WO2019062494A1 - 基于沥青的钠离子电池负极材料及其制备方法和应用 - Google Patents

基于沥青的钠离子电池负极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2019062494A1
WO2019062494A1 PCT/CN2018/104034 CN2018104034W WO2019062494A1 WO 2019062494 A1 WO2019062494 A1 WO 2019062494A1 CN 2018104034 W CN2018104034 W CN 2018104034W WO 2019062494 A1 WO2019062494 A1 WO 2019062494A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
negative electrode
sodium ion
ion battery
oxidized
Prior art date
Application number
PCT/CN2018/104034
Other languages
English (en)
French (fr)
Inventor
陆雅翔
胡勇胜
唐堃
李泓
黄学杰
陈立泉
Original Assignee
中国科学院物理研究所
北京中科海钠科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所, 北京中科海钠科技有限责任公司 filed Critical 中国科学院物理研究所
Priority to US16/650,606 priority Critical patent/US11670774B2/en
Publication of WO2019062494A1 publication Critical patent/WO2019062494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0442Anodisation, Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of new energy storage devices, in particular to an anode material for sodium ion batteries based on asphalt, a preparation method and application thereof.
  • High-performance secondary batteries are the most efficient and convenient energy storage and conversion devices essential for building a clean energy system and achieving large-scale energy storage.
  • Sodium-ion batteries are considered to be a useful complement to lithium-ion batteries due to their abundant resources, wide distribution and low cost. They are one of the ideal devices for large-scale energy storage.
  • the research and development of sodium ion battery technology has important strategic significance, and has received extensive attention from research groups around the world in recent years.
  • amorphous carbon materials have become the most promising sodium ion battery anodes due to their relatively low sodium storage potential, high sodium storage capacity and good cycle stability. material.
  • the precursors for the preparation of amorphous carbon materials have been reported to mainly include some polymers, biomass, resins or organic chemicals, but these precursors are relatively expensive, the preparation process is complicated, and the carbon yield is low, which greatly restricts the amorphous carbon.
  • the material is used as a large-scale application of a negative electrode of a sodium ion battery.
  • bitumen As a common petroleum industry residue, bitumen is very inexpensive, and because it is mainly composed of a mixture of alkanes, cycloalkanes and aromatic hydrocarbons, it has a high carbon content and is therefore an ideal precursor for the preparation of carbon materials.
  • the asphalt in the high-temperature carbonization process, the asphalt is easily graphitized to form a highly ordered carbon layer structure, which is not conducive to the storage of sodium ions, resulting in a low sodium storage capacity of about 90 mAh/g.
  • the object of the present invention is to provide an asphalt-based sodium ion battery anode material, a preparation method thereof and an application thereof, and the low-cost asphalt is used as a raw material to modify its structure by pre-oxidation, thereby breaking the asphalt in the high-temperature carbonization process.
  • the order structure increases its amorphous degree to increase its sodium storage capacity and increase the carbon production rate. Therefore, it proposes a low cost, simple preparation process, adjustable disorder, high carbon yield and suitable for large scale.
  • the amorphous carbon material produced is used as a negative electrode material in a sodium ion secondary battery.
  • an embodiment of the present invention provides a method for preparing a negative electrode material for a sodium ion battery based on asphalt, comprising:
  • the asphalt precursor is placed in a muffle furnace and pre-oxidized at 200 ° C - 350 ° C for 2-6 hours to obtain a pre-oxidized pitch;
  • the pre-oxidized asphalt is placed in a high-temperature carbonization furnace, heated to a temperature of 1300 ° C to 1600 ° C at a heating rate of 0.5 ° C / min - 5 ° C / min, and the pre-oxidized asphalt is heat-treated in an inert atmosphere for 1 time. -10 hours, causing carbonization and cracking reaction of the pre-oxidized asphalt; wherein the oxygen in the pre-oxidized asphalt is used to break the ordered structure of the asphalt during the carbonization of the pre-oxidized asphalt to form a wedge-shaped slit Order structure
  • the amorphous carbon material obtained by cooling to room temperature to obtain an irregular block shape is the negative electrode material of the sodium ion battery.
  • the pre-oxidation is carried out in an air or oxygen atmosphere.
  • the temperature of the pre-oxidation is from 280 °C to 320 °C.
  • the temperature of the pre-oxidation is 300 °C.
  • the asphalt precursor is one or more mixtures of coal tar pitch, petroleum pitch and natural asphalt.
  • an embodiment of the present invention provides a negative electrode material for a sodium ion battery prepared by the preparation method according to the first aspect, wherein the negative electrode material of the sodium ion battery is an amorphous carbon material having an irregular shape.
  • the irregular block-shaped amorphous carbon material has a size between 0.5 and 3 microns, a d 002 value between 0.36 nm and 0.39 nm, and an L c value between 0.9 nm and 1.2 nm, and a The value is between 3 nm and 5 nm.
  • the inner carbon layer is arranged in an unordered stack to form a microstructure with a wedge-shaped gap, which constitutes an active site for sodium storage.
  • an embodiment of the present invention provides a negative electrode tab of a sodium ion battery, the negative pole tab including: a current collector, an adhesive coated on the current collector, and the second aspect Anode material for sodium ion batteries.
  • an embodiment of the present invention provides a sodium ion secondary battery including the negative electrode tab of the above third aspect, wherein the sodium ion secondary battery is used for mobile equipment, a vehicle, renewable energy generation, Energy storage equipment for smart grid peaking, distribution power stations, backup power sources or communication base stations.
  • the preparation method of the anode material for sodium ion battery based on asphalt uses the low-cost bitumen as raw material to break the ordered structure by pre-oxidizing the asphalt, and proposes a low cost and simple preparation process.
  • An amorphous carbon material which is adjustable in disorder, has a high carbon yield and is suitable for mass production, and is used as a negative electrode material in a sodium ion secondary battery.
  • the sodium ion secondary battery using the anode material of the invention has high reversible capacity and energy density, excellent rate performance, stable cycle performance and good safety performance, and can be used not only for power sources of mobile devices and electric vehicles, but also for Large-scale energy storage equipment for renewable energy generation, smart grid peak shaving, distributed power stations, backup power or communication base stations.
  • FIG. 1 is a flow chart of a method for preparing an anode material of a pitch-based sodium ion battery according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing a disordered structure having a wedge-shaped slit formed by an ordered structure of asphalt according to Embodiment 1 of the present invention
  • Figure 3 is a thermogravimetric graph of the asphalt raw material in the second embodiment of the present invention.
  • 4a is a graph showing a constant current charge and discharge curve of a direct high temperature carbonized pitch for comparison according to Embodiment 2 of the present invention
  • 4b is a graph showing a constant current charge and discharge of a pre-oxidized and high-temperature carbonized pitch according to Embodiment 2 of the present invention.
  • Figure 5 is an X-ray diffraction XRD pattern of the pre-oxidized asphalt provided in Example 3 of the present invention.
  • Example 6 is an XRD pattern of amorphous carbon provided in Example 3 of the present invention.
  • Example 7 is a Raman Raman spectrum of amorphous carbon provided in Example 3 of the present invention.
  • Example 8 is a scanning electron microscope SEM image of amorphous carbon provided in Example 3 of the present invention.
  • 9a is a graph showing a constant current charge and discharge of a sodium ion battery according to Embodiment 3 of the present invention.
  • FIG. 9b is a cycle diagram of a sodium ion battery according to Embodiment 3 of the present invention.
  • Figure 10 is an XRD pattern of amorphous carbon provided in Example 4 of the present invention.
  • Figure 11 is a Raman spectrum of an amorphous carbon material provided in Example 4 of the present invention.
  • Figure 12 is an SEM image of an amorphous carbon material provided in Example 4 of the present invention.
  • 13a is a graph showing a constant current charge and discharge curve of a sodium ion battery according to Embodiment 4 of the present invention.
  • FIG. 13b is a cycle diagram of a sodium ion battery according to Embodiment 4 of the present invention.
  • Figure 14 is an XRD pattern of amorphous carbon provided in Example 5 of the present invention.
  • Figure 15 is an SEM image of an amorphous carbon material provided in Example 5 of the present invention.
  • FIG. 16 is a graph showing a constant current charge and discharge curve of a sodium ion battery according to Embodiment 5 of the present invention.
  • Figure 17 is an XRD pattern of amorphous carbon provided in Example 6 of the present invention.
  • Figure 19 is a graph showing the comparison of the constant current charge and discharge curves of the sodium ion battery provided in Examples 3 and 12 of the present invention.
  • FIG. 1 is a method for preparing an anode material for a sodium ion battery based on asphalt according to an embodiment of the present invention, and the steps thereof are as shown in FIG. 1 , including:
  • Step 110 the asphalt precursor is placed in a muffle furnace and pre-oxidized at 200 ° C - 350 ° C for 2-6 hours to obtain pre-oxidized asphalt;
  • the pre-oxidation temperature of the asphalt there may be a plurality of preferred combinations of the pre-oxidation temperature of the asphalt, the pre-oxidation time in the temperature range, and the pre-oxidation atmosphere composition.
  • pre-oxidation can be carried out in an air or oxygen atmosphere.
  • the temperature of the pre-oxidation preferably ranges from 280 ° C to 320 ° C, and further preferably 300 ° C can be employed.
  • the asphalt may specifically be one or more mixtures of coal tar pitch, petroleum pitch and natural asphalt.
  • step 120 the pre-oxidized asphalt is placed in a high-temperature carbonization furnace, and the temperature is raised to 1300 ° C - 1600 ° C at a heating rate of 0.5 ° C / min - 5 ° C / min, and the pre-oxidized asphalt is heat-treated in an inert atmosphere for a period of time - 1 10 hours, causing carbonization and cracking reaction of pre-oxidized asphalt;
  • the oxygen in the pre-oxidized asphalt plays a role in breaking the ordered structure of the asphalt and forming a disordered structure with a wedge-shaped gap in the carbonization process of the pre-oxidized asphalt (as shown in FIG. 2); and increasing the carbon production rate, further cut costs.
  • the inert gas introduced is preferably argon.
  • step 130 cooling to room temperature to obtain an irregular block-shaped amorphous carbon material is a sodium ion battery negative electrode material.
  • the cooling can be carried out by natural cooling, and is taken out from the tube furnace after being cooled to room temperature, and an amorphous carbon material having an irregular block shape is obtained as a negative electrode material of the sodium ion battery.
  • the pre-oxidized asphalt-based pyrolysis amorphous carbon material provided by the embodiment has simple preparation process, high production efficiency, low raw material cost, and is suitable for mass production.
  • the pre-oxidation temperature of the asphalt, the pre-oxidation time and the pre-oxidation atmosphere By controlling the pre-oxidation temperature of the asphalt, the pre-oxidation time and the pre-oxidation atmosphere, the degree of ordering of the structure can be broken, and more active sites for sodium storage can be added to obtain an advantageous structure for storing sodium.
  • the microstructure of the amorphous carbon material can be further regulated, thereby obtaining an amorphous carbon material having the best electrochemical performance according to different requirements, as a negative electrode active material of the sodium ion secondary battery.
  • This embodiment provides the negative electrode material of the sodium ion battery prepared in the above Example 1.
  • the ordered structure of the asphalt is broken, and the anode material having an irregular shape is prepared.
  • Irregular bulk amorphous carbon material prepared by asphalt pre-oxidation and carbonization process the size is between 0.5-3 microns, the d 002 value is between 0.36-0.39 nm, the Lc value is between 0.9-1.2 nm, and the La value Between 3-5nm.
  • Figure 3 shows the thermogravimetric curve and differential scanning calorimetry curve of the asphalt raw material in the mixed atmosphere of oxygen and argon at 300 ° C for 6 hours.
  • FIG. 4a is a graph showing the charge and discharge curves of the comparative example of the present embodiment, showing a constant current charge and discharge curve of the asphalt directly subjected to high temperature carbonization as a negative electrode material of the sodium ion battery without a preoxidation step.
  • Fig. 4b is a graph showing the constant current charge and discharge curves of the irregular carbon material obtained by pre-oxidizing the asphalt at the same temperature and high temperature carbonization as the negative electrode material of the sodium ion battery.
  • the directly high-temperature carbonized asphalt mainly exhibits a high potential ramp capacity, and has almost no low-potential platform capacity, and the reversible capacity is about 94 mAh/g.
  • the pre-oxidized and carbonized asphalt has both a high potential ramp capacity and a low potential platform capacity, and the reversible capacity is about 300.6 mAh/g.
  • the negative electrode active material of the sodium ion secondary battery of the present embodiment is based on the low-cost bitumen as a raw material, and the step of combining the pre-oxidation and the carbonization breaks the phenomenon that the asphalt exhibits an orderly arrangement of the carbon layer under high-temperature carbonization, and the asphalt is regulated.
  • the disordered structure forms a microstructure with a wedge-shaped gap, increases the sodium storage active site, improves the performance of the anode material, and is beneficial to improve its overall electrochemical performance in a sodium ion battery.
  • FIG. 5 is an XRD pattern of pre-oxidized asphalt.
  • the pre-oxidized asphalt is ground into a magnetic boat and placed in a tube furnace, and argon gas is introduced as a shielding gas, and then heated to 1400 ° C at a rate of 3 ° C / min, and kept for 2 hours; then naturally cooled to room temperature, and the material is taken out. To obtain the final amorphous carbon material, the carbon yield was 67.4%.
  • FIG. 6 is an SEM image of the amorphous carbon material prepared in the present embodiment. As can be seen from the figure, the amorphous carbon morphology prepared in the present embodiment has an irregular block shape and a size of between 0.3 and 5 ⁇ m.
  • the amorphous carbon material prepared as described above is used as an active material of a battery negative electrode material for the preparation of a sodium ion battery.
  • the powder of the prepared amorphous carbon material and the sodium alginate binder are mixed at a mass ratio of 95:5, and an appropriate amount of water is added to grind to form a slurry, and then the uniformly ground slurry is uniformly coated on the current collector aluminum foil. After drying, a pole piece of (8 x 8) mm 2 was cut. The pole pieces were dried under vacuum at 120 ° C for 10 hours and then transferred to a glove box for use.
  • the assembly of the simulated battery was carried out in a glove box of an Ar atmosphere, using sodium metal as a counter electrode, and dissolving 1 mol of NaPF 6 in 1 L of a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1:1 as an electrolyte.
  • the charge and discharge test was performed at a C/10 current density using a constant current charge and discharge mode. Under the conditions of discharge cut-off voltage of 0V and charge cut-off voltage of 2.5V, the test results are shown in Figure 9a and Figure 9b.
  • the reversible specific capacity is 301.2mAh/g
  • the first week Coulomb efficiency is 88.6%
  • the cycle performance is stable.
  • amorphous carbon material has a La of 3.79 nm.
  • 12 is an SEM image of the amorphous carbon material prepared in the present embodiment. As can be seen from the figure, the amorphous carbon morphology prepared in the present embodiment has an irregular block shape and a size of 0.5-5 ⁇ m.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V
  • the test results are shown in Figure 13a and Figure 13b
  • the reversible specific capacity is 261.8mAh/g
  • the first week Coulomb efficiency is 87.2%
  • the cycle performance is stable.
  • Fig. 15 is a SEM image of the amorphous carbon material prepared in the present embodiment.
  • the amorphous carbon morphology prepared in this example is irregularly shaped and has a size of between 0.3 and 5 ⁇ m.
  • the amorphous material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V
  • the test result is shown in Figure 16
  • the reversible specific capacity is 279.8mAh/g
  • the first week Coulomb efficiency is 87.5%
  • the cycle performance is stable.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V
  • the test result is shown in Figure 18
  • the reversible specific capacity is 228.8mAh/g
  • the first week Coulomb efficiency is 90.3%
  • the cycle performance is stable.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the amorphous carbon material prepared above was used as an active material of a battery negative electrode material for the preparation of a sodium ion battery, and subjected to an electrochemical charge and discharge test.
  • the preparation process and test method are the same as those in Example 3.
  • the test voltage range is 0-2.5V, and the results are shown in Table 1 below.
  • the negative electrode material for sodium ion secondary battery provided in the above embodiments of the present invention has low raw material cost, simple preparation process, high production efficiency, and is suitable for mass production.
  • the amorphous carbon material obtained by the preparation method provided by the embodiment of the invention is used as the negative electrode active material of the sodium ion battery, and the measured sodium ion battery has high reversible capacity and energy density, excellent rate performance, stable cycle performance and safety performance. Good, not only for power supplies for mobile devices and electric vehicles, but also for large-scale energy storage devices such as renewable energy generation, smart grid peaking, distributed power stations, backup power supplies or communication base stations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例涉及一种基于沥青的钠离子电池负极材料及其制备方法和应用,方法包括:将沥青前驱体放入马弗炉中在200℃-350℃进行预氧化2-6小时,得到预氧化沥青;将所述预氧化沥青放入高温碳化炉内,以0.5℃/min-5℃/min的升温速率升温至1300℃-1600℃,在惰性气氛中对所述预氧化沥青进行热处理,时间为1-10小时,使得所述预氧化沥青发生碳化、裂解反应;其中,所述预氧化沥青中的氧在所述预氧化沥青的碳化过程中,用以打破沥青有序结构,形成具有楔形缝隙无序结构,并提高了产碳率,进一步降低成本;冷却至室温,得到不规则块状的无定型碳材料即为所述钠离子电池负极材料。

Description

基于沥青的钠离子电池负极材料及其制备方法和应用
本申请要求于2017年9月26日提交中国专利局、申请号为201710880097.3、发明名称为“基于沥青的钠离子电池负极材料及其制备方法和应用”的中国专利申请的优先权。
技术领域
本发明涉及新能源储能器件技术领域,尤其涉及一种基于沥青的钠离子电池负极材料及其制备方法和应用。
背景技术
高性能二次电池作为最高效与最便捷的能量储存与转换器件对建立清洁的能源体系和实现规模化储能至关重要。钠离子电池以其资源丰富、分布广泛和成本低廉等优势被认为是锂离子电池的有益补充,是应用于大规模储能领域的理想器件之一。对钠离子电池技术的研发具有重要的战略意义,近年来再次得到世界各研究组的广泛关注。
高性能电极材料的开发对实现钠离子电池的商业化至关重要。截至目前,钠离子正极材料的研究已经取得了一定进展。钠离子层状氧化物、隧道型氧化物、聚阴离子化合物和普鲁士蓝类材料均已报道具有一定的容量和循环性能。在负极材料方面,由于金属钠的危险性和钠枝晶的形成易导致液态电池的短路带来安全隐患等问题,无法直接将钠金属作为负极应用于钠离子电池中。除此之外,由于石墨与钠的热力学不稳定性,导致石墨不具备储钠能力。因此对负极材料的研发是推动钠离子电池实用化的关键。
在已报道的钠离子电池负极材料中,无定型碳材料以其相对较低的储钠电位,较高的储钠容量和良好的循环稳定性等优点而成为最具应用前景的钠 离子电池负极材料。已报道的制备无定型碳材料的前驱体主要包括一些聚合物、生物质、树脂或有机化学品等,但这些前驱体价格较高,制备过程复杂,产碳率低,大大制约了无定型碳材料作为钠离子电池负极的大规模应用。沥青作为一种常见的石油工业残渣,其价格非常低廉,另外由于其成分主要为一些烷烃、环烷烃、芳香烃的混合物而具有很高的碳含量,因此是制备碳材料的理想前驱体。然而在高温碳化过程中沥青很容易发生石墨化而形成高度有序的碳层结构,不利于钠离子的存储,致使其储钠容量较低,约90mAh/g。
发明内容
本发明的目的是提供一种基于沥青的钠离子电池负极材料及其制备方法和应用,以价格低廉的沥青为原料,通过预氧化对其结构进行改性,打破沥青在高温碳化过程中的有序结构,提高其无定型度来提升其储钠容量,并提高了产碳率,从而提出了一种成本低廉、制备工艺简单、无序度可调、产碳率较高、适于大规模生产的无定型碳材料,并将其作为负极材料应用于钠离子二次电池中。
为实现上述目的,第一方面,本发明实施例提供了一种基于沥青的钠离子电池负极材料的制备方法,包括:
将沥青前驱体放入马弗炉中在200℃-350℃进行预氧化2-6小时,得到预氧化沥青;
将所述预氧化沥青放入高温碳化炉内,以0.5℃/min-5℃/min的升温速率升温至1300℃-1600℃,在惰性气氛中对所述预氧化沥青进行热处理,时间为1-10小时,使得所述预氧化沥青发生碳化、裂解反应;其中,所述预氧化沥青中的氧在所述预氧化沥青的碳化过程中,用以打破沥青有序结构,形成具有楔形缝隙无序结构;
冷却至室温,得到不规则块状的无定型碳材料即为所述钠离子电池负极材料。
优选的,所述预氧化在空气或氧气气氛中进行。
优选的,所述预氧化的温度为280℃-320℃。
优选的,所述预氧化的温度为300℃。
优选的,所述沥青前驱体为煤焦沥青、石油沥青和天然沥青中的一种或多种混合物。
第二方面,本发明实施例提供了一种第一方面所述的制备方法制备得到的钠离子电池负极材料,所述钠离子电池负极材料为形貌呈不规则块状的无定型碳材料。
优选的,所述不规则块状的无定型碳材料,尺寸在0.5-3微米之间,d 002值在0.36nm-0.39nm之间,L c值在0.9nm-1.2nm之间,L a值在3nm-5nm之间。其内部碳层呈无序堆叠排列,形成具有楔形缝隙的微结构,构成了储钠的活性位点。
第三方面,本发明实施例提供了一种钠离子电池的负极极片,所述负极极片包括:集流体、涂覆于所述集流体之上的粘结剂和上述第二方面所述的钠离子电池负极材料。
第四方面,本发明实施例提供了一种包括上述第三方面所述的负极极片的钠离子二次电池,所述钠离子二次电池用于移动设备、交通工具,可再生能源发电、智能电网调峰、分布电站、后备电源或通信基站的储能设备。
本发明实施例提供的基于沥青的钠离子电池负极材料的制备方法,以价格低廉的沥青为原料,通过对沥青进行预氧化处理,打破其有序结构,提出了一种成本低廉、制备工艺简单、无序度可调、产碳率较高、适于大规模生产的无定型碳材料,并将其作为负极材料应用于钠离子二次电池中。用本发明负极材料的钠离子二次电池,具有较高的可逆容量和能量密度,倍率性能优良,循环性能稳定,安全性能好,不仅可用于移动设备和电动汽车的电源,还可以用于可再生能源发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
附图说明
图1为本发明实施例1提供的基于沥青的钠离子电池负极材料的制备方法流程图;
图2为本发明实施例1所述由沥青有序结构形成具有楔形缝隙无序结构的示意图;
图3为本发明实施例2中所述沥青原料的热重曲线图;
图4a为本发明实施例2中所述用于对比的直接高温碳化沥青的恒流充放电曲线图;
图4b为本发明实施例2中所述同时经预氧化和高温碳化沥青的恒流充放电曲线图;
图5为本发明实施例3提供的预氧化沥青的X射线衍射XRD图谱;
图6为本发明实施例3提供的无定型碳的XRD图谱;
图7为本发明实施例3提供的无定型碳的拉曼Raman光谱;
图8为本发明实施例3提供的无定型碳的扫描电子显微镜SEM图;
图9a为本发明实施例3提供的一种钠离子电池的恒流充放电曲线图;
图9b为本发明实施例3提供的一种钠离子电池的循环曲线图;
图10为本发明实施例4提供的无定型碳的XRD图谱;
图11为本发明实施例4提供的无定型碳材料的Raman光谱;
图12为本发明实施例4提供的无定型碳材料的SEM图;
图13a为本发明实施例4提供的一种钠离子电池的恒流充放电曲线图;
图13b为本发明实施例4提供的一种钠离子电池的循环曲线图;
图14为本发明实施例5提供的无定型碳的XRD图谱;
图15为本发明实施例5提供的无定型碳材料的SEM图;
图16为本发明实施例5提供的一种钠离子电池的恒流充放电曲线图;
图17为本发明实施例6提供的无定型碳的XRD图谱;
图18为本发明实施例6提供的一种钠离子电池的恒流充放电曲线图;
图19为本发明实施例3,12提供的钠离子电池的恒流充放电曲线对比图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
图1为本发明实施例提供的基于沥青的钠离子电池负极材料的制备方法,其步骤如图1所示,包括:
步骤110,将沥青前驱体放入马弗炉中在200℃-350℃进行预氧化2-6小时,得到预氧化沥青;
具体的,沥青预氧化的温度,在该温度范围下的预氧化时间,以及预氧化气氛组成这几个控制条件可以有多个优选的组合。
比如预氧化可以在空气或氧气气氛中进行。预氧化的温度优选的地范围为280℃-320℃,进一步优选的可以采用300℃。
沥青具体的可以为煤焦沥青、石油沥青和天然沥青中的一种或多种混合物。
步骤120,将预氧化沥青放入高温碳化炉内,以0.5℃/min-5℃/min的升温速率升温至1300℃-1600℃,在惰性气氛中对预氧化沥青进行热处理,时间为1-10小时,使得预氧化沥青发生碳化、裂解反应;
其中,预氧化沥青中的氧在预氧化沥青的碳化过程中,起到打破沥青有序结构,形成具有楔形缝隙无序结构的作用(如图2所示);并提高了产碳率,进一步降低成本。
通入的惰性气体优选为氩气。
步骤130,冷却至室温,得到不规则块状的无定型碳材料即为钠离子电池负极材料。
具体的,冷却可以采用自然冷却,降至室温后从管式炉中取出,得到不规则块状的无定型碳材料即为钠离子电池负极材料。
本实施例提供的基于预氧化沥青的热解无定型碳材料的制备工艺简单,生产效率高,原材料成本低廉,适于大规模生产。通过对沥青预氧化温度、预氧化时间和预氧化气氛的控制可打破其结构的有序化程度,增加了更多地储钠活性位点,获得储钠的有利结构。通过调节裂解温度可以进一步调控无定型碳材料的微观结构,从而根据不同的需求得到最佳电化学性能的无定型碳材料,作为钠离子二次电池的负极活性材料。
下面通过实施例2说明制备得到的钠离子电池负极材料的结构特征。
实施例2
本实施例提供了上述实施例1制备得到的钠离子电池负极材料。
通过控制预氧化沥青的预氧化温度、预氧化时间、预氧化气氛以及在惰性气氛下高温碳化预氧化沥青的温度打破沥青有序结构,制备得到形貌呈不规则块状的负极材料。经沥青预氧化和碳化过程制备的不规则块状无定型碳材料,尺寸在0.5-3微米之间,d 002值在0.36-0.39nm之间,Lc值在0.9-1.2nm之间,La值在3-5nm之间。图3给出了沥青原料在氧气与氩气混合气氛中300℃保温6小时的热重曲线和差示扫描量热曲线,可看出随预氧化温度的升高在大于200℃时沥青质量显著增加,并伴随大量放热,之后在290℃左右随着保温时间的延长沥青质量有所下降。图4a为本实施例的对比例的充放电曲线图,给出了沥青不经预氧化步骤直接高温碳化作为钠离子电池负极材料的恒流充放电曲线。图4b给出了将沥青预氧化后在上述相同温度高温碳化后得到的不规则碳材料作为钠离子电池负极材料的恒流充放电曲线图。从充放电曲线可以看出直接高温碳化的沥青主要表现出高电位斜坡容量,几乎没有低电位平台容量,可逆容量约为94mAh/g。同时经预氧化和碳化的沥青既有高电位斜坡容量又有低电位平台容量,可逆容量约为300.6mAh/g。
本实施例的钠离子二次电池负极活性材料,基于价格低廉的沥青为原 料,通过预氧化和碳化相结合的步骤,打破了沥青在高温碳化下呈现碳层有序排列的现象,调控了沥青的无序结构,形成了具有楔形缝隙的微结构,增加了储钠活性位点,改进了负极材料的性能,有利于提高其在钠离子电池中的综合电化学性能。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明应用本发明上述实例提供的基于沥青的高容量负极材料制备的具体过程,以及将其作为钠离子二次电池负极材料装配在钠离子二次电池中的方法及其电池特性。
实施例3
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温3小时,得到预氧化沥青,其质量百分比为103.9%,说明在预氧化过程中沥青有所增重。图5为预氧化沥青的XRD图谱。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为67.4%。碳化沥青得到的无定型碳材料的XRD图谱见图6。从XRD图谱可以得到该材料的d 002=0.362nm,L c=1.161nm。其Raman光谱参见图7,从Raman光谱可以得到该无定型碳材料的L a=4.09nm。图8为本实施例制备得到的无定型碳材料的SEM图,从图中可以看出,本实施例制备得到的无定型碳形貌呈不规则块状,尺寸在0.3-5微米之间。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备。
将制备好的无定型碳材料的粉末与海藻酸钠粘接剂按照95:5的质量比混合,加入适量水研磨形成浆料,然后把研磨均匀的浆料均匀涂覆于集流体铝箔上,干燥后,裁成(8×8)mm 2的极片。极片在真空条件下,120℃干燥10小时,随即转移到手套箱备用。
模拟电池的装配在Ar气氛的手套箱内进行,以金属钠作为对电极,以1摩尔的NaPF 6溶于1L体积比为1:1的碳酸乙烯酯和碳酸二乙酯溶液作为电解液,装配成CR2032扣式电池。使用恒流充放电模式,在C/10电流密度下进行充放电测试。在放电截至电压为0V,充电截至电压为2.5V的条件下,测试结果见图9a和图9b,可逆比容量为301.2mAh/g,首周库仑效率为88.6%,循环性能稳定。
实施例4
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温3小时,得到预氧化沥青,其质量百分比为103.9%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1550℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为66.1%。碳化沥青得到的无定型碳材料的XRD图谱见图10。从XRD图谱可以得到该材料的d 002=0.351nm,L c=1.196nm。其Raman光谱参见图11,从Raman光谱可以得到该无定型碳材料的L a=3.79nm。图12为本实施例制备得到的无定型碳材料的SEM图,从图中可以看出,本实施例制备得到的无定型碳形貌呈不规则块状,尺寸在0.5-5微米之间。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,测试结果见图13a和图13b,可逆比容量为261.8mAh/g,首周库仑效率为87.2%,循环性能稳定。
实施例5
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温4小时,得到预氧化沥青,其质量百分比为99.38%。将预氧化沥 青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为58.5%。碳化沥青得到的无定型碳材料的XRD图谱见图14。从XRD图谱可以得到该材料的d 002=0.389nm,L c=0.995nm。图15为本实施例制备得到的无定型碳材料的SEM图,从图中可以看出,本实施例制备得到的无定型碳形貌呈不规则块状,尺寸在0.3-5微米之间。
将上述制备得到的无定型材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,测试结果见图16,可逆比容量为279.8mAh/g,首周库仑效率为87.5%,循环性能稳定。
实施例6
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至200℃,保温3小时,得到预氧化沥青,其质量百分比为104%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为76.5%。碳化沥青得到的无定型碳材料的XRD图谱见图17。从XRD图谱可以得到该材料的d 002=0.368nm,L c=1.161nm。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,测试结果见图18,可逆比容量为228.8mAh/g,首周库仑效率为90.3%,循环性能稳定。
实施例7
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至250℃,保温3小时,得到预氧化沥青,其质量百分比为108.6%。将预氧化沥 青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为69.1%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例8
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至350℃,保温3小时,得到预氧化沥青,其质量百分比为67.8%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为57.9%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例9
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温2小时,得到预氧化沥青,其质量百分比为101%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为64.1%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例10
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温5小时,得到预氧化沥青,其质量百分比为98.3%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为62%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例11
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温6小时,得到预氧化沥青,其质量百分比为99.7%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为63.7%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例12
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温3小时,得到预氧化沥青,其质量百分比为103.9%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1000℃,保温2小时;之后自然冷却至室温,取出物料,得到最终 的无定型碳材料,产碳率为66.9%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例13
称取2g沥青原料,装入磁舟放入马弗炉中,以3℃/min的速率升温至300℃,保温3小时,得到预氧化沥青,其质量百分比为103.9%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1200℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为65.3%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例14
称取2g沥青原料,装入磁舟放入通入氧气的管式炉中,以3℃/min的速率升温至300℃,保温3小时,得到预氧化沥青,其质量百分比为102.88%。将预氧化沥青研磨后装入磁舟中放进管式炉,通入氩气作为保护气,然后以3℃/min的速率升温至1400℃,保温2小时;之后自然冷却至室温,取出物料,得到最终的无定型碳材料,产碳率为67.4%。
将上述制备得到的无定型碳材料作为电池负极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例3。测试电压范围为0-2.5V,结果见下表1。
实施例 预氧化条件 碳化温度 产碳率 首周效率
3 空气300℃3h 1400 67.4% 88.6%
4 空气300℃3h 1550 66.1% 87.2%
5 空气300℃4h 1400 58.5% 87.5%
6 空气200℃3h 1400 76.5% 90.3%
7 空气250℃3h 1400 69.1% 87.1%
8 空气350℃3h 1400 57.9% 86.3%
9 空气300℃2h 1400 64.1% 87.2%
10 空气300℃5h 1400 62.0% 89.7%
11 空气300℃6h 1400 63.7% 86.9%
12 空气300℃3h 1000 66.9% 45.0%
13 空气300℃3h 1200 65.3% 82.1%
14 氧气300℃3h 1400 67.4% 86.3%
表1不同实施例中制备的负极材料的相关条件和比容量
本发明上述实施例中提供的钠离子二次电池负极材料,其原材料成本低廉、制备工艺简单、生产效率高、适于大规模生产。采用本发明实施例提供的制备方法获得的无定型碳材料作为钠离子电池的负极活性材料,测得的钠离子电池具有较高的可逆容量和能量密度,倍率性能优良,循环性能稳定,安全性能好,不仅可用于移动设备和电动汽车的电源,还可以用于可再生能源发电、智能电网调峰、分布电站、后备电源或通信基站等大规模储能设备。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种基于沥青的钠离子电池负极材料的制备方法,其特征在于,所述方法包括:
    将沥青前驱体放入马弗炉中在200℃-350℃进行预氧化2-6小时,得到预氧化沥青;
    将所述预氧化沥青放入高温碳化炉内,以0.5℃/min-5℃/min的升温速率升温至1300℃-1600℃,在惰性气氛中对所述预氧化沥青进行热处理,时间为1-10小时,使得所述预氧化沥青发生碳化、裂解反应;其中,所述预氧化沥青中的氧在所述预氧化沥青的碳化过程中,用以打破沥青有序结构,形成具有楔形缝隙无序结构;
    冷却至室温,得到不规则块状的无定型碳材料即为所述钠离子电池负极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述预氧化在空气或氧气气氛中进行。
  3. 根据权利要求1所述的制备方法,其特征在于,所述预氧化的温度为280℃-320℃。
  4. 根据权利要求1所述的制备方法,其特征在于,所述预氧化的温度为300℃。
  5. 根据权利要求1所述的制备方法,其特征在于,所述沥青前驱体为煤焦沥青、石油沥青和天然沥青中的一种或多种混合物。
  6. 一种根据上述权利要求1-5任一所述的制备方法制备得到的钠离子电池负极材料,其特征在于,所述钠离子电池负极材料为形貌呈不规则块状的无定型碳材料。
  7. 根据权利要求6所述的钠离子电池负极材料,其特征在于,所述不规则块状的无定型碳材料,尺寸在0.5-3微米之间,d 002值在0.36nm-0.39nm之间,L c值在0.9nm-1.2nm之间,L a值在3nm-5nm之间。其内部碳层呈无序 堆叠排列,形成具有楔形缝隙的微结构,构成了储钠的活性位点。
  8. 一种钠离子电池的负极极片,其特征在于,所述负极极片包括:
    集流体、涂覆于所述集流体之上的粘结剂和上述权利要求6或7所述的钠离子电池负极材料。
  9. 一种包括上述权利要求8所述的负极极片的钠离子二次电池,其特征在于,所述钠离子二次电池用于移动设备、交通工具,可再生能源发电、智能电网调峰、分布电站、后备电源或通信基站的储能设备。
PCT/CN2018/104034 2017-09-26 2018-09-04 基于沥青的钠离子电池负极材料及其制备方法和应用 WO2019062494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/650,606 US11670774B2 (en) 2017-09-26 2018-09-04 Pitch-based negative electrode material for sodium-ion battery, and preparation method therefor and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710880097.3 2017-09-26
CN201710880097.3A CN109148883A (zh) 2017-09-26 2017-09-26 基于沥青的钠离子电池负极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019062494A1 true WO2019062494A1 (zh) 2019-04-04

Family

ID=64803656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104034 WO2019062494A1 (zh) 2017-09-26 2018-09-04 基于沥青的钠离子电池负极材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US11670774B2 (zh)
CN (1) CN109148883A (zh)
WO (1) WO2019062494A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451475B (zh) * 2019-07-05 2021-03-26 北京化工大学 一种沥青基炭微球的制备方法及其作为钠离子电池电极材料的应用
CN111072006A (zh) * 2019-12-09 2020-04-28 辽宁科技大学 一种硫掺杂沥青碳的制备方法及其应用
CN113086962B (zh) * 2019-12-23 2022-11-08 国家能源投资集团有限责任公司 碳材料及其制备方法与应用
CN111470487A (zh) * 2020-05-11 2020-07-31 三峡大学 一种生物质碳材料的制备方法及其应用
CN114373925A (zh) * 2020-10-14 2022-04-19 天津工业大学 一种氧化改性的无定型碳材料的制备方法和用途
CN115246637A (zh) * 2021-04-25 2022-10-28 武汉大学 一种基于湿法氧化软碳前驱体制备硬碳负极材料的方法及其应用
CN113526489B (zh) * 2021-07-15 2022-06-24 上海大学 一种钠离子电池碳基负极材料的性能改进方法和应用
CN114709408A (zh) * 2022-04-18 2022-07-05 鸡西市唯大新材料科技有限公司 一种钠离子硬碳负极材料的制备方法
CN115304049A (zh) * 2022-08-11 2022-11-08 多氟多新材料股份有限公司 一种等离子体改性的无烟煤基负极材料的制备方法
CN115159503A (zh) * 2022-08-19 2022-10-11 中国科学技术大学 一种有序度可调的碳材料的制备方法及其应用
CN115611264A (zh) * 2022-11-10 2023-01-17 泰安市法拉第能源科技有限公司 沥青基硬碳负极材料及制备方法、钠离子电池
CN116462183A (zh) * 2023-03-10 2023-07-21 中国科学院宁波材料技术与工程研究所 一种类硅藻土结构的软碳材料及其制备方法和应用
CN116936789B (zh) * 2023-09-18 2023-12-05 四川赛科检测技术有限公司 一种双层构筑硅碳复合材料及其制备方法与应用
CN117342541A (zh) * 2023-12-05 2024-01-05 山东泰和科技股份有限公司 一种沥青衍生碳钠离子电池负极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741472A (en) * 1994-08-23 1998-04-21 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery
JP2014203530A (ja) * 2013-04-01 2014-10-27 大阪瓦斯株式会社 ナトリウム二次電池用炭素質負極材及びその製造方法
CN106159198A (zh) * 2015-04-08 2016-11-23 上海宝钢化工有限公司 一种沥青基无定形碳负极材料、其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164570A (ja) * 2004-12-02 2006-06-22 Nippon Steel Chem Co Ltd リチウム二次電池負極用黒鉛材料の製造方法およびリチウム二次電池
JP2015026520A (ja) * 2013-07-26 2015-02-05 大阪瓦斯株式会社 ナトリウム二次電池用負極材料及びその製造方法、並びに該ナトリウム二次電池用負極材料を用いたナトリウム二次電池
JP2017107856A (ja) * 2015-12-01 2017-06-15 学校法人東京理科大学 ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741472A (en) * 1994-08-23 1998-04-21 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery
JP2014203530A (ja) * 2013-04-01 2014-10-27 大阪瓦斯株式会社 ナトリウム二次電池用炭素質負極材及びその製造方法
CN106159198A (zh) * 2015-04-08 2016-11-23 上海宝钢化工有限公司 一种沥青基无定形碳负极材料、其制备方法及应用

Also Published As

Publication number Publication date
US20210202942A1 (en) 2021-07-01
US11670774B2 (en) 2023-06-06
CN109148883A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2019062494A1 (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
WO2016074479A1 (zh) 一种热解无定型碳材料及其制备方法和用途
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
Guo et al. Polypyrrole‐assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc‐ion battery
WO2021128603A1 (zh) 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
JP6775577B2 (ja) 非水電解質二次電池用負極材、その製造方法、及びこれを含む非水電解質二次電池
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
WO2017070988A1 (zh) 一种钠离子二次电池负极材料及其制备方法和用途
JP6466635B2 (ja) 非水電解質二次電池用負極の製造方法及び非水電解質二次電池の製造方法
WO2019233357A1 (zh) 一种具有高斜坡容量的碳基负极材料及其制备方法和用途
WO2019062495A1 (zh) 基于炭材料和沥青的钠离子电池负极材料及其制备方法和应用
KR20150041553A (ko) 리튬이온전지용 일산화실리콘 복합음극소재, 그 제조 방법 및 리튬이온전지
KR20140120861A (ko) 리튬이온전지 흑연 음극재료 및 이의 제조방법
WO2023138417A1 (zh) 一种高能量密度钠离子电池
CN113526489B (zh) 一种钠离子电池碳基负极材料的性能改进方法和应用
WO2022021933A1 (zh) 非水电解质二次电池用负极材料及其制备方法
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN108417800B (zh) 一种石墨烯包覆石墨/金属复合粉体负极材料及制备方法
WO2020042577A1 (zh) 一种锂离子电池硅基负极材料及其制备方法和电池
CN103972580B (zh) 一种锂硫电池
CN115991467A (zh) 一种钠离子电池用氧化沥青基硬碳负极材料及其制备方法
CN103647047A (zh) 一种碳纳米管/SnO2同轴复合阵列锂离子电池负极材料
JP5910479B2 (ja) 非水電解質二次電池用負極活物質、リチウムイオン二次電池及び電気化学キャパシタの製造方法
CN108963226A (zh) C@硅/活性炭核壳结构复合负极材料及其制备方法
WO2022257372A1 (zh) 石墨负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18862395

Country of ref document: EP

Kind code of ref document: A1