WO2019062685A1 - 一种含硼有机电致发光器件及其制备方法 - Google Patents

一种含硼有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2019062685A1
WO2019062685A1 PCT/CN2018/107220 CN2018107220W WO2019062685A1 WO 2019062685 A1 WO2019062685 A1 WO 2019062685A1 CN 2018107220 W CN2018107220 W CN 2018107220W WO 2019062685 A1 WO2019062685 A1 WO 2019062685A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
electroluminescent device
organic electroluminescent
Prior art date
Application number
PCT/CN2018/107220
Other languages
English (en)
French (fr)
Inventor
李崇
叶中华
张兆超
王立春
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Priority to US16/964,205 priority Critical patent/US11778894B2/en
Publication of WO2019062685A1 publication Critical patent/WO2019062685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to an application of a boron-containing organic compound as an luminescent layer doping material on an organic light emitting diode and a device manufacturing method.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • OLEDs organic light-emitting diodes
  • conventional organic fluorescent materials can only emit light with 25% singlet excitons formed by electrical excitation, and the internal quantum efficiency of the device is low (up to 25%). External quantum efficiency is generally less than 5%, which is far from the efficiency of phosphorescent devices.
  • the phosphorescent material enhances the intersystem crossing due to the strong spin-orbit coupling of the center of the heavy atom, it can effectively utilize the singlet excitons and triplet exciton luminescence formed by electrical excitation, so that the internal quantum efficiency of the device is 100%.
  • Thermally activated delayed fluorescence (TADF) materials are the third generation of organic luminescent materials developed after organic fluorescent materials and organic phosphorescent materials. Such materials generally have a small singlet-triplet energy level difference ( ⁇ EST), and triplet excitons can be converted into singlet exciton luminescence by anti-system enthalpy. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation, and the internal quantum efficiency of the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the field of OLEDs is broad.
  • T1 and S1 states of the design molecule have strong CT characteristics, and very small S1-T1 state energy gaps, although The high T1 ⁇ S1 state exciton conversion rate is achieved by the TADF process, but at the same time, the low S1 state radiation transition rate is achieved, so it is difficult to achieve (or simultaneously achieve) high exciton utilization and high fluorescence radiation efficiency;
  • Doped devices have been used to mitigate the T exciton concentration quenching effect, and most TADF material devices have a significant efficiency roll-off at high current densities.
  • the present applicant provides an organic electroluminescent device containing a boron-containing compound as a light-emitting layer doping material and a preparation method thereof, thereby improving device efficiency and lifetime, and meeting the requirements of a panel manufacturing enterprise.
  • An organic electroluminescent device having a structure comprising at least a substrate layer, an anode layer, a light emitting layer and a cathode layer; the preferred structure further comprises: an anode, a hole injection/transport layer, a light emitting layer, an electron injecting/transporting layer, and cathode;
  • the luminescent layer comprises a host material and a doping material;
  • the doping material is an organic compound containing boron element, and the singlet and triplet energy level difference is not more than 0.2 eV, and the luminescence half width is not more than 120 nm;
  • the singlet and triplet energy levels are higher than the singlet and triplet energy levels of the doped material, respectively;
  • the lowest singlet state and the lowest triplet energy level difference of the host material are less than or equal to 0.2 eV;
  • the lowest triplet energy level of the host material is greater than or equal to The lowest singlet energy level of the doped material.
  • the singlet and triplet energy levels of the boron-containing organic compound are not more than 0.1 eV.
  • the phase state triplet energy level of the lowest luminescent energy host material film is greater than the triplet energy level of the dopant material by 0.1 eV or more.
  • the lowest luminescence energy host material film phase singlet state and triplet energy level difference is not more than greater than 0.15 eV.
  • the host material of the light-emitting layer is composed of a single material, and the doping material of the light-emitting layer has a mass doping concentration of 0.5% to 30%; more preferably, the mass doping concentration of the dopant material of the light-emitting layer It is 3% to 30%. More preferably, the doping material of the light-emitting layer has a mass doping concentration of 5% to 15%.
  • the host material of the light-emitting layer is formed by mixing materials of two different structures, and the doping material of the light-emitting layer has a mass doping concentration of 3% to 30%.
  • the doping material of the light emitting layer has a mass doping concentration of 0.5% to 30%. More preferably, the doping material of the light-emitting layer has a mass doping concentration of 1% to 15%.
  • the boron-containing organic compound has a boron element as a core, and is bonded to other elements by an sp2 hybrid orbital mode; the boron-bonded group is a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group; a substituted or unsubstituted C1-C10 heterocycloalkyl, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C5-C60 heteroaryl; and boron
  • the linked groups may be bonded individually or directly to each other to form a ring or may be bonded to the boron by other groups.
  • the group bonded to boron is a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted group.
  • the organic compound containing a boron element is represented by the general formula (1):
  • R 1 , R 2 and R 3 are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkane. a substituted, unsubstituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C5-C60 heteroaryl group; and R 1 , R 2 , and R 3 are not represented by a hydrogen atom.
  • the organic compound containing a boron element is represented by the general formula (2):
  • R 1 , R 2 , R 3 , A 1 and A 2 are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3. a heterocycloalkyl group of C10, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C5-C60 heteroaryl group, wherein R 1 , R 2 , and R 3 are different Expressed as a hydrogen atom;
  • n is equal to 0 or 1;
  • R 4 is independently represented by an oxygen atom, a sulfur atom, an alkyl or aryl substituted boron atom, a C1-10 linear or branched alkyl substituted alkylene group, an aryl substituted alkylene group. a group of an alkyl-substituted imido group, an aryl-substituted imido group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C5-C60 heteroarylene group .
  • the organic compound containing boron element is represented by the general formula (3):
  • R 1 , R 2 , R 3 , A 1 , A 2 and A 3 each independently represent a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted group. a C3-C10 heterocycloalkyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C5-C60 heteroaryl group, wherein R 1 , R 2 , R 3 Not at the same time expressed as a hydrogen atom;
  • X and Y are each independently equal to 0 or 1;
  • R 4 and R 5 are each independently represented by an oxygen atom, a sulfur atom, an alkyl group or an aryl-substituted boron atom, or a C1-10 linear or branched alkyl substituted subgroup.
  • One of the heteroarylene groups are each independently represented by an oxygen atom, a sulfur atom, an alkyl group or an aryl-substituted boron atom, or a C1-10 linear or branched alkyl substituted subgroup.
  • the organic compound containing a boron element is represented by the general formula (4):
  • R 1 , R 2 , R 3 , A 1 , A 2 and A 3 are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substitution or not. a substituted C3-C10 heterocycloalkyl, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C5-C60 heteroaryl, wherein R 1 , R 2 , R 3 cannot be expressed as a hydrogen atom;
  • X, Y, and Z are each independently equal to 0 or 1;
  • R 4 , R 5 and R 6 are each independently represented by an oxygen atom, a sulfur atom, an alkyl or aryl-substituted boron atom, a C1-10 straight chain or a branched chain.
  • the organic compound containing a boron element is represented by the general formula (5):
  • Ar 1 , A1, and A2 are each independently represented by a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C2-C60 heteroaryl group;
  • R 5 are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C6-C60
  • R 4 and R 5 are not represented by a hydrogen atom.
  • the organic compound containing a boron element is represented by the general formula (6):
  • Ar 2 , A 3 and A 4 are each independently represented by a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or unsubstituted C 5 -C 60 heteroaryl group;
  • R 6 And R 7 are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C6-C60
  • R 6 and R 7 are not simultaneously represented by a hydrogen atom;
  • X represents an oxygen atom, a sulfur atom, an alkyl or aryl substituted boron atom, a C1-10 linear alkyl substituted alkylene group, a C1-10 branched alkyl substituted alkylene group, an aryl substituted sub One of an alkyl group, an alkyl substituted imido group or an aryl substituted imido group.
  • Ar 1 , Ar 2 , A1, A2, A3 and A4 are each independently represented as a substituted or unsubstituted: phenyl, biphenyl or terphenyl.
  • pyrimidinyl pyridyl, naphthyl, anthracenyl, phenanthryl, triazinyl, quinolinyl, dibenzofuranyl, dibenzothiophenyl, 9,9-dimethylindenyl, 9,9- Diphenylindenyl, oxazolyl, benzoxazolyl, thienyl, benzothienyl, furyl, benzofuranyl, benzimidazolyl, acridinyl, phenoxazinyl, phenothiazine One of them.
  • R 4 , R 5 , R 6 and R 7 are each independently represented by the general formula (7), (8) or (9):
  • R 1 ', R 2 ' are each independently represented by a hydrogen atom or a structure of the formula (10);
  • a is selected from X 1 , X 2 and X 3 are each independently represented by an oxygen atom, a sulfur atom, a selenium atom, a C1-10 linear or branched alkyl-substituted alkylene group, an aryl-substituted alkylene group, an alkyl-substituted one.
  • the general formula (10) is linked by a CL 1 -CL 2 bond, a CL 2 -CL 3 bond, a CL 3 -CL 4 bond, and a formula (7) or a formula (8);
  • R 3 ', R 4 ' are each independently represented by a hydrogen atom, a C3-C10 cycloalkyl or heteroalkyl group, a substituted or unsubstituted phenyl group, a naphthyl group, a pyrimidinyl group, a carbazolyl group, a dibenzofuranyl group.
  • a dibenzofuranyl group a 9,9-dimethylhydrazine group, a dibenzothiophenyl group, an N-phenylcarbazolyl group, and an arylamine group;
  • Y represents an oxygen atom, a sulfur atom, a C1-10 linear alkyl-substituted alkylene group, a C1-10 branched alkyl-substituted alkylene group, an aryl-substituted alkylene group, an alkyl-substituted imido group. Or one of the aryl substituted imido groups.
  • the organic compound containing boron element provided by the present application as a doping material has a luminescent color of blue light, green light, yellow light or red light.
  • the host material is a ketone, a pyridine, a pyrimidine, a pyrazine, a triazine, a carbazole, an anthracene, a quinoline, a furan, a thiophene.
  • a class an imidazole, an acridine compound.
  • the organic electroluminescent device provided by the present application further includes a hole injection/transport layer including one of a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer.
  • a hole injection/transport layer including one of a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer.
  • the hole injecting layer material is one of the following structural formulas (1b), (2b) or (3b):
  • Er 1 -Er 3 are independently represented as one of a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C5-C60 heteroaryl group; Er 1 -Er 3 can be the same or different;
  • Fr 1 -Fr 6 are independently represented by a hydrogen atom, a nitrile group, a halogen, an amide group, an alkoxy group, an ester group, a nitro group, or a C1-C60 straight.
  • a chain or branched alkyl substituted carbon atom a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C5-C60 heteroaryl group.
  • the hole transport layer material is one of a carbazole, an anthracene, a pyrazoline, a furan, a thiophene, a xanthene, a dimethylhydrazine or a triarylamine.
  • the electron injecting/transporting layer includes one or a combination of an electron injecting layer, an electron transporting layer, and a hole blocking layer.
  • the material of the electron injecting layer is a compound containing lithium or ruthenium.
  • the material of the electron transport layer is pyrimidine, pyridine, naphthalene, anthracene, phenanthrene, triazine, quinoline, dibenzofuran, dibenzothiophene, anthraquinone, One of a snail, a benzothiophene, a benzofuran, or a benzimidazolyl group.
  • the anode is made of an inorganic material or an organic conductive polymer material; the inorganic material is selected from a metal oxide, or is selected from gold, copper, and silver; and the cathode is made of lithium, magnesium, Calcium, barium, aluminum, strontium or indium, or alloys thereof with copper, gold, silver, or metal and metal fluoride alternately form an electrode layer.
  • the metal oxide is indium tin oxide, indium zinc oxide or indium gallium zinc oxide.
  • the organic conductive polymer is one of polyimide, polyethylene, polypropylene, polystyrene, polyaniline, polythiophene, polyvinylbenzenesulfonic acid or polyethylene terephthalate. kind or combination.
  • the cathode material is an alloy of magnesium and silver in a ratio of 1:99 to 99:1.
  • the cathode material is a laminated lithium fluoride and aluminum layer, wherein the aluminum layer is the outermost layer of the organic electroluminescent device.
  • the boron-containing compound may be selected from one of the following structural formulas:
  • the sp2 hybrid form of boron is bonded to other atoms, and the formed structure has a charge which can form an electric charge with an electron-donating group or a weak electron-withdrawing group because boron is an electron-deficient atom.
  • the transition state or reverse spatial resonance causes the HOMO and LUMO electron cloud orbitals to separate, and the singlet-triplet energy level difference of the material is reduced, thereby generating delayed fluorescence and improving device efficiency.
  • a material formed by using a boron atom as a core can not only obtain a very small singlet-triplet level difference, but also has a relatively fast fluorescence emission rate. It can effectively reduce the delayed fluorescence lifetime of the material, thereby reducing the triplet quenching effect of the material and improving the efficiency of the device.
  • HOMO/LUMO overlap is calculated by ORCA quantum chemistry software, the functional is B3LYP, and the base group is PBE0.
  • a boron-containing compound having the above structure a bond formed by bonding with boron, which has good bond energy stability, and the material receives an excited state compound formed by electrical excitation, the energy of which is lower than the bond energy formed by the connection with boron, thereby making the material
  • the chemical stability of the material is improved.
  • the stacking between the molecules is relatively tight, so that the glass transition temperature of the material is improved.
  • the boron-containing compound having the above structure and the compound having a cyclic structure formed by the boron atom have strong rigidity, and the excited state configuration of the material is stabilized, and the conformational relaxation is less likely to occur, and the conformational reorganization energy is low.
  • the resulting luminescence spectrum has a narrow half-width, and a narrow half-width can effectively prevent color changes caused by different viewing angles, and can effectively utilize spectral energy to improve device color purity.
  • the boron-containing compound having the above structure has a narrow half-width of the spectrum, which is close to the conventional fluorescent material, but is much narrower than the half-width of the spectrum of the current delayed fluorescent material (about 100 nm), indicating that such a compound will It has high color purity and luminous efficiency.
  • the organic electroluminescent device has a blue light emission color and an emission wavelength of 440-480 nm;
  • the organic electroluminescent device has a luminescent color of green light and an emission wavelength of 480-540 nm;
  • the organic electroluminescent device has a luminescent color of yellow light and an emission wavelength of 540-590 nm;
  • the organic electroluminescent device has a luminescent color of red light and an emission wavelength of 590-640 nm;
  • the host material of the organic electroluminescent device may be represented by the following formula:
  • R 8 to R 12 and R 1 * to R 12 * are each independently represented by a hydrogen atom, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkane. a substituted, unsubstituted or unsubstituted C6-C60 aryl group, one of substituted or unsubstituted C2-C60 heteroaryl groups, and R 8 and R 9 may be bonded or not bonded to form a ring. ;
  • Z represents an oxygen atom, a sulfur atom, a C1-10 linear alkyl-substituted alkylene group, a C1-10 branched alkyl-substituted alkylene group, an aryl-substituted alkylene group, an aryl-substituted alkyl group or One of the aryl-substituted tertiary amine groups.
  • the host material of the organic electroluminescent device may be selected from one or more combinations of the following structures;
  • hole injection layer is a compound represented by any one of the following structural formulas:
  • the hole transport layer is a compound represented by any of the following structural formulas:
  • the organic electroluminescent device is characterized in that the material of the electron transport layer is a compound represented by the following formula (1C), (2C), (3C), (4C) or (5C). Any one of them:
  • Dr 1 -Dr 10 in the general formula (1C), (2C), (3C), (4C) or (5C) are independently represented as a hydrogen atom, a substituted or unsubstituted C6-C60 aryl group Any one of a substituted or unsubstituted C1-C60 heteroaryl group;
  • the electron transport layer adopts a compound represented by any of the following structural formulas:
  • the sp2 hybrid form of boron is bonded to other atoms, and the formed structure has a charge which can form an electric charge with an electron-donating group or a weak electron-withdrawing group because boron is an electron-deficient atom.
  • the transition state or reverse spatial resonance causes the HOMO and LUMO electron cloud orbitals to separate, and the singlet-triplet energy level difference of the material decreases, resulting in delayed fluorescence.
  • the material formed by boron atoms as the core can not only obtain very small singlet-triplet energy level difference, but also can effectively reduce the delayed fluorescence lifetime of materials due to its fast fluorescence emission rate. , thereby reducing the triplet quenching effect of the material and improving device efficiency
  • a boron-containing compound having the above structure a bond formed by bonding with boron, which has good bond energy stability, and an excited state compound formed by electrical excitation of the material, the energy of which is lower than the bond energy formed by the connection with boron, thereby making the material
  • the chemical stability is improved.
  • the stacking between the molecules is relatively tight, so that the glass transition temperature of the material is improved. Good thermal stability of the material helps to increase device life.
  • the boron-containing compound having the above structure and the compound having a cyclic structure formed by the boron atom have strong rigidity, and the excited state configuration of the material is stabilized, and the conformational relaxation is less likely to occur, and the conformational reorganization energy is low.
  • the resulting luminescence spectrum has a narrow half-width, and a narrow half-width can effectively prevent color changes caused by different viewing angles, and can effectively utilize spectral energy to improve device color purity.
  • the boron-containing compound based on the above structure can effectively utilize the inter-gap crossing process and make full use of the triplet energy; at the same time, the delayed fluorescence lifetime is short, and the triplet state can be effectively prevented. Energy loss and device lifetime are reduced by triplet quenching. Selecting the triplet state and singlet state of the host material is higher than that of the boron-containing compound, which can effectively prevent energy return, resulting in lower device efficiency. In particular, the bulk material with a singlet-triplet energy level difference of less than 0.2 eV is selected, and the three-line reverse gap crossing process of the host material can be utilized to improve device efficiency. Selecting a dual-body combination can effectively increase the exciton-matching area and increase the carrier recombination rate, thereby improving device efficiency and lifetime.
  • Figure 1 is a schematic view showing the structure of a device applied to the compound of the present invention
  • 1 is a transparent substrate layer
  • 2 is an anode layer
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is an electron blocking layer
  • 6 is a light-emitting layer
  • 7 is an electron transport layer/hole blocking layer
  • 8 is an electron.
  • the injection layer, 9 is a cathode electrode layer.
  • the transparent substrate layer 1 may be a glass substrate or a plastic substrate having good mechanical strength, thermal stability, transparency, surface flatness, handling convenience, and water resistance. ;
  • the anode layer 2 may be made of a conductor having a high work function (specifically, 4.0 eV or more) to facilitate hole injection; the anode includes, but is not limited to, a metal, a metal oxide, and/or a conductive polymer, for example, metallic nickel, platinum. , vanadium, chromium, copper, zinc, gold or alloy, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), poly(3-methylthiophene), poly (3,4-(stretch) Ethyl-1,2-dioxy)thiophene), polypyrrole and polyaniline;
  • a metal, a metal oxide, and/or a conductive polymer for example, metallic nickel, platinum. , vanadium, chromium, copper, zinc, gold or alloy, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), poly(3-methylthiophene), poly (3,4-(
  • the cathode reflective electrode layer 9 can be made of a conductor having a low work function (specifically, 3.8 eV or less) to aid electron injection.
  • Cathodes include, but are not limited to, metals, metal oxides, and/or conductive polymers such as: magnesium, calcium, sodium, potassium, titanium, indium, aluminum, silver, and the like, LiF/Al, LiF/Ca, LiO 2 / Al, BaF 2 /Ca;
  • the hole transporting region may be a single layer structure formed of a single material, a single layer structure formed of a plurality of different materials, or a multilayer structure formed of a plurality of different materials, for example, the hole transporting region may be formed of a different material.
  • Single layer structure, or structure having a hole injection layer/hole transport layer, a structure of a hole injection layer/hole transport layer/buffer layer, a structure of a hole injection layer/buffer layer, a hole transport layer/buffer The structure of the layer, the structure of the hole injection layer/hole transport layer/electron barrier layer or the structure of the hole transport layer/electron barrier layer, but the hole transport region is not limited thereto; in FIG. 1, the hole transport The region includes a hole injection layer 3, a hole transport layer 4, a buffer layer (not shown in the drawing) and an electron blocking layer 5;
  • the electron transporting region includes one or more of a hole blocking layer, an electron transporting layer, and an electron injecting layer; for example, the electron transporting region may have a structure of an electron transporting layer/electron injecting layer, a hole blocking layer/electron transporting layer/ The structure of the electron injection layer, but is not limited thereto; in FIG. 1, the electron transport region includes a hole blocking/electron transport layer 7 and an electron injection layer 8;
  • the luminescent layer 6 comprises a host material and a dopant material.
  • the host material may be composed of a single material or a mixture of materials of different structures;
  • the doping material is an organic compound containing boron element, and the singlet and triplet energy level difference is not more than 0.2 eV, and the singlet state of the host material.
  • triplet energy levels are higher than doped materials;
  • the luminescent layer doping material is an organic compound containing boron element, and the singlet and triplet energy level difference is not more than 0.1 eV; wherein, the lowest luminescent energy host material film phase triplet energy level is greater than the three-line material of the doping material.
  • the state energy level is 0.1 eV or more; wherein, the lowest single luminescent energy host material film phase singlet state and triplet energy level difference is not more than 0.2 eV;
  • the luminescent layer host material is composed of a single material, and the doping material has a mass doping concentration of 3% to 30%;
  • the mass ratio of the two is 1:10 to 10:1; and the mass doping concentration of the doping material is 3% to 30%.
  • the doping material in the light-emitting layer has a mass doping concentration of 5% to 15%.
  • the layer forming method of the organic electroluminescence device may employ vacuum evaporation, spin coating, drop casting, ink jet printing, laser printing, or LB film method.
  • a vacuum coating When passing through a vacuum coating, it may be at a deposition temperature of about 100 ° C to about 500 ° C. to The range of deposition rate can be vacuum deposited; when film formation by spin coating, spin coating is performed at a spin coating rate in the range of 2000 to 5000 rpm and a temperature in the range of 20 to 200 °C.
  • the thickness of each of the layers of the film is not limited. Generally, if the film is too thin, defects such as pinholes are likely to occur, and if it is too thick, a high applied voltage is required and the efficiency is changed. Poor, therefore a range of from 0.1 to 1000 nm is usually preferred.
  • the present invention will be further described in detail below with reference to the embodiments. For convenience of explanation, the English abbreviation and specific structure of the compound are now as follows:
  • Comparative Example 1 The specific preparation process of the device is as follows:
  • the ITO anode layer 2 on the transparent glass substrate layer 1 was cleaned, ultrasonically washed with deionized water, acetone, and ethanol for 15 minutes, respectively, and then treated in a plasma cleaner for 2 minutes; on the ITO anode layer 2, HAT- CN, film thickness 10nm, the layer is a hole injection layer 3; then, the NPB film is deposited to a thickness of 50 nm, the layer serves as a hole transport layer 4; TCTA is evaporated, the film thickness is 60 nm, and the layer serves as an electron blocking layer 5; , a 40 nm light-emitting layer 6 is deposited: wherein the CBP host material, GD-19 is used as a doping material, and the doping mass concentration is 6%; and on the light-emitting layer 6, the TPBi is evaporated by vacuum evaporation to a thickness of 35 nm.
  • This layer of organic material acts as a hole blocking/electron transport layer 7; on the hole blocking/electron transport layer 7, an electron injecting layer LiF is vacuum-deposited to a thickness of 1 nm, which is an electron injecting layer 8; On top of layer 8, a cathode Al (80 nm) was vacuum evaporated and this layer was the cathode electrode layer 9.
  • the single-state energy level of H6 is 3.0eV
  • the triplet energy level is 2.8eV
  • the H58 single-line energy level is 2.90eV
  • the triplet energy level is 2.78eV
  • the H91 single-line energy level is 3.3eV
  • the triplet energy level It is 2.85 eV
  • the H98 singlet level is 3.20 eV
  • the triplet level is 2.88 eV.
  • the boron-containing compound can fully utilize the triplet energy compared to the conventional fluorescent material, thereby greatly improving the device efficiency.
  • the spectral half-width of the boron-containing compound is significantly reduced, and the color purity thereof is significantly improved; the device efficiency roll-off phenomenon is significantly suppressed, and the device lifetime is improved significantly.
  • the device efficiency is significantly improved compared to the conventional host material CBP, because the triplet energy level of the CBP material is lower, and the triplet energy of the guest material may return the host material, resulting in device efficiency.
  • the carrier recombination area is increased, and at the same time, the excitons are diluted, so that the device efficiency and lifetime are improved.
  • Further adjustment of the guest doping concentration can be found that the optimal doping mass ratio of the guest doping is about 12%, because the doping concentration is low, the energy transfer between the host and the guest is insufficient; the doping concentration is too high, and it is easy to generate a triplet state - Triplet quenching reduces device efficiency and lifetime.
  • the efficiency, color purity, and spectral half-width of the device are not much different, but the lifetime of the device is greatly different, mainly due to the inconsistent stability of other functional layer materials, resulting in changes in device lifetime.
  • the hierarchical structure of Comparative Example 3, Comparative Example 4, and Examples 17 to 32 is shown in Table 5.
  • the single-state energy level of H9 is 3.08eV
  • the triplet energy level is 2.88eV
  • the H54 single-line energy level is 3.04eV
  • the triplet energy level is 2.89eV
  • the H93 single-line energy level is 3.38eV
  • the triplet energy level It is 2.92 eV
  • the H101 singlet level is 3.35 eV
  • the triplet level is 2.95 eV.
  • Table 6 The test results of the fabricated OLED light-emitting device are shown in Table 6.
  • the boron-containing compound can fully utilize the triplet energy compared to the conventional fluorescent material, thereby greatly improving the device efficiency.
  • the spectral half-width of the boron-containing compound is significantly reduced, and the color purity thereof is significantly improved; the device efficiency roll-off phenomenon is significantly suppressed, and the device lifetime is improved significantly.
  • the device efficiency is significantly improved compared with the conventional host material mCBP by using the above single-body or double-body mate material; while the double body is increased relative to the single body, the carrier recombination region is increased, and the exciton action can be diluted, so the device efficiency And life expectancy is improved.
  • the optimal doping mass ratio of the guest doping is about 10%, because the doping concentration is low, the energy transfer between the host and the guest is insufficient; the doping concentration is too high, and it is easy to generate a triplet state - Triplet quenching reduces device efficiency and lifetime. Furthermore, by adjusting other functional layer materials, the efficiency, color purity, and spectral half-width of the device are not much different, but the lifetime of the device is greatly different, mainly due to the inconsistent stability of other functional layer materials, resulting in changes in device lifetime.
  • the hierarchical structure of Comparative Example 5, Comparative Example 6, and Example 33 to Example 48 is shown in Table 7.
  • the single-state energy level of H7 is 2.62eV
  • the triplet energy level is 2.48eV
  • the H67 single-line energy level is 2.68eV
  • the triplet energy level is 2.48eV
  • the H100 singlet state energy level is 3.0eV
  • the triplet energy level It is 2.72 eV
  • the single-state energy level of H102 is 3.10 eV
  • the triplet energy level is 2.75 eV.
  • the test results of the fabricated OLED light-emitting device are shown in Table 8.
  • the boron-containing compound can fully utilize the triplet energy compared to the conventional fluorescent material, thereby greatly improving the device efficiency.
  • the spectral half-width of the boron-containing compound is significantly reduced, and the color purity thereof is significantly improved; the device efficiency roll-off phenomenon is significantly suppressed, and the device lifetime is improved significantly.
  • the device efficiency is significantly improved compared with the conventional host material CBP by using the above single-body or double-body mate material; while the double body is increased relative to the single body, the carrier recombination region is increased, and the exciton action can be diluted, so device efficiency And life expectancy is improved.
  • the optimal doping mass ratio of the guest doping is about 10%, because the doping concentration is low, the energy transfer between the host and the guest is insufficient; the doping concentration is too high, and it is easy to generate a triplet state - Triplet quenching reduces device efficiency and lifetime. Furthermore, by adjusting other functional layer materials, the efficiency, color purity, and spectral half-width of the device are not much different, but the lifetime of the device is greatly different, mainly due to the inconsistent stability of other functional layer materials, resulting in changes in device lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机电致发光器件(OLED)结构,尤其涉及一种含硼化合物的高效率有机电致发光器件。本发明制备的有机电致发光器件的结构包括:阳极、空穴注入/传输层、发光层、电子注入/传输层和阴极,其中,发光层包含主体材料和掺杂材料;主体材料可由单一材料构成,也可以由多种不同结构的材料混合而成;掺杂材料为含有硼元素的有机化合物,且其单线态和三线态能级差不大于0.2eV,前述主体材料的单线态和三线态能级均高于掺杂材料,以防止能量回传,避免降低器件发光效率。本发明还提供所述电致发光器件的制备方法,运用该制备方法得到的有机电致发光器件具有高效率、长寿命和高色纯度的特性。

Description

一种含硼有机电致发光器件及其制备方法 技术领域
本发明涉及半导体技术领域,尤其是涉及一种含硼的有机化合物作为发光层掺杂材料在有机发光二极管上的应用和器件制备方法。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。
有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达100%。但磷光材料存在价格昂贵,材料稳定性较差,器件效率滚落严重等问题限制了其在OLEDs的应用。热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(△EST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%。同时,材料结构可控,性质稳定,价格便宜无需贵重金属,在OLEDs领域的应用前景广阔。
虽然理论上TADF材料可以实现100%的激子利用率,但实际上存在如下问题:(1)设计分子的T1和S1态具有强的CT特征,非常小的S1-T1态能隙,虽然可以通过TADF过程实现高T1→S1态激子转化率,但同时导致低的S1态辐射跃迁速率,因此,难于兼具(或同时实现)高激子利用率和高荧光辐射效率;(2)即使已经采用掺杂器件减轻T激子浓度猝灭效应,大多数TADF材料的器件在高电流密度下效率滚降严重。
就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,特别是对于TADF发光材料,获得高效率和长寿命器件是该材料商 业化应用的难题。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种含硼化合物作为发光层掺杂材料的有机电致发光器件及其制备方法,从而提高器件效率和寿命,满足面板制造企业的要求。
本发明的技术方案如下:
一种有机电致发光器件,其结构至少包括:基板层、阳极层、发光层以及阴极层;优选的的结构还包括:阳极、空穴注入/传输层、发光层、电子注入/传输层以及阴极;
所述发光层包含主体材料和掺杂材料;所述掺杂材料为含有硼元素的有机化合物,且其单线态和三线态能级差不大于0.2eV,发光半峰宽不大于120nm;同时主体材料的单线态和三线态能级分别高于掺杂材料的单线态和三线态能级;主体材料的最低单线态和最低三线态能级差小于等于0.2eV;主体材料的最低三线态能级大于等于掺杂材料的最低单线态能级。
优选的,所述含有硼元素的有机化合物的单线态和三线态能级差不大于0.1eV。
优选的,最低发光能量主体材料膜相态三线态能级大于掺杂材料的三线态能级0.1eV以上。
优选的,最低发光能量主体材料膜相态单线态和三线态能级差不大于大于0.15eV。
优选的,所述发光层的主体材料由单一材料组成,所述发光层的掺杂材料的质量掺杂浓度为0.5%~30%;更优选的,发光层的掺杂材料的质量掺杂浓度为3%~30%。更优选的,所述发光层的掺杂材料的质量掺杂浓度为5%~15%。
或者,所述发光层的主体材料由两种不同结构的材料混合而成,所述发光层的掺杂材料的质量掺杂浓度为3%~30%。优选的,所述发光层的掺杂材料的质量掺杂浓度为0.5%~30%。更优选的,所述发光层的掺杂材料的质量掺杂浓度为1%~15%。
所述含有硼元素的有机化合物以硼元素为核心,通过sp2杂化轨道方式和其他元素进行成键;与硼连接的基团为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C1-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;且与硼连接的基团可单独连接,也可相互直接键结成环或者通过其他基团连接成环后再与硼连接。
优选的,所述含有硼元素的有机化合物中,与硼连接的基团为取代或者未取代的苯基、取代或者未取代的联苯基、取代或者未取代的三联苯基、取代或者未取代的嘧啶基、取代或者未取代的吡啶基、取代或者未取代的萘基、取代或者未取代的蒽基、取代或者未取代的菲基、取代或者未取代的三嗪基、取代或者未取代的喹啉基、取代或者未取代的二苯并呋喃基、取代或者未取代的二苯并噻吩基、取代或者未取代的9,9-二甲基芴基、取代或者未取代的9,9- 二苯基芴基、取代或者未取代的咔唑基、取代或者未取代的苯并咔唑基、取代或者未取代的噻吩基、取代或者未取代的苯并噻吩基、取代或者未取代的呋喃基、取代或者未取代的苯并呋喃基、取代或者未取代的苯并咪唑基、取代或者未取代的吖啶基、取代或者未取代的吩噁嗪基、取代或者未取代的吩噻嗪基中的一种;与硼连接的基团可以单独连接,也可以相互直接键结成环或者通过其他基团连接成环后再与硼连接。
优选的,所述含有硼元素的有机化合物由通式(1)表示:
Figure PCTCN2018107220-appb-000001
通式(1)中,R 1、R 2、R 3分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;且R 1、R 2、R 3不同时表示为氢原子。
优选的,所述含有硼元素的有机化合物由通式(2)表示:
Figure PCTCN2018107220-appb-000002
通式(2)中,R 1、R 2、R 3、A 1、A 2分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不同时表示为氢原子;
通式(2)中,n等于0或者1;
当n等于0时,R 2和R 3相互键结成环;
当n等于1时,R 4独立的表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
优选的,所述含有硼元素的有机化合物由通式(3)表示:
Figure PCTCN2018107220-appb-000003
通式(3)中,R 1、R 2、R 3、A 1、A 2、A 3分别独立地表示氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不同时表示为氢原子;
通式(3)中,X、Y分别独立的等于0或者1;
当X、Y分别独立的等于0时,R 2和R 3、R 1和R 3相互键结成环;
当X、Y分别独立的等于1时,R 4、R 5分别独立的表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
优选的,所述含有硼元素的有机化合物由通式(4)表示:
Figure PCTCN2018107220-appb-000004
通式(4)中,R 1、R 2、R 3、A 1、A 2、A 3分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不能表示为氢原子;
通式(4)中,X、Y、Z分别独立的等于0或者1;
当X、Y、Z分别独立的等于0时,R 2和R 3、R 1和R 3、R 1和R 2相互键结成环;
当X、Y、Z分别独立的等于1时,R 4、R 5、R 6分别独立的表示为氧原子、硫原子、烷基 或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
优选的,所述含有硼元素的有机化合物由通式(5)表示:
Figure PCTCN2018107220-appb-000005
通式(5)中,Ar 1、A1、A2分别独立地表示为取代或者未取代的C6-C60的芳香基、取代或者未被取代的C2-C60的杂芳基中的一种;R 4、R 5分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,R 4、R 5不同时表示为氢原子。
优选的,所述含有硼元素的有机化合物由通式(6)表示:
Figure PCTCN2018107220-appb-000006
通式(6)中,Ar 2、A3、A4分别独立地表示为取代或者未取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;R 6、R 7分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,R 6、R 7不同时表示为氢原子;
X表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
优选的,通式(5)和通式(6)中,Ar 1、Ar 2、A1、A2、A3、A4分别独立地表示为取 代或者未取代的:苯基、联苯基、三联苯基、嘧啶基、吡啶基、萘基、蒽基、菲基、三嗪基、喹啉基、二苯并呋喃基、二苯并噻吩基、9,9-二甲基芴基、9,9-二苯基芴基、咔唑基、苯并咔唑基、噻吩基、苯并噻吩基、呋喃基、苯并呋喃基、苯并咪唑基、吖啶基、吩噁嗪基、吩噻嗪基中的一种。
优选的,通式(5)和通式(6)中,R 4、R 5、R 6、R 7分别独立的由通式(7)、(8)或(9)表示:
Figure PCTCN2018107220-appb-000007
其中,R 1’、R 2’分别独立地表示为氢原子或通式(10)结构;
Figure PCTCN2018107220-appb-000008
通式(10)中,a选自
Figure PCTCN2018107220-appb-000009
X 1、X 2、X 3分别独立的表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
通式(10)通过CL 1-CL 2键、CL 2-CL 3键、CL 3-CL 4键和通式(7)或通式(8)连接;
R 3’、R 4’分别独立地表示为氢原子、C3-C10的环烷基或杂烷基、取代或者未取代的苯基、萘基、嘧啶基、咔唑基、二苯并呋喃基、二苯并呋喃基、9,9-二甲芴基、二苯并噻吩基、N-苯基咔唑基和芳胺基中的一种;
Y表示为氧原子、硫原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
本申请所提供的含有硼元素的有机化合物作为掺杂材料,其发光颜色为蓝光、绿光、黄光或红光。
本申请所提供的的有机电致发光器件中,所述主体材料为酮类、吡啶类、嘧啶类、吡嗪类、三嗪类、咔唑类、芴类、喹啉类、呋喃类、噻吩类、咪唑类、吖啶类化合物中的一种或多种。
本申请所提供的有机电致发光器件中,还包括空穴注入/传输层,所述的空穴注入/传输层包括空穴注入层、空穴传输层、缓冲层、电子阻挡层中的一种或多种组合。
优选的,所述的空穴注入层材料为下列结构通式(1b)、(2b)或(3b)中的一种:
Figure PCTCN2018107220-appb-000010
其中,通式(2b)中,Er 1-Er 3分别独立的表示为取代或未被取代的C6-C60芳基、取代或未被取代的C5-C60杂芳基中的一种;Er 1-Er 3可以相同或者不同;
其中,通式(1b)、通式(3b)中,Fr 1-Fr 6分别独立的表示为氢原子、腈基、卤素、酰胺基、烷氧基、酯基、硝基、C1-C60直链或支链烷基取代的碳原子、取代或未被取代的C6-C60芳基、取代或未被取代的C5-C60杂芳基中的一种。
优选的,所述的空穴传输层材料为咔唑类、芴类、吡唑啉类、呋喃类、噻吩类、氧杂蒽类、二甲基蒽类、三芳胺类化合物中的一种。
本申请所提供的有机电致发光器件中,所述的电子注入/传输层包括电子注入层、电子传输层和空穴阻挡层中的一种或多种组合。优选的,所述的电子注入层的材料为含有锂或铯的化合物。优选的,所述的电子传输层的材料为嘧啶类、吡啶类、萘类、蒽类、菲类、三嗪类、喹啉类、二苯并呋喃类、二苯并噻吩类、芴类、螺芴类、苯并噻吩类、苯并呋喃类、苯并咪唑基中的一种。本申请所提供的有机电致发光器件中,所述阳极采用无机材料或有机导电聚合物材料;无机材料选自金属氧化物,或选自金、铜和银;所述阴极采用锂、镁、钙、锶、铝、镱或铟,或它们与铜、金、银的合金,或金属与金属氟化物交替形成电极层。
优选的,所述金属氧化物为氧化铟锡、氧化铟锌或者铟镓锌氧化物。
优选的,所述有机导电聚合物为聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚苯胺、聚噻吩、聚乙烯基苯磺酸或聚对苯二甲酸乙二醇酯中的一种或组合。
优选的,所述阴极材料为镁和银的合金,比例为1:99~99:1。优选的,所述阴极材料为叠层的氟化锂和铝层,其中铝层是所述有机电致发光器件的最外层。
进一步的,所述有机电致发光器件中,含硼元素的化合物可以选取如下结构式中的一种:
Figure PCTCN2018107220-appb-000011
Figure PCTCN2018107220-appb-000012
Figure PCTCN2018107220-appb-000013
基于上述结构含硼元素的化合物,通过硼的sp2杂化形式和其他原子进行成键,形成的结构中,由于硼是缺电子原子,因此可以和给电子基团或者弱吸电子基团形成电荷转移态或者 反向空间共振作用,导致HOMO、LUMO电子云轨道发生分离,材料的单线态-三线态能级差降低,从而产生延迟荧光现象,提升器件效率。
基于上述结构的含硼化合物,由于硼原子的强吸电子能力,以硼原子为核心形成的材料,不仅可以获得非常小的单线态-三线态能级差,而且由于其具有较快的荧光辐射速率,可以有效降低材料延迟荧光寿命,从而降低材料的三线态淬灭效应,提升器件效率。
通过含硼材料B-1、B-6、B-10、B-15、B-20、B-25、B-30、B-34、B-38、B-40材料的测试数据来表征材料的单线态-三线态能级差、瞬态辐射速率和延迟荧光寿命,说明具有上述结构含硼类化合物具有的材料性能,如表1所示。
表1
Figure PCTCN2018107220-appb-000014
注意:HOMO/LUMO重叠度,通过ORCA量子化学软件进行计算,泛函为B3LYP,基组为PBE0。
基于上述结构的含硼化合物,和硼连接形成的键,其具有良好的键能稳定性,材料收到电激发形成的激发态化合物,其能量低于和硼相连形成的键能,因而使得材料的化学稳定性得到提升;同时,由于其分子具有较为平行的堆叠结构,分子之间堆叠较为紧密,使得材料的玻璃化转移温度得到提升。
通过材料B-1、B-6、B-10、B-15、B-20、B-25、B-30、B-34、B-38、B-40的测试数据来表征材料键能稳定性、热稳定性、光谱半峰宽,如表2所示。
表2
Figure PCTCN2018107220-appb-000015
Figure PCTCN2018107220-appb-000016
基于上述结构的含硼化合物,和硼原子形成的具有环状结构的化合物,其具有较强的刚性,材料受到激发形成的激发态构型稳定,不易产生构象弛豫,其构象重组能较低,导致产生的发光光谱半峰宽窄,较窄的半峰宽能够有效防止视偏角不同产生的颜色变化,同时能够有效利用光谱能量,提高器件色纯度。
可以发现含有上述结构的含硼化合物,其光谱半峰宽交窄,接近一般的传统荧光材料,但是其比目前的延迟荧光材料光谱半峰宽(100nm左右)要窄很多,表明这类化合物会有较高的色纯度和发光效率。
进一步的,所述有机电致发光器件,其发光颜色为蓝光,发光波长为440-480nm;
进一步的,所述有机电致发光器件,其发光颜色为绿光,发光波长为480-540nm;
进一步的,所述有机电致发光器件,其发光颜色为黄光,发光波长为540-590nm;
进一步的,所述有机电致发光器件,其发光颜色为红光,发光波长为590-640nm;
进一步的,所述有机电致发光器件的主体材料可以由下列通式表示:
Figure PCTCN2018107220-appb-000017
其中,R 8~R 12和R 1*~R 12*分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷 基、取代或者未被取代的C1-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C2-C60的杂芳基中的一种,且R 8和R 9可以键结成环或不键结成环;
Ar 3表示为取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C2-C60的杂芳基中的一种;n=0,1或者2;
Z表示为氧原子、硫原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、芳基取代的烷基或芳基取代的叔胺基中的一种。
进一步的,所述有机电致发光器件的主体材料可以选取如下结构中的一种或多种组合;
Figure PCTCN2018107220-appb-000018
Figure PCTCN2018107220-appb-000019
Figure PCTCN2018107220-appb-000020
Figure PCTCN2018107220-appb-000021
Figure PCTCN2018107220-appb-000022
进一步的,所述空穴注入层采用如下任一结构式表示的化合物:
Figure PCTCN2018107220-appb-000023
进一步的,所述空穴传输层采用如下任一结构式表示的化合物:
Figure PCTCN2018107220-appb-000024
Figure PCTCN2018107220-appb-000025
Figure PCTCN2018107220-appb-000026
进一步的,所述的有机电致发光器件,其特征在于,所述的电子传输层的材料为下列通式(1C)、(2C)、(3C)、(4C)或(5C)所示化合物中任意的一种:
Figure PCTCN2018107220-appb-000027
其中,通式通式(1C)、(2C)、(3C)、(4C)或(5C)中Dr 1-Dr 10分别独立地表示为氢原子、取代或未被取代的C6-C60芳基、取代或未被取代的C1-C60杂芳基中的任意一种;
进一步的,所述电子传输层采用如下任一结构式所示的化合物:
Figure PCTCN2018107220-appb-000028
Figure PCTCN2018107220-appb-000029
本发明有益的技术效果在于:
基于上述结构含硼元素的化合物,通过硼的sp2杂化形式和其他原子进行成键,形成的结构中,由于硼是缺电子原子,因此可以和给电子基团或者弱吸电子基团形成电荷转移态或者反向空间共振作用,导致HOMO、LUMO电子云轨道发生分离,材料的单线态-三线态能级差降低,从而产生延迟荧光现象。
由于硼原子的强吸电子能力,以硼原子为核心形成的材料,不仅可以获得非常小的单线态-三线态能级差,而且由于其具有较快的荧光辐射速率,可以有效降低材料延迟荧光寿命,从而降低材料的三线态淬灭效应,提升器件效率
基于上述结构的含硼化合物,和硼连接形成的键,其具有良好的键能稳定性,材料受到电激发形成的激发态化合物,其能量低于和硼相连形成的键能,因而使得材料的化学稳定性得到提升;同时,由于其分子具有较为平行的堆叠结构,分子之间堆叠较为紧密,使得材料的玻璃化转移温度得到提升。材料良好的热稳定性有助于提高器件寿命。
基于上述结构的含硼化合物,和硼原子形成的具有环状结构的化合物,其具有较强的刚性,材料受到激发形成的激发态构型稳定,不易产生构象弛豫,其构象重组能较低,导致产生的发光光谱半峰宽窄,较窄的半峰宽能够有效防止视偏角不同产生的颜色变化,同时能够有效利用光谱能量,提高器件色纯度。
基于上述结构的含硼化合物,特别是单线态-三线态能级差小于0.1eV,能够有效利用反隙间穿越过程,充分利用三线态能量;同时,其延迟荧光寿命短,能够有效防止三线态-三线态淬灭带来的能量损失和器件寿命降低。选择主体材料的三线态和单线态能级高于含硼化合物,可以有效防止能量回传,导致器件效率降低。特别是选择单线态-三线态能级差小于0.2eV的主体材料,能够利用主体材料的三线态的反隙间穿越过程,提高器件效率。选择双主体搭配可以有效增加激子符合区域,提高载流子复合率,从而提升器件效率和寿命。
附图说明
图1为本发明化合物应用的器件结构示意图;
其中,1为透明基板层,2为阳极层,3为空穴注入层,4为空穴传输层,5电子阻挡层,6发光层,7为电子传输层/空穴阻挡层,8为电子注入层,9为阴极电极层。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
图1是本发明结构的有机电致发光器件的结构示意图,其中透明基板层1可以是具有良好机械强度、热稳定性、透明度、表面平坦性、处理便利性和耐水性的玻璃基底或塑料基底;
阳极层2可由具有高功函数的导体制得(具体来说4.0eV以上),以帮助空穴注入;阳极包括但不限于金属、金属氧化物和/或导电聚合物,例如:金属镍、铂、钒、铬、铜、锌、金或合金、氧化锌、氧化铟、氧化铟锡(ITO)、氧化铟锌(IZO)、聚(3-甲基噻吩)、聚(3,4-(伸乙基-1,2-二氧基)噻吩)、聚吡咯以及聚苯胺;
阴极反射电极层9可由具有低功函数的导体制得(具体来说3.8eV以下),以帮助电子注入。阴极包括但不限于金属、金属氧化物和/或导电聚合物,例如:镁、钙、钠、钾、钛、铟、铝、银及其类似物、LiF/Al、LiF/Ca、LiO 2/Al、BaF 2/Ca;
空穴传输区域可以是由单一材料形成的单层结构、多种不同材料形成的单层结构或者是由多种不同材料形成的多层结构,例如,空穴传输区域可以是由不同材料形成的单层结构,或者可以具有空穴注入层/空穴传输层的结构、空穴注入层/空穴传输层/缓冲层的结构、空穴注入层/缓冲层的结构、空穴传输层/缓冲层的结构、空穴注入层/空穴传输层/电子阻挡层的结构或者空穴传输层/电子阻挡层的结构,但是空穴传输区域不限于此;在图1中,所述空穴传输区域包括空穴注入层3、空穴传输层4、缓冲层(附图中未标出)和电子阻挡层5;
电子传输区域包括空穴阻挡层、电子传输层和电子注入层中的一种或多种;例如,电子传输区域可以具有电子传输层/电子注入层的结构、空穴阻挡层/电子传输层/电子注入层的结构,但不限于此;在图1中,所述电子传输区域包括空穴阻挡/电子传输层7和电子注入层8;
发光层6包含主体材料和掺杂材料。主体材料可由单一材料构成,也可以由多种不同结构的材料混合而成;掺杂材料为含有硼元素的有机化合物,且其单线态和三线态能级差不大于0.2eV,主体材料的单线态和三线态能级高于掺杂材料;
其中,优选发光层掺杂材料为含有硼元素的有机化合物,其单线态和三线态能级差不大于0.1eV;其中,优选最低发光能量主体材料膜相态三线态能级大于掺杂材料的三线态能级0.1eV以上;其中,优选最低发光能量主体材料膜相态单线态和三线态能级差不大于0.2eV;
其中,优选发光层主体材料由单一材料组成,所述掺杂材料的质量掺杂浓度为3%~30%;
其中,优选当发光层主体材料由两种不同结构的材料混合而成,两者的质量比为1:10~10:1;且所述掺杂材料的质量掺杂浓度为3%~30%;其中,优选发光层中掺杂材料的质量掺杂浓度为5%-15%。
有机电致发光器件的各层形成方法可以采用真空蒸渡、旋涂、滴铸、喷墨打印、激光打印或者LB膜方法。当通过真空镀膜时,可以大约100℃至大约500℃范围能的沉积温度下、以大约
Figure PCTCN2018107220-appb-000030
Figure PCTCN2018107220-appb-000031
的范围能沉积速率进行真空沉积;当通过旋涂成膜时,以2000~5000rpm范围内的旋涂速率、20~200℃范围内的温度下执行旋涂。
本发明的有机电致发光器件,所述的各层薄膜的厚度没有限制,一般而言,若膜过薄则容易产生针孔等缺陷,相反,若过厚则需要高的施加电压而效率变差,因此通常优选0.1-1000nm的范围。下面结合实施例对本发明作进一步的详细说明。为了说明方便,现在将化合物的英文简称和具体结构示例如下:
Figure PCTCN2018107220-appb-000032
对比例1:器件具体制备过程如下:
清洗透明玻璃基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;在ITO阳极层2上,蒸镀HAT-CN,膜厚10nm,该层为空穴注入层3;接着,蒸镀NPB膜厚50nm,该层作为空穴传输层4;蒸镀TCTA,膜厚60nm,该层作为电子阻挡层5;接着,蒸镀40nm的发光层6:其中,CBP主体材料,GD-19作为掺杂材料,掺杂质量浓度为6%;在发光层6之上,通过真空蒸镀方式蒸镀TPBi,厚度为35nm,这层有机材料作为空穴阻挡/电子传输层7;在空穴阻挡/电子传输层7之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层8;在电子注入层8之上,真空蒸镀阴 极Al(80nm),该层为阴极电极层9。
按照上述步骤完成电致发光器件的制作后,测量器件的IVL数据、光亮度衰减寿命其结果见表4所示。对比例1、2和实施例1~16按照对比例1的过程进行器件制备,所不同的是,各个功能层材料以及掺杂材料的浓度发生了变化;同时相对于底发光器件,顶发光器件进行了相应的结构调整。这些器件的层级结构如表3所示。其中,H6的单线态能级为3.0eV,三线态能级为2.8eV;H58单线态能级为2.90eV,三线态能级为2.78eV;H91单线态能级为3.3eV,三线态能级为2.85eV;H98单线态能级为3.20eV,三线态能级为2.88eV。所制作的OLED发光器件的测试结果见表4。
表3
Figure PCTCN2018107220-appb-000033
Figure PCTCN2018107220-appb-000034
表4
Figure PCTCN2018107220-appb-000035
Figure PCTCN2018107220-appb-000036
从以上器件数据可以看到,含硼化合物相比传统荧光材料,能够充分利用三线态能量,从而大幅度提高器件效率。相对于已知的TADF绿光材料而言,含硼化合物的光谱半峰宽显著降低,其色纯度得到明显提高;器件效率滚降现象得到明显抑制,器件寿命提高明显。采用上述单主体或者双主体搭配材料,器件效率相比传统的主体材料CBP得到明显提高,原因是CBP材料的三线态能级较低,客体材料的三线态能量可能回传主体材料,造成器件效率降低;而双主体相对于单主体,载流子复合区域增加,同时可以起到稀释激子作用,因此器件效率和寿命得到提高。进一步的调整客体掺杂浓度可以发现,客体掺杂最优掺杂质量比例在12%左右,原因是掺杂浓度较低,主客体能量传递不充分;掺杂浓度过高,容易产生三线态-三线态淬灭,降低器件效率和寿命。更进一步,通过调整其他功能层材料,器件的效率、色纯度、光谱半峰宽差异不大,但是器件寿命产生较大差异,主要是其他功能层材料的稳定性不一致导致器件寿命发生变化。
对比例3、对比例4、实施例17~32的层级结构如表5所示。其中,H9的单线态能级为3.08eV,三线态能级为2.88eV;H54单线态能级为3.04eV,三线态能级为2.89eV;H93单线态能级为3.38eV,三线态能级为2.92eV;H101单线态能级为3.35eV,三线态能级为2.95eV。所制作的OLED发光器件的测试结果见表6。
表5
Figure PCTCN2018107220-appb-000037
Figure PCTCN2018107220-appb-000038
Figure PCTCN2018107220-appb-000039
表6
Figure PCTCN2018107220-appb-000040
Figure PCTCN2018107220-appb-000041
从以上器件数据可以看到,含硼化合物相比传统荧光材料,能够充分利用三线态能量,从而大幅度提高器件效率。相对于已知的TADF蓝光材料而言,含硼化合物的光谱半峰宽显著降低,其色纯度得到明显提高;器件效率滚降现象得到明显抑制,器件寿命提高明显。采用上述单主体或者双主体搭配材料,器件效率相比传统的主体材料mCBP得到明显提高;而双主体相对于单主体,载流子复合区域增加,同时可以起到稀释激子作用,因此器件效率和寿命得到提高。进一步的调整客体掺杂浓度可以发现,客体掺杂最优掺杂质量比例在10%左右,原因是掺杂浓度较低,主客体能量传递不充分;掺杂浓度过高,容易产生三线态-三线态淬灭,降低器件效率和寿命。更进一步,通过调整其他功能层材料,器件的效率、色纯度、光谱半峰宽差异不大,但是器件寿命产生较大差异,主要是其他功能层材料的稳定性不一致导致器件寿命发生变化。
对比例5、对比例6、实施例33~实施例48的层级结构如表7所示。其中,H7的单线态能级为2.62eV,三线态能级为2.48eV;H67单线态能级为2.68eV,三线态能级为2.48eV;H100单线态能级为3.0eV,三线态能级为2.72eV;H102单线态能级为3.10eV,三线态能级为2.75eV。所制作的OLED发光器件的测试结果见表8。
表7
Figure PCTCN2018107220-appb-000042
Figure PCTCN2018107220-appb-000043
Figure PCTCN2018107220-appb-000044
表8
Figure PCTCN2018107220-appb-000045
Figure PCTCN2018107220-appb-000046
从以上器件数据可以看到,含硼化合物相比传统荧光材料,能够充分利用三线态能量,从而大幅度提高器件效率。相对于已知的TADF红光材料而言,含硼化合物的光谱半峰宽显著降低,其色纯度得到明显提高;器件效率滚降现象得到明显抑制,器件寿命提高明显。采用上述单主体或者双主体搭配材料,器件效率相比传统的主体材料CBP得到明显提高;而双主体相对于单主体,载流子复合区域增加,同时可以起到稀释激子作用,因此器件效率和寿命得到提高。进一步的调整客体掺杂浓度可以发现,客体掺杂最优掺杂质量比例在10%左右,原因是掺杂浓度较低,主客体能量传递不充分;掺杂浓度过高,容易产生三线态-三线态淬灭,降低器件效率和寿命。更进一步,通过调整其他功能层材料,器件的效率、色纯度、光谱半峰宽差异不大,但是器件寿命产生较大差异,主要是其他功能层材料的稳定性不一致导致器件寿命发生变化。

Claims (30)

  1. 一种有机电致发光器件,其结构至少包括:基板层、阳极层、发光层以及阴极层;
    其特征在于,所述发光层包含主体材料和掺杂材料;所述掺杂材料为含有硼元素的有机化合物,且其单线态和三线态能级差不大于0.2eV,发光半峰宽不大于120nm;同时主体材料的单线态和三线态能级分别高于掺杂材料的单线态和三线态能级;主体材料的最低单线态和最低三线态能级差小于等于0.2eV;主体材料的最低三线态能级大于等于掺杂材料的最低单线态能级。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物的单线态和三线态能级差不大于0.1eV。
  3. 根据权利要求1所述的有机电致发光器件,其特征在于最低发光能量主体材料膜相态三线态能级大于掺杂材料的三线态能级0.1eV以上。
  4. 根据权利要求1或3所述的有机电致发光器件,其特征在于最低发光能量主体材料膜相态单线态和三线态能级差不大于大于0.15eV。
  5. 根据权利要求1所述的有机电致发光器件,其特征在于所述发光层的主体材料由单一材料组成,所述发光层的掺杂材料的质量掺杂浓度为0.5%~30%。
  6. 根据权利要求1所述的有机电致发光器件,其特征在于所述发光层的主体材料由两种不同结构的材料混合而成,所述发光层的掺杂材料的质量掺杂浓度为0.5%~30%。
  7. 根据权利要求1或5或6所述的有机电致发光器件,其特征在于所述发光层的掺杂材料的质量掺杂浓度为1%~15%。
  8. 根据权利要求1所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物以硼元素为核心,通过sp2杂化轨道方式和其他元素进行成键;与硼连接的基团为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C1-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;且与硼连接的基团可单独连接,也可相互直接键结成环或者通过其他基团连接成环后再与硼连接。
  9. 根据权利要求1或8所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物中,与硼连接的基团为取代或者未取代的苯基、取代或者未取代的联苯基、取代或者未取代的三联苯基、取代或者未取代的嘧啶基、取代或者未取代的吡啶基、取代或者未取代的萘基、取代或者未取代的蒽基、取代或者未取代的菲基、取代或者未取代的三嗪基、取代或者未取代的喹啉基、取代或者未取代的二苯并呋喃基、取代或者未取代的二苯并噻吩基、取代或者未取代的9,9-二甲基芴基、取代或者未取代的9,9-二苯基芴基、取代或者未取代的咔 唑基、取代或者未取代的苯并咔唑基、取代或者未取代的噻吩基、取代或者未取代的苯并噻吩基、取代或者未取代的呋喃基、取代或者未取代的苯并呋喃基、取代或者未取代的苯并咪唑基、取代或者未取代的吖啶基、取代或者未取代的吩噁嗪基、取代或者未取代的吩噻嗪基中的一种;与硼连接的基团可以单独连接,也可以相互直接键结成环或者通过其他基团连接成环后再与硼连接。
  10. 根据权利要1或8所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物由通式(1)表示:
    Figure PCTCN2018107220-appb-100001
    通式(1)中,R 1、R 2、R 3分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;且R 1、R 2、R 3不同时表示为氢原子。
  11. 根据权利要1或8所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物由通式(2)表示:
    Figure PCTCN2018107220-appb-100002
    通式(2)中,R 1、R 2、R 3、A 1、A 2分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不同时表示为氢原子;
    通式(2)中,n等于0或者1;
    当n等于0时,R 2和R 3相互键结成环;
    当n等于1时,R 4独立的表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
  12. 根据权利要1或8所述的有机电致发光器件,其特征在于所述含有硼元素的有机化 合物由通式(3)表示:
    Figure PCTCN2018107220-appb-100003
    通式(3)中,R 1、R 2、R 3、A 1、A 2、A 3分别独立地表示氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不同时表示为氢原子;
    通式(3)中,X、Y分别独立的等于0或者1;
    当X、Y分别独立的等于0时,R 2和R 3、R 1和R 3相互键结成环;
    当X、Y分别独立的等于1时,R 4、R 5分别独立的表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
  13. 根据权利要1或8所述的有机电致发光器件,其特征在于所述含有硼元素的有机化合物由通式(4)表示:
    Figure PCTCN2018107220-appb-100004
    通式(4)中,R 1、R 2、R 3、A 1、A 2、A 3分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,其中R 1、R 2、R 3不能表示为氢原子;
    通式(4)中,X、Y、Z分别独立的等于0或者1;
    当X、Y、Z分别独立的等于0时,R 2和R 3、R 1和R 3、R 1和R 2相互键结成环;
    当X、Y、Z分别独立的等于1时,R 4、R 5、R 6分别独立的表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基、芳基取代的亚胺基、取代或者未被取代的C6-C60的亚芳基、取代或者未被取代的C5-C60的杂亚芳基中的一种。
  14. 根据权利要求1所述有机电致发光器件,其特征在于所述含有硼元素的有机化合物由通式(5)表示:
    Figure PCTCN2018107220-appb-100005
    通式(5)中,Ar 1、A1、A2分别独立地表示为取代或者未取代的C6-C60的芳香基、取代或者未被取代的C2-C60的杂芳基中的一种;R 4、R 5分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,R 4、R 5不同时表示为氢原子。
  15. 根据权利要求1所示所述有机电致发光器件,其特征在于所述含有硼元素的有机化合物由通式(6)表示:
    Figure PCTCN2018107220-appb-100006
    通式(6)中,Ar 2、A3、A4分别独立地表示为取代或者未取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种;R 6、R 7分别独立地表示为氢原子、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C3-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C5-C60的杂芳基中的一种,R 6、R 7不同时表示为氢原子;
    X表示为氧原子、硫原子、烷基或者芳基取代的硼原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  16. 根据权利要求14或15所述有机电致发光器件,其特征在于Ar 1、Ar 2、A1、A2、A3、A4分别独立地表示为取代或者未取代的:苯基、联苯基、三联苯基、嘧啶基、吡啶基、萘基、蒽基、菲基、三嗪基、喹啉基、二苯并呋喃基、二苯并噻吩基、9,9-二甲基芴基、9,9-二苯基芴基、咔唑基、苯并咔唑基、噻吩基、苯并噻吩基、呋喃基、苯并呋喃基、苯并咪唑基、吖啶基、吩噁嗪基、吩噻嗪基中的一种。
  17. 根据权利要求14或15所述的有机电致发光器件,其特征在于R 4、R 5、R 6、R 7分别独立的由通式(7)、(8)或(9)表示:
    Figure PCTCN2018107220-appb-100007
    其中,R 1’、R 2’分别独立地表示为氢原子或通式(10)结构;
    Figure PCTCN2018107220-appb-100008
    通式(10)中,a选自
    Figure PCTCN2018107220-appb-100009
    X 1、X 2、X 3分别独立的表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
    通式(10)通过CL 1-CL 2键、CL 2-CL 3键、CL 3-CL 4键和通式(7)或通式(8)连接;
    R 3’、R 4’分别独立地表示为氢原子、C3-C10的环烷基或杂烷基、取代或者未取代的苯基、萘基、嘧啶基、咔唑基、二苯并呋喃基、二苯并呋喃基、9,9-二甲芴基、二苯并噻吩基、N-苯基咔唑基和芳胺基中的一种;
    Y表示为氧原子、硫原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种。
  18. 根据权利要求1所述的有机电致发光器件,特征在于含有硼元素的有机化合物作为掺杂材料,其发光颜色为蓝光、绿光、黄光或红光。
  19. 根据权利要求1、2、3、5、或6所述的有机电致发光器件,其特征在于所述主体材料为酮类、吡啶类、嘧啶类、吡嗪类、三嗪类、咔唑类、芴类、喹啉类、呋喃类、噻吩类、 咪唑类、吖啶类化合物中的一种或多种。
  20. 根据权利要求1所述的有机电致发光器件,其特征在于还包括空穴注入/传输层,所述的空穴注入/传输层包括空穴注入层、空穴传输层、缓冲层、电子阻挡层中的一种或多种组合。
  21. 根据权利要求1或20所述的有机电致发光器件,其特征在于,所述的空穴注入层材料为下列结构通式(1b)、(2b)或(3b)中的一种:
    Figure PCTCN2018107220-appb-100010
    其中,通式(2b)中,Er 1-Er 3分别独立的表示为取代或未被取代的C6-C60芳基、取代或未被取代的C5-C60杂芳基中的一种;Er 1-Er 3可以相同或者不同;
    其中,通式(1b)、通式(3b)中,Fr 1-Fr 6分别独立的表示为氢原子、腈基、卤素、酰胺基、烷氧基、酯基、硝基、C1-C60直链或支链烷基取代的碳原子、取代或未被取代的C6-C60芳基、取代或未被取代的C5-C60杂芳基中的一种。
  22. 根据权利要求1或20所述的有机电致发光器件,其特征在于,所述的空穴传输层材料为咔唑类、芴类、吡唑啉类、呋喃类、噻吩类、氧杂蒽类、二甲基蒽类、三芳胺类化合物中的一种。
  23. 根据权利要求1所述的有机电致发光器件,其特征在于还包括电子注入/传输层,所述的电子注入/传输层包括电子注入层、电子传输层和空穴阻挡层中的一种或多种组合。
  24. 根据权利要求1或23所述的有机电致发光器件,其特征在于,所述的电子注入层的材料为含有锂或铯的化合物。
  25. 根据权利要求1或23所述的有机电致发光器件,其特征在于,所述的电子传输层的材料为嘧啶类、吡啶类、萘类、蒽类、菲类、三嗪类、喹啉类、二苯并呋喃类、二苯并噻吩类、芴类、螺芴类、苯并噻吩类、苯并呋喃类、苯并咪唑基中的一种。
  26. 根据权利要求1所述的有机电致发光器件,其特征在于,所述阳极采用无机材料或有机导电聚合物材料;无机材料选自金属氧化物,或选自金、铜和银;所述阴极采用锂、镁、钙、锶、铝、镱或铟,或它们与铜、金、银的合金,或金属与金属氟化物交替形成电极层。
  27. 根据权利要求26所述的有机电致发光器件,其特征在于,所述金属氧化物为氧化铟锡、氧化铟锌或者铟镓锌氧化物。
  28. 根据权利要求26所述的有机电致发光器件,其特征在于,所述有机导电聚合物为聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚苯胺、聚噻吩、聚乙烯基苯磺酸或聚对苯二甲酸乙二醇酯中的一种或组合。
  29. 根据权利要求1或26所述的有机电致发光器件,其特征在于,所述阴极材料为镁和银的合金,比例为1:99~99:1。
  30. 根据权利要求1或26所述的有机电致发光器件,其特征在于,所述阴极材料为叠层的氟化锂和铝层,其中铝层是所述有机电致发光器件的最外层。
PCT/CN2018/107220 2017-09-29 2018-09-25 一种含硼有机电致发光器件及其制备方法 WO2019062685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/964,205 US11778894B2 (en) 2017-09-29 2018-09-25 Boron-containing organic light-emitting diode device and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710909661.X 2017-09-29
CN201710909661.XA CN107507921B (zh) 2017-09-29 2017-09-29 一种含硼有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2019062685A1 true WO2019062685A1 (zh) 2019-04-04

Family

ID=60699176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107220 WO2019062685A1 (zh) 2017-09-29 2018-09-25 一种含硼有机电致发光器件及其制备方法

Country Status (3)

Country Link
US (1) US11778894B2 (zh)
CN (1) CN107507921B (zh)
WO (1) WO2019062685A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078755A (zh) * 2019-05-30 2019-08-02 武汉天马微电子有限公司 化合物、显示面板以及显示装置
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020250700A1 (ja) * 2019-06-11 2020-12-17 学校法人関西学院 多環芳香族化合物

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507921B (zh) 2017-09-29 2019-05-14 江苏三月光电科技有限公司 一种含硼有机电致发光器件及其制备方法
CN109928962A (zh) * 2017-12-18 2019-06-25 江苏三月光电科技有限公司 一种以咔唑为核心的化合物、制备方法及其在有机电致发光器件上的应用
CN110492006B (zh) * 2018-05-14 2020-06-12 江苏三月光电科技有限公司 一种基于含硼有机化合物的电致发光器件
CN110492009B (zh) * 2018-05-14 2020-11-10 江苏三月科技股份有限公司 一种基于激基复合物体系搭配含硼有机化合物的电致发光器件
KR102648402B1 (ko) * 2018-06-12 2024-03-18 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN110818731B (zh) * 2018-08-09 2023-04-07 上海和辉光电股份有限公司 一种三芳基硼衍生物有机发光材料、其制备方法及其应用
CN109411634B (zh) * 2018-08-31 2019-12-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109244258B (zh) * 2018-08-31 2020-03-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109346614B (zh) * 2018-08-31 2020-01-31 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN108774258B (zh) * 2018-09-10 2021-04-09 陕西蒲城海泰新材料产业有限责任公司 一种含硼杂环化合物及其在有机光电器件中的应用
US20210257552A1 (en) * 2018-10-12 2021-08-19 Lg Chem, Ltd. Organic light-emitting device
KR20210096170A (ko) * 2018-11-29 2021-08-04 메르크 파텐트 게엠베하 전자 디바이스
KR102469873B1 (ko) * 2018-12-07 2022-11-23 주식회사 엘지화학 유기 발광 소자
CN110894202B (zh) * 2019-12-13 2022-01-11 武汉天马微电子有限公司 化合物、显示面板以及显示装置
US20210317144A1 (en) * 2020-04-02 2021-10-14 Sfc Co., Ltd. Boron compound and organic light emitting diode including the same
CN114075228A (zh) * 2020-08-20 2022-02-22 江苏三月科技股份有限公司 一种含硼有机化合物及其应用
CN114075229A (zh) * 2020-08-20 2022-02-22 江苏三月科技股份有限公司 一种含硼有机化合物及其在有机电致发光器件上的应用
CN112047968B (zh) * 2020-09-16 2023-02-24 武汉天马微电子有限公司 一种有机电致发光化合物及有机电致发光器件
CN113437229B (zh) * 2021-05-17 2022-04-01 清华大学 一种有机电致发光器件和显示装置
CN113725377B (zh) * 2021-08-31 2023-08-01 京东方科技集团股份有限公司 发光器件、发光基板及发光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094124A (ja) * 2007-10-04 2009-04-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
CN103483364A (zh) * 2013-09-03 2014-01-01 太仓碧奇新材料研发有限公司 一种双苯并噻吩硼烷发光材料及其制备方法
CN106467553A (zh) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 一种含硼有机电致发光化合物及其在oled器件上的应用
CN107507921A (zh) * 2017-09-29 2017-12-22 江苏三月光电科技有限公司 一种含硼有机电致发光器件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980877B1 (en) * 2013-03-29 2017-11-29 Kyulux, Inc. Organic electroluminescent element
KR20150126381A (ko) * 2013-04-05 2015-11-11 코니카 미놀타 가부시키가이샤 발광층 형성용 도포액, 유기 일렉트로루미네센스 소자와 그 제조 방법 및 조명·표시 장치
EP3125324B1 (en) * 2014-03-28 2019-04-03 NIPPON STEEL Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent element using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094124A (ja) * 2007-10-04 2009-04-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
CN103483364A (zh) * 2013-09-03 2014-01-01 太仓碧奇新材料研发有限公司 一种双苯并噻吩硼烷发光材料及其制备方法
CN106467553A (zh) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 一种含硼有机电致发光化合物及其在oled器件上的应用
CN107507921A (zh) * 2017-09-29 2017-12-22 江苏三月光电科技有限公司 一种含硼有机电致发光器件及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
CN110078755A (zh) * 2019-05-30 2019-08-02 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN110078755B (zh) * 2019-05-30 2022-01-11 武汉天马微电子有限公司 化合物、显示面板以及显示装置
WO2020250700A1 (ja) * 2019-06-11 2020-12-17 学校法人関西学院 多環芳香族化合物

Also Published As

Publication number Publication date
CN107507921A (zh) 2017-12-22
US11778894B2 (en) 2023-10-03
US20210043841A1 (en) 2021-02-11
CN107507921B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2019062685A1 (zh) 一种含硼有机电致发光器件及其制备方法
CN106467483B (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
KR101311934B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
EP2660300B1 (en) Novel compound, and organic light-emitting device using same
KR101212670B1 (ko) 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치
JP7431162B2 (ja) 有機電界発光素子
CN106467550B (zh) 一种以氧杂蒽酮为核心的二苯并六元环取代化合物及其应用
JP6207632B2 (ja) 新規な化合物およびこれを用いた有機電子素子
KR101695063B1 (ko) 유기 발광 소자 및 이의 제조방법
TW201042001A (en) Organic electronic device
JP2014523876A (ja) 新規な化合物およびこれを用いた有機電子素子
KR20090008737A (ko) 유기광전소자용 화합물 및 이를 이용한 유기광전소자
CN110492009B (zh) 一种基于激基复合物体系搭配含硼有机化合物的电致发光器件
KR101094701B1 (ko) 방향족 다환고리 화합물 및 이를 이용한 유기전기소자, 그 단말
CN106279203A (zh) 一种含酮和氮杂环的化合物及其在有机电致发光器件上的应用
WO2023160187A1 (zh) 一种咔唑衍生物及其应用
CN111320612A (zh) 化合物及有机电致发光器件
CN104918915A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件及电子设备
KR101297162B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
TW201936894A (zh) 芳香胺化合物、覆蓋層材料及發光元件
KR20160072868A (ko) 이리듐 착화합물 및 이를 이용한 유기전계 발광소자
CN111051315B (zh) 多环化合物及包含其的有机发光器件
WO2023093094A1 (zh) 一种有机电致发光器件及显示装置
TWI589564B (zh) 有機發光元件及用於該元件之材料(二)
CN107056758B (zh) 一种以吖啶螺蒽酮为核心的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863241

Country of ref document: EP

Kind code of ref document: A1