-14 本田技研工業株式会社 マルチコプタ
WO2019065848A1 (ja) * 2017-09-27 2019-04-04 株式会社石川エナジーリサーチ エンジン搭載自立型飛行装置
CN110155315A (zh) * 2019-06-09 2019-08-23 西北工业大学 一种油电混合动力驱动的无人垂直起降飞行器及其飞行控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
US20180194484A1 (en) * 2017-01-10 2018-07-12 Aurora Flight Sciences Corporation Vertical Lift by Series Hybrid-Propulsion
JP2019038464A (ja) * 2017-08-28 2019-03-14 本田技研工業株式会社 マルチコプタ
WO2019065848A1 (ja) * 2017-09-27 2019-04-04 株式会社石川エナジーリサーチ エンジン搭載自立型飛行装置
CN110155315A (zh) * 2019-06-09 2019-08-23 西北工业大学 一种油电混合动力驱动的无人垂直起降飞行器及其飞行控制方法

Also Published As

Publication number Publication date
JP2022075536A (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
US20170253331A1 (en) Multicopter
JP2023086627A (ja) 回転翼航空機
AU2018357230B2 (en) Vertical take-off and landing aircraft and transformation gear sets for same
CN109421924B (zh) 多旋翼直升机
EP3656668B1 (en) Tilting duct compound helicopter
KR101390458B1 (ko) 회전 날개를 가지는 하이브리드 항공기
CN108082499B (zh) 行星式混合动力直升机动力耦合系统及驱动方法
US20190375495A1 (en) Electrical vertical take-off and landing aircraft
US9994305B1 (en) Coaxial drive propulsion system for aerial vehicles, and associated systems and methods
US10793284B2 (en) Multimode clutch assemblies for rotorcraft
AU2017349625A1 (en) Hybrid aircraft
EP3428065A1 (en) Variable-speed drive system for tiltrotor with fixed engine and rotating proprotor
CN105836141A (zh) 一种混合动力直升机驱动机构及驱动方法
WO2018099856A1 (en) Electrical vertical take-off and landing aircraft
WO2017126584A1 (ja) 無人航空機
CN108082500A (zh) 一种固定翼式混合动力飞行器驱动装置及驱动方法
WO2018193522A1 (ja) プロペラ式飛行体
WO2022097359A1 (ja) ハイブリッド回転翼航空機
US20200172224A1 (en) Aircraft of a modular type, and a method of preparing such an aircraft for a specific mission
CN207826569U (zh) 一种固定翼式混合动力飞行器驱动装置
CN107010229A (zh) 双发油动无人机
WO2023112343A1 (ja) ハイブリッド回転翼航空機
JP2023159751A (ja) ハイブリッド回転翼航空機
GB2447641A (en) Rotorcraft comprising differential gearing and a CVT arrangement
JP2023155519A (ja) ハイブリッド回転翼航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888912

Country of ref document: EP

Kind code of ref document: A1