WO2022257372A1 - 石墨负极材料及其制备方法和应用 - Google Patents

石墨负极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022257372A1
WO2022257372A1 PCT/CN2021/133965 CN2021133965W WO2022257372A1 WO 2022257372 A1 WO2022257372 A1 WO 2022257372A1 CN 2021133965 W CN2021133965 W CN 2021133965W WO 2022257372 A1 WO2022257372 A1 WO 2022257372A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
graphite negative
graphitization
graphite
Prior art date
Application number
PCT/CN2021/133965
Other languages
English (en)
French (fr)
Inventor
潘广宏
苏志江
梁文斌
卫昶
陈全彬
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to KR1020237042452A priority Critical patent/KR20240005923A/ko
Publication of WO2022257372A1 publication Critical patent/WO2022257372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of carbon materials, in particular to a graphite negative electrode material and a preparation method and application thereof.
  • Lithium-ion battery negative electrodes are mainly carbon materials, including amorphous carbon, natural graphite and artificial graphite.
  • Graphite has a regular layered structure and excellent electrical conductivity. Its theoretical specific capacity is 372mA ⁇ h/g, and its efficiency is high. It is currently the mainstream negative electrode material.
  • homogeneous coke homogeneous coke
  • pitch glue and needle coke.
  • Isotropic coke-based artificial graphite has low crystallinity, high isotropy, low capacity and high power performance.
  • Needle coke-based artificial graphite has a high capacity, but its magnification is relatively poor, and asphalt rubber is generally in between.
  • CN104681786A discloses a coal-based negative electrode material.
  • the coal-based negative electrode material is composed of a graphitized inner layer of the coal-based material, a middle layer and an outer layer distributed on the surface.
  • the preparation method includes: pulverizing the coal-based material; adding a binder, or mixing the binder and a modifying agent; and then carrying out pressing and high-temperature graphitization to make a finished product.
  • CN109319757A discloses a method for preparing the negative electrode material of hollow open onion carbon lithium-ion battery.
  • Coal material is used as raw material, and nickel salt or nickel simple substance is mixed and heated as a catalyst, so that nickel salt or nickel simple substance is evenly distributed in the coal-based material
  • an open graphite onion carbon layer is formed on the spherical surface, and finally purified by acid-base treatment to obtain graphite onion carbon with a hollow open spherical structure.
  • CN107528053A discloses a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • This negative electrode material for lithium ion secondary battery contains carbon material, and described carbon material is 0.335nm-0.340nm by the mean planar distance d002 that X-ray diffraction method obtains, and volume average particle diameter (50%D) is 1 ⁇ m- 40 ⁇ m, the maximum particle size D max is 74 ⁇ m or less, and has at least two exothermic peaks in the temperature range of 300°C to 1000°C when performing differential thermal analysis in air flow.
  • the structure and process of the negative electrode material provided by the above prior art are complex and costly, and acid, alkali, etc. are used for purification during the treatment process, which is not friendly to the environment. More importantly, the single element in the negative electrode material in the prior art The rate capability of phase graphite is insufficient to meet practical needs.
  • the object of the present invention is to provide a coal-based graphite negative electrode material and its preparation method and application in order to overcome the problems of complex structure of graphite negative electrode material, insufficient single-phase graphite rate performance, complex preparation process and high cost in the prior art,
  • the coal-based graphite negative electrode material has high charge and discharge capacity, high first Coulombic efficiency and excellent rate performance, and its preparation method is simple in process and low in cost.
  • the present invention provides a graphite negative electrode material on the one hand, characterized in that the crystallite size L c in the c-axis direction and the crystallite size L a in the a-axis direction of the graphite negative electrode material obtained by XRD satisfy the following condition:
  • the degree of graphitization of the graphite negative electrode material satisfies the following conditions:
  • the second aspect of the present invention provides a preparation method of graphite negative electrode material, characterized in that the method comprises the following steps:
  • the coal meets the following conditions: vitrinite reflectance ⁇ 2; volatile matter ⁇ 10wt%; ash content ⁇ 10wt%; the conditions for graphitization include: controlling the actual maximum power transmission of the graphitization furnace transformer ⁇ 3,000kW, The continuous power transmission time of the actual maximum power transmission power is 1-100h.
  • the third aspect of the present invention provides a graphite negative electrode material prepared by the above preparation method.
  • the fourth aspect of the present invention provides the application of the above-mentioned graphite negative electrode material in at least one of lithium ion batteries, energy storage materials, mechanical parts and graphite electrodes.
  • the graphite negative electrode material provided by the present invention and its preparation method and application obtain the following beneficial effects:
  • the graphite negative electrode material provided by the present invention has excellent electrochemical properties, in particular, can significantly improve the rate performance of the battery comprising the graphite negative electrode material under the premise of maintaining a high charge-discharge capacity and first Coulombic efficiency , so as to achieve the best balance of the three, specifically, the charge and discharge capacity of the graphite anode material is ⁇ 330mAh/g, the first Coulombic efficiency is ⁇ 90%, and the 2C/0.2C capacity retention rate is ⁇ 35%.
  • Fig. 1 is the TEM picture of the graphite negative electrode material that embodiment 1 provides.
  • the first aspect of the present invention provides a graphite negative electrode material, characterized in that the crystallite size L c in the c-axis direction and the crystallite size L a in the a-axis direction of the graphite negative electrode material obtained by XRD meet the following conditions:
  • the graphitization degree of the graphite negative electrode material satisfies the following condition: 85 ⁇ graphitization degree ⁇ 93 formula (III).
  • the graphite negative electrode material satisfying the above-mentioned conditions has the characteristics of high isotropy and small grain size, so that there are many channels for lithium ion intercalation and extraction and the distance is short, while maintaining a high charge and discharge capacity and Under the premise of the first Coulombic efficiency, the rate performance of the battery including the graphite anode material can be significantly improved, so as to achieve the best balance of the three.
  • the graphite negative electrode material is a coal-based graphite negative electrode material.
  • the degree of graphitization G of the graphite negative electrode material is calculated according to the following formula:
  • the graphite negative electrode material is in a homogeneous phase.
  • the interlayer spacing d 002 of the (002) crystal plane obtained by the graphite negative electrode material by XRD satisfies the following conditions:
  • the graphite negative electrode material when the layer spacing of the (002) crystal plane satisfies 0.3360nm ⁇ d 002 ⁇ 0.3370m, the graphite negative electrode material has more excellent comprehensive properties.
  • the peak intensity I110 of the (110) crystal plane and the peak intensity I004 of the (004) crystal plane obtained by the graphite negative electrode material through XRD meet the following conditions:
  • the degree of isotropy of the graphite negative electrode material satisfying the above conditions is further improved, thereby further improving the rate performance of the graphite negative electrode material.
  • the graphite anode material has more excellent rate performance.
  • the ash content of the graphite negative electrode material is ⁇ 1000ppm.
  • the ash content of the graphite negative electrode material is measured by the method of GB/T3521.
  • the graphite negative electrode material provided by the present invention has a low ash content, which can significantly improve the overall uniformity of the graphite negative electrode material.
  • the ash content of the graphite negative electrode material is ⁇ 500ppm.
  • a second aspect of the present invention provides a method for preparing a graphite negative electrode material, wherein the method comprises the following steps:
  • the coal meets the following conditions: vitrinite reflectance ⁇ 2; volatile matter ⁇ 10wt%; ash content ⁇ 10wt%; the conditions for graphitization include: controlling the actual maximum power transmission of the graphitization furnace transformer ⁇ 3,000kW, The continuous power transmission time of the actual maximum power transmission power is 1-100h.
  • the graphitization equipment can be industrially commonly used graphitization equipment in this field, specifically, the graphitization equipment can be selected from Acheson furnace, box furnace, internal series furnace, vertical graphitization furnace And at least one of the horizontal graphitization furnace.
  • the invention uses coal as a raw material to develop a low-cost graphite negative electrode material with a unique micro-nano structure.
  • the graphite negative electrode material is prepared according to the method provided by the invention, high value-added utilization and clean and efficient conversion of coal can be realized.
  • the coal that meets the above conditions is selected as a raw material, and when used to prepare graphite negative electrode materials, the prepared graphite negative electrode materials can have a moderate degree of graphitization, and have the characteristics of small grain size and high isotropy , which can significantly improve the rate performance, charge-discharge capacity, and first-time Coulombic efficiency of the graphite anode material.
  • the vitrinite reflectance of the coal is measured by the national standard GB/T 6948 method, and the volatile content and ash content of the coal are measured by the national standard GB/T30732 method.
  • the coal satisfies the following conditions: vitrinite reflectance ⁇ 2.35; volatile matter ⁇ 10wt%; ash content ⁇ 6wt%.
  • conventional equipment in the field such as a jet mill, can be used to pulverize the coal.
  • the particle diameter D 50 of the coal particles is 1-100 ⁇ m, preferably 5-30 ⁇ m.
  • the method further comprises the step of shaping and/or classifying the coal particles.
  • step (2) comprises the following steps:
  • the coal particles before the graphitization process, the coal particles are carbonized, the volatile matter or ash in the coal particles can be removed, and the agglomeration due to the escaping of the volatile matter or ash in the graphitization process can be avoided.
  • the degree of graphitization of the product which in turn makes the charge and discharge capacity and first Coulombic efficiency of the battery including the graphite negative electrode material higher, so as to achieve the best balance among capacity, efficiency and rate.
  • the carbonization conditions include: 400-1800° C., and the carbonization time is 1-10 h.
  • the carbonization is carried out in the presence of an inert atmosphere.
  • the graphitization conditions include: in controlling the graphitization equipment, the actual maximum transmission power of the transformer is 5,000-50,000kW, and the continuous transmission time of the actual maximum transmission power is 5-50h.
  • the graphitization conditions include: in controlling the graphitization equipment, the actual maximum transmission power of the transformer is 10,000-30,000kW, and the continuous transmission time of the actual maximum transmission power is 8-40h.
  • the third aspect of the present invention provides a graphite negative electrode material prepared by the above preparation method.
  • the fourth aspect of the present invention provides the application of the above-mentioned graphite negative electrode material in at least one of lithium ion batteries, energy storage materials, mechanical parts and graphite electrodes.
  • the lithium-ion battery comprising the above-mentioned graphite negative electrode material has excellent electrochemical performance, specifically, the charge-discharge capacity of the lithium-ion battery comprising the above-mentioned graphite negative electrode material is ⁇ 330mAh/g, the first Coulombic efficiency is ⁇ 90%, and 2C/ 0.2C capacity retention ⁇ 35%.
  • the interlayer spacing d 002 , L a , L c and I110/I004 were all measured and analyzed by the D8Advance X-ray diffractometer of Bruker AXS GmbH in Germany.
  • the XRD was calibrated by the silicon internal standard method, and the d 002 value was obtained by Moscow formula Calculated, L a and L c are calculated by Scherrer's formula;
  • the TEM images were obtained through testing with an ARM200F transmission electron microscope from JEOL.
  • the vitrinite reflectance of coal is measured by the national standard GB/T 6948 method, and the volatile content and ash content of coal are measured by the national standard GB/T30732 method.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time of the actual maximum power transmission power is 20h; Sieve to obtain product A1.
  • the TEM photo of the graphite negative electrode material is shown in Figure 1. From Figure 1, it can be seen that the product A1 has high isotropy and small grain size.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time of the actual maximum power transmission power is 35h; Sieve to obtain product A2.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time of the actual maximum power transmission power is 10h; Sieve to obtain product A3.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 10,000kW, and the continuous power transmission time of the actual maximum power transmission power is 20h; Sieve to obtain product A4.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time of the actual maximum power transmission power is 20h; Sieve to obtain product A5.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 5,000kW, and the continuous power transmission time of the actual maximum power transmission power is 20h; Sieve to obtain product A6.
  • the intermediate is graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time at the actual maximum power transmission power is 5h; Sieve to obtain product A7.
  • the graphite negative electrode material was prepared according to the method in Example 1, except that in step (2-1), the carbonization conditions were different from those in Example 1. Specifically, the carbonization temperature is 400° C., and the time is 0.5 h.
  • the graphite negative electrode material was prepared according to the method in Example 1, except that in step (2-1), the carbonization conditions were different from those in Example 1. Specifically, the carbonization temperature is 2200° C., and the time is 15 hours.
  • Coal particles are graphitized in a graphitization furnace.
  • the actual maximum power transmission power of the transformer is 22,000kW, and the continuous power transmission time of the actual maximum power transmission power is 20h; the graphite negative electrode material is obtained, sieved, Product A10 is obtained.
  • the negative electrode material was prepared according to the method of Example 1, except that pitch coke was used instead of coal. Negative electrode material D3 was prepared.
  • Example 1 257 91.4% 0.33614 44.6 93.7 0.806
  • Example 2 183 91.5% 0.33613 41.8 94.1 0.801
  • Example 3 223 90.3% 0.33623 44.8 92.3 0.497
  • Example 4 268 90.0% 0.33626 43.4 95.7 0.487
  • Example 5 487 88.8% 0.33636 31 103 0.357
  • Example 7 294 87.9% 0.33644 34.1 73.6 0.412
  • Example 8 265 89.9% 0.33627 40.2 82.2 0.467
  • Example 9 197 89.2% 0.33633 34.9 73 0.481
  • Example 10 287 89.1% 0.33634 34.4 63.2 0.467
  • Comparative example 1 398 80.2% 0.33710 17.8 41.8 0.975 Comparative example 2 746 82.6% 0.33690 29.8 62.6 0.418 Comparative example 3 212 93.8% 0.33593 61.5 158.9 0.285
  • the negative electrode material that embodiment and comparative example make are mixed with conductive carbon black Super P and binding agent polyvinylidene fluoride (PVDF) by the mass ratio of 92:3:5, add solvent N-methylpyrrolidone ( NMP), stirred into a uniform negative electrode slurry, the negative electrode slurry was evenly coated on the aluminum foil with a scraper, dried to obtain the negative electrode sheet, after cutting, transferred to MBraun2000 glove box (Ar atmosphere, H 2 O and The concentration of O 2 is less than 0.1 ⁇ 10 -6 volume %), and a metal lithium sheet is used as a reference electrode to assemble a button battery.
  • the electrochemical performance of the coin cell was tested, and the test results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及碳材料领域,公开了一种石墨负极材料及其制备方法和应用。所述石墨负极材料通过XRD获得的c轴方向的微晶尺寸Lc和a轴方向的微晶尺寸La满足以下条件: 30nm≤Lc≤70nm式(I);50nm≤La≤120nm式(II);所述石墨负极材料的石墨化度满足以下条件:85≤石墨化度≤93式(III)。该石墨负极材料具有高的充放电容量、高的首次库伦效率和优异的倍率性能,并且其制备方法工艺简单、成本低。

Description

石墨负极材料及其制备方法和应用
相关申请的交叉引用
本申请要求2021年06月10日提交的中国专利申请202110646868.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及碳材料领域,具体涉及一种石墨负极材料及其制备方法和应用。
背景技术
锂离子电池负极主要是碳材料,包括无定形碳、天然石墨和人造石墨。石墨具有规则层状结构和优异导电性,其理论比容量为372mA·h/g,效率高,是目前主流的负极材料。目前开发人造石墨的原料主要有三类:同性焦、沥青胶和针状焦。同性焦基人造石墨结晶度度低,各向同性度高,容量低,功率性高。针状焦基人造石墨容量高,倍率相对差些,沥青胶一般居于二者之间。
CN104681786A公开了一种煤基负极材料。该煤基负极材料是由煤基材料石墨化内层、中间层及分布于表面的外层组成。其制备方法包括:将煤基材料经过粉碎处理;再加入粘结剂,或粘结剂和改性剂混合;然后进行压型、高温石墨化,制成成品。
CN109319757A公开了一种制备中空开口洋葱碳锂离子电池负 极材料的方法,以煤质材料为原料,与作为催化剂的以镍盐或镍单质混合加热,使得镍盐或镍单质均匀分布于煤基材料颗粒表面,经冷却后在球形表面形成开口石墨洋葱碳层,最后通过酸碱处理纯化后得到具有中空开口球形结构的石墨洋葱碳。
CN107528053A公开了一种锂离子二次电池用负极材料、锂离子二次电池用负极以及锂离子二次电池。该锂离子二次电池用负极材料含有碳材料,所述碳材料通过X射线衍射法所求出的平均面间隔d 002为0.335nm-0.340nm,体积平均粒径(50%D)为1μm-40μm,最大粒径D max为74μm以下,并且在空气气流中进行差热分析时,在300℃以上1000℃以下的温度范围内具有至少两个放热峰。
上述现有技术提供的负极材料的结构和工艺复杂、成本高,并且处理过程中采用酸、碱等进行纯化处理,对环境不友好,更重要的是,现有技术中的负极材料中的单相石墨的倍率性能不足,无法满足实际需求。
发明内容
本发明的目的是为了克服现有技术存在的石墨负极材料的结构复杂、单相石墨倍率性能不足且制备工艺复杂、成本高的问题,提供一种煤基石墨负极材料及其制备方法与应用,该煤基石墨负极材料具有高的充放电容量、高的首次库伦效率和优异的倍率性能,并且其制备方法工艺简单、成本低。
为了实现上述目的,本发明一方面提供一种石墨负极材料,其特 征在于,所述石墨负极材料通过XRD获得的c轴方向的微晶尺寸L c和a轴方向的微晶尺寸L a满足以下条件:
30nm≤L c≤70nm  式(I);
50nm≤L a≤120nm  式(II);
所述石墨负极材料的石墨化度满足以下条件:
85≤石墨化度≤93  式(III)。
本发明第二方面提供石墨负极材料的制备方法,其特征在于,所述方法包括以下步骤:
(1)将煤进行粉碎,得到煤颗粒;
(2)将所述煤颗粒进行石墨化,得到所述石墨负极材料;
其中,所述煤满足以下条件:镜质组反射率≥2;挥发分≤10wt%;灰分≤10wt%;所述石墨化的条件包括:控制石墨化炉变压器的实际最大送电功率≥3,000kW,实际最大送电功率的持续送电时间为1-100h。
本发明第三方面提供一种由上述制备方法制得的石墨负极材料。
本发明第四方面提供上述石墨负极材料在锂离子电池、储能材料、机械部件和石墨电极中的至少一种中的应用。
通过上述技术方案,本发明提供的石墨负极材料及其制备方法与应用获得以下有益的效果:
(1)本发明所提供的石墨负极材料具有优异的电化学性能,特别地,能够在保持较高的充放电容量以及首次库伦效率的前提下能够显著提高包括该石墨负极材料的电池的倍率性能,从而实现三者最好 的平衡,具体的,该石墨负极材料的充放电容量≥330mAh/g,首次库伦效率≥90%,2C/0.2C容量保持率≥35%。
(2)本发明所提供的石墨负极材料的I110/I004≥0.30,表明该石墨负极材料的各项同性度高,进一步地,该石墨负极材料的晶粒尺寸小,由此使得该石墨负极材料的倍率性能得以进一步改善。
(3)制备本发明所述的石墨负极材料的成本低,工艺简单易实现;原料丰富易得。
附图说明
图1是实施例1所提供的石墨负极材料的TEM照片。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种石墨负极材料,其特征在于,所述石墨负极材料通过XRD获得的c轴方向的微晶尺寸L c和a轴方向的微晶尺寸L a满足以下条件:
30nm≤L c≤70nm  式(I);
50nm≤L a≤120nm  式(II);
所述石墨负极材料的石墨化度满足以下条件:85≤石墨化度≤93式(III)。
本发明中,满足如上所述条件的石墨负极材料具有各项同性度高、晶粒尺寸小的特点,由此使得锂离子嵌入脱出的通道多并且路程短,在保持较高的充放电容量以及首次库伦效率的前提下能够显著提高包括该石墨负极材料的电池的倍率性能,从而实现三者最好的平衡。
本发明中,所述石墨负极材料为煤基石墨负极材料。
本发明中,石墨负极材料的石墨化度G按照以下公式计算得到:
G=(0.344-d 002)/(0.344-0.3354)计算得到,其中的d 002值通过布拉格方程计算得到。
本发明中,如图1的TEM所示,所述石墨负极材料呈均相。
进一步地,当30nm≤L c≤50nm时,石墨负极材料的倍率性能、充放电容量以及首次库伦效率得到进一步改善。
进一步地,当55nm≤L a≤100nm时,石墨负极材料的倍率性能、充放电容量以及首次库伦效率得到进一步改善。
进一步地,当86≤石墨化度≤92时,石墨负极材料的倍率性能、充放电容量以及首次库伦效率得到进一步改善。
根据本发明,所述石墨负极材料通过XRD获得的(002)晶面的层间距d 002满足以下条件:
0.3350nm≤d 002≤0.3380nm  式(IV)。
根据本发明,当(002)晶面的层间距满足0.3360nm≤d 002≤0.3370m,石墨负极材料具有更为优异的综合性能。
根据本发明,所述石墨负极材料通过XRD获得的(110)晶面的峰强度I110与(004)晶面的峰强度I004满足以下条件:
I110/I004≥0.30  式(V)。
本发明中,满足如上所述条件的石墨负极材料的各项同性度进一步提高,由此能够使得该石墨负极材料的倍率性能得到进一步改善。
进一步地,当0.35≤I110/I004≤0.85时,该石墨负极材料具有更为优异的倍率性能。
根据本发明,所述石墨负极材料的灰分含量≤1000ppm。
本发明中,石墨负极材料的灰分含量采用GB/T3521方法测得。本发明所提供的石墨负极材料具有低的灰分含量,能够显著提高所述石墨负极材料整体的均一性。
进一步地,所述石墨负极材料的灰分含量≤500ppm。
本发明第二方面提供一种石墨负极材料的制备方法,其特征在于,所述方法包括以下步骤:
(1)将煤进行粉碎,得到煤颗粒;
(2)将所述煤颗粒进行石墨化,得到所述石墨负极材料;
其中,所述煤满足以下条件:镜质组反射率≥2;挥发分≤10wt%;灰分≤10wt%;所述石墨化的条件包括:控制石墨化炉变压器的实际最大送电功率≥3,000kW,实际最大送电功率的持续送电时间为1-100h。
本发明中,所述石墨化设备可以本领域中工业上常用的石墨化设备,具体的,所述石墨化设备可以选自艾奇逊炉、箱式炉、内串炉、 立式石墨化炉和卧式石墨化炉中的至少一种。
本发明以煤为原料开发低成本并且具有独特微观纳米结构的石墨负极材料,按照本发明所提供的方法制备石墨负极材料时,能够实现煤的高附加值利用和清洁高效转化。
本发明中,选用满足上述条件的煤作为原料,用于制备石墨负极材料时,能够使得制得的石墨负极材料具有适中的石墨化度,并且具有晶粒尺寸小、各项同性度高的特点,由此能够显著提高该石墨负极材料的倍率性能、充放电容量以及首次库伦效率。
本发明中,所述煤的镜质组反射率采用国标GB/T 6948方法测得、煤的挥发分含量以及灰分含量均采用国标GB/T30732方法测得。
根据本发明,所述煤满足以下条件:镜质组反射率≥2.35;挥发分≤10wt%;灰分≤6wt%。
本发明中,可以采用本领域中常规的设备,例如气流粉碎机对煤进行粉碎。
根据本发明,步骤(1)中,所述煤颗粒的粒径D 50为1-100μm,优选为5-30μm。
根据本发明,所述方法还包括对所述煤颗粒进行整形和/或分级的步骤。
根据本发明,所述步骤(2)包括以下步骤:
(2-1)将所述煤颗粒进行碳化,得到中间体;
(2-2)将所述中间体进行石墨化,得到所述石墨负极材料。
本发明中,在石墨化处理前,对煤颗粒进行碳化,能够将煤颗粒 中的挥发分或灰分去除,避免石墨化过程中由于该挥发分或是灰分的逸出而产生团聚,同时能提高产品的石墨化度,进而使得包括该石墨负极材料的电池的充放电容量以及首次库伦效率更高,从而实现容量、效率和倍率三者最好的平衡。
根据本发明,步骤(2-1)中,所述碳化的条件包括:400-1800℃,碳化时间为1-10h。
本发明中,所述碳化在惰性气氛的存在下进行。
根据本发明,步骤(2)中,所述石墨化的条件包括:控制石墨化设备中,变压器的实际最大送电功率为5,000-50,000kW,实际最大送电功率的持续送电时间为5-50h。
进一步地,所述石墨化的条件包括:控制石墨化设备中,变压器的实际最大送电功率为10,000-30,000kW,实际最大送电功率的持续送电时间为8-40h。
本发明第三方面提供一种上述制备方法制得的石墨负极材料。
本发明第四方面提供上述石墨负极材料在锂离子电池、储能材料、机械部件和石墨电极中的至少一种中的应用。
本发明中,包含上述石墨负极材料的锂离子电池具有优异的电化学性能,具体的,包含上述石墨负极材料的锂离子电池的充放电容量≥330mAh/g,首次库伦效率≥90%,2C/0.2C容量保持率≥35%。
以下将通过实施例对本发明进行详细描述。
(1)XRD分析
石墨负极材料的XRD分析:
层间距d 002、L a、L c和I110/I004均通过德国布鲁克AXS公司(Bruker AXS GmbH)的D8Advance型X射线衍射仪进行测试分析获得,XRD通过硅内标法进行校准,d 002值通过布拉格公式
Figure PCTCN2021133965-appb-000001
Figure PCTCN2021133965-appb-000002
计算得到,L a、L c通过谢乐公式计算得到;
(2)粒度(D 10、D 50、D 90)
D50通过英国马尔文仪器有限公司(Malvern Instruments Ltd.)的Malvern Mastersizer 2000激光粒度仪进行测试获得;
(3)石墨负极材料的形貌采用透射电子显微镜(TEM)进行表征:
TEM图通过JEOL公司的ARM200F型透射电子显微镜进行测试获得。
(4)电池性能
电池充放电容量和首次库伦效率通过武汉市蓝电电子股份有限公司的电池测试系统CT2001A电池测试仪进行充放电测试,电流0.1C(1C=350mAh/g),电压0-3V。
(5)煤的镜质组反射率采用国标GB/T 6948方法测得、煤的挥发分含量以及灰分含量均采用国标GB/T30732方法测得。
实施例1
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过粉碎机粉碎,得到D 50=10μm的粉末并分级后,得到煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW,实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品A1。
石墨负极材料的TEM照片如图1所示,从图1可以看出产品A1的各项同性度高,晶粒尺寸小。
实施例2
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW,实际最大送电功率的持续送电时间为35h;得到石墨负极材料,过筛,得到产品A2。
实施例3
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW,实际最大送电功率的持续送电时间为10h;得到石墨负极材料,过筛,得到产品A3。
实施例4
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为10,000kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品A4。
实施例5
(1)将煤(镜质组反射率2.269;挥发分6.83wt%;灰分9.3wt%)通过粉碎机粉碎,得到D 50=10μm的粉末并分级后,得到煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品A5。
实施例6
(1)将煤(镜质组反射率2.269;挥发分6.83wt%;灰分9.3wt%)通过粉碎机粉碎,得到D 50=10μm的粉末并分级后,得到煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为5,000kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品A6。
实施例7
(1)将煤(镜质组反射率2.269;挥发分6.83wt%;灰分9.3wt%)通过粉碎机粉碎,得到D 50=10μm的粉末并分级后,得到煤颗粒;
(2-1)将煤颗粒在惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW、实际最大送电功率处持续送电时间为5h;得到石墨负极材料,过筛,得到产品A7。
实施例8
按照实施例1的方法制备石墨负极材料,不同的是:步骤(2-1)中,碳化的条件与实施例1不同。具体的,碳化温度为400℃,时间为0.5h。
实施例9
按照实施例1的方法制备石墨负极材料,不同的是:步骤(2-1)中,碳化的条件与实施例1不同。具体的,碳化温度为2200℃,时间为15h。
实施例10
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2)将煤颗粒在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品A10。
对比例1
(1)将煤(镜质组反射率1.947;挥发分12.5wt%;灰分9.4wt%)通过气流粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2-1)将上述煤颗粒惰性气体下1000℃进行碳化2小时,得到中间体;
(2-2)将上述中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为22,000kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品D1。
对比例2
(1)将煤(镜质组反射率2.445;挥发分7.7wt%;灰分2.6wt%)通过气流粉碎机粉碎,得到D 50=10μm的煤颗粒;
(2-1)将上述煤颗粒在惰性气体下1000℃进行炭化2小时,得到中间体;
(2-2)将上述中间体在石墨化炉中进行石墨化,石墨化炉中,变压器的实际最大送电功率为600kW、实际最大送电功率的持续送电时间为20h;得到石墨负极材料,过筛,得到产品D2。
对比例3
按照实施例1的方法制备负极材料,不同的是:采用沥青焦代替煤。制得负极材料D3。
对实施例和对比例制得的石墨负极材料进行表征,结果如表1所示。
表1
实施例 灰分/ppm 石墨化度 d 002/nm L c/nm L a/nm I110/I004
实施例1 257 91.4% 0.33614 44.6 93.7 0.806
实施例2 183 91.5% 0.33613 41.8 94.1 0.801
实施例3 223 90.3% 0.33623 44.8 92.3 0.497
实施例4 268 90.0% 0.33626 43.4 95.7 0.487
实施例5 487 88.8% 0.33636 31 103 0.357
实施例6 326 86.3% 0.33658 34.1 68 0.455
实施例7 294 87.9% 0.33644 34.1 73.6 0.412
实施例8 265 89.9% 0.33627 40.2 82.2 0.467
实施例9 197 89.2% 0.33633 34.9 73 0.481
实施例10 287 89.1% 0.33634 34.4 63.2 0.467
对比例1 398 80.2% 0.33710 17.8 41.8 0.975
对比例2 746 82.6% 0.33690 29.8 62.6 0.418
对比例3 212 93.8% 0.33593 61.5 158.9 0.285
测试例
将实施例和对比例制得的负极材料与导电炭黑Super P和粘结剂聚偏二氟乙烯(PVDF)以按92:3:5的质量比混合均匀,加入溶剂N-甲基吡咯烷酮(NMP),搅拌成均匀的负极浆料,用刮刀将该负极浆料均匀地涂布到铝箔上,干燥,得到负极片,裁片后,转移到MBraun2000手套箱中(Ar气氛,H 2O和O 2浓度小于0.1×10 -6体积%),以金属锂片作为参比电极,组装成扣式电池。对扣式电池的电化学性能进行测试,测试结果如表2所示。
表2
  0.1C充放电容量/mAh/g 首次库伦效率/% 容量保持率@2C/0.2C/%
实施例1 353 93.9 49.3
实施例2 354 94.4 47.1
实施例3 347 94.2 47.2
实施例4 345 94 46.9
实施例5 344 91.1 35.7
实施例6 332 93.4 48.7
实施例7 342 93.9 45.3
实施例8 347 93.5 42.6
实施例9 339 94.2 42.6
实施例10 345 93.9 42
对比例1 293 89.3 55
对比例2 336 92.9 39.8
对比例3 353 94.4 12
通过表1以及表2的结果可以看出,采用本发明实施例1-10制 得煤基负极材料的电池的充放电容量以及首次库伦效率更好,能够实现电池充放电容量、首次库伦效率以及倍率性能三者最好的平衡。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种石墨负极材料,其特征在于,所述石墨负极材料通过XRD获得的c轴方向的微晶尺寸L c和a轴方向的微晶尺寸L a满足以下条件:
    30nm≤L c≤70nm式(I);
    50nm≤L a≤120nm式(II);
    所述石墨负极材料的石墨化度满足以下条件:85≤石墨化度≤93式(III)。
  2. 根据权利要求1所述的石墨负极材料,其中,30nm≤L c≤50nm。
  3. 根据权利要求1或2所述的石墨负极材料,其中,55nm≤L a≤100nm。
  4. 根据权利要求1-3中任意一项所述的石墨负极材料,其中,86≤石墨化度≤92。
  5. 根据权利要求1-4中任意一项所述的石墨负极材料,其中,所述石墨负极材料通过XRD获得的(002)晶面的层间距d 002满足以下条件:
    0.3350nm≤d 002≤0.3380nm式(IV);
    优选地,0.3360nm≤d 002≤0.3370nm。
  6. 根据权利要求1-5中任意一项所述的石墨负极材料,其中,所述石墨负极材料通过XRD获得的(110)晶面的峰强度I110与(004)晶面的峰强度I004满足以下条件:
    I110/I004≥0.30式(V);
    优选地,0.35≤I110/I004≤0.85。
  7. 根据权利要求1-6中任意一项所述的石墨负极材料,其中,所述石墨负极材料的灰分含量≤1000ppm,优选≤500ppm。
  8. 一种石墨负极材料的制备方法,其特征在于,所述方法包括以下步骤:
    (1)将煤进行粉碎,得到煤颗粒;
    (2)将煤颗粒进行石墨化,得到所述石墨负极材料;
    其中,所述煤满足以下条件:镜质组反射率≥2;挥发分≤10wt%;灰分≤10wt%;所述石墨化的条件包括:控制石墨化设备中,变压器的实际最大送电功率≥3,000kW,实际最大送电功率的持续送电时间为1-100h。
  9. 根据权利要求8所述的制备方法,其中,所述煤满足以下条件:镜质组反射率≥2.35;挥发分≤10wt%;灰分≤6wt%。
  10. 根据权利要求8或9所述的制备方法,其中,步骤(1)中,所述煤颗粒的粒径D 50为1-100μm,优选为5-30μm;
    优选地,所述方法还包括对所述煤颗粒进行整形和/或分级的步骤。
  11. 根据权利要求8-10中任意一项所述的制备方法,其中,所述步骤(2)包括以下步骤:
    (2-1)将所述煤颗粒进行碳化,得到中间体;
    (2-2)将所述中间体进行石墨化,得到所述石墨负极材料。
  12. 根据权利要求11所述的制备方法,其中,步骤(2-1)中,所述碳化的条件包括:碳化温度为400-1800℃,碳化时间为1-10h。
  13. 根据权利要求8-12中任意一项所述的制备方法,其中,步骤(2)中,所述石墨化的条件包括:控制石墨化设备中,变压器的实际最大送电功率为5,000-50,000kW,实际最大送电功率的持续送电时间为5-50h;
    优选地,所述石墨化的条件包括:控制石墨化设备中,变压器的实际最大送电功率为10,000-30,000kW,实际最大送电功率的持续送电时间为8-40h。
  14. 由权利要求8-13中任意一项所述的制备方法制得的石墨负 极材料。
  15. 权利要求1-7和14中任意一项所述的石墨负极材料在锂离子电池、储能材料、机械部件和石墨电极中的至少一种中的应用。
PCT/CN2021/133965 2021-06-10 2021-11-29 石墨负极材料及其制备方法和应用 WO2022257372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237042452A KR20240005923A (ko) 2021-06-10 2021-11-29 흑연 음극재, 이의 제조 방법 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110646868.9A CN115472827A (zh) 2021-06-10 2021-06-10 煤基石墨负极材料及其制备方法和应用
CN202110646868.9 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022257372A1 true WO2022257372A1 (zh) 2022-12-15

Family

ID=84364772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133965 WO2022257372A1 (zh) 2021-06-10 2021-11-29 石墨负极材料及其制备方法和应用

Country Status (3)

Country Link
KR (1) KR20240005923A (zh)
CN (1) CN115472827A (zh)
WO (1) WO2022257372A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314612A (zh) * 2023-05-11 2023-06-23 中创新航科技集团股份有限公司 一种负极极片及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296814A (ja) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd 二次電池電極用黒鉛質材料およびその製造法
CN103053054A (zh) * 2010-08-05 2013-04-17 昭和电工株式会社 锂二次电池用石墨系负极活性物质
CN106784767A (zh) * 2016-12-30 2017-05-31 神华集团有限责任公司 一种同炉制备锂电池负极用石墨和碳化硅的方法
CN111777414A (zh) * 2020-06-24 2020-10-16 山西沁新能源集团股份有限公司 碳负极材料前驱体及其制备方法和应用、碳负极材料及其制备方法和应用
CN112794319A (zh) * 2020-12-07 2021-05-14 铜仁学院 一种焦煤基高倍率石墨负极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296814A (ja) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd 二次電池電極用黒鉛質材料およびその製造法
CN103053054A (zh) * 2010-08-05 2013-04-17 昭和电工株式会社 锂二次电池用石墨系负极活性物质
CN106784767A (zh) * 2016-12-30 2017-05-31 神华集团有限责任公司 一种同炉制备锂电池负极用石墨和碳化硅的方法
CN111777414A (zh) * 2020-06-24 2020-10-16 山西沁新能源集团股份有限公司 碳负极材料前驱体及其制备方法和应用、碳负极材料及其制备方法和应用
CN112794319A (zh) * 2020-12-07 2021-05-14 铜仁学院 一种焦煤基高倍率石墨负极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314612A (zh) * 2023-05-11 2023-06-23 中创新航科技集团股份有限公司 一种负极极片及其应用
CN116314612B (zh) * 2023-05-11 2023-08-18 中创新航科技集团股份有限公司 一种负极极片及其应用

Also Published As

Publication number Publication date
KR20240005923A (ko) 2024-01-12
CN115472827A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6683213B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020238658A1 (zh) 一种硅氧化物/碳复合负极材料及其制备方法和锂离子电池
WO2016074479A1 (zh) 一种热解无定型碳材料及其制备方法和用途
JP6294271B2 (ja) 炭素‐Si複合体及びその製造方法
WO2017070988A1 (zh) 一种钠离子二次电池负极材料及其制备方法和用途
EP2602851B1 (en) Method for producing an anode active material for lithium secondary battery
WO2021108983A1 (zh) 二次电池、装置、人造石墨及制备方法
JP7209089B2 (ja) リチウム二次電池用負極活物質、その製造方法、およびこれを含むリチウム二次電池
JP6256346B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
EP2602850B1 (en) Method of producing a graphite active anode material for a lithium secondary battery
US20220246924A1 (en) Silicon-oxygen particle for electrode material, preparation method therefor and use thereof
JP6069622B2 (ja) 炭素‐シリコン複合体及びその製造方法
WO2021108981A1 (zh) 二次电池、装置、人造石墨及制备方法
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
CN114447305B (zh) 一种多元碳基快充负极复合材料及其制备方法
JP2016025079A (ja) 炭素‐シリコン複合体の製造方法
KR20210068497A (ko) 리튬 이온 배터리 음극 활성 재료, 리튬 이온 배터리 음극, 리튬 이온 배터리, 배터리 팩 및 배터리 동력차
WO2022257373A1 (zh) 负极材料及其制备方法与应用、负极片与应用
JP2011060467A (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP6584975B2 (ja) リチウムイオン二次電池負極用炭素材料、リチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法
WO2022257372A1 (zh) 石墨负极材料及其制备方法和应用
KR20140117013A (ko) 리튬이온이차전지용 음극 조성물
JP2023512011A (ja) 負極活物質、その作製方法、二次電池、二次電池を含む電池モジュール、電池パック及び装置
WO2020116324A1 (ja) 全固体リチウムイオン電池および負極合剤
WO2021005689A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18567251

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237042452

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042452

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2023575929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE