WO2023138417A1 - 一种高能量密度钠离子电池 - Google Patents

一种高能量密度钠离子电池 Download PDF

Info

Publication number
WO2023138417A1
WO2023138417A1 PCT/CN2023/071128 CN2023071128W WO2023138417A1 WO 2023138417 A1 WO2023138417 A1 WO 2023138417A1 CN 2023071128 W CN2023071128 W CN 2023071128W WO 2023138417 A1 WO2023138417 A1 WO 2023138417A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon
ion battery
hard carbon
sodium
Prior art date
Application number
PCT/CN2023/071128
Other languages
English (en)
French (fr)
Inventor
杨全红
李琦
张俊
贾怡然
张一波
杨涵
陶莹
Original Assignee
玖贰伍碳源科技(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玖贰伍碳源科技(天津)有限公司 filed Critical 玖贰伍碳源科技(天津)有限公司
Publication of WO2023138417A1 publication Critical patent/WO2023138417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/372Coating; Grafting; Microencapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of sodium ion batteries, in particular to a high energy density sodium ion battery.
  • Electrochemical energy storage systems represented by lithium-ion batteries have become the darling of the energy storage field due to their high energy density and efficiency.
  • the limited and uneven distribution of lithium reserves makes lithium-ion batteries more expensive, and frequent charging and discharging shortens their lifespan, resulting in high investment costs in large-scale energy storage fields such as base station energy storage, making it difficult to meet the needs of future large-scale applications.
  • graphite Analogous to lithium-ion batteries, graphite has become an ideal negative electrode for lithium-ion batteries due to its low operating voltage and high reversible specific capacity and directly promotes its commercialization process.
  • the intermediate product of sodium ions in the graphite anode is thermodynamically unstable, making graphite unusable in sodium-ion batteries.
  • the lack of suitable carbon anode materials is the key problem for sodium-ion batteries that have not yet achieved industrial breakthroughs.
  • hard carbon materials can produce electrochemical behavior similar to graphite in lithium-ion batteries in sodium-ion batteries, and have the advantages of abundant resources and simple preparation. Therefore, hard carbon materials are the most promising anode materials for promoting the industrialization of sodium ions.
  • a high-energy-density sodium-ion battery which uses a hard carbon material with a pore size of less than 0.4nm and rich nanopores inside as the negative electrode to ensure desolvation before the first electrolyte is decomposed to form a solid electrolyte membrane (SEI), so as to achieve the purpose of screening the electrolyte solvent and sodium ions; the rich internal nanopores can ensure sufficient reversible storage sites for sodium ions in it.
  • SEI solid electrolyte membrane
  • One of the objectives of the present invention is to address the deficiencies of the prior art and provide a high-energy-density sodium-ion battery, which uses a hard carbon material with a pore size of less than 0.4 nm and rich nanopores inside as the negative electrode to ensure desolvation before the first circle of electrolyte is decomposed to form SEI, so as to achieve the purpose of screening the electrolyte solvent and sodium ions; the rich nanopores inside can ensure sufficient reversible storage sites for sodium ions in it.
  • the hard carbon material Since the hard carbon material has a suitable pore structure and fully retains the abundant internal nanopores, it can solve the technical bottlenecks of the first coulombic efficiency of the hard carbon negative electrode material, insufficient capacity of the low-potential platform, and low energy density of the sodium-ion battery, and promote the commercialization of the sodium-ion battery.
  • a high-energy-density sodium-ion battery includes a positive electrode, a negative electrode, and an electrolyte.
  • the active material of the negative electrode is a hard carbon material with a pore size less than 0.4nm and rich nanopores inside. Since the diameter of the smallest ethylene carbonate molecule in the electrolyte solvent is about 0.41nm, the small-sized orifice of the hard carbon anode material can inhibit the diffusion of organic solvent molecules in the electrolyte into the hard carbon channel, so as to fully avoid irreversible reactions such as electrolyte decomposition, and improve the first Coulombic efficiency of the hard carbon anode; at the same time, the orifice allows smaller sodium ions (0.24nm) to enter, ensuring that sodium clusters reversibly aggregate into the hard carbon nanochannel, thereby increasing the low potential platform capacity of the hard carbon anode material .
  • the specific surface area of the hard carbon material measured by nitrogen at 77K is close to 0m2 /g, so as to fully reduce the active sites where the electrolyte solvent molecules undergo reductive decomposition, thereby improving the first coulombic efficiency of the hard carbon negative electrode. Since the minimum pore size that can be detected by nitrogen molecules is about 0.4nm, the hard carbon material with a specific surface area of 0m 2 /g meets the above requirements for pore size, so as to fully reduce the active sites for reduction and decomposition of electrolyte solvent molecules and improve the first Coulombic efficiency of hard carbon negative electrode materials.
  • the specific surface area of the hard carbon material measured by small-angle X-ray scattering is 300-3000m 2 /g, and the average pore diameter is 1-4nm.
  • the preparation method of the hard carbon material at least includes the following steps:
  • the porous carbon material or its precursor is placed in a tube furnace, and a protective gas is introduced to heat up to the final temperature at a certain heating rate;
  • the carbon-containing gas source is introduced, and the carbon-element gas source is cracked into small carbon-containing molecules, diffused into hard carbon and adsorbed on the inner wall of the channel;
  • the gas source containing carbon elements is cut off, and the temperature is lowered at a certain cooling rate.
  • the carbon-containing small molecules undergo a polymerization reaction and are preferentially deposited at the pores of the hard carbon material to reduce the pore size (blocking) of the hard carbon material.
  • the pore size is smaller than 0.4nm; and the reduced pores prevent the further diffusion and adsorption of the carbon-containing small molecules, thereby retaining sufficient nanopores inside the hard carbon material.
  • the method is simple to operate, and only one-step chemical vapor deposition is required to obtain a hard carbon anode material with a pore diameter that meets the requirements. Moreover, the preparation process is green and pollution-free, and is suitable for mass industrial production.
  • the method is universal, and the raw material can be general commercial porous carbon or carbon precursor, which has a wide range of sources and low cost.
  • reaction temperature of this method is low (less than 1200°C), and compared with the general preparation method of commercially available hard carbon negative electrode materials (carbonization temperature is higher than 1400°C), the temperature is lower and the cost is lower.
  • the specific capacity of the hard carbon negative electrode material prepared by this method is as high as 482mAh/g, which is the highest value of the current hard carbon negative electrode material.
  • the first Coulombic efficiency is as high as 80%, and it has excellent cycle performance and rate performance.
  • the electrochemical performance is better than that of commercially available hard carbon negative electrode materials.
  • the porous carbon material is at least one of microporous carbon, mesoporous carbon, macroporous carbon, and hierarchical pore carbon, and its specific surface area is 500-3000m2 /g, and the larger the specific surface area of the porous carbon material, the higher the capacity of the low-potential platform for preparing the hard carbon negative electrode material.
  • the precursor is at least one of pitch, petroleum coke, coconut shell, walnut shell, phenolic resin, sucrose, glucose, and graphene.
  • the selection of biomass precursors can usually increase the specific surface area of porous carbon materials, which is beneficial to increase the low-potential platform capacity of hard carbon anodes; in addition, the selection of renewable precursors with high carbon residue rate can reduce production costs.
  • the protective gas is at least one of argon, nitrogen and hydrogen. Choosing a reducing atmosphere such as hydrogen is beneficial to reduce the oxygen content of the hard carbon negative electrode material, and is conducive to improving the low potential platform capacity and rate performance of the hard carbon negative electrode material.
  • the flow rate of the protective gas is 10-100ml/min, the heating rate is 0.1-20°C/min; the final temperature is 700-1200°C. Reducing the flow rate and heating rate of the protective gas is beneficial to reduce production costs; choosing different final temperatures is due to the different cracking temperatures of different carbon-containing gas sources.
  • the carbon-containing gas source is at least one of methane, ethane, propane, ethylene, acetylene, propyne, benzene, toluene, carbon monoxide, and cyclohexane.
  • methane, ethane, propane, ethylene, acetylene, propyne, benzene, toluene, carbon monoxide, and cyclohexane is at least one of methane, ethane, propane, ethylene, acetylene, propyne, benzene, toluene, carbon monoxide, and cyclohexane.
  • Different carbon-containing gas sources will produce carbon-containing small molecules with different compositions and sizes during pyrolysis at the final temperature, and have different effects on the pore modification of hard carbon materials during deposition; in addition, choosing cheap carbon-containing gas sources is conducive to reducing the production cost of hard carbon negative electrode materials.
  • the flow rate of the carbon-containing gas source is 5-50ml/min. If the flow rate of the carbon-containing gas source is too small, the amount of deposition is insufficient, and the effect on the adjustment of the orifice size is not obvious; if the flow rate of the carbon-containing gas source is too large, excessive carbon deposition will be generated during deposition, and the low-potential platform capacity of the hard carbon negative electrode material will be reduced. Therefore, it is necessary to select an appropriate flow rate for different carbon-containing gas sources.
  • the duration of the constant temperature reaction is 0.1-10 h; the cooling rate is 0.1-20° C./min. If the constant temperature time is insufficient, the deposition amount is insufficient, and the effect on the adjustment of the orifice size is not obvious; if the constant temperature time is too long, excessive carbon deposition will be generated during deposition, and the low potential platform capacity of the hard carbon negative electrode material will be reduced. Therefore, it is necessary to select an appropriate constant temperature time for different carbon-containing gas sources.
  • the cooling rate is too fast, the deposition amount will be too large, and the modification effect on the orifice size will be uncontrollable; if the cooling rate is too slow, the production time of the hard carbon negative electrode material will be too long, and the production cost will be increased. Therefore, it is necessary to select an appropriate cooling rate for different carbon-containing gas sources.
  • the positive electrode active material may be at least one of transition metal layered oxides, sodium polyanion compounds, Prussian blue, Prussian white, and the like.
  • the negative electrode includes a negative electrode active material, a conductive agent and a binder, etc., wherein the negative electrode active material is the hard carbon material in the present invention;
  • the conductive agent can be at least one of SUPER-P, KS-6, conductive graphite, carbon nanotubes, graphene, carbon fiber VGCF, acetylene black, Ketjen black, etc.
  • the binder can be at least one of PVDF, CMC, SBR, PTFE, SA, PAA, PAN, etc.
  • the electrolyte includes organic solvents and sodium salts, etc., wherein the organic solvent can be at least one of EC/PC and DMC, DEC, EMC, EA, etc.; the sodium salt can be at least one of NaClO 4 , NaPF 6 , NaBF 4 , NaFSI, NaTFSI, etc.
  • the present invention selects a reasonable hard carbon negative electrode material, the pore size of which is less than 0.4nm and has abundant nanopores inside, which can solve the technical bottlenecks of low coulombic efficiency and insufficient capacity of the low potential platform for the first time of hard carbon negative electrode materials, and promote the commercialization process of sodium ion batteries.
  • FIG. 1 is a scanning electron microscope (SEM) image of the hard carbon negative electrode material in Example 1 of the present invention.
  • Fig. 2 is a transmission electron microscope (TEM) image of the hard carbon negative electrode material in Example 1 of the present invention.
  • Fig. 3 is a nitrogen (77K) adsorption-desorption curve of the hard carbon negative electrode material in Example 1 of the present invention.
  • FIG. 4 is a small-angle X-ray scattering curve in Example 1 of the present invention.
  • Fig. 5 is the first-cycle charge-discharge curve of the hard carbon negative electrode material in Example 1 of the present invention.
  • This embodiment provides a high-energy-density sodium-ion battery, including a positive electrode, a negative electrode, and an electrolyte, wherein the active material of the negative electrode is a hard carbon material with a pore size smaller than 0.4 nm and rich nanopores inside.
  • the preparation method of the hard carbon negative electrode material at least comprises the following steps:
  • the microporous activated carbon (the precursor is pitch, the specific surface area is 1313m 2 /g) into the tube furnace, the flow rate is 90ml/min protective gas argon, and the temperature is raised to the final temperature of 900°C at a heating rate of 5°C/min;
  • the methane gas was cut off, and the temperature was lowered to room temperature at a cooling rate of 5° C./min to obtain a hard carbon negative electrode material for a sodium ion battery.
  • the SEM image of the hard carbon negative electrode material for sodium-ion batteries provided in Example 1 is shown in Figure 1. It can be seen that the prepared negative-electrode material for sodium-ion batteries shows a typical fiber structure with a diameter of 10-20 ⁇ m.
  • the TEM image of the hard carbon anode material for sodium-ion batteries provided in Example 1 is shown in Figure 2. It can be seen that the carbon sheet of the anode material for sodium-ion batteries prepared presents a state of short-range order and long-range disorder, and there are a large number of micropores. Scattered diffraction rings are hazy, indicating that the material has broken graphitic-like crystallites.
  • the nitrogen (77K) adsorption-desorption curve of the hard carbon negative electrode material for sodium ion batteries provided in Example 1 is shown in Figure 3. It can be seen that the pore structure of the prepared negative electrode material for sodium ion batteries cannot be detected by nitrogen, and the specific surface area is about 0m 2 /g. It shows that the prepared sodium-ion battery negative electrode material has pores less than 0.4nm.
  • the small-angle X-ray scattering curve of the hard carbon anode material for sodium-ion batteries provided in Example 1 is shown in Figure 4, and the specific surface area is 1298m 2 /g, indicating that it has abundant nanopores inside.
  • the first-cycle charge-discharge curve of the hard carbon negative electrode material for sodium-ion batteries provided in Example 1 is shown in Figure 5. It can be seen that the prepared hard carbon negative electrode material for sodium-ion batteries has a first-time Coulombic efficiency as high as 77%, and a reversible specific capacity of up to 328mAh/g, wherein the specific capacity of the low-potential platform is 241mAh/g.
  • methane gas is cut off after constant temperature reaction for 0.5 h; the rest is the same as that of Example 1, and will not be repeated here.
  • methane gas is cut off after constant temperature reaction for 5 hours; the rest is the same as that of Example 1, and will not be repeated here.
  • the microporous activated carbon YP80 (the precursor is coconut shell, and the specific surface area is 2538m2 /g) is put into a tube furnace, and after constant temperature reaction for 10 hours, the methane gas is cut off; the rest is the same as in Example 1, and will not be repeated here.
  • the ordered mesoporous carbon CMK-3 (the precursor is sucrose, and the specific surface area is 1283m 2 /g) is put into a tube furnace, and after constant temperature reaction for 10 hours, the methane gas is cut off; the rest is the same as in Example 1, and will not be repeated here.
  • the microporous activated carbon CEP21KSN (the precursor is petroleum coke, and the specific surface area is 2360m 2 /g) is put into a tube furnace, and after a constant temperature reaction for 4 hours, the methane gas is cut off; the rest is the same as in Example 1, and will not be repeated here.
  • the activated carbon YP50 (the precursor is coconut shell and the specific surface area is 1882m 2 /g) with hierarchical pores is put into a tube furnace, and after constant temperature reaction for 4 hours, the methane gas is cut off; the rest is the same as in Example 1, and will not be repeated here.
  • the microporous activated carbon CEP21KSN (the precursor is petroleum coke, and the specific surface area is 2360m 2 /g) is put into a tube furnace, and after a constant temperature reaction for 4 hours, the methane gas is cut off.
  • the protective gas is a mixture of hydrogen and argon before the final temperature, and is argon after reaching the final temperature; the rest is the same as in Example 1, and will not be repeated here.
  • the final temperature is 1000° C.; the rest is the same as that of Example 1, and will not be repeated here.
  • the flow rate of the protective gas is 50ml/min, and under the final temperature condition, the methane gas with a flow rate of 50ml/min is introduced; the rest are the same as in Example 1, and will not be repeated here.
  • the heating rate is 20° C./min; the rest is the same as that of Example 1, and will not be repeated here.
  • the microporous activated carbon CEP21KSN (the precursor is petroleum coke, and the specific surface area is 2360m2 /g) is put into a tube furnace, and after a constant temperature reaction for 4 hours, the methane gas is cut off.
  • the carbon-containing gas source is benzene, and the final temperature is 750 ° C; the rest is the same as in Example 1, and will not be repeated here.
  • the microporous activated carbon CEP21KSN (the precursor is petroleum coke, and the specific surface area is 2360m2 /g) is put into a tube furnace, and after a constant temperature reaction for 4 hours, the methane gas is cut off, and the cooling rate is 10°C/min; the rest is the same as in Example 1, and will not be repeated here.
  • This embodiment provides a high-energy-density sodium-ion battery, including a positive electrode, a negative electrode, and an electrolyte, wherein the active material of the negative electrode is a hard carbon material with a pore size smaller than 0.4 nm and rich nanopores inside.
  • the preparation method of the hard carbon negative electrode material at least comprises the following steps:
  • the macroporous carbon is put into the tube furnace, the flow rate is 30ml/min protective gas hydrogen, and the temperature is raised to a final temperature of 850°C at a heating rate of 3°C/min;
  • the ethane gas was cut off, and the temperature was lowered to room temperature at a cooling rate of 3° C./min to obtain a hard carbon negative electrode material for a sodium ion battery.
  • This embodiment provides a high-energy-density sodium-ion battery, including a positive electrode, a negative electrode, and an electrolyte, wherein the active material of the negative electrode is a hard carbon material with a pore size smaller than 0.4 nm and rich nanopores inside.
  • the preparation method of the hard carbon negative electrode material at least comprises the following steps:
  • the first step put the layered porous carbon into the tube furnace, feed in the protective gas nitrogen with a flow rate of 65ml/min, and raise the temperature to a final temperature of 1050°C at a heating rate of 7°C/min;
  • a propane gas with a flow rate of 40ml/min is introduced to carry out chemical vapor deposition
  • the propane gas was cut off, and the temperature was lowered to room temperature at a cooling rate of 7° C./min to obtain a hard carbon negative electrode material for a sodium ion battery.
  • This embodiment provides a high-energy-density sodium-ion battery, including a positive electrode, a negative electrode, and an electrolyte, wherein the active material of the negative electrode is a hard carbon material with a pore size smaller than 0.4 nm and rich nanopores inside.
  • the preparation method of the hard carbon negative electrode material at least comprises the following steps:
  • the layered porous carbon In the first step, put the layered porous carbon into the tube furnace, pass in the protective gas nitrogen with a flow rate of 35ml/min, and raise the temperature to a final temperature of 1150°C at a heating rate of 4°C/min;
  • the cyclohexane gas was cut off, and the temperature was lowered to room temperature at a cooling rate of 4° C./min to obtain a hard carbon negative electrode material for a sodium ion battery.
  • the protective gas argon with a flow rate of 100 ml/min and the methane gas with a flow rate of 0 ml/min are introduced, and the rest are the same as those in Example 1, which will not be repeated here.
  • the protective gas argon with a flow rate of 100 ml/min and the methane gas with a flow rate of 0 ml/min are introduced, and the rest are the same as those in Example 1, which will not be repeated here.
  • the protective gas argon with a flow rate of 100 ml/min and the methane gas with a flow rate of 0 ml/min are introduced, and the rest are the same as those in Example 1, which will not be repeated here.
  • the protective gas argon with a flow rate of 100 ml/min and the methane gas with a flow rate of 0 ml/min are introduced, and the rest are the same as those in Example 1, which will not be repeated here.
  • the protective gas argon with a flow rate of 100 ml/min and the methane gas with a flow rate of 0 ml/min are introduced, and the rest are the same as those in Example 1, which will not be repeated here.
  • the negative electrode material is commercially available hard carbon.
  • the negative electrode conductive additive is Super-P
  • the negative electrode binder is PVDF and the mass ratio of the active material to the conductive additive and the binder is 8:1:1
  • the negative electrode current collector is copper foil.
  • the electrolyte is NaClO 4
  • the solvent is EC and DEC with a mass ratio of 1:1
  • the positive electrode is a sodium sheet.
  • the electrochemical performance test is carried out on the batteries in Examples 1-13 and Comparative Examples 1-6, and the first Coulombic efficiency and mass specific capacity of the electrode composite are tested. The obtained results are shown in Table 1.
  • Table 1 Test results of Examples 1-13 and Comparative Examples 1-6.
  • the electrochemical performance of the hard carbon negative electrode can be further optimized by adjusting conditions such as precursor, protective atmosphere, carbon-containing gas source, porous carbon type, flow rate of protective atmosphere and carbon-containing gas source, final temperature, constant temperature time, and heating and cooling rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于钠离子电池技术领域,尤其涉及一种高能量密度钠离子电池,包括正极、负极、电解液,所述负极的活性物质为孔口尺寸小于0.4nm且内部具有纳米孔道的硬碳材料。相对于现有技术,本发明通过选择合理的硬碳负极,该负极的孔口尺寸在0.4nm以下,并且充分保留内部丰富的纳米孔道,可以解决硬碳负极材料首次库伦效率低和低电位平台容量不足的技术瓶颈,推进钠离子电池的商业化进程。

Description

一种高能量密度钠离子电池 技术领域
本发明属于钠离子电池技术领域,尤其涉及一种高能量密度钠离子电池。
背景技术
随着电动车产业以及可再生能源在世界范围内的快速发展,大规模的能源储存技术已经成为制约其可持续发展的关键,也是未来解决风能及太阳能等可再生能源不连续性与能源需求连续性矛盾的主要途径。以锂离子电池为代表的电化学储能系统因能量密度和效率高等优势,成为储能领域的宠儿。然而锂的储量有限且分布不均使锂离子电池成本较高,而且频繁充放电使其寿命缩减,导致在基站式储能等大规模储能领域中投资成本居高不下,难以满足未来规模化应用需求。与锂同族的碱金属元素钠,具有与锂相似的性质,并且储量丰富、成本较低。另外,钠与铝之间不发生合金化作用,故可取代铜箔做负极的集流体,进一步降低了电池成本,因此以钠离子为电荷载体的钠离子电池在大规模储能系统中具有更大的应用潜力。
类比锂离子电池,石墨由于具有低工作电压和高可逆比容量,成为了锂离子电池的理想负极并直接促进了其商业化进程。然而钠离子在石墨负极中的中间产物却热力学不稳定,使得石墨在钠离子电池中不能应用,缺少合适的碳负极材料是钠离子电池至今仍未实现产业化突破的关键问题。幸运的是,硬碳材料在钠离子电池中可以产生类似石墨在锂离子电池中的电化学行为,并具有资源丰富、制备简单等优点,因此硬碳是最有希望推动钠离子产业化的负极材料。然而,自2000年对硬碳负极的开创性工作之后,研发中的硬碳材料大多只表现出较低的初始库仑效率(低于50%),以及低电位平台容量不足(低于200mAh/g)导致钠离子电池表现出较低的能量密度,这是限制钠离子电池硬碳负极实际应 用发展的两个主要挑战。由于尚不清晰的硬碳电极/电解液的界面研究,影响硬碳负极首次库伦效率的因素尚不明确;另外,对于钠离子在硬碳材料中的储存机理(尤其是低电位区间)尚存争议,致使提高硬碳负极的低电位平台容量存在技术瓶颈。寻找到硬碳中决定界面电化学和低电位平台容量的结构要素是解决以上挑战的关键。
有鉴于此,确有必要提供一种高能量密度钠离子电池,其通过使用孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料作为负极,以保证在首圈电解液分解形成固态电解质膜(SEI)之前,使之发生去溶剂化作用,达到筛分电解液溶剂和钠离子的目的;内部丰富的纳米孔道可以保证钠离子在其中有充分的可逆储存位点。通过对材料结构的合理设计可以解决硬碳负极首次库伦效率低和钠离子电池能量密度低的问题,推进钠离子电池的商业化进程。
发明内容
本发明的目的之一在于:针对现有技术的不足,提供一种高能量密度钠离子电池,其通过使用孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料作为负极,保证在首圈电解液分解形成SEI之前,使之发生去溶剂化作用,达到筛分电解液溶剂和钠离子的目的;内部丰富的纳米孔道可以保证钠离子在其中有充分的可逆储存位点。由于硬碳材料具有合适的孔口结构,并且充分保留内部丰富的纳米孔道,可以解决硬碳负极材料首次库伦效率低、低电位平台容量不足和钠离子电池能量密度低的技术瓶颈,推进钠离子电池的商业化进程。
为了达到上述目的,本发明采用如下技术方案:
一种高能量密度钠离子电池,包括正极、负极、电解液,所述负极的活性物质为孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料。由于电解液溶剂中尺寸最小的碳酸乙烯酯分子的直径约为0.41nm,该硬碳负极材料的小尺寸孔口可以抑制电解液中的有机溶剂分子扩散进入硬碳孔道内部,以充分避免电解液分解等不可逆反应,提高硬碳负极的首次库伦效率;同时该孔口允许较 小的钠离子(0.24nm)进入,保证钠团簇可逆聚集到硬碳的纳米孔道中,从而增加硬碳负极材料的低电位平台容量。
作为本发明高能量密度钠离子电池的一种改进,所述硬碳材料由氮气在77K下测试得到的比表面积接近0m 2/g,以充分减小电解液溶剂分子发生还原分解的活性位点,进而提高硬碳负极的首次库伦效率。由于氮气分子所能探测到的孔道最小尺寸约为0.4nm,所以比表面积为0m 2/g的硬碳材料满足以上对孔口尺寸的要求,以充分减小电解液溶剂分子发生还原分解的活性位点,提高硬碳负极材料的首次库伦效率。所述硬碳材料由小角度X射线散射测试得到的比表面积为300-3000m 2/g,平均孔径为1-4nm。
作为本发明高能量密度钠离子电池的一种改进,所述硬碳材料的制备方法至少包括以下步骤:
第一步,将多孔碳材料或其前驱体放入管式炉中,通入保护气体,以一定的升温速率升温至终温;
第二步,在终温条件下,通入含碳元素气源,碳元素气源裂解为含碳小分子,扩散进入硬碳并吸附于孔道内壁上;
第三步,恒温反应一段时间后,切断含碳元素气源,并以一定的降温速率进行降温,含碳小分子发生聚合反应,并且优先沉积在硬碳材料的孔口处,以减小硬碳材料的孔口尺寸(堵孔),通过控制反应条件,使得孔口尺寸小于0.4nm;并且减小的孔口阻止了含碳小分子的进一步扩散和吸附,进而保留了硬碳材料内部充分的纳米孔道。
该方法具有如下优点:
第一,该方法操作简单,只需要一步化学气相沉积即可得到孔口直径符合要求的硬碳负极材料,而且该制备工艺绿色无污染,适合大批量工业生产。
第二,该方法具有普适性,原材料可以是一般商业化多孔碳或者碳的前驱体,来源广泛,成本低廉。
第三,该方法反应温度低(小于1200℃),与市售硬碳负极材料的一般制备方法相比(碳化温度高于1400℃)温度更低,造价更加低廉。
第四,该方法制备的硬碳负极材料比容量高达482mAh/g,是目前硬碳负极材料的最高值,首次库伦效率高达80%,并具有优异的循环性能和倍率性能,电化学性能优于市售硬碳负极材料。
作为本发明高能量密度钠离子电池的一种改进,第一步中,所述多孔碳材料为微孔碳、介孔碳、大孔碳、层次孔碳中的至少一种,其比表面积为500-3000m 2/g,并且多孔碳材料比表面积越大,制备硬碳负极材料的低电位平台容量越高。
作为本发明高能量密度钠离子电池的一种改进,第一步中,所述前驱体为沥青、石油焦、椰壳、核桃壳、酚醛树脂、蔗糖、葡萄糖、石墨烯中的至少一种。选择生物质前驱体通常可以增加多孔碳材料的比表面积,有利于增加硬碳负极的低电位平台容量;另外,选择可再生、残碳率高的前驱体可以降低生产成本。
作为本发明高能量密度钠离子电池的一种改进,所述保护气体为氩气、氮气、氢气中的至少一种。选择氢气等具有还原性的气氛,有利于降低硬碳负极材料的氧含量,有利于提高硬碳负极材料的低电位平台容量和倍率性能。
作为本发明高能量密度钠离子电池的一种改进,第一步中,所述保护气体流量为10-100ml/min,所述升温速率为0.1-20℃/min;所述终温为700-1200℃。减少保护气体的流量和升温速率有利于降低生产成本;选择不同的终温是由于不同含碳元素气源的裂解温度不同。
作为本发明高能量密度钠离子电池的一种改进,第二步中,所述含碳元素气源为甲烷、乙烷、丙烷、乙烯、乙炔、丙炔、苯、甲苯、一氧化碳、环己烷中的至少一种。不同的含碳元素气源在终温裂解时会产生成分和尺寸不同的含碳小分子,在沉积时对硬碳材料的孔口修饰效果不同;另外,选择廉价的含碳 元素气源有利于降低硬碳负极材料的生产成本。
作为本发明高能量密度钠离子电池的一种改进,第二步中,所述含碳元素气源的流量为5-50ml/min。含碳元素气源的流量过小,沉积量不足,对孔口尺寸调节的效果不明显;含碳元素气源的流量过大,沉积时产生会产生过多的积碳,并且降低硬碳负极材料的低电位平台容量。因此,针对不同的含碳元素气源需要选择合适的流量。
作为本发明高能量密度钠离子电池的一种改进,第三步中,所述恒温反应的持续时间为0.1-10h;所述降温速率为0.1-20℃/min。恒温时间不足,沉积量不足,对孔口尺寸调节的效果不明显;恒温时间过长,沉积时会产生过多的积碳,并且降低硬碳负极材料的低电位平台容量。因此,针对不同的含碳元素气源需要选择合适的恒温时间。降温速率过快会造成沉积量过大,对孔口尺寸的修饰效果不可控;降温速率过慢,会造成硬碳负极材料的生产时间过长,增加生产成本。因此,针对不同的含碳元素气源需要选择合适的降温速率。
本发明中,正极活性物质可以是过渡金属层状氧化物、钠聚阴离子化合物、普鲁士蓝、普鲁士白等中的至少一种。
负极包括负极活性物质、导电剂和粘接剂等,其中负极活性物质是本发明中的硬碳材料;导电剂可以是SUPER-P、KS-6、导电石墨、碳纳米管、石墨烯、碳纤维VGCF、乙炔黑、科琴黑等中的至少一种;粘接剂可以是PVDF、CMC、SBR、PTFE、SA、PAA、PAN等中的至少一种。
电解液包括有机溶剂和钠盐等,其中有机溶剂可以是EC/PC和DMC、DEC、EMC、EA等中的至少一种;钠盐可以是NaClO 4、NaPF 6、NaBF 4、NaFSI、NaTFSI等中的至少一种。
相对于现有技术,本发明通过选择合理的硬碳负极材料,该负极材料的孔口尺寸小于0.4nm且内部具有丰富纳米孔道,可以解决硬碳负极材料首次库伦效率低和低电位平台容量不足的技术瓶颈,推进钠离子电池的商业化进程。
附图说明
下面结合附图和具体实施方式,对本发明及其有益技术效果进行详细说明。
图1为本发明实施例1中的硬碳负极材料的扫描电镜(SEM)图。
图2为本发明实施例1中的硬碳负极材料的透射电镜(TEM)图。
图3为本发明实施例1中的硬碳负极材料的氮气(77K)吸脱附曲线。
图4为本发明实施例1中的小角度X射线散射曲线。
图5为本发明实施例1中的硬碳负极材料的首圈充放电曲线。
具体实施方式
以下以具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此。
实施例1
本实施例提供了一种高能量密度钠离子电池,包括正极、负极、电解液,其中,负极的活性物质为孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料。
该硬碳负极材料的制备方法至少包括以下步骤:
第一步,将微孔活性碳(前驱体是沥青,比表面积是1313m 2/g)放入管式炉中,通入流量为90ml/min保护气体氩气,以5℃/min的升温速率升温至终温900℃;
第二步,在900℃终温条件下,通入流量为10ml/min的甲烷气体,进行化学气相沉积;
第三步,恒温反应1h后,切断甲烷气体,以5℃/min的降温速率进行降温至室温条件,得到钠离子电池硬碳负极材料。实施例1提供的钠离子电池硬碳负极材料的SEM图如图1所示,可以看出:该制备的钠离子电池负极材料显示出典型的纤维结构,其直径为10-20μm。
实施例1提供的钠离子电池硬碳负极材料的TEM图如图2所示,可以看出: 该制备的钠离子电池负极材料的碳片层呈现短程有序并长程无序状态,并存在大量微孔。分散的衍射环是模糊的,表示该材料具有破碎的类石墨微晶。
实施例1提供的钠离子电池硬碳负极材料的氮气(77K)吸脱附曲线如图3所示,可以看出:该制备的钠离子电池负极材料的孔道结构不能被氮气检测,比表面积约为0m 2/g。表明该制备的钠离子电池负极材料孔道具有小于0.4nm的孔口。
实施例1提供的钠离子电池硬碳负极材料的小角度X射线散射曲线如图4所示,比表面积为1298m 2/g,表明其内部具有丰富的纳米孔道。
实施例1提供的钠离子电池硬碳负极材料的首圈充放电曲线如图5所示,可以看出:该制备的钠离子电池硬碳负极材料具有高达77%的首次库伦效率,可逆比容量高达328mAh/g,其中低电位平台比容量为241mAh/g。
实施例2
与实施例1不同的是:
该硬碳负极材料的制备方法中,恒温反应0.5h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例3
与实施例1不同的是:
该硬碳负极材料的制备方法中,恒温反应5h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例4
与实施例1不同的是:
该硬碳负极材料的制备方法中,将微孔活性碳YP80(前驱体是椰壳,比表面积是2538m 2/g)放入管式炉中,恒温反应10h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例5
与实施例1不同的是:
该硬碳负极材料的制备方法中,将有序介孔碳CMK-3(前驱体是蔗糖,比表面积是1283m 2/g)放入管式炉中,恒温反应10h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例6
与实施例1不同的是:
该硬碳负极材料的制备方法中,将微孔活性碳CEP21KSN(前驱体是石油焦,比表面积是2360m 2/g)放入管式炉中,恒温反应4h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例7
与实施例1不同的是:
该硬碳负极材料的制备方法中,将具有层次孔的活性碳YP50(前驱体是椰壳,比表面积是1882m 2/g)放入管式炉中,恒温反应4h后,切断甲烷气体;其余与实施例1相同,这里不再赘述。
实施例8
与实施例1不同的是:
该硬碳负极材料的制备方法中,将微孔活性碳CEP21KSN(前驱体是石油焦,比表面积是2360m 2/g)放入管式炉中,恒温反应4h后,切断甲烷气体,所述保护气体在终温之前为氢气和氩气的混合物,达到终温以后为氩气;其余与实施例1相同,这里不再赘述。
实施例9
与实施例1不同的是:
该硬碳负极材料的制备方法中,所述终温为1000℃;其余与实施例1相同,这里不再赘述。
实施例10
与实施例1不同的是:
该硬碳负极材料的制备方法中,第一步中,所述保护气体流量为50ml/min,在终温条件下,通入流量为50ml/min的甲烷气体;其余与实施例1相同,这里不再赘述。
实施例11
与实施例1不同的是:
该硬碳负极材料的制备方法中,第一步中,所述升温速率为20℃/min;其余与实施例1相同,这里不再赘述。
实施例12
与实施例1不同的是:
该硬碳负极材料的制备方法中,第一步中,将微孔活性碳CEP21KSN(前驱体是石油焦,比表面积是2360m 2/g)放入管式炉中,恒温反应4h后,切断甲烷气体,所述含碳元素气源为苯,终温为750℃;其余与实施例1相同,这里不再赘述。
实施例13
与实施例1不同的是:
该硬碳负极材料的制备方法中,第一步中,将微孔活性碳CEP21KSN(前驱体是石油焦,比表面积是2360m 2/g)放入管式炉中,恒温反应4h后,切断甲烷气体,所述降温速率为10℃/min;其余与实施例1相同,这里不再赘述。
实施例14
本实施例提供了一种高能量密度钠离子电池,包括正极、负极、电解液,其中,负极的活性物质为孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料。
该硬碳负极材料的制备方法至少包括以下步骤:
第一步,将大孔碳放入管式炉中,通入流量为30ml/min保护气体氢气,以 3℃/min的升温速率升温至终温850℃;
第二步,在850℃终温条件下,通入流量为30ml/min的乙烷气体,进行化学气相沉积;
第三步,恒温反应5h后,切断乙烷气体,以3℃/min的降温速率进行降温至室温条件,得到钠离子电池硬碳负极材料。
实施例15
本实施例提供了一种高能量密度钠离子电池,包括正极、负极、电解液,其中,负极的活性物质为孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料。
该硬碳负极材料的制备方法至少包括以下步骤:
第一步,将层次孔碳放入管式炉中,通入流量为65ml/min保护气体氮气,以7℃/min的升温速率升温至终温1050℃;
第二步,在1050℃终温条件下,通入流量为40ml/min的丙烷气体,进行化学气相沉积;
第三步,恒温反应8h后,切断丙烷气体,以7℃/min的降温速率进行降温至室温条件,得到钠离子电池硬碳负极材料。
实施例16
本实施例提供了一种高能量密度钠离子电池,包括正极、负极、电解液,其中,负极的活性物质为孔口尺寸小于0.4nm且内部具有丰富纳米孔道的硬碳材料。
该硬碳负极材料的制备方法至少包括以下步骤:
第一步,将层次孔碳放入管式炉中,通入流量为35ml/min保护气体氮气,以4℃/min的升温速率升温至终温1150℃;
第二步,在1150℃终温条件下,通入流量为45ml/min的环己烷气体,进行化学气相沉积;
第三步,恒温反应4.5h后,切断环己烷气体,以4℃/min的降温速率进行降温至室温条件,得到钠离子电池硬碳负极材料。
对比例1
与实施例1不同的是:
该硬碳负极材料的制备方法中,通入流量为100ml/min保护气体氩气,通入流量为0ml/min的甲烷气体,其余与实施例1相同,这里不再赘述。
对比例2
与实施例4不同的是:
该硬碳负极材料的制备方法中,通入流量为100ml/min保护气体氩气,通入流量为0ml/min的甲烷气体,其余与实施例1相同,这里不再赘述。
对比例3
与实施例5不同的是:
该硬碳负极材料的制备方法中,通入流量为100ml/min保护气体氩气,通入流量为0ml/min的甲烷气体,其余与实施例1相同,这里不再赘述。
对比例4
与实施例6不同的是:
该硬碳负极材料的制备方法中,通入流量为100ml/min保护气体氩气,通入流量为0ml/min的甲烷气体,其余与实施例1相同,这里不再赘述。
对比例5
与实施例7不同的是:
该硬碳负极材料的制备方法中,通入流量为100ml/min保护气体氩气,通入流量为0ml/min的甲烷气体,其余与实施例1相同,这里不再赘述。
对比例6
与实施例1不同的是:
负极材料是市售硬碳。
实施例1-13和对比例1-6中,负极导电添加剂为Super-P、负极粘结剂为PVDF且活性物质与导电添加剂和粘接剂的质量比为8:1:1,负极集流体为铜箔。电解液中,电解质为NaClO 4,溶剂为质量比为1:1的EC和DEC,正极为钠片,对实施例1-13和对比例1-6中的电池进行电化学性能测试,测试该电极复合材料的首次库伦效率和质量比容量,所得结果如表1所示。
表1:实施例1-13和对比例1-6的测试结果。
Figure PCTCN2023071128-appb-000001
由表1可以看出:通过减小硬碳负极材料的氮气吸脱附测试的比表面积(孔口尺寸大于0.4nm)至0m 2/g,硬碳负极的首次库伦效率得到明显提升;随着硬碳负极材料的小角度X射线散射测试的比表面积(孔口尺寸小于0.4nm)逐渐增大,硬碳负极的质量比容量(特别是低电位平台比容量)逐渐增大。精确调控硬碳负极材料的孔口尺寸,保证在首圈电解液分解形成SEI之前,起到去溶剂化作用以充分避免电解液分解等不可逆反应,优化电极/电解液的界面电化学组成,最大化提高首次库伦效率(81%);充分保留内部丰富的纳米孔道,保证钠离子在其中有充分的可逆储存位点,最大化提高可逆的质量比容量(482mAh/g)。另外,通过调整前驱体、保护气氛、含碳元素气源、多孔碳的类型、保护气氛和含碳元素气源的流量、终温、恒温时间、升降温速率等条件,可以进一步优化硬碳负极的电化学性能。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种高能量密度钠离子电池,包括正极、负极、电解液,其特征在于:所述负极的活性物质为孔口尺寸小于0.4nm且内部具有纳米孔道的硬碳材料。
  2. 根据权利要求1所述的高能量密度钠离子电池,其特征在于:所述硬碳负极材料由氮气在77K下测试得到的比表面积接近0m 2/g;由小角度X射线散射测试得到的比表面积为300-3000m 2/g,平均孔径为1-4nm。
  3. 根据权利要求1所述的高能量密度钠离子电池,其特征在于,所述硬碳负极材料的制备方法至少包括以下步骤:
    第一步,将多孔碳材料或其前驱体放入管式炉中,通入保护气体,以一定的升温速率升温至终温;
    第二步,在终温条件下,通入含碳元素气源,进行化学气相沉积;
    第三步,恒温反应一段时间后,切断含碳元素气源,以一定的降温速率进行降温至室温条件。
  4. 根据权利要求3所述的高能量密度钠离子电池,其特征在于,第一步中,所述多孔碳材料为微孔碳、介孔碳、大孔碳、层次孔碳中的至少一种,其比表面积为500-3000m 2/g。
  5. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:第一步中,所述前驱体为沥青、石油焦、椰壳、核桃壳、酚醛树脂、蔗糖、葡萄糖、石墨烯中的至少一种。
  6. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:所述保护气体为氩气、氮气、氢气中的至少一种。
  7. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:第一步中,所述保护气体流量为10-100ml/min,所述升温速率为0.1-20℃/min;所述终温为700-1200℃。
  8. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:第二步中,所述含碳元素气源为甲烷、乙烷、丙烷、乙烯、乙炔、丙炔、苯、甲苯、一氧化碳、环己烷中的至少一种。
  9. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:第二步中,所述含碳元素气源的流量为5-50ml/min。
  10. 根据权利要求3所述的高能量密度钠离子电池,其特征在于:第三步中,所述恒温反应的持续时间为0.1-10h;所述降温速率为0.1-20℃/min。
PCT/CN2023/071128 2022-01-24 2023-01-07 一种高能量密度钠离子电池 WO2023138417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210076856.1A CN114373928A (zh) 2022-01-24 2022-01-24 一种高能量密度钠离子电池
CN202210076856.1 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023138417A1 true WO2023138417A1 (zh) 2023-07-27

Family

ID=81146249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071128 WO2023138417A1 (zh) 2022-01-24 2023-01-07 一种高能量密度钠离子电池

Country Status (2)

Country Link
CN (1) CN114373928A (zh)
WO (1) WO2023138417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352710A (zh) * 2023-12-05 2024-01-05 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373928A (zh) * 2022-01-24 2022-04-19 天津大学 一种高能量密度钠离子电池
CN116553547A (zh) * 2023-07-12 2023-08-08 玖贰伍碳源科技(天津)有限公司 高能量高功率碳材料及制备方法和钠离子电池
CN116573631A (zh) * 2023-07-12 2023-08-11 玖贰伍碳源科技(天津)有限公司 生产高能量密度硬碳负极的方法及钠离子电池
CN117695953A (zh) * 2024-02-05 2024-03-15 玖贰伍碳源科技(天津)有限公司 一种钠离子电池碳负极的生产装置及方法
CN117699799B (zh) * 2024-02-06 2024-06-07 玖贰伍碳源科技(天津)有限公司 一种筛分型碳及其制备方法和应用
CN117810432A (zh) * 2024-03-01 2024-04-02 玖贰伍碳源科技(天津)有限公司 一种碳材料及无导电剂负极

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141520A (ja) * 2005-11-15 2007-06-07 Japan Fine Ceramics Center 電極材料およびその利用
CN105514438A (zh) * 2015-12-25 2016-04-20 清华大学深圳研究生院 钠离子电池电极材料、电极及电池
CN105633361A (zh) * 2015-12-25 2016-06-01 清华大学深圳研究生院 钠离子电池电极材料、其制备方法及电池
CN111952565A (zh) * 2020-08-18 2020-11-17 武汉比西迪电池材料有限公司 一种锂电池硬碳负极材料的包覆改性方法
CN113845105A (zh) * 2021-09-24 2021-12-28 深圳华算科技有限公司 钾离子电池负极材料及其制备方法与钾离子电池
CN114335523A (zh) * 2022-01-24 2022-04-12 天津大学 一种高能量密度钠离子电池用硬碳负极的制备方法
CN114373928A (zh) * 2022-01-24 2022-04-19 天津大学 一种高能量密度钠离子电池
CN114373929A (zh) * 2022-01-24 2022-04-19 天津大学 一种高功率特性钠离子电池
CN114408923A (zh) * 2022-01-24 2022-04-29 天津大学 一种多孔碳材料孔口调控的方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981629A (zh) * 2016-01-16 2017-07-25 山东玉皇新能源科技有限公司 一种锂离子动力电池用硬碳负极材料的制备及其改性方法
CN106450320B (zh) * 2016-12-12 2019-09-24 华中科技大学 一种制备硬碳的方法及其应用
CN108539197A (zh) * 2018-03-13 2018-09-14 上海交通大学 高倍率钠离子电池负极用多孔石墨化硬碳的制备方法
CN109742383B (zh) * 2018-12-28 2021-05-25 中国科学院物理研究所 基于酚醛树脂的钠离子电池硬碳负极材料及其制备方法和应用
CN113328068B (zh) * 2020-02-29 2022-04-08 溧阳天目先导电池材料科技有限公司 核壳结构的碳纳米管硬碳复合负极材料及制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141520A (ja) * 2005-11-15 2007-06-07 Japan Fine Ceramics Center 電極材料およびその利用
CN105514438A (zh) * 2015-12-25 2016-04-20 清华大学深圳研究生院 钠离子电池电极材料、电极及电池
CN105633361A (zh) * 2015-12-25 2016-06-01 清华大学深圳研究生院 钠离子电池电极材料、其制备方法及电池
CN111952565A (zh) * 2020-08-18 2020-11-17 武汉比西迪电池材料有限公司 一种锂电池硬碳负极材料的包覆改性方法
CN113845105A (zh) * 2021-09-24 2021-12-28 深圳华算科技有限公司 钾离子电池负极材料及其制备方法与钾离子电池
CN114335523A (zh) * 2022-01-24 2022-04-12 天津大学 一种高能量密度钠离子电池用硬碳负极的制备方法
CN114373928A (zh) * 2022-01-24 2022-04-19 天津大学 一种高能量密度钠离子电池
CN114373929A (zh) * 2022-01-24 2022-04-19 天津大学 一种高功率特性钠离子电池
CN114408923A (zh) * 2022-01-24 2022-04-29 天津大学 一种多孔碳材料孔口调控的方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352710A (zh) * 2023-12-05 2024-01-05 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用
CN117352710B (zh) * 2023-12-05 2024-02-13 瑞浦兰钧能源股份有限公司 一种铋碳负极复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114373928A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023138417A1 (zh) 一种高能量密度钠离子电池
Zhang et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode
Lu et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode
Ni et al. Hollow multi-nanochannel carbon nanofibers@ MoSe2 nanosheets composite as flexible anodes for high performance lithium-ion batteries
Ren et al. Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries
WO2016184355A1 (zh) 以煤炭为原料制备石墨烯的方法
CN111525121B (zh) 一种绒毛结构的硅负极材料及其制备方法
Park et al. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries
Jang et al. The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries
WO2019062494A1 (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
Shen et al. Fe3C-doped asymmetric porous carbon membrane binder-free integrated materials as high performance anodes of lithium-ion batteries
CN112830472B (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
Sun et al. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries
CN104681784A (zh) 一种钒酸锂负极材料、负极、电池以及负极材料制备方法
CN113526489B (zh) 一种钠离子电池碳基负极材料的性能改进方法和应用
CN114335523A (zh) 一种高能量密度钠离子电池用硬碳负极的制备方法
KR20200100557A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
CN107994222B (zh) 一种三明治结构碳基复合材料及其制备方法和应用
CN114373929A (zh) 一种高功率特性钠离子电池
Chen et al. N-doped graphitized carbon-coated Fe2O3 nanoparticles in highly graphitized carbon hollow fibers for advanced lithium-ion batteries anodes
Tan et al. The underestimated charge storage capability of carbon cathodes for advanced alkali metal-ion capacitors
CN117059760A (zh) 一种纳米硅-硬碳复合材料及其制备方法和应用
CN113851614A (zh) 低温快充人造石墨负极材料及制备方法和低温快充电池
TW202106618A (zh) 複合碳粒子、其製造方法及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742732

Country of ref document: EP

Kind code of ref document: A1